66 research outputs found

    Inter and intra-tumoral heterogeneity as a platform for personalized therapies in medulloblastoma

    Get PDF
    Medulloblastoma is the most common malignant CNS tumor of childhood, affecting ~350 patients/year in the USA. In 2020, most children are cured of their disease, however, survivors are left with life-long late-effects as a consequence of intensive surgery, and application of chemo- and radio-therapy to the developing brain. The major contributor to improvements in patient survival has been the development of risk-stratified treatments derived from a better understanding of the prognostic value of disease biomarkers. The characterization and validation of these biomarkers has engendered a comprehensive understanding of the extensive heterogeneity that exists within the disease, which can occur both between and within tumors (inter- and intra-tumoral heterogeneity, respectively). In this review, we discuss inter-tumoral heterogeneity, describing the early characterization of clinical and histopathological disease heterogeneity, the more recent elucidation of molecular disease subgroups, and the potential for novel therapies based on specific molecular defects. We reflect on the limitations of current approaches when applied to a rare disease. We then review early investigations of intra-tumoral heterogeneity using FISH and immunohistochemical approaches, and focus on the application of next generation sequencing on bulk tumors to elucidate intra-tumoral heterogeneity. Finally, we critically appraise the applications of single-cell sequencing approaches and discuss their potential to drive next biological insights, and for routine clinical application

    Supratentorial and spinal pediatric ependymomas display a hypermethylated phenotype which includes the loss of tumor suppressor genes involved in the control of cell growth and death

    Get PDF
    Epigenetic alterations, including methylation, have been shown to be an important mechanism of gene silencing in cancer. Ependymoma has been well characterized at the DNA copy number and mRNA expression levels. However little is known about DNA methylation changes. To gain a more global view of the methylation profile of ependymoma we conducted an array-based analysis. Our data demonstrated tumors to segregate according to their location in the CNS, which was associated with a difference in the global level of methylation. Supratentorial and spinal tumors displayed significantly more hypermethylated genes than posterior fossa tumors, similar to the ‘CpG island methylator phenotype’ (CIMP) identified in glioma and colon carcinoma. This hypermethylated profile was associated with an increase in expression of genes encoding for proteins involved in methylating DNA, suggesting an underlying mechanism. An integrated analysis of methylation and mRNA expression array data allowed us to identify methylation-induced expression changes. Most notably genes involved in the control of cell growth and death and the immune system were identified, including members of the JNK pathway and PPARG. In conclusion, we have generated a global view of the methylation profile of ependymoma. The data suggests epigenetic silencing of tumor suppressor genes is an important mechanism in the pathogenesis of supratentorial and spinal, but not posterior fossa ependymomas. Hypermethylation correlated with a decrease in expression of a number of tumor suppressor genes and pathways that could be playing an important role in tumor pathogenesis

    Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease

    Get PDF
    We undertook a comprehensive clinical and biological investigation of serial medulloblastoma biopsies obtained at diagnosis and relapse. CombinedMYCfamily amplifications and P53 pathway defects commonly emerged at relapse, and all patients in this group died of rapidly progressive disease postrelapse. To study this interaction, we investigated a transgenic model of MYCN-driven medulloblastoma and found spontaneous development ofTrp53inactivating mutations. Abrogation of p53 function in this model produced aggressive tumors that mimicked characteristics of relapsed human tumors with combined P53-MYC dysfunction. Restoration of p53 activity and genetic and therapeutic suppression of MYCN all reduced tumor growth and prolonged survival. Our findings identify P53-MYC interactions at medulloblastoma relapse as biomarkers of clinically aggressive disease that may be targeted therapeutically.Additional co-authors: Louise Howell, Colin Kwok, Abhijit Joshi, Sarah Leigh Nicholson, Stephen Crosier, David W. Ellison, Stephen B. Wharton, Keith Robson, Antony Michalski, Darren Hargrave, Thomas S. Jacques, Barry Pizer, Simon Bailey, Fredrik J. Swartling, William A. Weiss, Louis Chesler, Steven C. Cliffor

    Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes

    Get PDF
    In 2012, an international consensus paper reported that medulloblastoma comprises four molecular subgroups (WNT, SHH, Group 3, and Group 4), each associated with distinct genomic features and clinical behavior. Independently, multiple recent reports have defined further intra-subgroup heterogeneity in the form of biologically and clinically relevant subtypes. However, owing to differences in patient cohorts and analytical methods, estimates of subtype number and definition have been inconsistent, especially within Group 3 and Group 4. Herein, we aimed to reconcile the definition of Group 3/Group 4 MB subtypes through the analysis of a series of 1501 medulloblastomas with DNA-methylation profiling data, including 852 with matched transcriptome data. Using multiple complementary bioinformatic approaches, we compared the concordance of subtype calls between published cohorts and analytical methods, including assessments of class-definition confidence and reproducibility. While the lowest complexity solutions continued to support the original consensus subgroups of Group 3 and Group 4, our analysis most strongly supported a definition comprising eight robust Group 3/Group 4 subtypes (types I–VIII). Subtype II was consistently identified across all component studies, while all others were supported by multiple class-definition methods. Regardless of analytical technique, increasing cohort size did not further increase the number of identified Group 3/Group 4 subtypes. Summarizing the molecular and clinico-pathological features of these eight subtypes indicated enrichment of specific driver gene alterations and cytogenetic events amongst subtypes, and identified highly disparate survival outcomes, further supporting their biological and clinical relevance. Collectively, this study provides continued support for consensus Groups 3 and 4 while enabling robust derivation of, and categorical accounting for, the extensive intertumoral heterogeneity within Groups 3 and 4, revealed by recent high-resolution subclassification approaches. Furthermore, these findings provide a basis for application of emerging methods (e.g., proteomics/single-cell approaches) which may additionally inform medulloblastoma subclassification. Outputs from this study will help shape definition of the next generation of medulloblastoma clinical protocols and facilitate the application of enhanced molecularly guided risk stratification to improve outcomes and quality of life for patients and their families

    Advanced molecular pathology for rare tumours: A national feasibility study and model for centralised medulloblastoma diagnostics

    Get PDF
    Aims: Application of advanced molecular pathology in rare tumours is hindered by low sample numbers, access to specialised expertise/technologies and tissue/assay QC and rapid reporting requirements. We assessed the feasibility of co-ordinated real-time centralised pathology review (CPR), encompassing molecular diagnostics and contemporary genomics (RNA-seq/DNA methylation-array). Methods: This nationwide trial in medulloblastoma (<80 UK diagnoses/year) introduced a national reference centre (NRC) and assessed its performance and reporting to World Health Organisation standards. Paired frozen/formalin-fixed, paraffin-embedded tumour material were co-submitted from 135 patients (16 referral centres). Results: Complete CPR diagnostics were successful for 88% (120/135). Inadequate sampling was the most common cause of failure; biomaterials were typically suitable for methylation-array (129/135, 94%), but frozen tissues commonly fell below RNA-seq QC requirements (53/135, 39%). Late reporting was most often due to delayed submission. CPR assigned or altered histological variant (vs local diagnosis) for 40/135 tumours (30%). Benchmarking/QC of specific biomarker assays impacted test results; fluorescent in-situ hybridisation most accurately identified high-risk MYC/MYCN amplification (20/135, 15%), while combined methods (CTNNB1/chr6 status, methylation-array subgrouping) best defined favourable-risk WNT tumours (14/135; 10%). Engagement of a specialist pathologist panel was essential for consensus assessment of histological variants and immunohistochemistry. Overall, CPR altered clinical risk-status for 29% of patients. Conclusion: National real-time CPR is feasible, delivering robust diagnostics to WHO criteria and assignment of clinical risk-status, significantly altering clinical management. Recommendations and experience from our study are applicable to advanced molecular diagnostics systems, both local and centralised, across rare tumour types, enabling their application in biomarker-driven routine diagnostics and clinical/research studies

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity

    First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary-Black-hole Merger GW170814

    Get PDF
    We present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in H0=7532+40kms1Mpc1{H}_{0}={75}_{-32}^{+40}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1}, which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find {H}_{0 {78}_{-24}^{+96}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B

    Get PDF
    We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of 102Mc2{10}^{-2}{M}_{\odot }{c}^{2} were emitted within the 1616500500 Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron star–black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 5454 Mpc (z = 0.0124). Assuming the γ-ray emission is beamed with a jet half-opening angle 30\leqslant 30^\circ , we exclude a BNS and a neutron star–black hole in NGC 3313 as the progenitor of this event with confidence >99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively
    corecore