1,219 research outputs found

    Epidemiology

    Get PDF

    How to improve TTS systems for emotional expressivity

    Get PDF
    Several experiments have been carried out that revealed weaknesses of the current Text-To-Speech (TTS) systems in their emotional expressivity. Although some TTS systems allow XML-based representations of prosodic and/or phonetic variables, few publications considered, as a pre-processing stage, the use of intelligent text processing to detect affective information that can be used to tailor the parameters needed for emotional expressivity. This paper describes a technique for an automatic prosodic parameterization based on affective clues. This technique recognizes the affective information conveyed in a text and, accordingly to its emotional connotation, assigns appropriate pitch accents and other prosodic parameters by XML-tagging. This pre-processing assists the TTS system to generate synthesized speech that contains emotional clues. The experimental results are encouraging and suggest the possibility of suitable emotional expressivity in speech synthesis

    Vanillin and Its Detection in Air

    Get PDF
    Vanillin (4‐hydroxy‐3‐methoxybenzaldehyde) is an important flavor and aroma molecule, which has been widely used in not only foods and beverages such as chocolate and dairy products, but also masking unpleasant tastes in medicines or livestock fodder. Its chemical properties, manufacturing methods, novel applications, and developments in fast detections in air are discussed in detail

    Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions

    Get PDF
    This paper proposes a new scheme for authenticated encryption (AE) which is typically realized as a blockcipher mode of operation. The proposed scheme has attractive features for fast and compact operation. When it is realized with a blockcipher, it requires one blockcipher call to process one input block (i.e. rate-1), and uses the encryption function of the blockcipher for both encryption and decryption. Moreover, the scheme enables one-pass, parallel operation under two-block partition. The proposed scheme thus attains similar characteristics as the seminal OCB mode, without using the inverse blockcipher. The key idea of our proposal is a novel usage of two-round Feistel permutation, where the round functions are derived from the theory of tweakable blockcipher. We also provide basic software results, and describe some ideas on using a non-invertible primitive, such as a keyed hash function

    Efficient Message Authentication Codes with Combinatorial Group Testing

    Get PDF
    Message authentication code, MAC for short, is a symmetric-key cryptographic function for authenticity. A standard MAC verification only tells whether the message is valid or invalid, and thus we can not identify which part is corrupted in case of invalid message. In this paper we study a class of MAC functions that enables to identify the part of corruption, which we call group testing MAC (GTM). This can be seen as an application of a classical (non-adaptive) combinatorial group testing to MAC. Although the basic concept of GTM (or its keyless variant) has been proposed in various application areas, such as data forensics and computer virus testing, they rather treat the underlying MAC function as a black box, and exact computation cost for GTM seems to be overlooked. In this paper, we study the computational aspect of GTM, and show that a simple yet non-trivial extension of parallelizable MAC (PMAC) enables O(m+t)O(m+t) computation for mm data items and tt tests, irrespective of the underlying test matrix we use, under a natural security model. This greatly improves efficiency from naively applying a black-box MAC for each test, which requires O(mt)O(mt) time. Based on existing group testing methods, we also present experimental results of our proposal and observe that ours runs as fast as taking single MAC tag, with speed-up from the conventional method by factor around 8 to 15 for m=104m=10^4 to 10510^5 items

    Authenticated Encryption with Small Stretch (or, How to Accelerate AERO)

    Get PDF
    Standard form of authenticated encryption (AE) requires the ciphertext to be expanded by the nonce and the authentication tag. These expansions can be problematic when messages are relatively short and communication cost is high. To overcome the problem we propose a new form of AE scheme, MiniAE, which expands the ciphertext only by the single variable integrating nonce and tag. An important feature of MiniAE is that it requires the receiver to be stateful not only for detecting replays but also for detecting forgery of any type. McGrew and Foley already proposed a scheme having this feature, called AERO, however, there is no formal security guarantee based on the provable security framework. We provide a provable security analysis for MiniAE, and show several provably-secure schemes using standard symmetric crypto primitives. This covers a generalization of AERO, hence our results imply a provable security of AERO. Moreover, one of our schemes has a similar structure as OCB mode of operation and enables rate-1 operation, i.e. only one blockcipher call to process one input block. This implies that the computation cost of MiniAE can be as small as encryption-only schemes

    ブロック暗号モードによる暗号化と認証に関する研究

    Get PDF
    制度:新 ; 文部省報告番号:甲2646号 ; 学位の種類:博士(理学) ; 授与年月日:2008/3/24 ; 早大学位記番号:新480
    corecore