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for lithium-ion batteries

Abstract
A series of Li2Fe1-3x/2VxP 2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) cathode materials for LIBs were prepared
by the sol-gel method. Structural characterization of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1)
samples was conducted by synchrotron X-ray diffraction. The morphology and oxidation states of Fe2+ and V
3+ in the Li2Fe1-3x/2VxP 2O7 samples were confirmed by scanning electron microscopy and magnetic
susceptibility measurements, respectively. The electrochemical measurements indicated that Li2Fe1-3x/2VxP
2O7 (x = 0.025) delivered the higher reversible capacity of 79.9 mAh g-1 at 1 C in the voltage range of 2.0 -
4.5 V with higher 77.9% capacity retention after 300 cycles than those of Li 2FeP2O7 (48.9 mAh g-1 and
72.6%). Moreover, the rate capability of Li2Fe1-3x/2V xP2O7 (x = 0.025) were also significantly enhanced
through vanadium substitution to iron of Li2Fe 1-3x/2VxP2O7. The vanadium substituted to Fe2 site of
Li2FeP2O7 decreases Li occupying the Li5 position in the FeO5 unit, leading to a low degree exchange
between Li and Fe in the MO5 (M = Li and Fe). The low degree cation disorder was beneficial to lithium-ion
extraction/insertion during the charge-discharge process and hence enhances the capacity and rate capability.
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Abstract 
 
A series of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) cathode materials for LIBs 

were prepared by the sol-gel method. Structural characterization of Li2Fe1-3x/2VxP2O7 (x = 0, 

0.025, 0.05, 0.075, and 0.1) samples was conducted by synchrotron X-ray diffraction. The 

morphology and oxidation states of Fe2+ and V3+ in the Li2Fe1-3x/2VxP2O7 samples were 

confirmed by scanning electron microscopy and magnetic susceptibility measurements, 

respectively. The electrochemical measurements indicated that Li2Fe1-3x/2VxP2O7 (x = 0.025) 

delivered the higher reversible capacity of 79.9 mAh g-1 at 1 C in the voltage range of 2.0 - 

4.5 V with higher 77.9% capacity retention after 500 cycles than those of Li2FeP2O7  (48.9 

mAh g-1
 and 72.6%). Moreover, the rate capability of Li2Fe1-3x/2VxP2O7 (x = 0.025) were also 

significantly enhanced through vanadium substitution to iron of Li2Fe1-3x/2VxP2O7. The 

vanadium substituted to Fe2 site of Li2FeP2O7  decreases Li occupying the Li5 position in the 

FeO5 unit, leading to a low degree exchange between Li and Fe in the MO5 (M = Li and Fe). 

The low degree cation disorder was beneficial to lithium-ion extraction/insertion during the 

charge-discharge process and hence enhances the capacity and rate capability. 

1 
 

mailto:shulei@uow.edu.au


1. Introduction 

      LiMPO4 (M = Fe, Co, Ni, Mn, and combinations thereof)) compounds have been 

considered to be among the most promising cathode materials for lithium-ion batteries 

intended for applications in electric vehicles (EVs) or renewable energy systems, due to their 

excellent electrochemical performance, low cost, and environmental friendliness. LiMPO4 (M 

= Fe, Co, Ni, Mn, and combinations thereof)) compounds have stable three-dimensional (3D) 

frameworks containing PO4 polyanions with strong covalent bonds, as well as M2+/M3+ redox 

couples at high voltage (> 3.4 V), and thus offer high energy densities, long cycle life, 

excellent thermal stability, and high operating safety [1-4]. Recently, the pyrophosphates 

Li2MP2O7 (M = Fe, Mn, and Co), which contain P2O7 polyanions formed by two PO4 units 

sharing one O-O edge, have also been identified as cathode materials for lithium-ion batteries 

[5-18]. Li2FeP2O7 prepared by conventional solid-state synthesis at 600 °C delivered a 

reversible specific capacity of around 110 mAh g-1 with an operating voltage of about 3.5 V 

at 0.05 C in the voltage range of 2.0 - 4.5 V [6]. Compared to its couterpart LiFePO4 (~ 166 

mAh g-1), Li2FeP2O7 has a lower theoretical capacity (~ 110 mAh g-1) because of the 

relatively heavy weight of the pyrophosphate and the extraction of only one electron per 

formula unit. However, Li2FeP2O7 showed a slightly higher operating voltage (~ 3.5 V vs. ~ 

3.4 V) and lower synthesis temperature than LiFePO4. Not only for these advantages, but also 

due to the possibilities of extracting two electrons from Li2MP2O7 (e.g., M = Mn) with a 

theoretical capacity of ~ 220 mAh g-1, the pyrophosphates Li2MP2O7 (M = Fe, Co, Ni, Mn, 

and combinations thereof)) have already received more attention as promising high voltage 

cathode materials for lithium-ion batteries [5-18].  

     So far, Li2FeP2O7 as cathode for LIBs suffers from the low rate capability or poor cycling 

stability because of its low electronic and ionic conductivity [5-18]. As the counterpart of 

Li2FeP2O7, LiFePO4 also showed the low electronic and ionic conductivity [3, 6, 7]. However, 
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over the past decades, simple and effective techniques, including carbon coating, morphology 

control, particle size reduction, and aliovalent doping, have been made to overcome this 

obstacle to the application of LiFePO4 [1-4]. Among these techniques, aliovalent doping was 

intensively investigated as one of most effective techniques to improve the electrochemical 

performance of LiFePO4, as the electronic and ionic conductivity of LiFePO4 was critically 

increased by several orders of magnitude through a small amount of aliovalent doping [19, 

20]. Among the many aliovalent elements, active vanadium element was widely employed as 

a dopant in LiFePO4 because of its various oxidation states (2+, 3+, 4+, 5+) [21-36]. Despite 

the enhanced electrochemical performance through vanadium doping, there is still no 

agreement on the explanation. The reasons given for the improvement in the electrochemical 

performance vary from replacement of Fe, Li, or P by vanadium so as to enlarge lithium or 

electron pathways [24, 25, 28-30], to no vanadium substitution entering into the LiFePO4 host 

structure [26], or formation of an impurity phase V2O3 coating [27].  

      To date, there is no report on aliovalent doping in Li2MP2O7 (M = Fe, Co, Ni, Mn, and 

combinations thereof)) compounds. Therefore, a study of aliovalent doping in Li2MP2O7 

could provide new insights to understand the mechanism behind the effects of aliovalent 

doping on the electrochemical performance of pyrophosphates. Here, we prepared a series of 

V-incorporated Li2FeP2O7 samples by the sol-gel method, assisted by citric acid and sucrose 

as the carbon sources and reductive agent. The detailed structures, magnetic properties, and 

electrochemical performance of V-incorporated Li2FeP2O7 were investigated. We found that 

Li2Fe1-3x/2VxP2O7 (x = 0.025) delivered the higher reversible capacity of  79.2 mAh g-1 at 1 C 

in the voltage range of 2.0 - 4.5 V  with higher 75.8% capacity retention after 500 cycles than 

those Li2Fe1-3x/2VxP2O7 (x = 0) (49 mAh g-1
 and 65.8%, respectively). The improved 

electrochemical performance for Li2Fe1-3x/2VxP2O7 (x = 0.025) can be attributed to vanadium 

substitution into its Fe sites by SXRD. The vanadium substituted on Fe2 sites of Li2FeP2O7 is 
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beneficial to decrease Li occupying the Li5 position in the FeO5 unit, leading to a low degree 

exchange between Li and Fe in the MO5 (M = Li and Fe). The low degree cation disorder 

could facilitate lithium ion extraction/insertion, and hence enhance the capacity and rate 

capability. 

2. Experimental section  

2.1. Material synthesis   

      The Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) compounds were prepared by 

the citric acid (CA) assisted sol-gel method from the starting materials LiH2PO4, 

(CH3COO)2Fe, NH4VO3, and sucrose. The molar ratio of Li/Fe/V/P/sucrose was 2 : (1 - 3x/2) 

: x : 2 : 0.34 (x  =  0, 0.025, 0.05, 0.075, and 0.1). The starting materials were dissolved in 

distilled water, and then citric acid was added to this solution under stirring (molar ratio of 

CA/sucrose = 1.5 : 1). Each solution was heated gently with continuous stirring to remove the 

excess water at 80 °C in a thermostatic water bath to obtain a viscous gel, which was then 

dried in a vacuum oven at 80 °C to yield a xerogel. The xerogels were then ground, heated to 

600 °C at a heating rate of 5 oC min-1 in a tube furnace, and then kept at that temperature for 

10 h under flowing high purity argon atmosphere, followed by natural cooling to room 

temperature.  

2.2. Materials characterization 

     The phase identification of the Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) 

compounds was carried out by synchrotron X-ray diffraction (SXRD, Melbourne, Australian 

Synchrotron). The SXRD data were collected over a 2θ range of 3 - 80° with a step size of 

0.0038°, using a wavelength of 0.825 Å. The morphology and particle size of the Li2Fe1-

3x/2VxP2O7 sample were characterized by scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM), using JSM-7500FA and JEOL JEM-2011 
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instruments, respectively. The specific surface area was measured by the 15 point N2 

absorption Brunauer-Emmett-Teller (BET) method using a Quanta Chrome Nova 1000. The 

carbon content of the Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) was characterized 

by thermogravimetric analysis (TGA, Mettler Toledo) in air over the temperature range of 50 

- 800 °C with a ramp rate of 10 °C min-1. The carbon content was also verified by Vario EL 

(Elementar, Germany) CHNS Elemental Analyzer. The magnetic measurements were carried 

out using a 14 T physical properties measurement system (PPMS), equipped with a vibrating 

sample magnetometer (VSM), over a wide temperature range from 2 to 340 K in a 100 Oe 

magnetic field. The electronic conductivity measurement of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 

0.05, 0.075, and 0.1) powders was adopted with a Jandel RM3 four-point probe measurement 

system at room temperature. The specimens used for electronic conductivity measurement 

were disk-shaped pellets with 8 mm in diameter and 1.5 mm in thickness.  

 

2.3. Electrochemical measurements 

     The electrochemical characterization of the Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, 

and 0.1) samples was carried out using coin cells. CR 2032 coin-type cells were assembled in 

an Ar filled glove box by stacking the electrodes on an Al foil as the working electrode, with 

an Li foil as the counter electrode and reference electrode, a porous polypropylene film as 

separator, and 1 M LiPF6 in a 1 : 2 (v/v) mixture of ethylene carbonate (EC) and diethyl 

carbonate (DEC) as the electrolyte. The cells were galvanostatically charged and discharged 

using an automatic battery tester system (Land®, China) in the voltage range of 2.0 - 4.5 V at 

various current densities. Electrochemical impedance spectroscopy (EIS) measurements were 

performed using a Biologic VMP3 electrochemical workstation in the frequency range from 1 

M Hz to 10 mHz. 
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3. Results and discussions 

         The synchrotron X-ray powder diffraction (SXRD) and refinement data for Li2Fe1-

3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) are shown in Figure 1. There is no visible 

impurity phase in the SXRD patterns of Li2Fe1-3x/2VxP2O7 (x ≤ 0.05), indicating that V is 

doped into the host lattice. For the samples with x ≥ 0.075, the diffraction peaks for LiVP2O7 

secondary phase is observed. The reasonably small weighted profile R-factor, Rwp, (1.98%, 

2.08%, and 2.43%), for Rietveld refinement, further confirmed that single-phase Li2Fe1-

3x/2VxP2O7 (x = 0, 0.025, and 0.05) with a monoclinic crystal structure (P21/c symmetry) is 

obtained through our experimental process, respectively. The quantitative analysis from the 

Rietveld refinement results revealed that ~ 4.5 wt. % and ~ 9.7 wt. % LiVP2O7 was present in 

the Li2Fe1-3x/2VxP2O7 (x = 0.075) and Li2Fe1-3x/2VxP2O7 (x = 0.1) samples, respectively. The 

respective cell parameters of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) are given 

in Table 1. As shown in Table 1 and Figure 2, the a, b, c lattice parameters and the unit cell 

volume all decreased linearly with increasing vanadium concentration because of the smaller 

ionic radii of V (0.74 Å) species substituting for Fe species with larger ionic radii (0.76 Å) in 

the Li2FeP2O7.  

      A schematic illustration of the SXRD refined structures of Li2Fe1-3x/2VxP2O7 is shown in 

Figure 3. In Li2MP2O7 (M = Mn or Fe) crystal structure [6, 14], all of the Li, M, P, and O 

atoms occupy positions with different coordinates, i.e., there are five Li positions (Li1-Li5), 

three M sites (M1-M3), four P positions (P1-P4), and fourteen O sites (O1-O14). As shown in 

Figure 3(a), the apparent tunnels suitable for passing lithium (accommodating Li2 and Li4 

site atoms) in Li2Fe1-3x/2VxP2O7 are stacked along the c-axis through the [FeP2O7] network in 

the ab-plane, which is composed of Fe2O9 and P2O7 units. Figure 3(b) indicates that the metal 

atoms (Li, Fe, V) in Li2Fe1-3x/2VxP2O7 are located in the three edge-sharing units: fully 

occupied MO6 octahedra (M = Fe1 site) and LiO5 trigonal-bipyramids, along with FeO5 
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trigonal-bipyramids that are statically occupied by residual Fe. It should be noted that the 

FeO5 bipyramidal sites (Fe2 site) are partially occupied by lithium (Li5 site), while the LiO5 

bipyramidal sites (Li1 site) are also partially occupied by iron (Fe3 site). According to the 

smaller reliability factor of the SXRD refinement results, we found that the substitution by V 

preferentially took place on the FeO5 rather than on FeO6 (Fe1 site). Furthermore, since the 

sum of the sites where vanadium could occupy MO5 (M = Li and Fe) was fixed to the 

stoichiometric amount, the reliability factors of the refinement were decreased with an 

increasing vanadium proportion in the FeO5, indicating that the vanadium atoms 

preferentially occupy the Fe2 site in the FeO5 rather than the Li1 site in the LiO5. Therefore, 

the vanadium substituted on Fe2 site of Li2FeP2O7 is beneficial to decrease Li occupying the 

Li5 position in the FeO5 unit, leading to a low degree exchange between Li and Fe in the 

MO5 (M = Li and Fe). Samples with a low degree of cation disorder (lithium atom and metal 

atom are exchanged in each site) in layered metal oxides as cathode materials, such as LiNiO2, 

LiNi1/3Mn1/3Co1/3O2, and LiNi0.2Mn0.4Co0.4O2, have shown improved electrochemical 

performance [37-40]. Therefore, it is expected that the electrochemical performance of 

Li2Fe1-3x/2VxP2O7 could be enhanced by vanadium substitution on the Fe2 sites.  

       The magnetic properties are widely used to determine magnetic interactions, sample 

purity, transition metal oxidation states, and structural ordering [29, 35, 36, 41]. The 

magnetic susceptibility, χ, of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05) from 2 to 300 K is shown 

in Figure 4(a). Typical ferrimagnetic behaviour can be found in the low temperature range 

(Figure 4(a)), which is similar to the previous report on the vanadium doping LiFePO4 [29]. 

The Curie Weiss law, χ - χ0  = CM/(T-Θ), where χ0 is the temperature-independent 

contribution to the susceptibility, T is the absolute temperature, CM is the material dependent 

Curie constant, and Θ is the Weiss constant, was used to fit the paramagnetic part of the 

dependence (inset of Figure 4(a)). The magnetic parameters of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 
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and 0.05) calculated from the fitted inverse susceptibility curves (inset of Figure 4(a)) and the 

dM/dT curves (inset of Figure 4(b)) are listed in Table 2. As shown in Table 2, with 

increasing vanadium content, the absolute value of the Néel temperature, TN, slightly 

decreases, which is consistent with weakening of the antiferromagnetic exchange after 

vanadium substitution, because the V2+ (3d3) and V3+ (3d2) states have a lower number of 

unpaired electrons than Fe2+ (3d6) [29]. Consequently, the Curie constant also decreases with 

vanadium substitution, giving a lower effective total magnetic moment. Furthermore, for 

Li2FeP2O7, the experimental magnetic moment, µexperiment = 4.88 μB, in excellent agreement 

with the value of 4.90 μB that is expected for the 3d6 Fe2+ ion. The small difference between 

the theoretical and experimental moments confirms the presence of Fe2+ and V3+ throughout 

the entire series.  

        Since the preparation method is the same, and the difference in the vanadium content is 

small, the morphology is similar for all the samples. Here, we select the scanning electron 

microscope (SEM) and transmission electron microscope (TEM) images of Li2Fe1-3x/2VxP2O7 

(x = 0.025). As shown in Figure 5(a) and (b), the Li2Fe1-3x/2VxP2O7 (x = 0.025) sample 

consists of small particles with a wide size distribution in the range of 100 nm - 1 μm. 

Furthermore, as shown in Figure 5(c) and (d), the TEM images of Li2Fe1-3x/2VxP2O7 (x = 

0.025) show a ~ 3.5 nm amorphous carbon coating on the surfaces of highly crystallized 

Li2Fe1-3x/2VxP2O7 (x = 0.025), which was further supported by the corresponding Fourier 

transform image (inset of Figure 5(d)). To identify the carbon content of Li2Fe1-3x/2VxP2O7 

3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1), the thermogravimetric analysis (TGA) was 

employed. As shown in Figure 6(a), the TGA curves of Li2Fe1-3x/2VxP2O7 3x/2VxP2O7 (x = 0, 

0.025, 0.05, 0.075, and 0.1) are divided into four parts in the temperature range of 80 to 

800 °C: total mass change (Δmtotal) over the whole process, total gasification of carbon (Δmc), 

and oxidation of Li2Fe1-3x/2VxP2O7 (ΔmL1, ΔmL2) (Fe2+ → Fe3+ in the temperature range of 200 
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- 400 °C and V3+ → V5+ in the temperature range of 450 - 600 °C). Therefore, the carbon 

content of Li2Fe1-3x/2VxP2O7 (x = 0) can be estimated from the following Equations (1 and 2): 

Δmtotal = -Δmc + ΔmL1 + ΔmL2                                                                                                                                              (1) 

ΔmL2 = k × wt. % (LiVP2O7)                                                                                                (2) 

Where, we assume that the constant k = 0.0784 for the LiVP2O7 [42]; wt. % (LiVP2O7) is the 

weight percentage in the Li2Fe1-3x/2VxP2O7 (x = 0.075, 0.1) samples (~ 4.5 wt. % for 

Li2Fe0.8675V0.075P2O7 and ~ 9.7 wt. % for Li2Fe0.85V0.1P2O7). Therefore, according to 

Equations (1 and 2), for x = 0.0, Δmc = - 4.95 wt. %, where Δmtotal = 5.3 wt. %, ΔmL1 = 0.55 

wt. %, and ΔmL2 = 0.0 wt. %. In the same way, the carbon content of Li2Fe1-3x/2VxP2O7 (x = 

0.025, 0.05, 0.075, and 0.1) is calculated to be 5.02 wt. %, 4.91 wt. %, 4.81 wt. %, and 4.75 

wt. %, respectively. The carbon content agrees well with the results from CHNSO 

measurement (5.32 wt. % for x = 0, 5.18 wt. % for x = 0.025, 4.92 wt. % for x = 0.05, 5.33 

wt. % for x = 0.075 and 4.87 wt. % for x = 0.1 ). Meanwhile, as shown in Figure 6(b), a 

highly exothermal reaction of our samples was observed at 475 oC in the differential scanning 

calorimetry (DSC) curves, which is smaller than that in a previous report at 510 oC [14]. The 

specific surface areas of all the samples were measured by the Brunauer-Emmett-Teller  

method and are in a range of 2.2 to 3.6 m2 g-1. 

Initial charge-discharge curves and the cycling performance of Li2Fe1-3x/2VxP2O7 (x = 0, 

0.025, 0.05, 0.075, and 0.1), measured in the voltage range of 2.0 - 4.5 V, are shown in Figure 

7. As shown in Figure 7(a), the charge-discharge profile of the Li2FeP2O7 agrees well with 

those reported previously [6, 7, 11].  Li2FeP2O7 delivers a reversible capacity of 95.3 mAh g-1
 

at 0.1 C with a plateau at ~ 3.45 V, 86% of the theoretical capacity of 110 mAh g-1 (Fe2+ → 

Fe3+). There is a slight concurrent increase in the initial specific capacity of Li2Fe1-3x/2VxP2O7 

with increasing V-doping content (98.5 mAh g-1 for x = 0.025, 96.9 mAh g-1 for x = 0.05). As 
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V doping continues to increase, however, it results in the appearance of LiVP2O7 impurity in 

the Li2Fe1-3x/2VxP2O7 (x = 0.075, 0.1), and the electrode polarization of Li2Fe1-3x/2VxP2O7 (x = 

0.075, 0.1) gradually increases, causing the initial capacity to drop to 75.8 mAh g-1 for x = 

0.075, and 59.8 mAh g-1 for x = 0.1, respectively. The initial sharply fading capacity for 

Li2Fe1-3x/2VxP2O7 (x = 0.075, 0.1) may arise from the change in cationic distribution due to 

possible structural deformation for the host structure and the effects of LiVP2O7 impurity. 

Compared to Li2FeP2O7, the LiVP2O7 impurity showed poorer discharge-charge capability 

because of low electronic conductivity (~ 50 mAh g-1 in the voltage range of 2.0 – 4.5 V at 

0.05 C), as well as significantly distorted structures after charge process [43]. To investigate 

the effects of V doping on the rate and cycling performance, Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 

0.05, 0.075, and 0.1) cells were charged and discharged for 105 cycles between 2.0 and 4.5 V 

at various current densities from 0.1 to 2 C in steps. As shown in Figure 7(b), at 0.1 C, the 

samples with V substitution on Fe sites (x = 0.025, 0.05) present similar discharge capacities 

to the pure sample (x = 0) during the cycling, however, there is a large decrease in the 

discharge capacities of the heavily V-doped samples (x ≥ 0.075). With increasing C-rate (≥ 

0.2 C), the Li2Fe1-3x/2VxP2O7 (x = 0.025) showed the best rate capability among all the Li2Fe1-

3x/2VxP2O7 samples. 

Figure 8 shows the relatively long-term cycling performances for the Li2Fe1-3x/2VxP2O7 (x = 

0, 0.025, 0.05, 0.075, and 0.1) electrodes measured at 1 C in the voltage range of 2.0 - 4.5 V. 

As can be seen, the Li2Fe1-3x/2VxP2O7 samples exhibited different initial discharge capacities 

of 79.2 (x = 0.025), 66.0 (x = 0.05), 49.0 (x = 0), 37.8 (x = 0.075), and 26.9 (x = 0.1) mAh g-1, 

respectively. After 500 cycles, the Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) cells 

could maintain the discharge capacities of 60 (x = 0.025), 42.1 (x = 0.05), 32.2 (x = 0), 24.8 (x 

= 0.075), and 15.2 (x = 0.1) mAh g-1 with initial capacity retention of 75.8%, 63.8%, 65.8%, 

65.6% and 56.5%, respectively. The higher discharge capacity and capacity retention 

10 
 



observed for the Li2Fe1-3x/2VxP2O7 (x = 0.025) indicate, once again, that the Li2Fe1-3x/2VxP2O7 

(x = 0.025) has the best cycling performance among Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 

0.075, and 0.1). The enhanced electrochemical performance of this V-substituted sample (x = 

0.025) is most likely related to its improved ionic conductivity. 

      Electrochemical impedance spectroscopy (EIS) was extensively used to investigate the 

ionic conductivity of the Li2Fe1-3x/2VxP2O7 samples (Figure 9) [44]. The Nyquist plots were 

obtained from the Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) electrodes measured 

at 0.1 C in the voltage range of 2.0 - 4.5 V after 10 cycles in the discharge state of 3.4 V. The 

numerical value of the diameter of the semicircle on the Zre axis is approximately equal to the 

charge transfer resistance (Rct), which is an indicator of the charge-transfer kinetics. The 

fitting results are listed in Table 3. The Rct values of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 

0.075, and 0.1) calculated from this model are 480.8, 262.9, 356.8, 2833, and 4392 Ω, 

respectively. The Li2Fe1-3x/2VxP2O7 (x = 0.025) sample shows the lowest Rct value, indicating 

the highest conductivity. The four-point probe measurement system was adopted to get the 

electronic conductivity of Li2Fe1-3x/2VxP2O7 powders at room temperature. The conductivity 

are 2.92 × 10−5 S cm−1 (x = 0), 4.99 × 10−5 S cm−1(x = 0.025), 3.57 × 10−5 S cm−1(x = 0.05), 

4.45 × 10−6 S cm−1(x = 0.075), 2.92 × 10−6 S cm−1 (x = 0.1), further indicating the highest 

conductivity for Li2Fe1-3x/2VxP2O7 (x = 0.025). The expanded volume or cell parameters are 

favourable for the passage of lithium-ions through the host structures [24, 25, 28-30]. 

However, the cell lattice parameters and unit cell volume of the Li2Fe1-3x/2VxP2O7 samples 

decrease linearly with the V doping level, as shown in Table 1 and Figure 2. Therefore, it is 

suggested that the improved electronic conductivity are attributed to appropriate vanadium 

substitution in Li2Fe1-3x/2VxP2O7 (x = 0.025, 0.05) to effectively decrease the exchange of 

lithium and Fe in the MO5 (M = Li and Fe) trigonal-bipyramidal sites and facilitate lithium-

ion extraction/insertion. When the vanadium doping is further increased (x ≥ 0.075), the 
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increased vanadium doping results in possible distortion of the host structure and the 

presence of LiVP2O7, and thus dramatically decreases the specific capacity. As shown in 

Table 3, the EIS results are consistent with the results on the electrochemical performance of 

Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1). 

 

4. Conclusions 

       A series of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) samples have been 

successfully prepared using the sol-gel method. Through synchrotron X-ray diffraction 

analysis, single phase Li2Fe1-3x/2VxP2O7 with x ≤ 0.05 is obtained, while the Li2Fe1-3x/2VxP2O7 

samples with 0.075 ≤ x ≤ 0.1 show the secondary impurity phase LiVP2O7. The morphology 

and oxidation states of Fe2+ and V3+ in the Li2Fe1-3x/2VxP2O7 were confirmed by scanning 

electron microscopy and magnetic susceptibility measurements, respectively. The 

electrochemical results indicated that the electrochemical performance could be significantly 

enhanced by vanadium substitution on the Fe sites of Li2Fe1-3x/2VxP2O7 (x = 0.025, 0.05). The 

Li2Fe1-3x/2VxP2O7 (x = 0.025) sample was found to deliver a higher reversible capacity of 79.9 

mAh g-1 at 1 C in the voltage range of 2.0 - 4.5 V with higher 77.9% capacity retention after 

500 cycles than that of those of Li2FeP2O7  (49 mAh g-1
 and 65.8%). The improved 

electrochemical performance for Li2Fe1-3x/2VxP2O7 (x = 0.025) was attributed to that the 

vanadium substituted on Fe2 site of Li2FeP2O7  decreases Li occupying the Li5 position in the 

FeO5 unit, leading to a low degree exchange between Li and Fe in the MO5 (M = Li and Fe). 

The low degree cation disorder was beneficial to lithium-ion extraction/insertion during the 

charge-discharge process, and hence enhances the capacity and rate capability. 
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Table and Figures Captions 

Table 1. Lattice parameters for Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) compounds.* 

Table 2. Magnetic parameters of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, and 0.05).* 

Table 3. Kinetic parameters obtained from equivalent circuit fitting of experimental data from Li2Fe1-

3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1). 

Figure 1. Synchrotron X-ray diffraction (SXRD) patterns for Li2Fe1-3x/2VxP2O7 (a) x = 0, (b) x = 0.025, 

(c) x = 0.05, (d) x = 0.075 and (e) x = 0.1. 

Figure 2. Lattice parameters (a) and unit cell volume (b) of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 

0.075, and 0.1). 

Figure 3. Crystal structure of Li2Fe1-3x/2VxP2O7. 

Figure 4. (a) Magnetic susceptibility of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, and 0.05) from 2 to 300 K; 

inset shows inverse susceptibilities corrected for temperature-independent contribution and their fit to 

the Curie Weiss law, and (b) low temperature magnetic susceptibility of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 

and 0.05); inset shows their dM/dT.  

Figure 5. SEM images at low (a) and high magnification (b), TEM images at low (c) and high 

magnification (d) of Li2Fe1-3x/2VxP2O7 (x = 0.025). Inset of Figure (d): Fourier transform image of (d). 

Figure 6. (a) Thermogravimetric analysis (TGA) and (b) differential scanning calorimetry (DSC) 

plots of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1). 

Figure 7. (a) Initial charge-discharge curves of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) at 

0.1 C in the voltage range of 2.0 - 4.5 V; and (b) rate capability vs. cycle number of Li2Fe1-3x/2VxP2O7 

(x = 0, 0.025, 0.05, 0.075, and 0.1) at different current densities in the voltage range of 2.0 - 4.5 V.  

Figure 8. Cycling performance of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) at 1 C in the 

voltage range of 2.0 - 4.5 V. 
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Figure 9. (a) Impedance plots for Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and 0.1) electrodes 

measured after 25 cycles from 1 MHz to1 mHz; inset: equivalent circuit used for the EIS analysis; (b) 

magnification of (a). 

19 
 



 

Figure 1. 

 

20 
 



 

Figure 2. 

0.000 0.025 0.050 0.075 0.100
11.0572
11.0579
11.0586
11.0593
11.0600
11.0607
11.0614
11.0621
11.0628

 

 

X

a 
(Å

)

(a)

9.791
9.792
9.793
9.794

9.841
9.842
9.843
9.844
9.845

c 
(Å

)
b 

(Å
)

0.000 0.025 0.050 0.075 0.100
1044.15

1044.30

1044.45

1044.60

1044.75

1044.90

1045.05

1045.20

 X

 

 

Vo
lu

m
e 
(Å3 )

(b)

 

 

 

21 
 



 

Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Table 1. 

Samples a  

(Å) 

b  

(Å) 

c 

 (Å) 

β  

(o) 

Volume 

 (Å3) 

Rp  

(%) 

Rwp 

(%) 

x2 

x = 0 11.0617(1) 9.7945(2) 9.8446(1) 101.52(1) 1045.082(1) 1.98 2.64 3.12 

x = 0.025 11.0603(1) 9.7934(2) 9.8430(1) 101.48(0) 1044.851(2) 2.08 2.76 3.39 

x = 0.05 11.0596 (1) 9.7924(0) 9.8426(2) 101.47(0) 1044.674(1) 2.43 3.35 5.04 

x = 0.075 11.0586 (2) 9.7916(2) 9.8419(1) 101.46(1) 1044.445(3) 2.63 3.42 5.20 

x = 0.1 11.0583(1) 9.7911(3) 9.8413(2) 101.46(1) 1044.261(2) 3.11 4.44 6.09 

* The profile, Rp, and weighted profile, Rwp, R-factors and the goodness of fit, χ2, are the agreement 

factors for the SXRD refinements of Li2Fe1-3x/2VxP2O7 (x = 0, 0.025, 0.05, 0.075, and  0.1).
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Table 2. 

x TN (K) CM (emu  K mol-1) µexperiment (μB) µtheory (μB) 

0 11.5 2.98 4.88 4.90 

0.025 11.2 2.84 4.77 4.79 

0.05 11 2.71 4.66 4.67 

* TN is determined as an inflection point of the M(T) dependence; experimental μexperiment is determined 

using μexperiment  =  [8CM]1/2; in calculations of µtheory, the magnetic moment of Fe2+ is calculated using 

µtheory  = 2[(S(S + 1))]1/2 (S = 2) = 4.9 μB, where S is the spin angular momentum. The effective 

magnetic moments for the intermediate compositions can be calculated as µtheory = (1 - 3x/2)μ theory 

(Fe2+) + xμ theory (V3+). The average effective magnetic moment per transition metal ion is calculated 

assuming that iron has the same magnetic moment as in Li2FeP2O7 and that vanadium is in the 3+ 

oxidation state (S  =  1, µtheory  =  2.82 μB), as suggested.
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Table 3. 

x Rs/ Ω Rct/ Ω 

0 4.2 480.8 

0.025 3.8 262.9 

0.05 3.6 356.8 

0.075 4.6 2833 

0.1 4.7 4392 
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