45 research outputs found

    Habitat and fishing control grazing potential on coral reefs

    Get PDF
    Herbivory is a key process on coral reefs, which, through grazing of algae, can help sustain coral‐dominated states on frequently disturbed reefs and reverse macroalgal regime shifts on degraded ones. Our understanding of herbivory on reefs is largely founded on feeding observations at small spatial scales, yet the biomass and structure of herbivore populations is more closely linked to processes which can be highly variable across large areas, such as benthic habitat turnover and fishing pressure. Though our understanding of spatiotemporal variation in grazer biomass is well developed, equivalent macroscale approaches to understanding bottom‐up and top‐down controls on herbivory are lacking. Here, we integrate underwater survey data of fish abundances from four Indo‐Pacific island regions with herbivore feeding observations to estimate grazing rates for two herbivore functions, cropping (which controls turf algae) and scraping (which promotes coral settlement by clearing benthic substrate), for 72 coral reefs. By including a range of reef states, from coral to algal dominance and heavily fished to remote wilderness areas, we evaluate the influences of benthic habitat and fishing on the grazing rates of fish assemblages. Cropping rates were primarily influenced by benthic condition, with cropping maximized on structurally complex reefs with high substratum availability and low macroalgal cover. Fishing was the primary driver of scraping function, with scraping rates depleted at most reefs relative to remote, unfished reefs, though scraping did increase with substratum availability and structural complexity. Ultimately, benthic and fishing conditions influenced herbivore functioning through their effect on grazer biomass, which was tightly correlated to grazing rates. For a given level of biomass, we show that grazing rates are higher on reefs dominated by small‐bodied fishes, suggesting that grazing pressure is greatest when grazer size structure is truncated. Stressors which cause coral declines and clear substrate for turf algae will likely stimulate increases in cropping rates, in both fished and protected areas. In contrast, scraping functions are already impaired at reefs inhabited by people, particularly where structural complexity has collapsed, indicating that restoration of these key processes will require scraper biomass to be rebuilt towards wilderness levels

    Multifactorial Regulation of a Hox Target Gene

    Get PDF
    Hox proteins play fundamental roles in controlling morphogenetic diversity along the anterior–posterior body axis of animals by regulating distinct sets of target genes. Within their rather broad expression domains, individual Hox proteins control cell diversification and pattern formation and consequently target gene expression in a highly localized manner, sometimes even only in a single cell. To achieve this high-regulatory specificity, it has been postulated that Hox proteins co-operate with other transcription factors to activate or repress their target genes in a highly context-specific manner in vivo. However, only a few of these factors have been identified. Here, we analyze the regulation of the cell death gene reaper (rpr) by the Hox protein Deformed (Dfd) and suggest that local activation of rpr expression in the anterior part of the maxillary segment is achieved through a combinatorial interaction of Dfd with at least eight functionally diverse transcriptional regulators on a minimal enhancer. It follows that context-dependent combinations of Hox proteins and other transcription factors on small, modular Hox response elements (HREs) could be responsible for the proper spatio-temporal expression of Hox targets. Thus, a large number of transcription factors are likely to be directly involved in Hox target gene regulation in vivo

    The MYST-Containing Protein Chameau Is Required for Proper Sensory Organ Specification during Drosophila Thorax Morphogenesis

    Get PDF
    The adult thorax of Drosophila melanogaster is covered by a stereotyped pattern of mechanosensory bristles called macrochaetes. Here, we report that the MYST containing protein Chameau (Chm) contributes to the establishment of this pattern in the most dorsal part of the thorax. Chm mutant pupae present extra-dorsocentral (DC) and scutellar (SC) macrochaetes, but a normal number of the other macrochaetes. We provide evidences that chm restricts the singling out of sensory organ precursors from proneural clusters and genetically interacts with transcriptional regulators involved in the regulation of achaete and scute in the DC and SC proneural cluster. This function of chm likely relies on chromatin structure regulation since a protein with a mutation in the conserved catalytic site fails to rescue the formation of supernumerary DC and SC bristles in chm mutant flies. This is further supported by the finding that mutations in genes encoding chromatin modifiers and remodeling factors, including Polycomb group (PcG) and Trithorax group (TrxG) members, dominantly modulate the penetrance of chm extra bristle phenotype. These data support a critical role for chromatin structure modulation in the establishment of the stereotyped sensory bristle pattern in the fly thorax

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Depth-related effects on a meiofaunal community dwelling in the periphyton of a mesotrophic lake

    Get PDF
    Kreuzinger B, Schroeder F, Majdi N, Traunspurger W. Depth-related effects on a meiofaunal community dwelling in the periphyton of a mesotrophic lake. PLoS One. 2015;10(9): e0137793.Periphyton is a complex assemblage of micro- and meiofauna embedded in the organic matrix that coats most submerged substrate in the littoral of lakes. The aim of this study was to better understand the consequences of depth-level fluctuation on a periphytic community. The effects of light and wave disturbance on the development of littoral periphyton were evaluated in Lake Erken (Sweden) using an experimental design that combined in situ shading with periphyton depth transfers. Free-living nematodes were a major contributor to the meiofaunal community. Their species composition was therefore used as a proxy to distinguish the contributions of light- and wave-related effects. The periphyton layer was much thicker at a depth of 30 cm than at 200 cm, as indicated by differences in the amounts of organic and phototrophic biomass and meiofaunal and nematode densities. A reduction of the depth-level of periphyton via a transfer from a deep to a shallow location induced rapid positive responses by its algal, meiofaunal, and nematode communities. The slower and weaker negative responses to the reverse transfer were attributed to the potentially higher resilience of periphytic communities to increases in the water level. In the shallow littoral of the lake, shading magnified the effects of phototrophic biomass erosion by waves, as the increased exposure to wave shear stress was not compensated for by an increase in photosynthesis. This finding suggests that benthic primary production will be strongly impeded in the shallow littoral zones of lakes artificially shaded by construction or embankments. However, regardless of the light constraints, an increased exposure to wave action had a generally positive short-term effect on meiofaunal density, by favoring the predominance of species able to anchor themselves to the substrate, especially the Chromadorid nematode Punctodora ratzeburgensis

    Cellular Packing, Mechanical Stress and the Evolution of Multicellularity

    No full text
    Presented at the Symposium on Soft Matter Forefronts "Contributed Talks", April 19, 2018, from 10:20 a.m.-11:10 a.m. at the Marcus Nanotechnology Building, Rooms 1116-1118, Georgia Tech.Chairs: Michael Tennenbaum & Alberto Fernandez-Nieves (Georgia Tech).Shane Jacobeen is with the Georgia Institute of Technology.Runtime: 09:46 minutesThe evolution of multicellularity set the stage for sustained increases in organismal complexity. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters fracture due to crowding-induced mechanical stress. Over seven weeks (~291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.Georgia Institute of Technology. College of SciencesGeorgia Institute of Technology. Institute for MaterialsGeorgia Institute of Technology. Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology. School of Materials Science and EngineeringGeorgia Institute of Technology. School of PhysicsAmerican Physical SocietyExxon Mobil CorporationNational Science Foundation (U.S.
    corecore