75 research outputs found

    Low-cell-number, single-tube amplification (STA) of total RNA revealed transcriptome changes from pluripotency to endothelium

    Get PDF
    Table S1. Summary of the sequencing results. The alignments against the GRCh38 genome assembly (Aligned Reads) were counted for exon reads (exon) and transcript reads based on GENCODE v22. Intronic counts (intron) were defined by transcript counts minus exon ones. Nontranscript reads were used to obtain tRNA counts (tRNA) based on the tRNA database of GENCODE v22. Nontranscript and non-tRNA reads were used for counts on repetitive sequences (repeats) based on RepeatMasker. Those not belonging to any category were defined as unannotated reads (unannotated). The counting of exonic features was based on the “gene_type” attribute in GENCODE v22. The percentages of mature miRNA reads were defined by reads aligned exclusively to the mature “miRNA” feature divided by reads aligned to the “miRNA_primary_transcript” feature of miRBase v21. (DOCX 42 kb

    Fibroblast Growth Factor-10 Promotes Cardiomyocyte Differentiation from Embryonic and Induced Pluripotent Stem Cells

    Get PDF
    BACKGROUND: The fibroblast growth factor (FGF) family is essential to normal heart development. Yet, its contribution to cardiomyocyte differentiation from stem cells has not been systemically studied. In this study, we examined the mechanisms and characters of cardiomyocyte differentiation from FGF family protein treated embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. METHODOLOGY/PRINCIPAL FINDINGS: We used mouse ES cells stably transfected with a cardiac-specific α-myosin heavy chain (αMHC) promoter-driven enhanced green fluorescent protein (EGFP) and mouse iPS cells to investigate cardiomyocyte differentiation. During cardiomyocyte differentiation from mouse ES cells, FGF-3, -8, -10, -11, -13 and -15 showed an expression pattern similar to the mesodermal marker Brachyury and the cardiovascular progenitor marker Flk-1. Among them, FGF-10 induced cardiomyocyte differentiation in a time- and concentration-dependent manner. FGF-10 neutralizing antibody, small molecule FGF receptor antagonist PD173074 and FGF-10 and FGF receptor-2 short hairpin RNAs inhibited cardiomyocyte differentiation. FGF-10 also increased mouse iPS cell differentiation into cardiomyocyte lineage, and this effect was abolished by FGF-10 neutralizing antibody or PD173074. Following Gene Ontology analysis, microarray data indicated that genes involved in cardiac development were upregulated after FGF-10 treatment. In vivo, intramyocardial co-administration of FGF-10 and ES cells demonstrated that FGF-10 also promoted cardiomyocyte differentiation. CONCLUSION/SIGNIFICANCE: FGF-10 induced cardiomyocyte differentiation from ES cells and iPS cells, which may have potential for translation into clinical applications

    Initiation of warfarin is associated with decreased mortality in patients with infective endocarditis: A population-based cohort study.

    Get PDF
    The use of warfarin to prevent thromboembolism in patients with infective endocarditis (IE) remains controversial due to potentially increased bleeding risks. Population-based retrospective cohort study. Patients aged 18 or older and diagnosed with IE in Hong Kong between January 1st, 1997 and August 31st, 2020 were included. Patients with use of any anticoagulant 30 days before IE diagnosis were excluded. Patients initiated on warfarin within 14 days of IE diagnosis and patients without warfarin use were matched for baseline characteristics using 1:1 propensity score matching. Warfarin use within 14 days of IE diagnosis. Patients were followed up to 90 days for the outcomes of ischemic stroke, all-cause mortality, intracranial hemorrhage, and gastrointestinal bleeding. Cox regression was used to determine hazard ratios (HRs) [95 % confidence intervals (CIs)] between treatment groups. Fine-Gray competing risk regression with all-cause mortality as the competing event was performed as a sensitivity analysis. In addition to 90-day analyses, landmark analyses were performed at 30 days of follow-up. The matched cohort consisted of 675 warfarin users (57.0 % male, age 59 ± 16 years) and 675 warfarin non-users (53.5 % male, age 61 ± 19 years). Warfarin users had a 50 % decreased 90-day risk in all-cause mortality (HR:0.50 [0.39-0.65]), without significantly different 90-day risks of ischemic stroke (HR:1.04 [0.70-1.53]), intracranial hemorrhage (HR:1.25 [0.77-2.04]), and gastrointestinal bleeding (HR:1.04 [0.60-1.78]). Thirty-day landmark analysis showed similar results. Competing risk regression showed significantly higher 30-day cumulative incidence of intracranial hemorrhage in warfarin users (sub-HR:3.34 [1.34-8.31]), but not at 90-day (sub-HR:1.63 [0.95-2.81]). Results from Fine-Gray regression were otherwise congruent with those from Cox regression. Warfarin initiated within 14 days of IE diagnosis was associated with significantly decreased risks of mortality but higher risks of intracranial hemorrhage, with similar risks of ischemic stroke and gastrointestinal bleeding, compared with non-use of warfarin with 14 days of IE diagnosis. Question: Is warfarin, initiated within 14 days of a diagnosis of infective endocarditis (IE), efficacious and safe? In this propensity score-matched, population-based, prospective cohort study from Hong Kong, warfarin use within 14 days of IE diagnosis was associated with a 50 % decrease in the risk of all-cause mortality, albeit with higher risk of intracranial hemorrhage, and without significant differences in the risk of ischaemic stroke and gastrointestinal bleeding. Meaning: In patients with IE, warfarin use within 14 days of diagnosis may have mortality benefits, despite increased risks of intracranial hemorrhage. [Abstract copyright: Copyright © 2023. Published by Elsevier Ltd.

    A Novel and Critical Role for Oct4 as a Regulator of the Maternal-Embryonic Transition

    Get PDF
    Compared to the emerging embryonic stem cell (ESC) gene network, little is known about the dynamic gene network that directs reprogramming in the early embryo. We hypothesized that Oct4, an ESC pluripotency regulator that is also highly expressed at the 1- to 2-cell stages in embryos, may be a critical regulator of the earliest gene network in the embryo.Using antisense morpholino oligonucleotide (MO)-mediated gene knockdown, we show that Oct4 is required for development prior to the blastocyst stage. Specifically, Oct4 has a novel and critical role in regulating genes that encode transcriptional and post-transcriptional regulators as early as the 2-cell stage. Our data suggest that the key function of Oct4 may be to switch the developmental program from one that is predominantly regulated by post-transcriptional control to one that depends on the transcriptional network. Further, we propose to rank candidate genes quantitatively based on the inter-embryo variation in their differential expression in response to Oct4 knockdown. Of over 30 genes analyzed according to this proposed paradigm, Rest and Mta2, both of which have established pluripotency functions in ESCs, were found to be the most tightly regulated by Oct4 at the 2-cell stage.We show that the Oct4-regulated gene set at the 1- to 2-cell stages of early embryo development is large and distinct from its established network in ESCs. Further, our experimental approach can be applied to dissect the gene regulatory network of Oct4 and other pluripotency regulators to deconstruct the dynamic developmental program in the early embryo

    Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?

    Full text link

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Hypoxia Induces Autophagy through Translational Up-Regulation of Lysosomal Proteins in Human Colon Cancer Cells.

    No full text
    Hypoxia occurs in a wide variety of physiological and pathological conditions, including tumorigenesis. Tumor cells have to adapt to hypoxia by altering their gene expression and protein synthesis. Here, we showed that hypoxia inhibits translation through activation of PERK and inactivation of mTOR in human colon cancer HCT116 cells. Prolonged hypoxia (1% O2, 16 h) dramatically inhibits general translation in HCT116 cells, yet selected mRNAs remain efficiently translated under such a condition. Using microarray analysis of polysome- associated mRNAs, we identified a large number of hypoxia-regulated genes at the translational level. Efficiently translated mRNAs during hypoxia were validated by polysome profiling and quantitative real-time RT-PCR. Pathway enrichment analysis showed that many of the up-regulated genes are involved in lysosome, glycan and lipid metabolism, antigen presentation, cell adhesion, and remodeling of the extracellular matrix and cytoskeleton. The majority of down-regulated genes are involved in apoptosis, ubiquitin-mediated proteolysis, and oxidative phosphorylation. Further investigation showed that hypoxia induces lysosomal autophagy and mitochondrial dysfunction through translational regulation in HCT116 cells. The abundance of several translation factors and the mTOR kinase activity are involved in hypoxia-induced mitochondrial autophagy in HCT116 cells. Our studies highlight the importance of translational regulation for tumor cell adaptation to hypoxia

    Validation of microarray results.

    No full text
    <p>Several up-regulated genes at the translational level (translatome) in hypoxic HCT116 cells were validated. RNA isolated from sucrose gradient fractionation was analyzed by quantitative real-time RT-PCR. The distribution of mRNAs in each fraction was calculated and shown as a percentage (%). <b>A</b>. Polysomal profile of β-actin served as a negative control. <b>B</b>. Polysomal profiles of up-regulated genes at both the translational and transcriptional levels (<i>GLUT1</i>, <i>ADM</i>, and <i>VEGFA</i>). <b>C</b>. Polysomal profiles of up-regulated genes at the translational but not transcriptional level (<i>HSPA5</i>, <i>VCAN</i>, and <i>GPR126</i>). <b>D</b>. Translational efficiency of β-actin, GLUT1, ADM, VEGFA, HSPA5, VCAN, and GPR126 mRNAs was calculated and shown as a percentage (%) in HCT116 cells under normoxia and hypoxia. Bar graphs show mean ± standard error from at least three independent experiments (*p < 0.05, **p < 0.01, ***p < 0.001).</p
    corecore