481 research outputs found
Radio structures of the nuclei of nearby Seyfert galaxies and the nature of the missing diffuse emission
We present archival high spatial resolution VLA and VLBA data of the nuclei
of seven of the nearest and brightest Seyfert galaxies in the Southern
Hemisphere. At VLA resolution (~0.1 arcsec), the nucleus of the Seyfert
galaxies is unresolved, with the exception of MCG-5-23-16 and NGC 7469 showing
a core-jet structure. Three Seyfert nuclei are surrounded by diffuse radio
emission related to star-forming regions. VLBA observations with parsec-scale
resolution pointed out that in MRK 1239 the nucleus is clearly resolved into
two components separated by ~30 pc, while the nucleus of NGC 3783 is
unresolved. Further comparison between VLA and VLBA data of these two sources
shows that the flux density at parsec scales is only 20% of that measured by
the VLA. This suggests that the radio emission is not concentrated in a single
central component, as in elliptical radio galaxies, and an additional
low-surface brightness component must be present. A comparison of Seyfert
nuclei with different radio spectra points out that the ``presence'' of
undetected flux on milli-arcsecond scale is common in steep-spectrum objects,
while in flat-spectrum objects essentially all the radio emission is recovered.
In the steep-spectrum objects, the nature of this ``missing'' flux is likely
due to non-thermal AGN-related radiation, perhaps from a jet that gets
disrupted in Seyfert galaxies because of the denser environment of their spiral
hosts.Comment: 13 pages, 9 figures; paper accepted for publication in MNRA
The spectral energy distribution of the central parsecs of the nearest AGN
Spectral energy distributions (SEDs) of the central few tens of parsec region
of some of the nearest, most well studied, active galactic nuclei (AGN) are
presented. These genuine AGN-core SEDs, mostly from Seyfert galaxies, are
characterised by two main features: an IR bump with the maximum in the 2-10
micron range, and an increasing X-ray spectrum in the 1 to ~200 keV region.
These dominant features are common to Seyfert type 1 and 2 objects alike. Type
2 AGN exhibit a sharp drop shortward of 2 micron, with the optical to UV region
being fully absorbed, while type 1s show instead a gentle 2 micron drop ensued
by a secondary, partially-absorbed optical to UV emission bump. Assuming the
bulk of optical to UV photons generated in these AGN are reprocessed by dust
and re-emitted in the IR in an isotropic manner, the IR bump luminosity
represents >70% of the total energy output in these objects while the high
energies above 20 keV are the second energetically important contribution.
Galaxies selected by their warm IR colours, i.e. presenting a relatively-flat
flux distribution in the 12 to 60 micron range have often being classified as
AGN. The results from these high spatial resolution SEDs question this
criterion as a general rule. It is found that the intrinsic shape of the IR SED
of an AGN and inferred bolometric luminosity largely depart from those derived
from large aperture data. AGN luminosities can be overestimated by up to two
orders of magnitude if relying on IR satellite data. We find these differences
to be critical for AGN luminosities below or about 10^{44} erg/s. Above this
limit, AGNs tend to dominate the light of their host galaxy regardless of the
aperture size used. We tentatively mark this luminosity as a threshold to
identify galaxy-light- vs AGN- dominated objects.Comment: 50 pages, 14 figures. Accepted for publication in MNRA
Vinyl sulfone-based ferrocenylation reagents: applications in conjugation and bioconjugation
The easy vinyl sulfone derivatization of ferrocene allows the preparation of some effective, versatile and valuable ferrocenylation reagents. The applicability of such compounds in conjugation and bioconjugation of amine and/or thiol containing molecules and biomolecules through Michael-type addition under mild conditions that preserve the biological function of the latter is described. The feasibility of the methodology is demonstrated by the preparation of a variety of conjugates and bioconjugates (ferrocenyl terminated dendrimers and ferrocene–sugar, ferrocene–cyclodextrin, ferrocene–peptide and ferrocene–protein conjugates).Financial support was provided by Ministerio de Ciencia e Innovación (CTQ2011-29299-CO2-01)
Predation Risk Shapes Social Networks in Fission-Fusion Populations
Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems
16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher's exact test P = 2.83 × 10−6, odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10−4). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical R
Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs)
Cardiac fibroblasts (CF) are well-established as key regulators of extracellular matrix (ECM) turnover in the context of myocardial remodelling and fibrosis. Recently, this cell type has also been shown to act as a sensor of myocardial damage by detecting and responding to damage-associated molecular patterns (DAMPs) upregulated with cardiac injury. CF express a range of innate immunity pattern recognition receptors (TLRs, NLRs, IL-1R1, RAGE) that are stimulated by a host of different DAMPs that are evident in the injured or remodelling myocardium. These include intracellular molecules released by necrotic cells (heat shock proteins, high mobility group box 1 protein, S100 proteins), proinflammatory cytokines (interleukin-1α), specific ECM molecules up-regulated in response to tissue injury (fibronectin-EDA, tenascin-C) or molecules modified by a pathological environment (advanced glycation end product-modified proteins observed with diabetes). DAMP receptor activation on fibroblasts is coupled to altered cellular function including changes in proliferation, migration, myofibroblast transdifferentiation, ECM turnover and production of fibrotic and inflammatory paracrine factors, which directly impact on the heart's ability to respond to injury. This review gives an overview of the important role played by CF in responding to myocardial DAMPs and how the DAMP/CF axis could be exploited experimentally and therapeutically
Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity
BACKGROUND: Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure.
METHODOLOGY/PRINCIPAL FINDINGS: We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of \u3b3-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses.
CONCLUSIONS/SIGNIFICANCE: On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL
Seasonality in Human Zoonotic Enteric Diseases: A Systematic Review
BACKGROUND: Although seasonality is a defining characteristic of many infectious diseases, few studies have described and compared seasonal patterns across diseases globally, impeding our understanding of putative mechanisms. Here, we review seasonal patterns across five enteric zoonotic diseases: campylobacteriosis, salmonellosis, vero-cytotoxigenic Escherichia coli (VTEC), cryptosporidiosis and giardiasis in the context of two primary drivers of seasonality: (i) environmental effects on pathogen occurrence and pathogen-host associations and (ii) population characteristics/behaviour. METHODOLOGY/PRINCIPAL FINDINGS: We systematically reviewed published literature from 1960-2010, resulting in the review of 86 studies across the five diseases. The Gini coefficient compared temporal variations in incidence across diseases and the monthly seasonality index characterised timing of seasonal peaks. Consistent seasonal patterns across transnational boundaries, albeit with regional variations was observed. The bacterial diseases all had a distinct summer peak, with identical Gini values for campylobacteriosis and salmonellosis (0.22) and a higher index for VTEC (Gini  0.36). Cryptosporidiosis displayed a bi-modal peak with spring and summer highs and the most marked temporal variation (Gini = 0.39). Giardiasis showed a relatively small summer increase and was the least variable (Gini = 0.18). CONCLUSIONS/SIGNIFICANCE: Seasonal variation in enteric zoonotic diseases is ubiquitous, with regional variations highlighting complex environment-pathogen-host interactions. Results suggest that proximal environmental influences and host population dynamics, together with distal, longer-term climatic variability could have important direct and indirect consequences for future enteric disease risk. Additional understanding of the concerted influence of these factors on disease patterns may improve assessment and prediction of enteric disease burden in temperate, developed countries
- …