40 research outputs found

    T regulatory cells are markers of disease activity in multiple sclerosis patients

    Get PDF
    FoxP3+ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in peripheral blood mononuclear cells from patients with multiple sclerosis (MS), an autoimmune disease affecting the central nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in the attempt to restore homeostasis

    T Regulatory Cells Are Markers of Disease Activity in Multiple Sclerosis Patients

    Get PDF
    FoxP3+ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in peripheral blood mononuclear cells from patients with multiple sclerosis (MS), an autoimmune disease affecting the central nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in the attempt to restore homeostasis

    SARS-CoV-2 infection risk is higher in vaccinated patients with inflammatory autoimmune diseases or liver transplantation treated with mycophenolate due to an impaired antiviral immune response: results of the extended follow up of the RIVALSA prospective cohort

    Get PDF
    BackgroundA relevant proportion of immunocompromised patients did not reach a detectable seroconversion after a full primary vaccination cycle against SARS-CoV-2. The effect of different immunosuppressants and the potential risks for SARS-CoV-2 infection in these subjects is largely unknown.MethodsPatients from the Rivalsa prospective, observational cohort study with planned anti SARS-CoV-2 third dose mRNA vaccination between October and December 2021 were asked to participate to this follow-up study. Patients were asked about eventual confirmed positivity to SARS-CoV-2 infection within 6 months from the third dose and to undergo a blood draw to evaluate seroconversion status after the additional vaccine shot.Results19 out of 114 patients taking part in the survey developed a confirmed SARS-CoV-2 infection; we identified mycophenolate treatment as an independent predictor of an increased risk of infection even after the third vaccine dose (OR: 5.20, 95% CI: 1.70-20.00, p=0.0053). This result is in agreement with the in vitro evidence that MMF impairs both B and T lymphocytes driven immune responses (reduction both in memory B cells producing anti-spike antibodies and in proliferating CD4+ and CD8+ T cells).ConclusionsImmunocompromised patients need an additional vaccine administration to reach a detectable seroconversion, thus fostering a more personalized approach to their clinical management. Moreover, patients undergoing mycophenolate treatment show a specific increased infection risk, with respect to other immunosuppressants thus supporting a closer monitoring of their health status

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Performance of Whole Blood Stimulation Assays for the Quantification of SARS-CoV-2 Specific T-Cell Response: A Cross-Sectional Study

    No full text
    Since the identification of the new severe acute respiratory syndrome virus 2 (SARS-CoV-2), a huge effort in terms of diagnostic strategies has been deployed. To date, serological assays represent a valuable tool for the identification of recovered COVID-19 patients and for the monitoring of immune response elicited by vaccination. However, the role of T-cell response should be better clarified and simple and easy to perform assays should be routinely introduced. The main aim of this study was to compare a home-made assay for whole blood stimulation with a standardized ELISpot assay design in our laboratory for the assessment of spike-specific T-cell response in vaccinated subjects. Even if a good correlation between the assays was reported, a higher percentage of responder subjects was reported for immunocompromised subjects with ELISpot assay (56%) than home-made whole blood stimulation assay (33%). Additionally, three commercial assays were compared with our home-made assay, reporting a good agreement in terms of both positive and negative results

    Rappresentare il territorio - Viaggio virtuale dalle prime mappe al GIS

    No full text
    <p>La cartografia, importante tematica nell’ambito delle Scienze della Terra, mira alla descrizione del mondo che ci circonda. Il suo insegnamento a scuola consente di evidenziare lo stretto legame tra la conoscenza scientifica e la sua applicazione nella vita quotidiana attraverso un percorso che accompagna gli studenti verso la consapevolezza dell’importanza dello studio.<br>In questo contesto, alcuni ricercatori di ISMAR (Consiglio Nazionale delle Ricerche), nell’ambito del Progetto Bandiera RITMARE (SP6 - WP2 - AZ1- UO2), hanno ideato un supporto multimediale dal titolo ”Rappresentare il territorio”.</p

    Immune Response to BNT162b2 in Solid Organ Transplant Recipients: Negative Impact of Mycophenolate and High Responsiveness of SARS-CoV-2 Recovered Subjects against Delta Variant

    No full text
    The immunogenicity of severe acute respiratory syndrome 2 virus (SARS-CoV-2) vaccines in immunocompromised patients remains to be further explored. Here, we evaluated the immunogenicity elicited by complete vaccination with BNT162b2 vaccine in solid organ transplant recipients (SOTRs). A cohort of 110 SOTRs from Northern Italy were vaccinated with two doses of BNT162b2 mRNA vaccine and prospectively monitored at baseline and after 42 days. Both SARS-CoV-2 naïve and recovered subjects were included. Humoral response elicited by vaccination, including SARS-CoV-2 neutralizing antibodies (SARS-CoV-2 NT Abs), was evaluated; additionally, ex-vivo ELISpot assay was performed for the quantification of Spike-specific T-cell response. Results were compared with those obtained in a cohort of healthy subjects. In a subset of patients, humoral and T-cell responses against delta variant were also evaluated. Less than 20% of transplanted subjects developed a positive humoral and cell-mediated response after complete vaccination schedule. Overall, median levels of immune response elicited by vaccination were significantly lower with respect to controls in SARS-CoV-2 naïve transplant, but not in SARS-CoV-2 recovered transplanted patients. Additionally, a significant impairment of both humoral and cell-mediated response was observed in mycophenolate-treated patients. Positive delta-SARS-CoV-2 NT Abs levels were detected in almost all the SARS-CoV-2 recovered subjects but not in previously uninfected patients. Our study supports previous observations of a low level of seroconversion after vaccination in transplanted patients
    corecore