14 research outputs found

    Systolic blood pressure and the risk of kidney replacement therapy and mortality in patients with chronic kidney disease stage 4-5

    Get PDF
    Introduction In patients with chronic kidney disease stage 4 and 5 (CKD stages 4-5) without dialysis and arterial hypertension, it is unknown if the values of systolic blood pressure (SBP) considered in control <120 mmHg are associated with kidney replacement therapy (KRT) and mortality. Methods In this retrospective cohort study, hypertensive CKD stages 4-5 patients attending the Renal Health Clinic at the Hospital Civil de Guadalajara were enrolled. We divided them into those that achieved SBP 120 mmHg), the uncontrolled group. Our primary objective was to analyze the association between the controlled group and KRT; the secondary objective was the mortality risk, and if there were subgroups of patients that achieved more benefit. Data were analyzed using Stata software, version. 15.1. Results During 2017 to 2022 a total 275 hypertensive CKD stages 4-5 patients met the inclusion criteria for the analysis, 62 in the controlled group and 213 in the uncontrolled group; mean age 61 years, 49.82% were male, SBP was significantly lower in the controlled group (111 mmHg) compared to the uncontrolled group (140 mmHg), eGFR was similar between groups (20.41 ml/min/1.73m2). There was a tendency to increase the mortality risk in the uncontrolled group (HR 6.47 [0.78-53.27]; p= 0.082) and an association by the Kaplan-Meir analysis (Log-rank p= 0.043). The subgroup analysis for risk of KRT in the controlled group revealed that patients ≄ 61 years had a lower risk of KRT (HR 0.87 [95% CI, 0-76-0.99]; p=0.03, p of interaction = 0.005), but no differences were found in the subgroup analysis for mortality. In a follow-up of 1.34 years, no association was found in the risk of KRT according to the controlled or uncontrolled groups in a multivariate Cox analysis. Conclusion In a retrospective cohort of patients with CKD stages 4-5 and hypertension, SBP >120 mmHg was not associated with risk of KRT but could be associated with the risk of death. Clinical trials are required in this group of patients to demonstrate the impact of reaching the SBP goals recommended by the KDIGO guidelines

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. Methods: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting. Findings: Globally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1-4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0-8·4) while the total sum of global YLDs increased from 562 million (421-723) to 853 million (642-1100). The increases for males and females were similar, with increases in all-age YLD rates of 7·9% (6·6-9·2) for males and 6·5% (5·4-7·7) for females. We found significant differences between males and females in terms of age-standardised prevalence estimates for multiple causes. The causes with the greatest relative differences between sexes in 2017 included substance use disorders (3018 cases [95% UI 2782-3252] per 100 000 in males vs 1400 [1279-1524] per 100 000 in females), transport injuries (3322 [3082-3583] vs 2336 [2154-2535]), and self-harm and interpersonal violence (3265 [2943-3630] vs 5643 [5057-6302]). Interpretation: Global all-cause age-standardised YLD rates have improved only slightly over a period spanning nearly three decades. However, the magnitude of the non-fatal disease burden has expanded globally, with increasing numbers of people who have a wide spectrum of conditions. A subset of conditions has remained globally pervasive since 1990, whereas other conditions have displayed more dynamic trends, with different ages, sexes, and geographies across the globe experiencing varying burdens and trends of health loss. This study emphasises how global improvements in premature mortality for select conditions have led to older populations with complex and potentially expensive diseases, yet also highlights global achievements in certain domains of disease and injury

    XLVIII Coloquio Argentino de EstadĂ­stica. VI Jornada de EducaciĂłn EstadĂ­stica Martha Aliaga Modalidad virtual

    Get PDF
    Esta publicaciĂłn es una compilaciĂłn de las actividades realizadas en el marco del XLVIII Coloquio Argentino de EstadĂ­stica y la VI Jornada de EducaciĂłn EstadĂ­stica Martha Aliaga organizada por la Sociedad Argentina de EstadĂ­stica y la Facultad de Ciencias EconĂłmicas. Se presenta un resumen para cada uno de los talleres, cursos realizados, ponencias y poster presentados. Para los dos Ășltimos se dispone de un hipervĂ­nculo que direcciona a la presentaciĂłn del trabajo. Ellos obedecen a distintas temĂĄticas de la estadĂ­stica con una sesiĂłn especial destinada a la aplicaciĂłn de modelos y anĂĄlisis de datos sobre COVID-19.Fil: Saino, MartĂ­n. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Stimolo, MarĂ­a InĂ©s. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Ortiz, Pablo. Universidad Nacional de cĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Guardiola, Mariana. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Aguirre, Alberto Frank LĂĄzaro. Universidade Federal de Alfenas. Departamento de EstatĂ­stica. Instituto de CiĂȘncias Exatas; Brasil.Fil: Alves Nogueira, Denismar. Universidade Federal de Alfenas. Departamento de EstatĂ­stica. Instituto de CiĂȘncias Exatas; Brasil.Fil: Beijo, Luiz Alberto. Universidade Federal de Alfenas. Departamento de EstatĂ­stica. Instituto de CiĂȘncias Exatas; Brasil.Fil: Solis, Juan Manuel. Universidad Nacional de Jujuy. Centro de Estudios en BioestadĂ­stica, BioinformĂĄtica y AgromĂĄtica; Argentina.Fil: Alabar, Fabio. Universidad Nacional de Jujuy. Centro de Estudios en BioestadĂ­stica, BioinformĂĄtica y AgromĂĄtica; Argentina.Fil: Ruiz, SebastiĂĄn LeĂłn. Universidad Nacional de Jujuy. Centro de Estudios en BioestadĂ­stica, BioinformĂĄtica y AgromĂĄtica; Argentina.Fil: Hurtado, Rafael. Universidad Nacional de Jujuy; Argentina.Fil: AlegrĂ­a JimĂ©nez, Alfredo. Universidad TĂ©cnica Federico Santa MarĂ­a. Departamento de MatemĂĄtica; Chile.Fil: Emery, Xavier. Universidad de Chile. Departamento de IngenierĂ­a en Minas; Chile.Fil: Emery, Xavier. Universidad de Chile. Advanced Mining Technology Center; Chile.Fil: Álvarez-Vaz, RamĂłn. Universidad de la RepĂșblica. Instituto de EstadĂ­stica. Departamento de MĂ©todos Cuantitativos; Uruguay.Fil: Massa, Fernando. Universidad de la RepĂșblica. Instituto de EstadĂ­stica. Departamento de MĂ©todos Cuantitativos; Uruguay.Fil: Vernazza, Elena. Universidad de la RepĂșblica. Facultad de Ciencias EconĂłmicas y de AdministraciĂłn. Instituto de EstadĂ­stica; Uruguay.Fil: Lezcano, Mikaela. Universidad de la RepĂșblica. Facultad de Ciencias EconĂłmicas y de AdministraciĂłn. Instituto de EstadĂ­stica; Uruguay.Fil: Urruticoechea, Alar. Universidad CatĂłlica del Uruguay. Facultad de Ciencias de la Salud. Departamento de NeurocogniciĂłn; Uruguay.Fil: del Callejo Canal, Diana. Universidad Veracruzana. Instituto de InvestigaciĂłn de Estudios Superiores, EconĂłmicos y Sociales; MĂ©xico.Fil: Canal MartĂ­nez, Margarita. Universidad Veracruzana. Instituto de InvestigaciĂłn de Estudios Superiores, EconĂłmicos y Sociales; MĂ©xico.Fil: Ruggia, Ornela. CONICET; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Agropecuarias. Departamento de desarrollo rural; Argentina.Fil: Tolosa, Leticia Eva. Universidad Nacional de CĂłrdoba; Argentina. Universidad CatĂłlica de CĂłrdoba; Argentina.Fil: Rojo, MarĂ­a Paula. Universidad Nacional de CĂłrdoba; Argentina.Fil: Nicolas, MarĂ­a Claudia. Universidad Nacional de CĂłrdoba; Argentina. Universidad CatĂłlica de CĂłrdoba; Argentina.Fil: Barbaroy, TomĂĄs. Universidad Nacional de CĂłrdoba; Argentina.Fil: Villarreal, Fernanda. CONICET, Universidad Nacional del Sur. Instituto de MatemĂĄtica de BahĂ­a Blanca (INMABB); Argentina.Fil: Pisani, MarĂ­a Virginia. Universidad Nacional del Sur. Departamento de MatemĂĄtica; Argentina.Fil: Quintana, Alicia. Universidad Nacional del Sur. Departamento de MatemĂĄtica; Argentina.Fil: Elorza, MarĂ­a Eugenia. CONICET. Universidad Nacional del Sur. Instituto de Investigaciones EconĂłmicas y Sociales del Sur; Argentina.Fil: Peretti, Gianluca. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Buzzi, Sergio MartĂ­n. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de EstadĂ­stica y MatemĂĄtica; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­sticas. Instituto de Investigaciones TeĂłricas y Aplicadas en EstadĂ­stica; Argentina.Fil: Settecase, Eugenia. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Paccapelo, MarĂ­a Valeria. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Cuesta, Cristina. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­sticas. Instituto de Investigaciones TeĂłricas y Aplicadas en EstadĂ­stica; Argentina.Fil: Saenz, JosĂ© Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Luna, Silvia. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Paredes, Paula. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de TecnologĂ­a Agropecuaria. EstaciĂłn Experimental Agropecuaria Santa Cruz; Argentina.Fil: Maglione, Dora. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Rosas, Juan E. Instituto Nacional de InvestigaciĂłn Agropecuaria (INIA); Uruguay.Fil: PĂ©rez de Vida, Fernando. Instituto Nacional de InvestigaciĂłn Agropecuaria (INIA); Uruguay.Fil: Marella, Muzio. Sociedad AnĂłnima Molinos Arroceros Nacionales (SAMAN); Uruguay.Fil: Berberian, Natalia. Universidad de la RepĂșblica. Facultad de AgronomĂ­a; Uruguay.Fil: Ponce, Daniela. Universidad Estadual Paulista. Facultad de Medicina; Brasil.Fil: Silveira, Liciana Vaz de A. Universidad Estadual Paulista; Brasil.Fil: Freitas Galletti, Agda Jessica de. Universidad Estadual Paulista; Brasil.Fil: Bellassai, Juan Carlos. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Centro de InvestigaciĂłn y Estudios de MatemĂĄticas (CIEM-Conicet); Argentina.Fil: Pappaterra, MarĂ­a LucĂ­a. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Centro de InvestigaciĂłn y Estudios de MatemĂĄticas (CIEM-Conicet); Argentina.Fil: Ojeda, Silvia MarĂ­a. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a, FĂ­sica y ComputaciĂłn; Argentina.Fil: Ascua, Melina BelĂ©n. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: RoldĂĄn, Dana Agustina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Rodi, Ayrton Luis. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Ventre, Giuliana. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: GonzĂĄlez, Agustina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, FĂ­sico-QuĂ­micas y Naturales. Departamento de MatemĂĄtica; Argentina.Fil: Palacio, Gabriela. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, FĂ­sico-QuĂ­micas y Naturales. Departamento de MatemĂĄtica; Argentina.Fil: Bigolin, Sabina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, FĂ­sico-QuĂ­micas y Naturales. Departamento de MatemĂĄtica; Argentina.Fil: Ferrero, Susana. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, FĂ­sico-QuĂ­micas y Naturales. Departamento de MatemĂĄtica; Argentina.Fil: Del Medico, Ana Paula. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Pratta, Guillermo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Tenaglia, Gerardo. Instituto Nacional de TecnologĂ­a Agropecuaria. Instituto de InvestigaciĂłn y Desarrollo TecnolĂłgico para la Agricultura Familiar; Argentina.Fil: Lavalle, Andrea. Universidad Nacional del Comahue. Departamento de EstadĂ­stica; Argentina.Fil: Demaio, Alejo. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: HernĂĄndez, Paz. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Di Palma, Fabricio. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Calizaya, Pablo. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Avalis, Francisca. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de CĂłrdoba. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: FernĂ­cola, Marcela. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; Argentina.Fil: Nuñez, Myriam. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; Argentina.Fil: Dundray, , FabiĂĄn. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; Argentina.Fil: Calviño, Amalia. Universidad de Buenos Aires. Instituto de QuĂ­mica y Metabolismo del FĂĄrmaco. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: FarfĂĄn Machaca, Yheni. Universidad Nacional de San Antonio Abad del Cusco. Departamento AcadĂ©mico de MatemĂĄticas y EstadĂ­stica; Argentina.Fil: Paucar, Guillermo. Universidad Nacional de San Antonio Abad del Cusco. Departamento AcadĂ©mico de MatemĂĄticas y EstadĂ­stica; Argentina.Fil: Coaquira, Frida. Universidad Nacional de San Antonio Abad del Cusco. Escuela de posgrado UNSAAC; Argentina.Fil: Ferreri, NoemĂ­ M. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂ­a y Agrimensura; Argentina.Fil: Pascaner, Melina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂ­a y Agrimensura; Argentina.Fil: Martinez, Facundo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂ­a y Agrimensura; Argentina.Fil: Bossolasco, MarĂ­a Luisa. Universidad Nacional de TucumĂĄn. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Centro de Estudios FotosintĂ©ticos y BioquĂ­micos (CEFOBI); Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Centro de Estudios FotosintĂ©ticos y BioquĂ­micos (CEFOBI); Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios FotosintĂ©ticos y BioquĂ­micos (CEFOBI); Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Centro de Estudios FotosintĂ©ticos y BioquĂ­micos (CEFOBI); Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: Valentini, Gabriel. Instituto Nacional de TecnologĂ­a Agropecuaria. EstaciĂłn Experimental Agropecuaria INTA San Pedro; Argentina.Fil: Chiapella, Luciana C.. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas; Argentina.Fil: Chiapella, Luciana C. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas (CONICET); Argentina.Fil: Grendas, Leandro. Universidad Buenos Aires. Facultad de Medicina. Instituto de FarmacologĂ­a; Argentina.Fil: Daray, Federico. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas (CONICET); Argentina.Fil: Daray, Federico. Universidad Buenos Aires. Facultad de Medicina. Instituto de FarmacologĂ­a; Argentina.Fil: Leal, Danilo. Universidad AndrĂ©s Bello. Facultad de IngenierĂ­a; Chile.Fil: Nicolis, Orietta. Universidad AndrĂ©s Bello. Facultad de IngenierĂ­a; Chile.Fil: Bonadies, MarĂ­a Eugenia. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; Argentina.Fil: Ponteville, Christiane. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂ­a y Agrimensura; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂ­a y Agrimensura; Argentina.Fil: Dillon, Justina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂ­a y Agrimensura; Argentina.Fil: Carnevali, Graciela H. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂ­a y Agrimensura; Argentina.Fil: Justo, Claudio Eduardo. Universidad Nacional de la Plata. Facultad de IngenierĂ­a. Departamento de Agrimensura. Grupo de Aplicaciones MatemĂĄticas y EstadĂ­sticas (UIDET); Argentina.Fil: Iglesias, Maximiliano. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Instituto de EstadĂ­stica y DemografĂ­a; Argentina.Fil: GĂłmez, Pablo SebastiĂĄn. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Sociales. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: Real, Ariel HernĂĄn. Universidad Nacional de LujĂĄn. Departamento de Ciencias BĂĄsicas; Argentina.Fil: Vargas, Silvia Lorena. Universidad Nacional de LujĂĄn. Departamento de Ciencias BĂĄsicas; Argentina.Fil: LĂłpez Calcagno, Yanil. Universidad Nacional de LujĂĄn. Departamento de Ciencias BĂĄsicas; Argentina.Fil: Batto, Mabel. Universidad Nacional de LujĂĄn. Departamento de Ciencias BĂĄsicas; Argentina.Fil: Sampaolesi, Edgardo. Universidad Nacional de LujĂĄn. Departamento de Ciencias BĂĄsicas; Argentina.Fil: Tealdi, Juan Manuel. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Buzzi, Sergio MartĂ­n. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de EstadĂ­stica y MatemĂĄtica; Argentina.Fil: GarcĂ­a BazĂĄn, Gaspar. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Monroy Caicedo, Xiomara Alejandra. Universidad Nacional de Rosario; Argentina.Fil: BermĂșdez Rubio, Dagoberto. Universidad Santo TomĂĄs. Facultad de EstadĂ­stica; Colombia.Fil: Ricci, Lila. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Centro Marplatense de Investigaciones MatemĂĄticas; Argentina.Fil: Kelmansky, Diana Mabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de CĂĄlculo; Argentina.Fil: Rapelli, Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­stica. Escuela de EstadĂ­stica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂ­stica; Argentina.Fil: GarcĂ­a, MarĂ­a del Carmen. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­stica. Escuela de EstadĂ­stica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂ­stica; Argentina.Fil: Bussi, Javier. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­stica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂ­stica; Argentina.Fil: MĂ©ndez, Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­stica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂ­stica (IITAE); Argentina.Fil: GarcĂ­a Mata, Luis Ángel. Universidad Nacional AutĂłnoma de MĂ©xico. Facultad de Estudios Superiores AcatlĂĄn; MĂ©xico.Fil: RamĂ­rez GonzĂĄlez, Marco Antonio. Universidad Nacional AutĂłnoma de MĂ©xico. Facultad de Estudios Superiores AcatlĂĄn; MĂ©xico.Fil: Rossi, Laura. Universidad Nacional de Cuyo. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Vicente, Gonzalo. Universidad Nacional de Cuyo. Facultad de Ciencias EconĂłmicas; Argentina. Universidad PĂșblica de Navarra. Departamento de EstadĂ­stica, InformĂĄtica y MatemĂĄticas; España.Fil: Scavino, Marco. Universidad de la RepĂșblica. Facultad de Ciencias EconĂłmicas y de AdministraciĂłn. Instituto de EstadĂ­stica; Uruguay.Fil: EstragĂł, Virginia. Presidencia de la RepĂșblica. ComisiĂłn Honoraria para la Salud Cardiovascular; Uruguay.Fil: Muñoz, MatĂ­as. Presidencia de la RepĂșblica. ComisiĂłn Honoraria para la Salud Cardiovascular; Uruguay.Fil: Castrillejo, AndrĂ©s. Universidad de la RepĂșblica. Facultad de Ciencias EconĂłmicas y de AdministraciĂłn. Instituto de EstadĂ­stica; Uruguay.Fil: Da Rocha, Naila Camila. Universidade Estadual Paulista JĂșlio de Mesquita Filho- UNESP. Departamento de BioestadĂ­stica; BrasilFil: Macola Pacheco Barbosa, Abner. Universidade Estadual Paulista JĂșlio de Mesquita Filho- UNESP; Brasil.Fil: Corrente, JosĂ© Eduardo. Universidade Estadual Paulista JĂșlio de Mesquita Filho – UNESP. Instituto de Biociencias. Departamento de BioestadĂ­stica; Brasil.Fil: Spataro, Javier. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de EconomĂ­a; Argentina.Fil: Salvatierra, Luca Mauricio. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Nahas, EstefanĂ­a. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: MĂĄrquez, Viviana. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Boggio, Gabriela. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­stica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂ­stica; Argentina.Fil: Arnesi, Nora. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­stica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂ­stica; Argentina.Fil: Harvey, Guillermina. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­stica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂ­stica; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­stica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂ­stica; Argentina.Fil: Wojdyla, Daniel. Duke University. Duke Clinical Research Institute; Estados Unidos.Fil: Blasco, Manuel. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Instituto de EconomĂ­a y Finanzas; Argentina.Fil: Stanecka, Nancy. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Instituto de EstadĂ­stica y DemografĂ­a; Argentina.Fil: Caro, Valentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Instituto de EstadĂ­stica y DemografĂ­a; Argentina.Fil: Sigal, Facundo. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de EconomĂ­a; Argentina.Fil: Blacona, MarĂ­a Teresa. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­stica. Escuela de EstadĂ­stica; Argentina.Fil: Rodriguez, Norberto Vicente. Universidad Nacional de Tres de Febrero; Argentina.Fil: Loiacono, Karina Valeria. Universidad Nacional de Tres de Febrero; Argentina.Fil: GarcĂ­a, Gregorio. Instituto Nacional de EstadĂ­stica y Censos. DirecciĂłn Nacional de MetodologĂ­a EstadĂ­stica; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de EstadĂ­stica y Censos. DirecciĂłn Nacional de MetodologĂ­a EstadĂ­stica; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de EstadĂ­stica y Censos. DirecciĂłn Nacional de MetodologĂ­a EstadĂ­stica; Argentina.Fil: Funkner, SofĂ­a. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Dieser, MarĂ­a Paula. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: MartĂ­n, MarĂ­a Cristina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: MartĂ­n, MarĂ­a Cristina. Universidad Nacional del Sur. Departamento de MatemĂĄtica; Argentina.Fil: Peitton, Lucas. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂ­stica; Argentina. Queensland Department of Agriculture and Fisheries; Australia.Fil: Borgognone, MarĂ­a Gabriela. Queensland Department of Agriculture and Fisheries; Australia.Fil: Terreno, Dante D. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de Contabilidad; Argentina.Fil: Castro GonzĂĄlez, Enrique L. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de Contabilidad; Argentina.Fil: RoldĂĄn, Janina Micaela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: GonzĂĄlez, Gisela Paula. CONICET. Instituto de Investigaciones EconĂłmicas y Sociales del Sur; Argentina. Universidad Nacional del Sur; Argentina.Fil: De Santis, Mariana. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Geri, Milva. CONICET. Instituto de Investigaciones EconĂłmicas y Sociales del Sur; Argentina.Fil: Geri, Milva. Universidad Nacional del Sur. Departamento de EconomĂ­a; Argentina. Universidad Nacional del Sur. Departamento de MatemĂĄtica; Argentina.Fil: Marfia, MartĂ­n. Universidad Nacional de la Plata. Facultad de IngenierĂ­a. Departamento de Ciencias BĂĄsicas; Argentina.Fil: Kudraszow, Nadia L. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de MatemĂĄtica de La Plata; Argentina.Fil: Closas, Humberto. Universidad TecnolĂłgica Nacional; Argentina.Fil: Amarilla, Mariela. Universidad TecnolĂłgica Nacional; Argentina.Fil: Jovanovich, Carina. Universidad TecnolĂłgica Nacional; Argentina.Fil: de Castro, Idalia. Universidad Nacional del Nordeste; Argentina.Fil: Franchini, Noelia. Universidad Nacional del Nordeste; Argentina.Fil: Cruz, Rosa. Universidad Nacional del Nordeste; Argentina.Fil: Dusicka, Alicia. Universidad Nacional del Nordeste; Argentina.Fil: Quaglino, Marta. Universidad Nacional de Rosario; Argentina.Fil: Kalauz, Roberto JosĂ© AndrĂ©s. Investigador Independiente; Argentina.Fil: GonzĂĄlez, Mariana VerĂłnica. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de EstadĂ­stica y MatemĂĄticas; Argentina.Fil: Lescano, Maira Celeste.

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015.

    Get PDF
    BACKGROUND: Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. FINDINGS: Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95% uncertainty interval 2·9-3·0) for men and 3·5 years (3·4-3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78-0·92) and 1·2 years (1·1-1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. INTERPRETATION: Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. FUNDING: Bill & Melinda Gates Foundation

    Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. METHODS: The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries-Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    Optimal Selection of the Control Strategy for Dual-Axis Solar Tracking Systems

    No full text
    This article proposes a methodology for the optimal selection of the control strategy for two-axis solar tracking systems, that simultaneously reduces tracking error and energy consumption in existing solar tracking systems, improving their overall performance. Begins with the characterization of the tracking system, then the constraint definition helps to pre-select the possible controllers. Subsequently, a selection stage is carried out from a heuristic approach, based on a multibody simulation analysis and an experimental analysis, and the feasible controllers for the application of the tracker are defined. Finally, a comparative analysis is carried out to find the best control strategy for the existing tracker and the solar application. The optimal selection approach was implemented in a solar tracking system for low-power photovoltaic applications. Based on the defined constraints, six control strategies were pre-selected, which were simulated and implemented in the physical system. The multibody simulation process allows the designer to know the dynamics of each controller, and in turn determine an approximation of the best configuration of the elements that compose it. This, with the aim of validating that each proposal is compatible with the application of the solar tracker, and that it can be taken to the real experimental environment. From the experimental results, the MPC controller shows the best performance. Well, although it has a greater error than other alternatives, its value is still below the permissible precision level (less than 2&#x00B0;) and in turn has the lowest energy consumption 0.7867 Wh. That is, a reduction ranging from 34 to 76&#x0025; with respect to each performance of the alternatives considered. In addition, the dynamics of the control actions it performs are smoother, thus reducing wear on the actuators.Thus, the results obtained to support that with the proposed methodology the overall performance of solar tracking systems can be increased, significantly reducing tracking error and energy consumption

    B. Sprachwissenschaft.

    No full text
    corecore