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Abstract

FoxP3+ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical
recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during
autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in
peripheral blood mononuclear cells from patients with multiple sclerosis (MS), an autoimmune disease affecting the central
nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly
decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute
clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in
the attempt to restore homeostasis.
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Introduction

Cells with immunosuppressive functions raise particular interest

in multiple sclerosis (MS) because of their potential role in

pathogenesis, determination of disease course, and their prospec-

tive use in therapy [1]. CD25+FoxP3+ T regulatory cells (Tregs)

have been initially characterized in experimental autoimmune

encephalomyelitis (EAE), the mouse model for MS. In EAE,

CD4+CD25+ cells have a clear-cut beneficial role, suppressing

cytokine production by myelin-specific pathogenic TH1 cells, and

their transfer into normal mice prior to immunization results in

decreased disease severity [2]. Furthermore, anti-CD25 treatment

of resistant B10S mice renders these mice susceptible to EAE [3].

In humans, controversial results have been published. Periph-

eral blood CD4+CD25+ Tregs, measured by flow-cytometry, have

been described variably as decreased [4], or normal [5,6] in MS

patients as compared to healthy controls. Even if normal in

frequency, however, Tregs in MS patients may not be normal in

function, as proposed by Viglietta et al. [7], finding that has been

questioned when defining Tregs with different markers [8]. The

issue of Tregs functionality is especially relevant since several

studies have shown that CD4+CD25+ Treg cells are increased in

inflammatory sites in autoimmunity (i.e. pancreatic islets in

diabetes, synovia of arthritic joints [9] and, recently, in CSF of

MS patients [10] raising the question of whether these cells are

functional at these locations. Established markers of Treg

functionality are lacking, however polymorphisms in Tregs

effector genes such as CTLA-4, GITR, FoxP3 have been linked

to susceptibility to autoimmune diseases in humans, including MS

[11,12]. Misleading and contradictory data on Tregs, may be due

to the ambiguous nature of the markers employed so far. In fact,

one of the first proposed Treg markers, CD25 - IL2 receptor’a-

chain [13,14]- is constitutively expressed by T regs but also by

activated conventional T cells, B cells and macrophages [15,16].

Even if depletion of CD4+CD25+ T cell population leads to

autoimmune disease in nude mice [17], recent findings show that

up to one-third of FoxP3+ cells in a naı̈ve mouse are CD252 and

will remain unaffected by anti-CD25 monoclonal antibody (mAb)

administration) [18,19,20]. FoxP3 is the X-linked transcription

factor of the Forkhead/winged-helix box family, more recently

proposed as Treg marker [21,22]. Its mutation leads to a fatal

autoimmune lymphoproliferative disease in both humans (IPEX

syndrome) and mice (scurfy mice) [23] [24], and FoxP3 was

demonstrated to largely control Tregs development and functional

capacity [25,26]. Recent studies, however, show that ectopic

expression of FoxP3 in mouse CD4+ T cells is not sufficient to

generate Tregs in vitro, and transient FoxP3 expression has been

demonstrated in recently activated T cells [24,27,28]. Treg

effector molecules, which contribute to the activation and

proliferation of these cells and tune their suppression ability,

such as CTLA-4 and GITR, are considered as Treg functional

markers. CTLA4 (Cytotoxic T-Lymphocyte Antigen 4) is a

CD28-family receptor expressed mainly on CD4+ T cells, that

inhibits T cell proliferation interfering with co-stimulatory signals
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[29,30,31,32,33,34]. It is constitutively expressed on a subset of

Tregs, but also on resting T cells. GITR (glucocorticoid-induced

tumour necrosis factor receptor), a member of the TNF receptor

superfamily, is a surface receptor molecule involved in inhibiting

the suppressive activity of Tregs. It is constitutively expressed in

Tregs at a higher level than in other T cells although recently

activated T cells can also upregulate GITR expression in humans

[17,35].

Two novel functional Tregs markers are CD39 and CD73,

ecto-nucleotidases present on the surface of lymphocytes which act

in concert to hydrolyzes ATP or ADP to 59-AMP and 59-AMP to

adenosine, a potent anti-inflammatory molecule [36,37]. In

humans they are expressed on antigen presenting cells, B cells

and on a subset of human Foxp3+ Tregs with potent immuno-

suppressive properties representing activated effector/memory-like

suppressor cells, namely TREM cells. Tregs from CD39-null mice

show impaired suppressive properties in vitro and fail to block

allograft rejection in vivo. Strikingly reduced numbers of CD39+

Tregs -but not of total Tregs- are found in the blood of patients

suffering of RR-MS [38], and, more recently, decrease of CD39+

Tregs has been associated to disease progression in HIV [39].

Finally, low expression levels of the IL-7 receptor CD127, have

been used to better define FoxP3+ Tregs, making of CD127 a

useful and widely used negative Treg marker [40].

We analyzed, in unfractionated peripheral blood mononuclear

cells, several different markers, namely CD25, FoxP3, CTLA-4,

GITR, and CD39, in the attempt to more precisely define Tregs

and to identify the pattern that best describes their modulation

during MS. We compared flow cytometry, as gold standard, and

real time RT-PCR, to validate the latter as a tool to be used in

clinical settings, to overcome the issues related to sampling live

cells for disease monitoring.

Materials and Methods

Patient characteristics
We enrolled 85 patients with a clinically definite MS - according

to revised McDonald’s criteria [41]- and a relapsing-remitting

course. [42], from four different Centers in Italy, (San Raffaele

Hospital, Milan; Tor Vergata, Rome; Santa Lucia Hospital,

Rome; San Camillo Hospital, Rome). The Study has been

approved by the Ethical Committee-HSR for the San Raffaele

Scientific Institute, the Ethical Committee of the IRRCCS

Fondazione Santa Lucia, the Ethical Committee Azienda

Ospedaliera San Camillo-Forlanini, and the Ethical Committee

of the Azienda ospedaliero - universitaria Ospedali Riuniti Foggia.

All patients have signed an informed consent before blood

withdrawal. Patients were between 18 and 52 years old, had a

disease duration from less than one year to 29 years, a relatively

mild neurological disability (EDSS,4.0) and MRI-findings typical

of MS (according to Barkhof’s criteria) [43] Patients with

concomitant severe diseases (neoplasm, respiratory, renal, liver

or cardiac failures), recurrent urinary or pulmonary infections, or

pregnant women, were excluded.

Forty-two MS patients were in a stable phase of their disease -

no relapse in the 6 months before sampling. The other 43 patients

– namely ‘‘relapsing MS’’- were enrolled while experiencing a

well-defined relapse (as judged by clinical assessment by a trained

neurologist), whose clinical onset was between 8 hours and 10

days. None of the patients had been treated with steroids or

immunosuppressive agents in the 3 months preceding the relapse.

Sixty-five gender and age-matched healthy controls, with no

previous history of neurological or autoimmune disease and not

concomitant infection or allergy access, were also enrolled in the

study.

Cell isolation, RNA extraction, and cDNA synthesis
PBMCs from venous blood have been separated by Ficoll

density centrifugation (Lymphoprep, Axis Shield, Oslo, Norway)

within 3 hours from withdrawal. Either stained for FACS analysis

or washed and resuspended in TRIzolH for RNA extraction: 1 ml

of TRIzolH Reagent (Sigma-Aldrich) was used per 106106 cells.

RNA was extracted following the manufacturer’s protocol. cDNA

has been synthesized from 3 mg of RNA using the kit Ready-to-go

(Amersham Biosciences) following the manufacturer’s protocol,

and Real-time PCR (RT-PCR) using pre-developed TaqmanTM

Assay Reagents (Applied Biosystems, Foster City, MA), has been

used to measure the mRNA levels of the following targets: CD4,

CD25, FOXP3, GITR, CTLA4, CD39 and the endogenous

control GAPDH (all primers by Applied Biosystems, Foster City,

MA). AU (arbitrary units) were calculated using the following

formula: 22DD CT = 22((CT target-CT endogenous)2D CT).

Polychromatic Flow Cytometric Analysis
The following antibodies were used: hCD4, hFoxP3, hGITR,

(eBioscience); hCD25, hCTLA4 (BD Biosciences); hCD39 (Milte-

nyi). Antibodies were used at predetermined optimal concentra-

tions. Dead cells were excluded from analysis using LIVE/

DEADH Fixable Dead Cell Stain Kit (Invitrogen). FACS analysis

was carried out on a FACSCanto, (BD Bioscience), or on a CyAn

(Beckam Coulter). Data were analysed using FlowJo software

(Treestar).

Suppression assay
Human mononuclear cells were isolated by Ficoll gradient

centrifugation (Pharmacia, Uppsala, Sweden). Human cells were

further sorted with a MoFlo high speed cell sorter (Beckman

Coulter), after staining for CD4, CD25 and CD39. Purity of sorted

cells was always above 90%. Data were analyzed using FlowJo

software (Treestar, Ashland, OR).

The CD4+CD25highCD39+ cell subset was tested in vitro for

suppression in co-cultures with proliferating autologous

CD4+CD25neg responder cells. In vitro suppression assays were

carried out in RPMI/10% FCS in 96-well V-bottom plates

(Costar, Corning, NY). CFSE-labeled (Invitrogen, Carlsbad, CA)

CD4+CD25neg responder cells (2.06104) were incubated with

titrated amounts of FACS-sorted CD4+CD39+ and 106104

irradiated (3000 rad) antigen-presenting cells (APCs) that were

T-cell-depleted with a-CD3 (T3D). Stimulation was carried out

with plate-bound a-CD3 (UCTH1; 10 mg/mL). After 5 days at

37uC, samples were acquired on a Cyan flow-cytometer (Beckman

Coulter) and data were analyzed using FlowJo software (TreeStar,

Ashland, OR) to assess cell proliferation.

Statistical Analysis
As the datasets did not conform to a normal distribution,

median percentage (6 inter-quartile ranges) and nonparametric

tests (Mann-Whitney) were used throughout. A probability value

,0.05 was considered statistically significant. Data were analyzed

with Prism (version) 5.0.

Results

CD4+CD25+CD39+T cells co-express typical Treg markers
CD4+CD25highCD39+ T cells are bona fide Treg cells, both those

from healthy donors and from MS patients, displaying prolifer-

ation suppressive ability in classical in vitro assays [38]. In

T Regulatory Cells in MS
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agreement with this model, when CD39+ T cells were compared

to CD392 negative T cells, we found increased levels of expression

of all Treg markers tested, namely Foxp3 (Fig. 1A), CTLA4

(Fig. 1B), and GITR (Fig. 1C).

Molecular Treg markers are elevated in MS patients
experiencing a clinical relapse

We used the above described Treg markers to interrogate, by

molecular means, PBMC samples of patients affected by relapsing-

remitting MS in a stable or acute phase of the disease. We found

that all markers studied were strikingly reduced in stable MS

patients as compared to healthy individuals. Surprisingly, we

found that CD25 (Fig. 2A), CTLA4 (Fig. 2B), GITR (Fig. 2C), and

CD39 (Fig. 2D), and foxp3 (Fig. 2E) mRNA levels were

significantly increased in PBMCs from MS patients experiencing

a clinical relapse, as compared to patients in a stable phase of the

disease.

Treg cells frequency is increased in MS patients
experiencing a clinical relapse

To confirm that the different levels of expression of Treg

markers in PBMCs of relapsing MS patients, as measured by

molecular means, is associated to a corresponding modulation of

the T cell population of interest, we performed polychromatic flow

Figure 1. CD4+CD25highCD39+ T cells express increased levels of Treg markers. FoxP3 (A), CTLA4 (B) and GITR (C) expression, as measured
by flow cytometry, are increased in CD4+CD39+, as compared to CD4+CD392 T cells, especially in the CD25high compartment.
doi:10.1371/journal.pone.0021386.g001

T Regulatory Cells in MS
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cytometric analysis on freshly isolated PBMCs from healthy donors

and MS patients in different phases of disease activity. Since CTLA4

and GITR staining display lower discriminating sensitivity, we used

CD39, FoxP3, and CD25 as previously described [38]. Indeed, stable

MS patients showed a significant reduction of Treg cells as compared

to healthy donors (Fig. 3A–B; Fig. 4A–C). Samples collected from

patients during an acute attack, as suggested by mRNA levels,

displayed restored levels of Treg cells, comparable to that observed in

healthy donors (Fig. 3B–C; Fig. 4A–C). We confirmed that

CD4+CD25highCD39+ T cells from MS patients in the acute phase

of the disease are indeed suppressive, as shown in Fig. 4 D–F, thus

suggesting that the T regulatory compartment is not functionally

compromised in patients affected by MS.

Longitudinally followed MS patients display increase
Treg markers if experiencing a relapse

We then analyzed by RT-PCR, RNA samples from 15

untreated MS patients that had been followed longitudinally for

14 months with bi-monthly sampling, constituting the placebo arm

of a clinical trial. While seven patients remained relapse-free

Figure 2. Treg markers are up-regulated in RR-MS patients experiencing clinical relapses. A–E. Clinically relapsing RR-MS patients
displayed increased PBMC mRNA levels for CD25 (A), CTLA-4 (B), GITR (C), CD39 (D), and foxp3 (E). We also found significantly lower levels of Treg
markers mRNA in stable RR-MS patients as compared to healthy controls (HC). Values are expressed as arbitrary units (AU). P values are indicated
(Mann-Whitney).
doi:10.1371/journal.pone.0021386.g002

T Regulatory Cells in MS
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during the follow-up period, 8 experienced on or more clinical

relapses. As shown in figure 4G, patients that were clinically active

during the follow-up displayed increased levels of the Treg marker

Foxp3 mRNA as compared to the group of patients with stable

disease, where the Foxp3 mRNA expression levels remained

steady (Fig. 4H).

Discussion

The starting point of the present work has been the observation,

in archival cDNA samples, that Foxp3 mRNA levels were

increased in patients experiencing a clinical relapse. Since

decreased or defective Foxp3+ Tregs have been causally linked

to relapse occurrence in several reports [4,7], this finding appeared

to be paradoxical. Recent literature has however questioned

Foxp3 as Treg marker, indicating that general T cell activation

implies transient Foxp3 expression [27,28]. The increase in Foxp3

mRNA levels in relapsing MS patients can thus be attributed to

increased Tregs or to increased T cell activation in broad terms. In

the attempt to better distinguish between these two hypotheses, we

used several different markers that have been linked to Tregs.

Using this pattern of Treg-associated markers, we confirmed the

observation of an apparent upregulation of the Treg compartment

Figure 3. FoxP3+CD39+ Treg cells are increased during acute MS. Scatter plots from three representative subjects, one healthy donor (HC; A),
a stable MS patients (B), and a patient experiencing a clinical re-exacerbation of MS (C) are shown, indicating that the FoxP3/CD39 double positive T
cell population (A, right panel) in the CD25high gate dramatically decreases during stable MS (B, right panel) and is restored during an acute attack (C,
right panel).
doi:10.1371/journal.pone.0021386.g003

T Regulatory Cells in MS
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Figure 4. Treg cells are increased during acute MS. The percentage of FoxP3+ cells in the CD4+CD25high gate is shown in (A) in healthy controls
(HC; n = 14), stable MS (n = 10), and acute MS (n = 8). The percentage of CD39+ cells in the CD4+CD25high gate is shown in (B) in HC (n = 44), stable MS
(n = 31), and acute MS (n = 32), and, similarly, the percentage of FoxP3+/CD39+ cells in the CD4+CD25high gate is displayed in (C) in HC (n = 13), stable
MS (n = 12), and acute MS (n = 11). Again, while Treg cells, as defined by these markers, were significantly decreased in stable MS patients and
restored during an acute attack. Lines represent median values, and P values are indicated where significant (Mann-Whitney). CD4+CD25highCD39+

regulatory T cells from an acute MS patient suppress T responder cell proliferation (E) in a dose dependent way (F), as measured by CFSE dilution
assay. Plots represent CFSE-labeled T responder cell proliferation in absence and presence of regulatory T cell (5:1) (E, F). A representative experiment
among three is shown. Treatment-free RR-MS patients (n = 15) were followed longitudinally every two months for 14 months (G–H), and divided
according to the occurrence of clinical relapses during the follow-up in stable (G), or relapsing (H) patients. PBMC foxp3 mRNA values, normalized on
CD4 and GAPDH mRNA, and expressed as arbitrary units (AU) are plotted.
doi:10.1371/journal.pone.0021386.g004
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during disease activity in an autoimmune disease such as MS.

Contradictory data are present in the literature on the number and

function of Tregs in MS as compared to healthy donors,

supporting the general idea that there probably is no major

difference among T cells with suppressive functions that may

contribute to disease development. Furthermore, peripheral blood

is the only, but far from ideal, site to investigate. Considering

suppressive T cells as a homeostatic mechanism aimed at

controlling excessive immune activation, their secondary increase

during inflammatory phases of the disease becomes reasonable

and in accordance with previous observation describing them as

migrating to inflammatory sites along and at the same time with

other inflammatory cells [44]. We explored, at this point, the

potential for these molecules to become useful biomarkers of

disease activity. The fact that we found CD39, an ectonuclease

thought to mediate suppressive activity of Tregs [36,38], as one of

the most reliable markers, may indicate that active, suppressive

Tregs are indeed mobilized from secondary lymphoid organs as a

consequence of reactivation of inflammation in the target organs,

and increase in the blood when traveling to the CNS where they

attempt to dampen inflammation. We propose CD39+ Treg as

biomarkers for disease activity, but their validation is outside the

scope of this work and requires larger cohorts of patients.
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