386 research outputs found

    Time-dependent Casimir-Polder forces and partially dressed states

    Full text link
    A time-dependent Casimir-Polder force is shown to arise during the time evolution of a partially dressed two-level atom. The partially dressed atom is obtained by a rapid change of an atomic parameter such as its transition frequency, due to the action of some external agent. The electromagnetic field fluctuations around the atom, averaged over the solid angle for simplicity, are calculated as a function of time, and it is shown that the interaction energy with a second atom yields a dynamical Casimir-Polder potential between the two atoms

    Casimir-Polder forces between two accelerating atoms and the Unruh effect

    Full text link
    The Casimir-Polder force between two atoms with equal uniform acceleration and separated by a constant distance R is considered. We show that, in the low-acceleration limit, while the near-zone R^{-6} behavior of the interatomic interaction energy is not changed by the acceleration of the atoms, the far-zone interaction energy decreases as R^{-5} instead of the well-known R^{-7} behavior for inertial atoms. Possibility of an indirect detection of the Unruh effect through measurements of the Casimir-Polder force between the two accelerating atoms is also suggested. We also consider a heuristic model for calculating the Casimir-Polder potential energy between the two atoms in the high-acceleration limit.Comment: Contribution to the Proceedings of the QFEXT09 Conference, Norman, Oklahoma, US

    Field Fluctuations in a One-Dimensional Cavity with a Mobile Wall

    Full text link
    We consider a scalar field in a one-dimensional cavity with a mobile wall. The wall is assumed bounded by a harmonic potential and its mechanical degrees of freedom are treated quantum mechanically. The possible motion of the wall makes the cavity length variable, and yields a wall-field interaction and an effective interaction among the modes of the cavity. We consider the ground state of the coupled system and calculate the average number of virtual excitations of the cavity modes induced by the wall-field interaction, as well as the average value of the field energy density. We compare our results with analogous quantities for a cavity with fixed walls, and show a correction to the Casimir potential energy between the cavity walls. We also find a change of the field energy density in the cavity, particularly relevant in the proximity of the mobile wall, yielding a correction to the Casimir-Polder interaction with a polarizable body placed inside the cavity. Similarities and differences of our results with the dynamical Casimir effect are also discussed.Comment: 5 pages, 2 figure

    van der Waals Interaction Energy Between Two Atoms Moving With Uniform Acceleration

    Full text link
    We consider the interatomic van der Waals interaction energy between two neutral ground-state atoms moving in the vacuum space with the same uniform acceleration. We assume the acceleration orthogonal to their separation, so that their mutual distance remains constant. Using a model for the van der Waals dispersion interaction based on the interaction between the instantaneous atomic dipole moments, which are induced and correlated by the zero-point field fluctuations, we evaluate the interaction energy between the two accelerating atoms in terms of quantities expressed in the laboratory reference frame. We find that the dependence of the van der Waals interaction between the atoms from the distance is different with respect to the case of atoms at rest, and the relation of our results with the Unruh effect is discussed. We show that in the near zone a new term proportional to R5R^{-5} adds to the usual R6R^{-6} behavior, and in the far zone a term proportional to R6R^{-6} adds to the usual R7R^{-7} behavior, making the interaction of a longer range. We also find that the interaction energy is time-dependent, and the physical meaning of this result is discussed. In particular, we find acceleration-dependent corrections to the R7R^{-7} (far zone) and R6R^{-6} (near zone) proportional to a2t2/c2a^2t^2/c^2; this suggests that significant changes to the van der Waals interaction between the atoms could be obtained if sufficiently long times are taken, without necessity of the extremely high accelerations required by other known manifestations of the Unruh effect.Comment: 9 page

    Spatial correlations of vacuum fluctuations and the Casimir-Polder potential

    Full text link
    We calculate the Casimir-Polder intermolecular potential using an effective Hamiltonian recently introduced. We show that the potential can be expressed in terms of the dynamical polarizabilities of the two atoms and the equal-time spatial correlation of the electric field in the vacuum state. This gives support to an interesting physical model recently proposed in the literature, where the potential is obtained from the classical interaction between the instantaneous atomic dipoles induced and correlated by the vacuum fluctuations. Also, the results obtained suggest a more general validity of this intuitive model, for example when external boundaries or thermal fields are present.Comment: 7 page

    Thermal and non-thermal signatures of the Unruh effect in Casimir-Polder forces

    Full text link
    We show that Casimir-Polder forces between two relativistic uniformly accelerated atoms exhibit a transition from the short distance thermal-like behavior predicted by the Unruh effect, to a long distance non-thermal behavior, associated with the breakdown of a local inertial description of the system. This phenomenology extends the Unruh thermal response detected by a single accelerated observer to an accelerated spatially extended system of two particles, and we identify the characteristic length scale for this crossover with the inverse of the proper acceleration of the two atoms. Our results are derived separating at fourth order in perturbation theory the contributions of vacuum fluctuations and radiation reaction field to the Casimir-Polder interaction between two atoms moving in two generic stationary trajectories separated by a constant distance, and linearly coupled to a scalar field. The field can be assumed in its vacuum state or at finite temperature, resulting in a general method for the computation of Casimir-Polder forces in stationary regimes.Comment: 6 pages, 1 figure. Revised versio

    Nonlocal properties of dynamical three-body Casimir-Polder forces

    Full text link
    We consider the three-body Casimir-Polder interaction between three atoms during their dynamical self-dressing. We show that the time-dependent three-body Casimir-Polder interaction energy displays nonlocal features related to quantum properties of the electromagnetic field and to the nonlocality of spatial field correlations. We discuss the measurability of this intriguing phenomenon and its relation with the usual concept of stationary three-body forces.Comment: 4 page

    Resonance interaction energy between two entangled atoms in a photonic bandgap environment

    Get PDF
    We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r21/r^2 compared to the 1/r1/r free-space dependence in the three-dimensional case, and as 1/r1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.Comment: 12 pages, 3 figure

    Control of spontaneous emission of a single quantum emitter through a time-modulated photonic-band-gap environment

    Get PDF
    We consider the spontaneous emission of a two-level quantum emitter, such as an atom or a quantum dot, in a modulated time-dependent environment with a photonic band gap. An example of such an environment is a dynamical photonic crystal or any other environment with a bandgap whose properties are modulated in time, in the effective mass approximation. After introducing our model of dynamical photonic crystal, we show that it allows new possibilities to control and tailor the physical features of the emitted radiation, specifically its frequency spectrum. In the weak coupling limit and in an adiabatic case, we obtain the emitted spectrum and we show the appearance of two lateral peaks due to the presence of the modulated environment, separated from the central peak by the modulation frequency. We show that the two side peaks are not symmetric in height, and that their height ratio can be exploited to investigate the density of states of the environment. Our results show that a dynamical environment can give further possibilities to modify the spontaneous emission features, such as its spectrum and emission rate, with respect to a static one. Observability of the phenomena we obtain is discussed, as well as relevance for tailoring and engineering radiative processes.Comment: 9 pages, 3 figure
    corecore