3,154 research outputs found

    Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities

    Get PDF
    Germanium nanocrystals (12 nm mean diam) and amorphous thin films (60-250 nm thick) were prepared as anodes for lithium secondary cells. Amorphous thin film electrodes prepared on planar nickel substrates showed stable capacities of 1700 mAh/g over 60 cycles. Germanium nanocrystals showed reversible gravimetric capacities of up to 1400 mAh/g with 60% capacity retention after 50 cycles. Both electrodes were found to be crystalline in the fully lithiated state. The enhanced capacity, rate capability (1000C), and cycle life of nanophase germanium over bulk crystalline germanium is attributed to the high surface area and short diffusion lengths of the active material and the absence of defects in nanophase materials

    Book Review: People Like Us: How arrogance is dividing Islam and the West by Waleed Aly

    Get PDF
    Book Review: People Like Us: How arrogance is dividing Islam and the West Waleed Aly Sydney: Picador-Pan Macmillan, 2007, 277pp

    Magnetomechanical effects in textured polycrystalline Tb76Dy24

    Get PDF
    Uniaxial stress-strain measurements were performed on polycrystalline Tb76Dy24 alloys which exhibit "giant magnetostriction" at cryogenic temperatures. The Young's moduli were reduced by up to a factor of five at 77 K, in comparison to their values at 300 K. We attribute this reduction to a mechanical compliance from domain rotation. Large mechanical hysteresis is also found in nominally elastic stress-strain curves measured below the Curie temperature. Hysteretic curves from 0 to 25 MPa demonstrate up to 19% dissipation of the applied mechanical energy. The anisotropy of thermal expansion was also measured and used as a parameter for the degree of crystallographic texture. This anisotropy was correlated to bulk magnetostriction and to mechanical hysteresis

    Highly Reversible Lithium Storage in Nanostructured Silicon

    Get PDF
    Anode materials of nanostructured silicon have been prepared by physical vapor deposition and characterized using electrochemical methods. The electrodes were prepared in thin-film form as nanocrystalline particles (12 nm mean diameter) and as continuous amorphous thin films (100 nm thick). The nanocrystalline silicon exhibited specific capacities of around 1100 mAh/g with a 50% capacity retention after 50 cycles. The amorphous thin-film electrodes exhibited initial capacities of 3500 mAh/g with a stable capacity of 2000 mAh/g over 50 cycles. We suggest that the nanoscale dimensions of the silicon circumvents conventional mechanisms of mechanical deterioration, permitting good cycle life

    Knott v. Fed. Energy Regulatory Comm\u27n, 386 F.3d 368 (1st Cir. 2004)

    Get PDF

    Fairhurst v. Hagener, 422 F.3d 1146 (9th Cir. 2005)

    Get PDF

    GPHY 241.01: Montana

    Get PDF

    Walker v. United States, 69 Fed. Cl. 222, (Fed. Cl. 2005)

    Get PDF

    GPHY 344.01: Crown of the Continent

    Get PDF
    corecore