7 research outputs found

    Children’s route choice during active transportation to school: difference between shortest and actual route

    Get PDF
    BackgroundThe purpose of this study is to increase our understanding of environmental correlates that are associated with route choice during active transportation to school (ATS) by comparing characteristics of actual walking and cycling routes between home and school with the shortest possible route to school.MethodsChildren (n = 184; 86 boys, 98 girls; age range: 8–12 years) from seven schools in suburban municipalities in the Netherlands participated in the study. Actual walking and cycling routes to school were measured with a GPS-device that children wore during an entire school week. Measurements were conducted in the period April–June 2014. Route characteristics for both actual and shortest routes between home and school were determined for a buffer of 25m from the routes and divided into four categories: Land use (residential, commercial, recreational, traffic areas), Aesthetics (presence of greenery/natural water ways along route), Traffic (safety measures such as traffic lights, zebra crossings, speed bumps) and Type of street (pedestrian, cycling, residential streets, arterial roads). Comparison of characteristics of shortest and actual routes was performed with conditional logistic regression models.ResultsMedian distance of the actual walking routes was 390.1m, whereas median distance of actual cycling routes was 673.9m. Actual walking and cycling routes were not significantly longer than the shortest possible routes. Children mainly traveled through residential areas on their way to school (>80% of the route). Traffic lights were found to be positively associated with route choice during ATS. Zebra crossings were less often present along the actual routes (walking: OR = 0.17, 95 % CI = 0.05–0.58; cycling: OR = 0.31, 95 % CI = 0.14–0.67), and streets with a high occurrence of accidents were less often used during cycling to school (OR = 0.57, 95% CI = 0.43–0.76). Moreover, percentage of visible surface water along the actual route was higher compared to the shortest routes (walking: OR = 1.04, 95 % CI = 1.01–1.07; cycling: OR = 1.03, 95 % CI = 1.01–1.05).DiscussionThis study showed a novel approach to examine built environmental exposure during active transport to school. Most of the results of the study suggest that children avoid to walk or cycle along busy roads on their way to school.Electronic supplementary materialThe online version of this article (doi:10.1186/s12966-016-0373-y) contains supplementary material, which is available to authorized users

    Additional file 1: of Children’s route choice during active transportation to school: difference between shortest and actual route

    No full text
    Table S1. Description of the GIS-variables used in the comparison of the shortest and actual route. Table S2. Descriptive statistics of GPS tracks (N = 1,249) between home and school of 184 children. (DOCX 23 kb

    Advance knowledge effects on kinematics of one-handed catching

    Get PDF
    The purpose of this experiment was to examine the effects of advance knowledge on the kinematics of one-handed catching. Balls were launched from a distance of 8.4 m by a ball-projection machine with adjustable launching speed. Fifteen skilled ball catchers caught 160 balls with their preferred hand under blocked-order (4 blocks, each comprising 20 trials at 1 of 4 different ball speeds) or random-order (4 blocks, each comprising 20 trials of 4 different ball speeds) conditions. By projecting balls with different ball speeds from a fixed position, it was possible to modify the temporal constraints of the catching task. In both the blocked-order and random-order conditions, catching performance (number of catches, touches and misses) decreased with increasing temporal constraints. Analysis of successful trials indicated that this equal level of catching performance was achieved with different movement kinematics. Specifically, there was a change in movement time, latency, wrist velocity profile, and coefficient of straightness. Based on expectancy of previous trials, movement kinematics was scaled to ball speed in the blocked-order condition whereas in the random-order condition, participants exhibited a more default initial response. However, this latter mode of control was functional in that it increased the likelihood of success for the higher ball speeds while also providing participants with a larger temporal window to negotiate the unexpected temporal constraint on-line for the lowest ball speed

    Guidelines for the use of flow cytometry and cell sorting in immunological studies

    Get PDF
    International audienceThe classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127(-) and CD127(+) early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127(-) and CD127(+) ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127(-) ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127(+) ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis
    corecore