967 research outputs found

    "FDIC-Sponsored Self-Insured Depositors: Using Insurance to Gain Market Discipline and Lower the Cost of Bank Funding"

    Get PDF
    Insured depositors have no reason to care how their banks perform or how safe they are. Only uninsured depositors have that incentive. This paper offers a plan to replace some insured deposits with uninsured deposits. The plan: the FDIC would guarantee loan contracts if the loan takers deposited the proceeds exclusively in uninsured deposits and backed those deposits with equity. This would ensure that the loan takers could share the likely costs if any of their depositories failed. The loans made under FDIC guarantee would only require interest at the risk-free rate. Thus the loan takers could offer the proceeds at lower rates than the rates paid on current deposits. Accordingly, funding by banks would shift to the new deposits, and since the new "self-insured" depositors would have equity at stake, they would have no choice but to duly monitor their banks and impose rate premiums based on each bank's indigenous risk. With these reforms, some very costly imperfections of current deposit insurance would be eliminated: the FDIC would now have in place a program that would dissuade banks from moral hazard and high risk and set the foundation for better disciplined, safer, and more cost-efficient banking.

    On social networks and collaborative recommendation

    Get PDF
    Social network systems, like last.fm, play a significant role in Web 2.0, containing large amounts of multimedia-enriched data that are enhanced both by explicit user-provided annotations and implicit aggregated feedback describing the personal preferences of each user. It is also a common tendency for these systems to encourage the creation of virtual networks among their users by allowing them to establish bonds of friendship and thus provide a novel and direct medium for the exchange of data. We investigate the role of these additional relationships in developing a track recommendation system. Taking into account both the social annotation and friendships inherent in the social graph established among users, items and tags, we created a collaborative recommendation system that effectively adapts to the personal information needs of each user. We adopt the generic framework of Random Walk with Restarts in order to provide with a more natural and efficient way to represent social networks. In this work we collected a representative enough portion of the music social network last.fm, capturing explicitly expressed bonds of friendship of the user as well as social tags. We performed a series of comparison experiments between the Random Walk with Restarts model and a user-based collaborative filtering method using the Pearson Correlation similarity. The results show that the graph model system benefits from the additional information embedded in social knowledge. In addition, the graph model outperforms the standard collaborative filtering method.</p

    A Knowledge-Grounded Multimodal Search-Based Conversational Agent

    Full text link
    Multimodal search-based dialogue is a challenging new task: It extends visually grounded question answering systems into multi-turn conversations with access to an external database. We address this new challenge by learning a neural response generation system from the recently released Multimodal Dialogue (MMD) dataset (Saha et al., 2017). We introduce a knowledge-grounded multimodal conversational model where an encoded knowledge base (KB) representation is appended to the decoder input. Our model substantially outperforms strong baselines in terms of text-based similarity measures (over 9 BLEU points, 3 of which are solely due to the use of additional information from the KB

    SEQ^3: Differentiable Sequence-to-Sequence-to-Sequence Autoencoder for Unsupervised Abstractive Sentence Compression

    Get PDF
    Neural sequence-to-sequence models are currently the dominant approach in several natural language processing tasks, but require large parallel corpora. We present a sequence-to-sequence-to-sequence autoencoder (SEQ^3), consisting of two chained encoder-decoder pairs, with words used as a sequence of discrete latent variables. We apply the proposed model to unsupervised abstractive sentence compression, where the first and last sequences are the input and reconstructed sentences, respectively, while the middle sequence is the compressed sentence. Constraining the length of the latent word sequences forces the model to distill important information from the input. A pretrained language model, acting as a prior over the latent sequences, encourages the compressed sentences to be human-readable. Continuous relaxations enable us to sample from categorical distributions, allowing gradient-based optimization, unlike alternatives that rely on reinforcement learning. The proposed model does not require parallel text-summary pairs, achieving promising results in unsupervised sentence compression on benchmark datasets.Comment: Accepted to NAACL 201

    Improving Context Modelling in Multimodal Dialogue Generation

    Full text link
    In this work, we investigate the task of textual response generation in a multimodal task-oriented dialogue system. Our work is based on the recently released Multimodal Dialogue (MMD) dataset (Saha et al., 2017) in the fashion domain. We introduce a multimodal extension to the Hierarchical Recurrent Encoder-Decoder (HRED) model and show that this extension outperforms strong baselines in terms of text-based similarity metrics. We also showcase the shortcomings of current vision and language models by performing an error analysis on our system's output

    Better Conversations by Modeling,Filtering,and Optimizing for Coherence and Diversity

    Full text link
    We present three enhancements to existing encoder-decoder models for open-domain conversational agents, aimed at effectively modeling coherence and promoting output diversity: (1) We introduce a measure of coherence as the GloVe embedding similarity between the dialogue context and the generated response, (2) we filter our training corpora based on the measure of coherence to obtain topically coherent and lexically diverse context-response pairs, (3) we then train a response generator using a conditional variational autoencoder model that incorporates the measure of coherence as a latent variable and uses a context gate to guarantee topical consistency with the context and promote lexical diversity. Experiments on the OpenSubtitles corpus show a substantial improvement over competitive neural models in terms of BLEU score as well as metrics of coherence and diversity

    A Theme-Rewriting Approach for Generating Algebra Word Problems

    Full text link
    Texts present coherent stories that have a particular theme or overall setting, for example science fiction or western. In this paper, we present a text generation method called {\it rewriting} that edits existing human-authored narratives to change their theme without changing the underlying story. We apply the approach to math word problems, where it might help students stay more engaged by quickly transforming all of their homework assignments to the theme of their favorite movie without changing the math concepts that are being taught. Our rewriting method uses a two-stage decoding process, which proposes new words from the target theme and scores the resulting stories according to a number of factors defining aspects of syntactic, semantic, and thematic coherence. Experiments demonstrate that the final stories typically represent the new theme well while still testing the original math concepts, outperforming a number of baselines. We also release a new dataset of human-authored rewrites of math word problems in several themes.Comment: To appear EMNLP 201

    Learning a Neural Semantic Parser from User Feedback

    Full text link
    We present an approach to rapidly and easily build natural language interfaces to databases for new domains, whose performance improves over time based on user feedback, and requires minimal intervention. To achieve this, we adapt neural sequence models to map utterances directly to SQL with its full expressivity, bypassing any intermediate meaning representations. These models are immediately deployed online to solicit feedback from real users to flag incorrect queries. Finally, the popularity of SQL facilitates gathering annotations for incorrect predictions using the crowd, which is directly used to improve our models. This complete feedback loop, without intermediate representations or database specific engineering, opens up new ways of building high quality semantic parsers. Experiments suggest that this approach can be deployed quickly for any new target domain, as we show by learning a semantic parser for an online academic database from scratch.Comment: Accepted at ACL 201
    • …
    corecore