214 research outputs found

    Magnetocaloric effect and magnetostructural coupling in Mn0.92Fe0.08CoGe compound

    Get PDF
    The structural properties of Mn0.92Fe0.08CoGe have been investigated in detail using synchrotron x-ray diffraction in zero and applied pressure (p = 0-10 GPa). A ferromagnetic transition occurs around TC = 300 K and a large magnetic-entropy change -ΔSM = 17.3 J/kg K detected at TC for a field change of ΔB = 5 T. The field dependence of -ΔSM max can be expressed as -ΔSM max ∞ B. At ambient temperature and pressure, Mn0.92Fe0.08CoGe exhibits a co-existence of the orthorhombic TiNiSi-type structure (space group Pnma) and hexagonal Ni2In-type structure (space group P63/mmc). Application of external pressure drives a structure change from the orthorhombic TiNiSi-type structure to the hexagonal Ni2In-type structure. A large anomaly in heat capacity around TC is detected and the Debye temperature θD (=319(±10) K) has been derived from analyses of the low temperature heat capacity, T ≲ 10 K

    Magnetic phase transitions and entropy change in layered NdMn1.7Cr0.3Si2

    Get PDF
    A giant magnetocaloric effect has been observed around the Curie temperature, TC ∼ 42 K, in NdMn1.7Cr0.3Si2 with no discernible thermal and magnetic hysteresis losses. Below 400 K, three magnetic phase transitions take place around 380 K, 320 K and 42 K. Detailed high resolution synchrotron and neutron powder diffraction (10-400 K) confirmed the magnetic transitions and phases as follows: TN intra ∼ 380 K denotes the transition from paramagnetism to intralayer antiferromagnetism (AFl), TN inter ∼ 320 K represents the transition from the AFl structure to the canted antiferromagnetic spin structure (AFmc), while TC ∼ 42 K denotes the first order magnetic transition from AFmc to canted ferromagnetism (Fmc + F(Nd)) due to ordering of the Mn and Nd sub-lattices. The maximum values of the magnetic entropy change and the adiabatic temperature change, around TC for a field change of 5 T are evaluated to be −ΔSM max ∼ 15.9 J kg−1 K−1 and ΔTad max ∼ 5 K, respectively. The first order magnetic transition associated with the low levels of hysteresis losses (therma

    Magnetic phase transitions and entropy change in layered NdMn 1.7

    Get PDF
    A giant magnetocaloric effect has been observed around the Curie temperature, TC ∼ 42 K, in NdMn1.7Cr0.3Si2 with no discernible thermal and magnetic hysteresis losses. Below 400 K, three magnetic phase transitions take place around 380 K, 320 K and 42 K. Detailed high resolution synchrotron and neutron powder diffraction (10-400 K) confirmed the magnetic transitions and phases as follows: TN intra ∼ 380 K denotes the transition from paramagnetism to intralayer antiferromagnetism (AFl), TN inter ∼ 320 K represents the transition from the AFl structure to the canted antiferromagnetic spin structure (AFmc), while TC ∼ 42 K denotes the first order magnetic transition from AFmc to canted ferromagnetism (Fmc + F(Nd)) due to ordering of the Mn and Nd sub-lattices. The maximum values of the magnetic entropy change and the adiabatic temperature change, around TC for a field change of 5 T are evaluated to be −ΔSM max ∼ 15.9 J kg−1 K−1 and ΔTad max ∼ 5 K, respectively. The first order magnetic transition associated with the low levels of hysteresis losses (therma

    Mismatch Repair proteins are recruited to replicating DNA through interaction with Proliferating Cell Nuclear Antigen (PCNA)

    Get PDF
    Mismatch Repair (MMR) is closely linked to DNA replication; however, other than the role of the replicative sliding clamp (PCNA) in various MMR functions, the linkage between DNA replication and MMR has been difficult to investigate. Here we use an in vitro DNA replication system based on simian virus 40, to investigate MMR recruitment to replicating DNA. Both DNA replication and MMR proteins are recruited to replicating DNA in an origin-dependent fashion. Primer synthesis is required for recruitment of both PCNA and MMR proteins, but not for recruitment of the single-stranded DNA-binding protein (RPA). Blocking PCNA recruitment to replicating DNA with a p21-based polypeptide blocks PCNA and MMR, but not RPA recruitment. Once PCNA and subsequent proteins required for replication are loaded onto DNA, addition of p21 leaves PCNA on the replicating DNA, but actively displaces MMR proteins. These findings indicate that the MMR machinery is recruited to replicating DNA through its interaction with PCNA, and suggests that this occurs via binding of the MMR proteins to the multi-protein interaction sites on PCNA. These studies demonstrate the utility of this system for further investigation of the role of DNA replication in MMR

    Khoe-San genomes reveal unique variation and confirm the deepest population divergence in Homo sapiens

    Get PDF
    Abstract: The southern African indigenous Khoe-San populations harbor the most divergent lineages of all living peoples. Exploring their genomes is key to understanding deep human history. We sequenced 25 full genomes from five Khoe-San populations, revealing many novel variants, that 25% of variants are unique to the Khoe-San, and that the Khoe-San group harbors the greatest level of diversity across the globe. In line with previous studies, we found several gene regions with extreme values in genome-wide scans for selection, potentially caused by natural selection in the lineage leading to Homo sapiens and more recent in time. These gene regions included immunity-, sperm-, brain-, diet-, and muscle-related genes. When accounting for recent admixture, all Khoe-San groups display genetic diversity approaching the levels in other African groups and a reduction in effective population size starting around 100,000 years ago. Hence, all human groups show a reduction in effective population size commencing around the time of the Out-of- Africa migrations, which coincides with changes in the paleoclimate records, changes that potentially impacted all humans at the time

    Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art

    Get PDF
    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed

    Xpert MTB/RIF Ultra and Xpert MTB/RIF assays for extrapulmonary tuberculosis and rifampicin resistance in adults.

    Get PDF
    BACKGROUND: Xpert MTB/RIF Ultra (Xpert Ultra) and Xpert MTB/RIF are World Health Organization (WHO)-recommended rapid nucleic acid amplification tests (NAATs) widely used for simultaneous detection of Mycobacterium tuberculosis complex and rifampicin resistance in sputum. To extend our previous review on extrapulmonary tuberculosis (Kohli 2018), we performed this update to inform updated WHO policy (WHO Consolidated Guidelines (Module 3) 2020). OBJECTIVES: To estimate diagnostic accuracy of Xpert Ultra and Xpert MTB/RIF for extrapulmonary tuberculosis and rifampicin resistance in adults with presumptive extrapulmonary tuberculosis. SEARCH METHODS: Cochrane Infectious Diseases Group Specialized Register, MEDLINE, Embase, Science Citation Index, Web of Science, Latin American Caribbean Health Sciences Literature, Scopus, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, the International Standard Randomized Controlled Trial Number Registry, and ProQuest, 2 August 2019 and 28 January 2020 (Xpert Ultra studies), without language restriction. SELECTION CRITERIA: Cross-sectional and cohort studies using non-respiratory specimens. Forms of extrapulmonary tuberculosis: tuberculous meningitis and pleural, lymph node, bone or joint, genitourinary, peritoneal, pericardial, disseminated tuberculosis. Reference standards were culture and a study-defined composite reference standard (tuberculosis detection); phenotypic drug susceptibility testing and line probe assays (rifampicin resistance detection). DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias and applicability using QUADAS-2. For tuberculosis detection, we performed separate analyses by specimen type and reference standard using the bivariate model to estimate pooled sensitivity and specificity with 95% credible intervals (CrIs). We applied a latent class meta-analysis model to three forms of extrapulmonary tuberculosis. We assessed certainty of evidence using GRADE. MAIN RESULTS: 69 studies: 67 evaluated Xpert MTB/RIF and 11 evaluated Xpert Ultra, of which nine evaluated both tests. Most studies were conducted in China, India, South Africa, and Uganda. Overall, risk of bias was low for patient selection, index test, and flow and timing domains, and low (49%) or unclear (43%) for the reference standard domain. Applicability for the patient selection domain was unclear for most studies because we were unsure of the clinical settings. Cerebrospinal fluid Xpert Ultra (6 studies) Xpert Ultra pooled sensitivity and specificity (95% CrI) against culture were 89.4% (79.1 to 95.6) (89 participants; low-certainty evidence) and 91.2% (83.2 to 95.7) (386 participants; moderate-certainty evidence). Of 1000 people where 100 have tuberculous meningitis, 168 would be Xpert Ultra-positive: of these, 79 (47%) would not have tuberculosis (false-positives) and 832 would be Xpert Ultra-negative: of these, 11 (1%) would have tuberculosis (false-negatives). Xpert MTB/RIF (30 studies) Xpert MTB/RIF pooled sensitivity and specificity against culture were 71.1% (62.8 to 79.1) (571 participants; moderate-certainty evidence) and 96.9% (95.4 to 98.0) (2824 participants; high-certainty evidence). Of 1000 people where 100 have tuberculous meningitis, 99 would be Xpert MTB/RIF-positive: of these, 28 (28%) would not have tuberculosis; and 901 would be Xpert MTB/RIF-negative: of these, 29 (3%) would have tuberculosis. Pleural fluid Xpert Ultra (4 studies) Xpert Ultra pooled sensitivity and specificity against culture were 75.0% (58.0 to 86.4) (158 participants; very low-certainty evidence) and 87.0% (63.1 to 97.9) (240 participants; very low-certainty evidence). Of 1000 people where 100 have pleural tuberculosis, 192 would be Xpert Ultra-positive: of these, 117 (61%) would not have tuberculosis; and 808 would be Xpert Ultra-negative: of these, 25 (3%) would have tuberculosis. Xpert MTB/RIF (25 studies) Xpert MTB/RIF pooled sensitivity and specificity against culture were 49.5% (39.8 to 59.9) (644 participants; low-certainty evidence) and 98.9% (97.6 to 99.7) (2421 participants; high-certainty evidence). Of 1000 people where 100 have pleural tuberculosis, 60 would be Xpert MTB/RIF-positive: of these, 10 (17%) would not have tuberculosis; and 940 would be Xpert MTB/RIF-negative: of these, 50 (5%) would have tuberculosis. Lymph node aspirate Xpert Ultra (1 study) Xpert Ultra sensitivity and specificity (95% confidence interval) against composite reference standard were 70% (51 to 85) (30 participants; very low-certainty evidence) and 100% (92 to 100) (43 participants; low-certainty evidence). Of 1000 people where 100 have lymph node tuberculosis, 70 would be Xpert Ultra-positive and 0 (0%) would not have tuberculosis; 930 would be Xpert Ultra-negative and 30 (3%) would have tuberculosis. Xpert MTB/RIF (4 studies) Xpert MTB/RIF pooled sensitivity and specificity against composite reference standard were 81.6% (61.9 to 93.3) (377 participants; low-certainty evidence) and 96.4% (91.3 to 98.6) (302 participants; low-certainty evidence). Of 1000 people where 100 have lymph node tuberculosis, 118 would be Xpert MTB/RIF-positive and 37 (31%) would not have tuberculosis; 882 would be Xpert MTB/RIF-negative and 19 (2%) would have tuberculosis. In lymph node aspirate, Xpert MTB/RIF pooled specificity against culture was 86.2% (78.0 to 92.3), lower than that against a composite reference standard. Using the latent class model, Xpert MTB/RIF pooled specificity was 99.5% (99.1 to 99.7), similar to that observed with a composite reference standard. Rifampicin resistance Xpert Ultra (4 studies) Xpert Ultra pooled sensitivity and specificity were 100.0% (95.1 to 100.0), (24 participants; low-certainty evidence) and 100.0% (99.0 to 100.0) (105 participants; moderate-certainty evidence). Of 1000 people where 100 have rifampicin resistance, 100 would be Xpert Ultra-positive (resistant): of these, zero (0%) would not have rifampicin resistance; and 900 would be Xpert Ultra-negative (susceptible): of these, zero (0%) would have rifampicin resistance. Xpert MTB/RIF (19 studies) Xpert MTB/RIF pooled sensitivity and specificity were 96.5% (91.9 to 98.8) (148 participants; high-certainty evidence) and 99.1% (98.0 to 99.7) (822 participants; high-certainty evidence). Of 1000 people where 100 have rifampicin resistance, 105 would be Xpert MTB/RIF-positive (resistant): of these, 8 (8%) would not have rifampicin resistance; and 895 would be Xpert MTB/RIF-negative (susceptible): of these, 3 (0.3%) would have rifampicin resistance. AUTHORS' CONCLUSIONS: Xpert Ultra and Xpert MTB/RIF may be helpful in diagnosing extrapulmonary tuberculosis. Sensitivity varies across different extrapulmonary specimens: while for most specimens specificity is high, the tests rarely yield a positive result for people without tuberculosis. For tuberculous meningitis, Xpert Ultra had higher sensitivity and lower specificity than Xpert MTB/RIF against culture. Xpert Ultra and Xpert MTB/RIF had similar sensitivity and specificity for rifampicin resistance. Future research should acknowledge the concern associated with culture as a reference standard in paucibacillary specimens and consider ways to address this limitation

    Advanced therapeutic dressings for effective wound healing

    Get PDF
    Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing due to the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer reviewed literature and other publicly available sources such as the FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, surgical and traumatic wounds (e.g. accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue engineered substitutes, biomaterials based biological dressings, biological and naturally derived dressings, medicated sutures and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care

    Study on vanadium substitution to iron in Li2FeP 2O7 as cathode material for lithium-ion batteries

    Get PDF
    A series of Li2Fe1-3x/2VxP 2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) cathode materials for LIBs were prepared by the sol-gel method. Structural characterization of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) samples was conducted by synchrotron X-ray diffraction. The morphology and oxidation states of Fe2+ and V 3+ in the Li2Fe1-3x/2VxP 2O7 samples were confirmed by scanning electron microscopy and magnetic susceptibility measurements, respectively. The electrochemical measurements indicated that Li2Fe1-3x/2VxP 2O7 (x = 0.025) delivered the higher reversible capacity of 79.9 mAh g-1 at 1 C in the voltage range of 2.0 - 4.5 V with higher 77.9% capacity retention after 300 cycles than those of Li 2FeP2O7 (48.9 mAh g-1 and 72.6%). Moreover, the rate capability of Li2Fe1-3x/2V xP2O7 (x = 0.025) were also significantly enhanced through vanadium substitution to iron of Li2Fe 1-3x/2VxP2O7. The vanadium substituted to Fe2 site of Li2FeP2O7 decreases Li occupying the Li5 position in the FeO5 unit, leading to a low degree exchange between Li and Fe in the MO5 (M = Li and Fe). The low degree cation disorder was beneficial to lithium-ion extraction/insertion during the charge-discharge process and hence enhances the capacity and rate capability
    corecore