328 research outputs found

    Revealing functionally coherent subsets using a spectral clustering and an information integration approach

    Get PDF
    Background: Contemporary high-throughput analyses often produce lengthy lists of genes or proteins. It is desirable to divide the genes into functionally coherent subsets for further investigation, by integrating heterogeneous information regarding the genes. Here we report a principled approach for managing and integrating multiple data sources within the framework of graph-spectrum analysis in order to identify coherent gene subsets.Results: We investigated several approaches to integrate information derived from different sources that reflect distinct aspects of gene functional relationships including: functional annotations of genes in the form of the Gene Ontology, co-mentioning of genes in the literature, and shared transcription factor binding sites among genes. Given a list of genes, we construct a graph containing the genes in each information space; then the graphs were kernel transformed so they could be integrated; finally functionally coherent subsets were identified using a spectral clustering algorithm. In a series of simulation experiments, known functionally coherent gene sets were mixed and recovered using our approach.Conclusions: The results indicate that spectral clustering approaches are capable of recovering coherent gene modules even under noisy conditions, and that information integration serves to further enhance this capability. When applied to a real-world data set, our methods revealed biologically sensible modules, and highlighted the importance of information integration. The implementation of the statistical model is provided under the GNU general public license, as an installable Python module, at: http://code.google.com/p/spectralmix. © 2012 Richards et al; licensee BioMed Central Ltd

    Degradation of Host Sphingomyelin Is Essential for Leishmania Virulence

    Get PDF
    In eukaryotes, sphingolipids (SLs) are important membrane components and powerful signaling molecules. In Leishmania, the major group of SLs is inositol phosphorylceramide (IPC), which is common in yeast and Trypanosomatids but absent in mammals. In contrast, sphingomyelin is not synthesized by Leishmania but is abundant in mammals. In the promastigote stage in vitro, Leishmania use SL metabolism as a major pathway to produce ethanolamine (EtN), a metabolite essential for survival and differentiation from non-virulent procyclics to highly virulent metacyclics. To further probe SL metabolism, we identified a gene encoding a putative neutral sphingomyelinase (SMase) and/or IPC hydrolase (IPCase), designated ISCL (Inositol phosphoSphingolipid phospholipase C-Like). Despite the lack of sphingomyelin synthesis, L. major promastigotes exhibited a potent SMase activity which was abolished upon deletion of ISCL, and increased following over-expression by episomal complementation. ISCL-dependent activity with sphingomyelin was about 20 fold greater than that seen with IPC. Null mutants of ISCL (iscl−) showed modest accumulation of IPC, but grew and differentiated normally in vitro. Interestingly, iscl− mutants did not induce lesion pathology in the susceptible BALB/c mice, yet persisted indefinitely at low levels at the site of infection. Notably, the acute virulence of iscl− was completely restored by the expression of ISCL or heterologous mammalian or fungal SMases, but not by fungal proteins exhibiting only IPCase activity. Together, these findings strongly suggest that degradation of host-derived sphingomyelin plays a pivotal role in the proliferation of Leishmania in mammalian hosts and the manifestation of acute disease pathology

    Perturbation of the yeast mitochondrial lipidome and associated membrane proteins following heterologous expression of Artemia-ANT

    Get PDF
    Heterologous expression is a landmark technique for studying a protein itself or its effect on the expression host, in which membrane-embedded proteins are a common choice. Yet, the impact of inserting a foreign protein to the lipid environment of host membranes, has never been addressed. Here we demonstrated that heterologous expression of the Artemia franciscana adenine nucleotide translocase (ANT) in yeasts altered lipidomic composition of their inner mitochondrial membranes. Along with this, activities of complex II, IV and ATP synthase, all membrane-embedded components, were significantly decreased while their expression levels remained unaffected. Although the results represent an individual case of expressing a crustacean protein in yeast inner mitochondrial membranes, it cannot be excluded that host lipidome alterations is a more widespread epiphenomenon, potentially biasing heterologous expression experiments. Finally, our results raise the possibility that not only lipids modulate protein function, but also membrane-embedded proteins modulate lipid composition, thus revealing a reciprocal mode of regulation for these two biomolecular entities

    Developmentally Regulated Sphingolipid Degradation in Leishmania major

    Get PDF
    Leishmania parasites alternate between extracellular promastigotes in sandflies and intracellular amastigotes in mammals. These protozoans acquire sphingolipids (SLs) through de novo synthesis (to produce inositol phosphorylceramide) and salvage (to obtain sphingomyelin from the host). A single ISCL (Inositol phosphoSphingolipid phospholipase C-Like) enzyme is responsible for the degradation of both inositol phosphorylceramide (the IPC hydrolase or IPCase activity) and sphingomyelin (the SMase activity). Recent studies of a L. major ISCL-null mutant (iscl−) indicate that SL degradation is required for promastigote survival in stationary phase, especially under acidic pH. ISCL is also essential for L. major proliferation in mammals. To further understand the role of ISCL in Leishmania growth and virulence, we introduced a sole IPCase or a sole SMase into the iscl− mutant. Results showed that restoration of IPCase only complemented the acid resistance defect in iscl− promastigotes and improved their survival in macrophages, but failed to recover virulence in mice. In contrast, a sole SMase fully restored parasite infectivity in mice but was unable to reverse the promastigote defects in iscl−. These findings suggest that SL degradation in Leishmania possesses separate roles in different stages: while the IPCase activity is important for promastigote survival and acid tolerance, the SMase activity is required for amastigote proliferation in mammals. Consistent with these findings, ISCL was preferentially expressed in stationary phase promastigotes and amastigotes. Together, our results indicate that SL degradation by Leishmania is critical for parasites to establish and sustain infection in the mammalian host

    Chlamydia trachomatis Co-opts GBF1 and CERT to Acquire Host Sphingomyelin for Distinct Roles during Intracellular Development

    Get PDF
    The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche

    Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells

    Get PDF
    The mechanisms of Pb(II) toxicity have been studied in human red blood cells using confocal microscopy, immunolabeling, fluorescence-activated cell sorting and atomic force microscopy. The process follows a sequence of events, starting with calcium entry, followed by potassium release, morphological change, generation of ceramide, lipid flip-flop and finally cell lysis. Clotrimazole blocks potassium channels and the whole process is inhibited. Immunolabeling reveals the generation of ceramide-enriched domains linked to a cell morphological change, while the use of a neutral sphingomyelinase inhibitor greatly delays the process after the morphological change, and lipid flip-flop is significantly reduced. These facts point to three major checkpoints in the process: first the upstream exchange of calcium and potassium, then ceramide domain formation, and finally the downstream scramblase activation necessary for cell lysis. In addition, partial non-cytotoxic cholesterol depletion of red blood cells accelerates the process as the morphological change occurs faster. Cholesterol could have a role in modulating the properties of the ceramide-enriched domains. This work is relevant in the context of cell death, heavy metal toxicity and sphingolipid signaling.AGA was a predoctoral student supported by the Basque Government and later by the University of the Basque Country (UPV/EHU). This work was also supported in part by grants from the Spanish Government (FEDER/MINECO BFU 2015-66306-P to F.M.G. and A.A.) and the Basque Government (IT849-13 to F.M.G. and IT838-13 to A.A.), and by the Swiss National Science Foundation

    Association of Calcineurin with the COPI Protein Sec28 and the COPII Protein Sec13 Revealed by Quantitative Proteomics

    Get PDF
    Calcineurin is a calcium-calmodulin-dependent serine/threonine specific protein phosphatase operating in key cellular processes governing responses to extracellular cues. Calcineurin is essential for growth at high temperature and virulence of the human fungal pathogen Cryptococcus neoformans but the underlying mechanism is unknown. We performed a mass spectrometry analysis to identify proteins that associate with the calcineurin A catalytic subunit (Cna1) in C. neoformans cells grown under non-stress and high temperature stress conditions. A novel prioritization strategy for mass spectrometry data from immunoprecipitation experiments identified putative substrates and proteins potentially operating with calcineurin in common pathways. Cna1 co-purified with proteins involved in membrane trafficking including the COPI component Sec28 and the COPII component Sec13. The association of Cna1 with Sec28 and Sec13 was confirmed by co-immunoprecipitation. Cna1 exhibited a dramatic change in subcellular localization during high temperature stress from diffuse cytoplasmic to ER-associated puncta and the mother-bud neck and co-localized with Sec28 and Sec13

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
    corecore