322 research outputs found

    A Consistent Hybrid LES-RANS PDF Method for Non-premixed Flames

    Get PDF
    AbstractThe computational demanding LES methods have widely demonstrated their reliability in the description of large scale unsteady phenomena in turbulent reactive flows. RANS Transported Probability Density Function (TPDF) methods treat the nonlinear chemical reactions in closed form on relatively coarse grids and using a smaller number of stochastic particles. Combining the two approaches, a hybrid LES-RANS PDF method to predict non-premixed turbulent flames is presented. In this method a LES, based on Smagorinsky's model and steady flamelet, is performed; subsequently, the calculated flow-field is used to drive the RANS-TPDF equation, which is closed at the joint scalar level and based on a Lagrangian Monte Carlo scheme. The required velocity and turbulent quantities for RANS simulation are estimated from the resolved LES and an algebraic model based on dimensional analysis and the mixing length hypothesis. The results of the velocity, turbulent kinetic energy and mixture fraction show that the consistency of the method is achieved

    Creation of quantum correlations between two atoms in a dissipative environment from an initial vacuum state

    Full text link
    We have investigated the effect of counter-rotating terms on the dynamics of entanglement and quantum discord between two identical atoms interacting with a lossy single mode cavity field for a system initially in a vacuum state. The counter-rotating terms are found to lead to steady states in the long time limit which can have high quantum discord, but have no entanglement. The effect of cavity decay rate on this steady state quantum discord has been also investigated, surprisingly, the increase in cavity decay rate is found to both enhance and maximize the steady quantum discord for separable states.Comment: Effects of counter-rotating interaction terms on quantum discor

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells

    Get PDF
    In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo

    Terfenadine induces apoptosis and autophagy in melanoma cells through ROS-dependent and -independent mechanisms

    Get PDF
    Previously we found that terfenadine, an H1 histamine receptor antagonist, acts as a potent apoptosis inducer in melanoma cells through modulation of Ca2+ homeostasis. In this report, focusing our attention on the apoptotic mechanisms activated by terfenadine, we show that this drug can potentially activate distinct intrinsic signaling pathways depending on culture conditions. Serum-deprived conditions enhance the cytotoxic effect of terfenadine and caspase-4 and -2 are activated upstream of caspase-9. Moreover, although we found an increase in ROS levels, the apoptosis was ROS independent. Conversely, terfenadine treatment in complete medium induced ROS-dependent apoptosis. Caspase-4, -2, and -9 were simultaneously activated and p73 and Noxa induction were involved. ROS inhibition prevented p73 and Noxa expression but not p53 and p21 expression, suggesting a role for Noxa in p53-independent apoptosis in melanoma cells. Finally, we found that terfenadine induced autophagy, that can promote apoptosis. These findings demonstrate the great potential of terfenadine to kill melanoma cells through different cellular signaling pathways and could contribute to define new therapeutic strategies in melanoma

    Protein Expression in the Nucleus Accumbens of Rats Exposed to Developmental Vitamin D Deficiency

    Get PDF
    Introduction: Developmental vitamin D (DVD) deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficienc

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    The Early Data Release of the Dark Energy Spectroscopic Instrument

    Get PDF
    \ua9 2024. The Author(s). Published by the American Astronomical Society. The Dark Energy Spectroscopic Instrument (DESI) completed its 5 month Survey Validation in 2021 May. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra

    Understanding Gender Inequality in Poverty and Social Exclusion through a Psychological Lens:Scarcities, Stereotypes and Suggestions

    Get PDF

    Long-baseline neutrino oscillation physics potential of the DUNE experiment

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all ΑCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all ΑCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22θ13 to current reactor experiments
    corecore