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Carina M. Schlebusch ,*,,†,1,2,3 Per Sjödin,†,1 Gwenna Breton ,†,1 Torsten Günther,1 Thijessen
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Abstract

The southern African indigenous Khoe-San populations harbor the most divergent lineages of all living
peoples. Exploring their genomes is key to understanding deep human history. We sequenced 25 full genomes from five
Khoe-San populations, revealing many novel variants, that 25% of variants are unique to the Khoe-San, and that the
Khoe-San group harbors the greatest level of diversity across the globe. In line with previous studies, we found several
gene regions with extreme values in genome-wide scans for selection, potentially caused by natural selection in the
lineage leading to Homo sapiens and more recent in time. These gene regions included immunity-, sperm-, brain-, diet-,
and muscle-related genes. When accounting for recent admixture, all Khoe-San groups display genetic diversity
approaching the levels in other African groups and a reduction in effective population size starting around 100,000 years
ago. Hence, all human groups show a reduction in effective population size commencing around the time of the Out-of-
Africa migrations, which coincides with changes in the paleoclimate records, changes that potentially impacted all
humans at the time.
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Introduction
Genetics has played an increasingly important role in reveal-
ing human evolutionary history, by demonstrating that Homo
sapiens emerged from Africa (Cann et al. 1987;
Ramachandran et al. 2005), with some groups outside
Africa admixing with archaic humans (Meyer et al. 2012;
Prüfer et al. 2014). Our deepest roots include indigenous
groups of current-day southern Africa, with modern-day

Khoe-San representing one branch in the earliest population
divergence in Homo sapiens, and all other Africans and non-
Africans representing the other branch (Gronau et al. 2011;
Veeramah et al. 2012; Schlebusch et al. 2012, 2017; Schlebusch
and Jakobsson 2018). Southern African hunter-gatherers
(San) and herders (Khoekhoe) are collectively referred to as
Khoe-San (Schlebusch 2010). Khoe-San people speak Khoisan
languages, a group of languages that rely heavily on “click”
sounds. Three out of the five major Khoisan language families
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are spoken in southern Africa, namely, Kx’a (formerly called
Northern Khoisan), Tuu (formerly Southern Khoisan), and
Khoe-Kwadi (formerly Central Khoisan). These three lan-
guage families show no linguistic relatedness to each other
(Güldemann 2014). A few complete genomes from Khoe-San
individuals have been investigated with poor representation
among the different groups (Meyer et al. 2012; Kim et al. 2014;
Mallick et al. 2016). As the Khoe-San represents one of two
branches of the deepest population divergence within Homo
sapiens, it is crucial to reveal their evolutionary history and
their genetic diversity in order to understand the early evo-
lutionary history of our species.

We sequenced and analyzed 25 complete high-coverage
genomes from five different Khoe-San groups, representing
the three main Khoisan linguistic phyla, across an extensive
geographic area. These genomes were placed into a global
context by jointly investigating 11 previously published
genomes from the HGDP panel, sequenced on the same plat-
form and subjected to similar single nucleotide polymor-
phism (SNP) calling procedures (Meyer et al. 2012;
Raghavan et al. 2014), and another 67 genomes sequenced
on the Complete Genomics platform (Drmanac et al. 2010;
Lachance et al. 2012; 1000 Genomes Project Consortium
2015). Using these data sets, we characterized genome varia-
tion across the world and inferred past population history,
where Khoe-San groups showed greater genetic diversity than
any other group, but still revealed a reduction in effective
population size coinciding with the Out-of-Africa migrations
and bottleneck. We further discovered a number of selection
targets in the Khoe-San and other groups, and within our
common ancestors of>300,000 years ago. These results shed
new light on Pleistocene human demographic history and
evolution.

Results and Discussion
Among the genomes of 25 individuals (mean coverage 53.4�
after mapping and quality filtering; supplementary sections
1–3, Supplementary Material online and table 1), we called
20,020,719 autosomal SNPs (table 1 and supplementary table
S5.1, Supplementary Material online). After group-wide qual-
ity filtering (supplementary sections 1–3, Supplementary
Material online), 18,637,959 autosomal biallelic SNPs
remained (table 1), 1,960,665 (10.5%) of which were novel
(compared with dbSNP build 151). The two southern
Khoe-San groups (Nama and Karretjie People) presented
the most novel variants (table 1 and supplementary fig.
S5.4, Supplementary Material online). Although many novel
variants were singletons (supplementary fig. S5.3A,
Supplementary Material online and table 1), 3.2% of them
were both novel and present in more than one copy; dem-
onstrating that many variants common among the Khoe-San
have not been reported yet. Of the 5,101,560 variants present
in all five Khoe-San groups, 24,517 were novel (supplementary
fig. S5.4, Supplementary Material online). These variants, com-
mon among Khoe-San groups but absent in other popula-
tions, have not been previously characterized.

The Khoe-San exhibited the greatest genetic diversity
(mean heterozygosity per individual: 1.154� 10�3; fig. 1C
and supplementary figs. S5.1 and S5.5, Supplementary
Material online), compared with other African genomes
(mean heterozygosity: 1.079� 10�3, Mbuti, Mandenka,
Yoruba, and Dinka). However, modern-day Khoe-San groups
received 10–30% admixture from a mixed eastern African-
Eurasian group �1,500 years ago (Schlebusch et al. 2017;
Skoglund et al. 2017). When genomic material attributed to
recent admixture was masked out, the genetic diversity of the

Table 1. Summary of Genomic (autosomal) Variation in Five Individuals each from Five Khoe-San Groups.

Category Total Karretjie Nama jGui kGana Juj’hoansi !Xun

Dinucleotide SNPs (filtered) 18,637,959 10,555,587 10,514,246 10,649,570 10,429,573 10,676,563
Exonic SNPs (%) 0.653 0.597 0.598 0.596 0.599 0.598
Novel variants versus dbSNP

built 151 (% of variants)
1,960,665 (10.5%) 578,935 (5.5%) 632,492 (6.0%) 491,543 (4.6%) 548,528 (5.3%) 477,360 (4.5%)

Singletons (% of variants) 5,403,107 (29.0%) 4,547,752 (43.1) 4,504,833 (42.8) 4,639,215 (43.6) 4,315,691 (41.4) 4,660,181 (43.6)
Non-singleton novel variants (% of variants) 602,402 (3.2%) 108,129 (1.0%) 95,736 (0.9%) 97,282 (0.9%) 106,546 (1.0%) 91,365 (0.9%)
Mean Depth per Individual,

duplicates excluded
(all positions in ref genome)

53.4 (45.1–59.8) 52.5 (45.1–56.9) 55.3 (53.7–56.4) 51.7 (48.2–54.8) 52.8 (48.0–59.8) 54.7 (51.7–57.1)

Mean heterozygosity (genomic) 0.001274 0.001273 0.001266 0.001275 0.001263 0.001291
Heterozygosity variable sites

(Called1Filtered Variants)
0.183249 0.183205 0.182149 0.183438 0.181665 0.18579

Tajima’s D 20.7827 20.3349 20.3200 20.3609 20.2830 20.3639
Tajima’s D (exonic) 21.1412 20.5198 20.4844 20.5477 20.4731 20.5446
Mean DAF 0.1746052 0.2746496 0.2751872 0.2727002 0.2770476 0.2724151
Mean DAF exonic 0.1607157 0.2650433 0.2663403 0.2632778 0.2680222 0.2638948
Total indels (VQSRed) 2,176,524 1,441,604 1,458,457 1,433,307 1,439,949 1,461,609
Deletions 1,267,661 802,507 799,461 812,743 795,648 815,037
Insertions 908,863 634,150 634,609 640,933 631,300 642,247
Complex indels 527,796 513,400 512,696 514,178 512,684 514,099
Structural variants 4,452 1,979 2,030 2,419 2,139 2,362
Proportion

Structural variants with genes
0.378 0.39 0.37 0.379 0.377 0.374

Schlebusch et al. . doi:10.1093/molbev/msaa140 MBE

2

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/doi/10.1093/m
olbev/m

saa140/5874945 by guest on 22 July 2020



A

B

D E

C

FIG. 1. Sample locations and genetic diversity in the Khoe-San. (A) Sample locations across the world. Colors depict the various data sets included
in the study and sample sizes are indicated after the population code. CG, Complete Genomics diversity set (Drmanac et al. 2010); HGDP, HGDP
data (Meyer et al. 2012); KGP, 1000 Genomes typed on Complete Genomics platform (1000 Genomes Project Consortium 2015); KSP, this study;
LC, Lachance et al. (2012); SGDP, Simons Genome Diversity Project (Mallick et al. 2016); BBA, Ballito Bay A (Schlebusch et al. 2017). The locations
chosen for the CEU, GIH, and MXL reflect the ancestry of the population (not the sampling location). (B) Sample locations across Africa.
Populations in boldface display newly sequenced individuals. (C) Genetic (autosomal) variation for three population groups: Khoe-San, other
sub-Saharan Africans, and non-Africans. The summary statistics were calculated on the joint KSP and HGDP group called data set to avoid biases.
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Khoe-San (mean heterozygosity after masking: 1.106� 10�3)
decreased and approached that of other African groups (sup-
plementary fig. S8.1, Supplementary Material online), but still
remained significantly greater (P¼ 0.013, Wilcoxon test).
Among the Khoe-San, the !Xun had the highest heterozygos-
ity and allelic diversity (table 1 and supplementary figs. S5.1

and S5.5, Supplementary Material online), also sharing the
most alleles with all other African groups (fig. 2B), pointing
to the highest amount of admixture into the !Xun from non-
Khoe-San African groups among the Khoe-San.

In a set of 99 sequenced individuals (from 31 populations),
we inferred population stratification across the globe (�27

Fig. 1. Continued
The KSP and HGDP data sets were both sequenced on Illumina platforms. Note that the HGDP San individual was not included in the metrics
shown here. Heterozygosity was computed from the number of variable positions divided by number of sequenced positions, and averaged across
individuals. Mean total runs of homozygosity (ROH) displays the sum over the lengths 0.2–1 Mb. Average (across the genome) number of distinct
alleles (allelic richness) and average number of alleles are unique to a single population (private allelic richness) in a sample of eight haploid
genomes per variable site. Standard errors were calculated. For heterozygosity, it is the standard error of the mean per individual, averaged across
individuals. For ROH, it is the standard error of the mean of individuals. Standard errors for heterozygosity and for allelic richness were very small
(<0.08%, see supplementary sections 5.2, 5.3, and 5.5, Supplementary Material online, for details). (D) Private allelic richness (per variable site) of
alleles shared by pairwise combinations of the five Khoe-San populations. We distinguish three groups: northern San (Juj’hoansi and !Xun), central
San (jGui and kGana), and southern San (Nama and Karretjie). (E) Venn diagram summarizing private and shared variants in the Khoe-San versus
other Africans versus non-Africans.
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FIG. 2. Grouped bar-plots summarizing private allele sharing as a fraction of the total number of variant sites in the data set: (A) Privately shared
alleles of various Khoe-San groups with comparative groups. (B) Privately shared alleles of comparative groups.
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million variants; supplementary figs. S6.1, S6.4, and S6.6,
Supplementary Material online). The first two principal com-
ponents (PCs) (supplementary fig. S6.1, Supplementary
Material online) explained 7.5% of the global genetic variation
and roughly divided it into three groups: non-Africans, Khoe-
San, and other Africans. Subsequent PCs summarized varia-
tion in other African hunter-gatherer groups (eastern- and
western-rainforest hunter-gatherers and Hadza), as well as
variation within the Khoe-San (northern, southern, and cen-
tral) (supplementary fig. S6.1, Supplementary Material on-
line). Variation among non-Africans first became visible at
PC20 (we note, however, that the African data set was larger
than the non-African data set, 60 vs. 39 individuals). This
PCA—based on a globally representative, whole-genome
data set—illustrates the extent of African diversity and is a
reflection of global genetic diversity, in contrast to inferences
based on SNP genotypes, where non-African variation is mag-
nified through ascertainment bias and sample bias (supple-
mentary section 6, Supplementary Material online).

We found a distinct signal of eastern African/non-African
affinity and shared private variants among the Khoe-San,
particularly for the Nama (supplementary section 6.7,
Supplementary Material online, fig. 2, and supplementary
figs. S6.1–S6.7 and S6.16–S6.19, Supplementary Material on-
line). This outcome is consistent with recent migration of
mixed (eastern African-Eurasian) herding groups to southern
Africa, and potentially long-term gene flow between eastern
African hunter-gatherers (e.g., Hadza) and Khoe-San (Pickrell
et al. 2012, 2014; Schlebusch et al. 2012, 2017; Breton et al.
2014; Macholdt et al. 2014; Skoglund et al. 2017). This pattern
can also be seen in mtDNA and Y chromosome data (sup-
plementary section 5.10, Supplementary Material online)
(Naidoo et al. 2020), with haplogroup sharing detected be-
tween the Juj’hoansi and Hadza.

We estimated population divergence between the Khoe-
San and various other groups using different and comple-
mentary approaches (Gronau et al. 2011; Schlebusch et al.
2017). We applied a mutation rate of 1.25 � 10�8 per base
pair per generation and a generation time of 30 years to con-
vert estimates to years ago in the past (unscaled estimates,
means, medians, and standard deviations are available in sup-
plementary tables S7.1 and S7.2, Supplementary Material on-
line). Consistent with previous studies (Gronau et al. 2011;
Veeramah et al. 2012; Schlebusch et al. 2012, 2017; Schlebusch
and Jakobsson 2018), the deepest divergences included the
Khoe-San populations (fig. 3 and supplementary tables S7.1
and S7.2 and figs. S7.1, S7.2, and S7.6, Supplementary Material
online); a result probably not caused by “archaic admixture”
into the Khoe-San (supplementary section 10 and fig. S10.1,
Supplementary Material online). Modern-day Khoe-San have,
however, >10% of their genetic material tracing to a recent
admixture with external groups (Schlebusch et al. 2017;
Skoglund et al. 2017). By sequencing the genome of the
Stone Age boy from Ballito Bay (BBA), South Africa, the deep-
est population divergence in Homo sapiens was estimated to
350,000–260,000 years ago (Schlebusch et al. 2017).
Consistent with the recent admixture into all modern-day
Khoe-San groups, which reduces population divergence

time estimates (Schlebusch et al. 2017) (supplementary sec-
tion 8 and figs. S7.2, S7.4, and S8.2, Supplementary Material
online), we found the mean divergence time of all Khoe-San
populations from all other groups to be within the 200–300
ka range (supplementary tables S7.2 and S7.2, Supplementary
Material online, and fig. 3). These dates correlate well with
previous estimates (Gronau et al. 2011; Veeramah et al. 2012)
that also fall within the 200–300 ka (kiloannum: thousand
years ago) range when applying the mutation rate used here.
The Juj’hoansi (with the lowest level of recent admixture) had
a point estimate of �270 ka (�9,000 generations), SD 20 ka
(GphoCS method; TT method: �260 ka, SD 12 ka), whereas
the Nama (with the greatest level of recent admixture) had a
point estimate of �210 ka, SD 30 ka (TT method: �210 ka,
SD 30 ka; supplementary tables S7.1 and S7.2, Supplementary
Material online). The Mbuti then diverged around �220 ka,
SD 10 ka (TT method: 215 ka, SD 9 ka), with the other pop-
ulation divergences occurring subsequently. We inferred a
mean divergence time of �160 ka, SD 20 ka (TT method:
�190 ka, SD 20 ka) among the different San groups, consis-
tent with previous estimates (Schlebusch et al. 2017).

We note that the population history of humans may
not always be well represented by divergence models, as
gene flow often occurs among human groups, and
isolation-by-distance models may sometimes be better
descriptions (Vicente et al. 2019). For instance, there is
distinct sharing of private alleles between the !Xun/
Juj’hoansi (who traditionally live in the northwestern part
of southern Africa) and Mbuti central African rainforest
foragers, indicating gene-flow across south-central Africa
(fig. 2). The indigenous southern African hunter-gatherer
genetic component, might thus have extended far beyond
southern Africa in the past (Skoglund et al. 2017; Henn
et al. 2018; Scerri et al. 2018, 2019; Schlebusch and
Jakobsson 2018; Vicente et al. 2019). A likely consequence
is that all population divergence estimates should be inter-
preted as lower bounds and that the actual population
structure could be much older.

The effective ancestral population size (Ne) of currently
living individuals can be estimated from genome data (Li
and Durbin 2011), and the resolution for certain time periods
can be affected by evaluating different numbers of genomes,
with increasing numbers improving resolution closer to the
present day (Schiffels and Durbin 2014). All human groups
were inferred to have had an Ne of �30,000 about 300 ka,
with a reduction in estimated effective size starting around
150–100 ka (assuming a mutation rate of 1.25� 10�8 per
base pair per generation and a generation time of 30 years;
fig. 4 and supplementary fig. S7.11, Supplementary Material
online). Non-African populations reached a lowest level (Ne

�2,000) in the bottleneck around 80 ka, coinciding with the
Homo sapiens Out-of-Africa migration event (Nielsen et al.
2017). Surprisingly, most African populations also showed a
reduction in estimated Ne during this period, reaching �1/3
of the previous Ne (fig. 4 and supplementary figs. S7.10 and
S7.11, Supplementary Material online). The decline in effec-
tive population sizes appears to be the largest among eastern
African populations, followed by western Africans, and
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subsequently by the rainforest hunter-gatherer populations.
Khoe-San groups seem to be the least affected; however, the
genome of the 2,000-year-old Ballito Bay boy (unaffected by
recent admixture into Khoe-San groups) also showed a re-
duction in effective population size (fig. 3A; Schlebusch et al.
2017).

If we jointly analyze two individuals (four haploid
genomes) instead of one, it should provide more resolution
on the timing of the bottleneck (Schiffels and Durbin 2014),
because the mean time to first coalescence for four haploid
genomes is 85 ka (assuming an average ancestral Ne of 17,000
and a generation time of 30 years). For this analysis, we found
that all Khoe-San groups showed a reduction to 1/3 of the
previous Ne between 100 and 20 ka (fig. 4C and supplemen-
tary fig. S7.12, Supplementary Material online). The same pat-
tern was also observed with samples of five individuals (ten
haploid genomes), though it could not be detected with

samples of one single modern-day Khoe-San individual
(fig. 4 and supplementary fig. S7.12, Supplementary Material
online). We simulated data under a bottleneck model and ran
MSMC on samples of one, two, four, and five individuals
under a range of varying conditions of bottleneck strength,
duration, and age. From this investigation, we observed a
qualitatively similar pattern (supplementary sections 7.3
and 9, Supplementary Material online) of reduced power to
infer population-size changes around 80 ka when basing the
inference on single genomes. Thus, all human groups
appeared to have suffered reduced Ne, of varying degrees,
between �100 and �20 ka; declining to between 50% and
10% of an Ne of �30,000 at �300 ka. We note that Ne does
not necessarily capture the census size and that population
structure clearly can impact the estimates of Ne (Mazet et al.
2016). However, in terms of population genetics and under-
standing of past population histories, estimates of Ne are
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FIG. 3. Population divergence estimates. (A) Schematic overview of the estimated population divergences. The colored nodes correspond to the
population divergences that were estimated with the TT method and GPhoCS, and the estimates are presented in (B). (B) Distribution of
divergence time estimates based on GPhoCS (unscaled estimates, means, and medians available in supplementary table S7.1, Supplementary
Material online) and mean 6 standard error of the divergence time estimated with the TT method (supplementary table S7.2, Supplementary
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informative as they tell us about the rate of genetic drift,
which in turn can be important for understanding the evo-
lutionary history.

With the 25 complete genomes from Khoe-San individuals
that represent one of two legs of the deepest population
divergence in Homo sapiens, we have a unique opportunity
to search for regions in the genome that display an unusual
signal of high numbers of derived variants among all groups of
humans. This pattern will be an indicator of distinct adapta-
tion prior to the deepest population divergence,

>300,000 years ago. We developed and investigated three
Population Branch Statistic (PBS) - derived analyses (supple-
mentary section 12, Supplementary Material online;
Schlebusch et al. 2012) that target different parts of human
evolutionary history (fig. 5A and supplementary section 12
and table S12.2, Supplementary Material online) and use the
3P-CLR (Racimo 2016) statistic to investigate adaptation in
the lineage leading to Homo sapiens.

Four of the top-ten 3P-CLR peaks and four of the eight
top-five regions for the three PBS-statistics (because there is
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overlap among the PBS top lists, the three top-five lists sum
up to eight genomic regions) can be linked to selection for
brain development (supplementary section 12,
Supplementary Material online). The region with the stron-
gest signal common to all three PBS statistics implicates the
LPHN3 (latrophilin 3) gene on chromosome 4 (fig. 5B and
C), which has an important function in determining the
connectivity rates between the principal neurons in the
cortex, and the gene is associated with attention deficit–
hyperactivity disorder (Lu et al. 2015). For several of these
genes, there is also a strong effect on skull morphology, in
addition to the brain-associated effect (see supplementary
section 12, Supplementary Material online), a result that
has been reported previously (Green et al. 2010;
Schlebusch et al. 2012). Furthermore, the regions with
strong signals of adaptation in the lineage leading to
Homo sapiens are enriched for brain development genes
in gene ontology (GO) analyses (Kofler and Schlotterer

2012) (supplementary tables S12.1 and S12.5,
Supplementary Material online).

Immune response genes also overlap with signals of adap-
tation in the lineage leading to Homo sapiens. For instance,
the third and fourth strongest 3P-CLR signals and two of the
top-five regions for the PBS-statistics overlap with immune
response genes (supplementary sections 12.1 and 12.2,
Supplementary Material online). Additional strong signals
are found for genes in sperm/flagellum motility (supplemen-
tary sections 12.1 and 12.2, Supplementary Material online);
for example, the DNAL1 gene expressed in motile flagella is
located in the region with the strongest 3P-CLR signal (sup-
plementary section 12.1, Supplementary Material online) and
the flagellum category is an enriched GO-term in two of the
three PBS statistics (supplementary tables S12.3 and S12.5,
Supplementary Material online).

We note that identifying targets of selection in early
humans, several hundred thousands of years ago, is a difficult
problem and that, similar to previous studies (Schlebusch

C D

A B

FIG. 5. Signatures of adaptation in the genomes. (A) Schematic overview of the three different population branch statistic (PBS) based analyses. The
different PBS-based statistics are designed to capture adaptation signals in different parts of the phylogeny. (B) Manhattan plot of the archaicPBS
statistic across the genome (supplementary fig. S12.3, Supplementary Material online, displays the aPBS and the emhPBS results). The eight dashed
red lines show all the top-five peaks among the three PBS statistics (they are highly correlated). The most likely candidate genes are written below
the peaks with genes involved with brain functions, immune system, and other functions indicated in blue, green, and black, respectively. The
dashed horizontal line shows the 99.9% percentile of the archaicPBS statistic for these data. (C) A close-up of the strongest peak for archaicPBS,
which is located upstream of the gene LPHN3. (D) An example of a local selection signal in southern Khoe-San. jiHSj for southern Khoe-San is
shown in green, jiHSj for northern Khoe-San in red, and XP-EHH in purple. The strong negative XP-EHH values suggest adaptation in southern
Khoe-San.
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et al. 2012; Racimo et al. 2014; Racimo 2016), our approach
also results in a list of potential targets of selection, which
need further investigation. However, although there is modest
overlap with previous studies, the emerging trend of these
investigations points to some similarity in gene functions
(Green et al. 2010; Schlebusch et al. 2012; Racimo et al.
2014; Racimo 2016).

In addition to adaptation in the lineage leading to Homo
sapiens, we searched for gene regions targeted by selection in
specific groups, that is, local adaptation signals using
haplotype-based methods for within population (iHS;
Voight et al. 2006) and between population comparisons
(XP-EHH; Sabeti et al. 2007) (see supplementary section 11,
Supplementary Material online). Signals of local adaptation
frequently overlapped with genes involved in immune re-
sponse to infectious diseases in several of the analyses and
on different levels of population groupings. For instance,
within the northern Khoe-San the strongest signal overlapped
with the MHC-region (supplementary table S11.1 and fig.
S11.1, Supplementary Material online), and the two strongest
signals in the southern Khoe-San were found close to the
MHC region; near several genes coding for immunoglobins
(supplementary table S11.3 and fig. S11.1, Supplementary
Material online). When contrasting the northern and south-
ern Khoe-San, two other regions within the MHC were iden-
tified as strong targets of adaptation (in the top-ten regions in
XP-EHH analysis; supplementary table S11.2 and fig. S11.2,
Supplementary Material online). GO-term analyses (Kofler
and Schlotterer 2012) show enrichment for immune response
genes among the adaptation signals in the southern Khoe-
San as well as in other Africans (supplementary table S11.9,
Supplementary Material online). Previous studies found the
MHC region to be a common target of selection in various
Khoe-San groups (Schlebusch et al. 2012; Owers et al. 2017;
Sugden et al. 2018) as well as other populations (Pickrell et al.
2009). The greatest single iHS-value in the northern Khoe-San
overlaps with the anthrax toxin receptor-like pseudogene 1
(ANTXRLP1, on chromosome 10), which is near the anthrax
toxin receptor-like (ANTXRL) gene. Anthrax is endemic to
Namibia, where many of the northern San groups live, and
causes intense sporadic disease outbreaks affecting wild ani-
mals and humans (Turner et al. 2013). This signal has not
been reported previously. In summary, immune system-
related genes appear to be targets of adaptation irrespective
of time and group, but with slightly different genes involved,
which, sometimes, can be directly linked to local and endemic
disease conditions.

Signals of local adaptation overlap with genes associated
with diet, for instance the FRRS1 gene involved in dietary
absorption of iron shows a strong signal in the northern
Khoe-San (supplementary table S11.2 and supplementary
section 11.5, Supplementary Material online), and the
SLCO1B3 gene that mediates fat metabolism and uptake of
xenobiotic compounds shows a strong adaptive signal in the
southern Khoe-San (the genome-wide greatest single iHS-
value; fig. 5D and supplementary table S11.3 and supplemen-
tary section 11.6, Supplementary Material online). Adaptation

to increased metabolism of endo- and xenobiotics (Schuster
et al. 2010) and fat storage (Sugden et al. 2018) have been
reported previously for Khoe-San groups. The genome-wide
greatest signal of group-specific adaptation (supplementary
table S11.8, Supplementary Material online) overlaps with the
MINPP1 gene-region, which codes for the only enzyme known
to hydrolyze phytic acid in humans. Phytic acid is storing
phosphorus in many plant tissues, particularly in bran, seeds,
cereals, and grains. Phytic acid is not digested by humans, but
it chelates minerals and vitamins and tends to decrease their
uptake from food (supplementary section 11.8,
Supplementary Material online). The sign of the signal indi-
cates that this gene has been under much stronger selection
in the non-Khoe-San group than in the Khoe-San group. This
signal has not been reported previously and is an ideal can-
didate for future studies that focus on potential targets of
selection, related to the change in food-producing lifeways.

Genes involved in skeletal muscle development show sig-
nals of adaptation, specifically among the Khoe-San popula-
tions (supplementary sections 11.5–11.7, Supplementary
Material online). In southern Khoe-San, two strong selection
signals (the second strongest XP-EHH signal and the widest
XP-EHH signal) both implicate genes associated with muscle
function (the DTNB gene and the NAA35 gene; supplemen-
tary table S11.4, Supplementary Material online), the SNTB1
gene was among the top-ten XP-EHH regions in northern
Khoe-San (supplementary table S11.2, Supplementary
Material online), and the strongest iHS signal in the Khoe-
San group as whole overlaps with the PPP1R12B gene region
that plays a regulatory role in muscle contraction (supple-
mentary table S11.5, Supplementary Material online).
Selection acting on genes related to muscle development
and function has been reported previously for Khoe-San
groups (Schlebusch et al. 2012) and other populations
(Pickrell et al. 2009). Interestingly the DTNB gene specifically
also appeared in the top 1% of selected genes in East Asians,
the SNTB1 gene in the top 1% in Oceania (it was the top-11th
iHS signal) and the PPP1R12B gene in the top 1% in Bantu-
speaking groups (it was the top-14th iHS signal) (Pickrell et al.
2009).

Based on the complete genomes, we also examined the
distribution of loss-of-function (LOF) variants in the Khoe-
San and estimated levels of functional significance (supple-
mentary section 5.9, Supplementary Material online).
Biological functions associated with LOF variants in the
Khoe-San included the detection of chemical stimuli (smell
and taste), receptor activity, immune response, and keratin/
intermediate filaments (supplementary table S5.7,
Supplementary Material online). We found two examples
of LOF variants which are close to completely lost in most
non-African populations, but are found at moderate to high
frequencies among the 25 Khoe-San individuals; CASP12 and
FMO2. The functional form of the CASP12 gene was found at
48% among the 25 Khoe-San individuals, whereas the global
average is around 5% and the loss of the Caspase-12 protein
has been associated with an increased risk of sepsis as it is
involved in the downregulation of inflammatory cytokines
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(Saleh et al. 2004, 2006). Although the nonfunctional form of
FMO2 is close to fixation in most populations, the functional
form was found among the Khoe-San at 60%. The gene prod-
uct is an enzyme that metabolizes thiourea; however, in doing
so produces toxic derivatives (Veeramah et al. 2008). Carriers
of the functional allele may be at increased risk for pulmonary
toxicity when exposed to thiourea, which is present in a wide
range of industrial, household, and medical products. The
high frequencies of these functional alleles in the Khoe-San
may point to differing selective pressures experienced in the
past by these populations.

Conclusion
The genetic diversity among the Khoe-San is the greatest
among all human groups across the world, which, in part, is
explained by relatively recent (pre-colonial) admixture. When
the admixed DNA portion was excluded, the genetic diversity
of the Khoe-San approached levels seen in other African
populations. All human groups, including the Khoe-San,
showed a reduction in Ne (between 1/3 and 1/10) between
�100 and 20 ka (fig. 4). The early phase of the reduction
coincides with the Out-of-Africa bottleneck for non-
Africans. Sub-Saharan African populations would not have
been impacted by this migration bottleneck, but they all (in-
cluding the Khoe-San) show a reduction in Ne (fig. 4C). This
observation suggests that an additional factor—beyond the
migration out of Africa—impacted all humans at this time,
perhaps the change in climate. For example, work on the Lake
Malawi core indicates severe drought and low-lake stage oc-
curring between�109 and 92 ka when the area is also shifting
from leaf- to grass-dominated vegetation (Veeramah et al.
2008; Beuning et al. 2011; Scholz et al. 2011), which roughly
aligns with a change from warm toward colder temperatures
for Africa (fig. 4B; Caley et al. 2018). These events may have
caused a reduction in the number of humans; potentially also
driving them out of arid African regions, such as the Sahara,
and into western Asia.

By revealing substantial and previously unknown genetic
variation, we demonstrate that a sizable portion of human
genetic variation, including common variants, remains undis-
covered among populations often overlooked in medical ge-
netics. We inferred adaptation signals in the genomes and
found an overrepresentation of these signals overlapping im-
munity genes, irrespective of group or time period. This sug-
gests that immunity genes have been under selection
throughout human evolutionary history and across the globe.

Materials and Methods
A full description of materials and methods is included in the
Supplementary Material online.
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