Massive young stellar objects (MYSO) are surrounded by massive dusty
envelopes. Our aim is to establish their density structure on scales of ~1000
AU, i.e. a factor 10 increase in angular resolution compared to similar studies
performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5
micron images of 14 well-known massive star formation regions with
Subaru/COMICS. The images reveal the presence of discrete MYSO sources which
are resolved on arcsecond scales. For many sources, radiative transfer models
are capable of satisfactorily reproducing the observations. They are described
by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such
distributions are shallower than those found on larger scales probed with
single-dish (sub)mm studies. Other sources have density laws that are
shallower/steeper than p = 1.0 and there is evidence that these MYSOs are
viewed near edge-on or near face-on, respectively. The images also reveal a
diffuse component tracing somewhat larger scale structures, particularly
visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We
thus find a flattening of the MYSO envelope density law going from ~10 000 AU
down to scales of ~1000 AU. We propose that this may be evidence of rotational
support of the envelope (abridged).Comment: 21 pages, accepted for A&