278 research outputs found

    The Cycad Genotoxin MAM Modulates Brain Cellular Pathways Involved in Neurodegenerative Disease and Cancer in a DNA Damage-Linked Manner

    Get PDF
    Methylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of adult C57BL6 wild-type mice treated with a single systemic dose of MAM acetate display DNA damage (O6-methyldeoxyguanosine lesions, O6-mG) that remains constant up to 7 days post-treatment. By contrast, MAM-treated mice lacking a functional gene encoding the DNA repair enzyme O6-mG DNA methyltransferase (MGMT) showed elevated O6-mG DNA damage starting at 48 hours post-treatment. The DNA damage was linked to changes in the expression of genes in cell-signaling pathways associated with cancer, human neurodegenerative disease, and neurodevelopmental disorders. These data are consistent with the established developmental neurotoxic and carcinogenic properties of MAM in rodents. They also support the hypothesis that early-life exposure to MAM-glucoside (cycasin) has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for food or medicine, or both. These findings suggest environmental genotoxins, specifically MAM, target common pathways involved in neurodegeneration and cancer, the outcome depending on whether the cell can divide (cancer) or not (neurodegeneration). Exposure to MAM-related environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimer's disease

    Deep Eutectic Solvents: The Organic Reaction Medium of the Century

    Get PDF
    This microreview summarizes the use of deep eutectic solvents (DESs) and related melts in organic synthesis. Solvents of this type combine the great advantages of other proposed environmentally benign alternative solvents, such as low toxicity, high availability, low inflammability, high recyclability, low volatility, and low price, avoiding many disadvantages of the more modern media. The fact that many of the components of these mixtures come directly from nature assures their biodegradability and renewability. The classification and distribution of the reactions into different sections in this microreview, as well as the emphasis paid to their scope, easily allow a general reader to understand the actual state of the art and the great opportunities opened, not only for academic purposes but also for industry.This work was supported by the University of Alicante, Spain (VIGROB-173 and UAUSTI13-09)

    The enhanced X-ray Timing and Polarimetry mission – eXTP: an update on its scientific cases, mission profile and development status

    Get PDF
    The enhanced X-ray Timing and Polarimetry mission (eXTP) is a flagship observatory for X-ray timing, spectroscopy and polarimetry developed by an International Consortium. Thanks to its very large collecting area, good spectral resolution and unprecedented polarimetry capabilities, eXTP will explore the properties of matter and the propagation of light in the most extreme conditions found in the Universe. eXTP will, in addition, be a powerful X-ray observatory. The mission will continuously monitor the X-ray sky, and will enable multiwavelength and multi-messenger studies. The mission is currently in phase B, which will be completed in the middle of 2022

    Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    Get PDF
    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein \u3b1 subunit (G\u3b1olf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain

    Identification and Functional Analysis of Light-Responsive Unique Genes and Gene Family Members in Rice

    Get PDF
    Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families

    Wetlands for wastewater treatment and subsequent recycling of treated effluent : a review

    Get PDF
    Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used

    The Biochemical and Cellular Basis for Nutraceutical Strategies to Attenuate Neurodegeneration in Parkinson’s Disease

    Get PDF
    Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible

    A novel receptor-type protein tyrosine phosphatase is expressed during neurogenesis in the olfactory neuroepithelium

    Full text link
    Tyrosine phosphorylation plays a central role in the control of neuronal cell development and function. Yet, few neuronal protein tyrosine phosphatases (PTPs) have been identified. We examined rat olfactory neuroepithelium for expression of novel PTPs potentially important in neuronal development and regeneration. Using the polymerase chain reaction with degenerate DNA oligomers directed to the conserved tyrosine phosphatase domain, we identified 6 novel tyrosine phosphatases. One of these, PTP NE-3, is a receptor-type PTP expressed selectively in both rat brain and olfactory neuroepithelium. In the olfactory neuroepithelium, PTP NE-3 expression is restricted to neurons and describes a novel pattern of expression with a high level in the immature neurons and a lower level in mature olfactory sensory neurons.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30663/1/0000306.pd
    corecore