578 research outputs found
Resolved 24.5 micron emission from massive young stellar objects
Massive young stellar objects (MYSO) are surrounded by massive dusty
envelopes. Our aim is to establish their density structure on scales of ~1000
AU, i.e. a factor 10 increase in angular resolution compared to similar studies
performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5
micron images of 14 well-known massive star formation regions with
Subaru/COMICS. The images reveal the presence of discrete MYSO sources which
are resolved on arcsecond scales. For many sources, radiative transfer models
are capable of satisfactorily reproducing the observations. They are described
by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such
distributions are shallower than those found on larger scales probed with
single-dish (sub)mm studies. Other sources have density laws that are
shallower/steeper than p = 1.0 and there is evidence that these MYSOs are
viewed near edge-on or near face-on, respectively. The images also reveal a
diffuse component tracing somewhat larger scale structures, particularly
visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We
thus find a flattening of the MYSO envelope density law going from ~10 000 AU
down to scales of ~1000 AU. We propose that this may be evidence of rotational
support of the envelope (abridged).Comment: 21 pages, accepted for A&
Flared Disks and Silicate Emission in Young Brown Dwarfs
We present mid-infrared photometry of three very young brown dwarfs located
in the Ophiuchi star-forming region -- GY5, GY11 and GY310 --obtained
with the Subaru 8-meter telescope. All three sources were detected at 8.6 and
11.7m, confirming the presence of significant mid-infrared excess arising
from optically thick dusty disks. The spectral energy distributions of both
GY310 and GY11 exhibit strong evidence of flared disks; flat disks can be ruled
out for these two brown dwarfs. The data for GY5 show large scatter, and are
marginally consistent with both flared and flat configurations. Inner holes a
few substellar radii in size are indicated in all three cases (and especially
in GY11), in agreement with magnetospheric accretion models. Finally, our
9.7m flux for GY310 implies silicate emission from small grains on the
disk surface (though the data do not completely preclude larger grains with no
silicate feature). Our results demonstrate that disks around young substellar
objects are analogous to those girdling classical T Tauri stars, and exhibit a
similar range of disk geometries and dust properties.Comment: submitted to Astrophysical Journal Letter
Properties of active galactic star-forming regions probed by imaging spectroscopy with the Fourier transform spectrometer (FTS) onboard AKARI
We investigate the structure of the interstellar medium (ISM) and identify
the location of possible embedded excitation sources from far-infrared (FIR)
line and mid-infrared continuum emission maps. We carried out imaging
spectroscopic observations of four giant Galactic star-forming regions with the
Fourier Transform Spectrometer (FTS) onboard AKARI. We obtained [OIII] 88
micron and [CII] 158 micron line intensity maps of all the regions:
G3.270-0.101, G333.6-0.2, NGC3603, and M17. For G3.270-0.101, we obtained
high-spatial-resolution [OIII] 88 micron line-emission maps and a FIR continuum
map for the first time, which imply that [OIII] 88 micron emission identifies
the excitation sources more clearly than the radio continuum emission. In
G333.6-0.2, we found a local [OIII] 88 micron emission peak, which is
indicative of an excitation source. This is supported by the 18 micron
continuum emission, which is considered to trace the hot dust distribution. For
all regions, the [CII] 158 micron emission is distributed widely as suggested
by previous observations of star-forming regions. We conclude that [OIII] 88
micron emission traces the excitation sources more accurately than the radio
continuum emission, especially where there is a high density and/or column
density gradient. The FIR spectroscopy provides a promising means of
understanding the nature of star-forming regions.Comment: 14 pages with 15 figures, accepted for publication in Astronomy and
Astrophysic
Kilonova from post-merger ejecta as an optical and near-Infrared counterpart of GW170817
Recent detection of gravitational waves from a neutron star (NS) merger event GW170817 and identification of an electromagnetic counterpart provide a unique opportunity to study the physical processes in NS mergers. To derive properties of ejected material from the NS merger, we perform radiative transfer simulations of kilonova, optical and near-infrared emissions powered by radioactive decays of r-process nuclei synthesized in the merger. We find that the observed near-infrared emission lasting for >10 d is explained by 0.03 M⊙ of ejecta containing lanthanide elements. However, the blue optical component observed at the initial phases requires an ejecta component with a relatively high electron fraction (Ye). We show that both optical and near-infrared emissions are simultaneously reproduced by the ejecta with a medium Ye of ∼0.25. We suggest that a dominant component powering the emission is post-merger ejecta, which exhibits that the mass ejection after the first dynamical ejection is quite efficient. Our results indicate that NS mergers synthesize a wide range of r-process elements and strengthen the hypothesis that NS mergers are the origin of r-process elements in the Universe
Resolved 24.5 micron emission from massive young stellar objects
Massive young stellar objects (MYSO) are surrounded by massive dusty
envelopes. Our aim is to establish their density structure on scales of ~1000
AU, i.e. a factor 10 increase in angular resolution compared to similar studies
performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5
micron images of 14 well-known massive star formation regions with
Subaru/COMICS. The images reveal the presence of discrete MYSO sources which
are resolved on arcsecond scales. For many sources, radiative transfer models
are capable of satisfactorily reproducing the observations. They are described
by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such
distributions are shallower than those found on larger scales probed with
single-dish (sub)mm studies. Other sources have density laws that are
shallower/steeper than p = 1.0 and there is evidence that these MYSOs are
viewed near edge-on or near face-on, respectively. The images also reveal a
diffuse component tracing somewhat larger scale structures, particularly
visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We
thus find a flattening of the MYSO envelope density law going from ~10 000 AU
down to scales of ~1000 AU. We propose that this may be evidence of rotational
support of the envelope (abridged).Comment: 21 pages, accepted for A&
Information retrieval and text mining technologies for chemistry
Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European
Community’s Horizon 2020 Program (project reference:
654021 - OpenMinted). M.K. additionally acknowledges the
Encomienda MINETAD-CNIO as part of the Plan for the
Advancement of Language Technology. O.R. and J.O. thank
the Foundation for Applied Medical Research (FIMA),
University of Navarra (Pamplona, Spain). This work was
partially funded by Consellería
de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic
funding of UID/BIO/04469/2013 unit and COMPETE 2020
(POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi
for useful feedback and discussions during the preparation of
the manuscript.info:eu-repo/semantics/publishedVersio
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Continuous measurements of stable isotopes of carbon dioxide and water vapour in an urban atmosphere: isotopic variations associated with meteorological conditions
Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO2 and water vapour were observed. The isotope ratios of both CO2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ^13C–CO2 and δ^18O–CO2 increased, while δ2H–H2Ov and δ^18O–H2Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO2 and H2Ov could be used as a tracer of meteorological information.journal articl
Mid-IR imaging of the transitional disk of HD169142: Measuring the size of the gap
The disk around the Herbig Ae star HD\,169142 was imaged and resolved at 18.8
and 24.5\,m using Subaru/COMICS. We interpret the observations using a 2D
radiative transfer model and find evidence for the presence of a large gap. The
MIR images trace dust that emits at the onset of the strong rise in the
spectral energy distribution (SED) at 20\,m, therefore are very sensitive
to the location and characteristics of the inner wall of the outer disk and its
dust. We determine the location of the wall to be 23\,AU from the
star. An extra component of hot dust must exist close to the star. We find that
a hydrostatic optically thick inner disk does not produce enough flux in the
NIR and an optically thin geometrically thick component is our solution to fit
the SED. Considering the recent findings of gaps and holes in a number of
Herbig Ae/Be group I disks, we suggest that such disk structures may be common
in group I sources. Classification as group I should be considered a support
for classification as a transitional disk, though improved imaging surveys are
needed to support this speculation.Comment: 18 pages, 5 figures, accepted to Ap
- …
