599 research outputs found
Increased charcoal yield & production of lighter oils from the slow pyrolysis of biomass
In an effort to reduce CO2 emissions from solid fuels, a considerable amount of research is going into how improve the manufacturing processes and product properties of the products from pyrolysis. One aspect that is often overlooked is the production of charcoal for cooking and soil remediation, which is an inefficient conversion process. There is considerable interest into using additives to increase charcoal yields, and based on the observation from fast pyrolysis work that certain catalyst tar cracking pathways can deposit considerable amounts of coke on the surface of the catalyst, there is a potential application to slow pyrolysis processes producing charcoal. Alumino-silicate catalysts have been shown to have a relatively high tendency to do this. This work hypothesises that this catalysation can be applied to slow pyrolysis, with low cost alumino-silicate minerals, specially bentonite clay, which has been added to pine pyrolysis in concentrations up to 60% wt (against input biomass) at temperatures 300–700 °C.
This study has shown that the use of bentonite clay minerals can be beneficial to the process, as there is an increase in the charcoal yield from biomass, whilst the proximate analysis of the charcoal shows little change from levels expected from biomass only pyrolysis. The conversion of oil to charcoal was more effective at high temperatures due to higher levels of oil cracking. At 700 °C with 60% clay loading, charcoal yield increased 16%wt (dry ash free basis) was seen, while at the same time 19% extra gas was produced at the expense of 35% of the oil from raw pine pyrolysis. This indicates fuel properties of the charcoal are predictable, and changes in yield considerable. At the same time, the abundance of lower molecular weight oils is increased (relative to 4-methyl phenol). It is though that pyrolysis oil reacts with the clay, causing the heavier tars to disproportionate into charcoal and gas
Synthetic Nanoparticles for Vaccines and Immunotherapy
The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such
as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the
science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004
Cause of Death and Predictors of All-Cause Mortality in Anticoagulated Patients With Nonvalvular Atrial Fibrillation : Data From ROCKET AF
M. Kaste on työryhmän ROCKET AF Steering Comm jäsen.Background-Atrial fibrillation is associated with higher mortality. Identification of causes of death and contemporary risk factors for all-cause mortality may guide interventions. Methods and Results-In the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) study, patients with nonvalvular atrial fibrillation were randomized to rivaroxaban or dose-adjusted warfarin. Cox proportional hazards regression with backward elimination identified factors at randomization that were independently associated with all-cause mortality in the 14 171 participants in the intention-to-treat population. The median age was 73 years, and the mean CHADS(2) score was 3.5. Over 1.9 years of median follow-up, 1214 (8.6%) patients died. Kaplan-Meier mortality rates were 4.2% at 1 year and 8.9% at 2 years. The majority of classified deaths (1081) were cardiovascular (72%), whereas only 6% were nonhemorrhagic stroke or systemic embolism. No significant difference in all-cause mortality was observed between the rivaroxaban and warfarin arms (P=0.15). Heart failure (hazard ratio 1.51, 95% CI 1.33-1.70, P= 75 years (hazard ratio 1.69, 95% CI 1.51-1.90, P Conclusions-In a large population of patients anticoagulated for nonvalvular atrial fibrillation, approximate to 7 in 10 deaths were cardiovascular, whereasPeer reviewe
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes
Robustness of steel truss bridges: laboratory testing of a full-scale 21-metre bridge span
[EN] This study aimed to experimentally analyse the robustness of riveted steel bridges based on truss-type structures and to define practical recommendations for early detection of local failures before they cause progressive structural collapse. Although there are many experimental studies on robustness and progressive collapse on buildings, those on bridges are either theoretical or deal with actual collapses. This paper describes a unique case of a 21m full-scale bridge span tested under laboratory conditions with an extensive monitoring system, together with an experimental study to evaluate structural behaviour and robustness as damage or failure progressed in its elements. A linear-static finite-element analysis was also included to examine other possible causes not included in the experiment. The results proved the structural redundancy of this type of truss structure based on the joints¿ resistance to bending moments and gave rise to a series of practical structural health recommendations to identify early failures and avoid progressive or sudden bridge collapse. The study carried out and the recommendations it produced are now being applied in three similar bridge case studies.We would like to express our gratitude to the FGV (Ferrocarrils de la
Generalitat Valenciana) and FCC Construcción S.A., CHM Obras e
Infraestructuras S.A., Contratas y Ventas S.A. and CALSENS S.L. for giving
us the opportunity to test a bridge at the ICITECH facilities, also to Juan
Antonio García Cerezo, of FGV, for his invaluable cooperation and recommendations. We also wish to show our gratitude for the magnificent
work on the bridge by Jesús Martínez, Eduardo Luengo and Daniel
Tasquer. The tests on the bridge meant that much of the Structures
Laboratory was out of service for other work, for which we owe a debt of
gratitude to our ICITECH colleagues for their infinite patience and
understanding.Buitrago, M.; Bertolesi, E.; Calderón García, PA.; Adam, JM. (2021). Robustness of steel truss bridges: laboratory testing of a full-scale 21-metre bridge span. Structures. 29:691-700. https://doi.org/10.1016/j.istruc.2020.12.005S69170029Ghali, A., & Tadros, G. (1997). Bridge Progressive Collapse Vulnerability. Journal of Structural Engineering, 123(2), 227-231. doi:10.1061/(asce)0733-9445(1997)123:2(227)Cha, E. J., & Ellingwood, B. R. (2012). Risk-averse decision-making for civil infrastructure exposed to low-probability, high-consequence events. Reliability Engineering & System Safety, 104, 27-35. doi:10.1016/j.ress.2012.04.002Zhuang, M., & Miao, C. (2020). RETRACTED: Fatigue reliability assessment for hangers of a special-shaped CFST arch bridge. Structures, 28, 235-250. doi:10.1016/j.istruc.2020.08.067Starossek, U. (2009). Avoiding Disproportionate Collapse of Major Bridges. Structural Engineering International, 19(3), 289-297. doi:10.2749/101686609788957838Russell, J. M., Sagaseta, J., Cormie, D., & Jones, A. E. K. (2019). Historical review of prescriptive design rules for robustness after the collapse of Ronan Point. Structures, 20, 365-373. doi:10.1016/j.istruc.2019.04.011Bontempi, F. (2019). Elementary concepts of structural robustness of bridges and viaducts. Journal of Civil Structural Health Monitoring, 9(5), 703-717. doi:10.1007/s13349-019-00362-7Deng, L., Wang, W., & Yu, Y. (2016). State-of-the-Art Review on the Causes and Mechanisms of Bridge Collapse. Journal of Performance of Constructed Facilities, 30(2), 04015005. doi:10.1061/(asce)cf.1943-5509.0000731Bi, K., Ren, W.-X., Cheng, P.-F., & Hao, H. (2015). Domino-type progressive collapse analysis of a multi-span simply-supported bridge: A case study. Engineering Structures, 90, 172-182. doi:10.1016/j.engstruct.2015.02.023Rania, N., Coppola, I., Martorana, F., & Migliorini, L. (2019). The Collapse of the Morandi Bridge in Genoa on 14 August 2018: A Collective Traumatic Event and Its Emotional Impact Linked to the Place and Loss of a Symbol. Sustainability, 11(23), 6822. doi:10.3390/su11236822Buitrago, M., Sagaseta, J., & Adam, J. M. (2020). Avoiding failures during building construction using structural fuses as load limiters on temporary shoring structures. Engineering Structures, 204, 109906. doi:10.1016/j.engstruct.2019.109906Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082Adam, J. M., Buitrago, M., Bertolesi, E., Sagaseta, J., & Moragues, J. J. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures, 210, 110414. doi:10.1016/j.engstruct.2020.110414Alshaikh, I. M. H., Bakar, B. H. A., Alwesabi, E. A. H., & Akil, H. M. (2020). Experimental investigation of the progressive collapse of reinforced concrete structures: An overview. Structures, 25, 881-900. doi:10.1016/j.istruc.2020.03.018Fu, Q., & Tan, K.-H. (2019). Numerical study on steel-concrete composite floor systems under corner column removal scenario. Structures, 21, 33-44. doi:10.1016/j.istruc.2019.06.003Mucedero, G., Brunesi, E., & Parisi, F. (2020). Nonlinear material modelling for fibre-based progressive collapse analysis of RC framed buildings. Engineering Failure Analysis, 118, 104901. doi:10.1016/j.engfailanal.2020.104901Bao, Y., Main, J. A., & Noh, S.-Y. (2017). Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings. Journal of Structural Engineering, 143(8), 04017066. doi:10.1061/(asce)st.1943-541x.0001795Eren, N., Brunesi, E., & Nascimbene, R. (2019). Influence of masonry infills on the progressive collapse resistance of reinforced concrete framed buildings. Engineering Structures, 178, 375-394. doi:10.1016/j.engstruct.2018.10.056Wang, M. R., & Zhou, Z. J. (2012). Progressive Collapse and Structural Robustness of Bridges. Applied Mechanics and Materials, 193-194, 1021-1024. doi:10.4028/www.scientific.net/amm.193-194.1021Jiang, H., Wang, J., Chorzepa, M. G., & Zhao, J. (2017). Numerical Investigation of Progressive Collapse of a Multispan Continuous Bridge Subjected to Vessel Collision. Journal of Bridge Engineering, 22(5), 04017008. doi:10.1061/(asce)be.1943-5592.0001037Miyachi, K., Nakamura, S., & Manda, A. (2012). Progressive collapse analysis of steel truss bridges and evaluation of ductility. Journal of Constructional Steel Research, 78, 192-200. doi:10.1016/j.jcsr.2012.06.015Khuyen, H. T., & Iwasaki, E. (2016). An approximate method of dynamic amplification factor for alternate load path in redundancy and progressive collapse linear static analysis for steel truss bridges. Case Studies in Structural Engineering, 6, 53-62. doi:10.1016/j.csse.2016.06.001Trong Khuyen, H., & Eiji, I. (2017). Linear Redundancy Analysis Method Considering Plastic Region for Steel Truss Bridges. Journal of Bridge Engineering, 22(3), 05016011. doi:10.1061/(asce)be.1943-5592.0000999Garavaglia, E., & Sgambi, L. (2016). Selective maintenance planning of a steel truss bridge based on the Markovian approach. Engineering Structures, 125, 532-545. doi:10.1016/j.engstruct.2016.06.055Olmati, P., Gkoumas, K., Brando, F., & Cao, L. (2013). Consequence-based robustness assessment of a steel truss bridge. Steel & Composite structures, 14(4), 379-395. doi:10.12989/scs.2013.14.4.379Azizinamini, A. (2002). Full scale testing of old steel truss bridge. Journal of Constructional Steel Research, 58(5-8), 843-858. doi:10.1016/s0143-974x(01)00096-7Sagaseta, J., Olmati, P., Micallef, K., & Cormie, D. (2017). Punching shear failure in blast-loaded RC slabs and panels. Engineering Structures, 147, 177-194. doi:10.1016/j.engstruct.2017.04.051ABAQUS v16.4. Abaqus, Theory manual 2016
TOETVA parathyroid autofluorescence detection: hANDY-i endoscopy attachment
BackgroundTreatment options for thyroid pathologies have expanded to include scarless and remote access methods such as the transoral endoscopic thyroidectomy vestibular approach (TOETVA). Currently, no standardized methods exist for locating parathyroid glands (PGs) in patients undergoing TOETVA, which can lead to parathyroid injury and subsequent hypocalcemia. This early feasibility study describes and evaluates the hANDY-i endoscopic attachment for detecting PGs in transoral thyroidectomy.MethodsWe used a prototype parathyroid autofluorescence imager (hANDY-i) that was mounted to a 10-mm 0-degree endoscope. The device delivers a split screen view of Red-green-blue (RGB) and near-infrared autofluorescence (NIRAF) which allows for simultaneous anatomical localization and fluorescence visualization of PGs during endoscopic thyroid dissection.ResultsOne cadaveric case and two patient cases were included in this study. The endoscopic hANDY-i imaging system successfully visualized PGs during all procedures.ConclusionThe ability to leverage parathyroid autofluorescence during TOETVA may lead to improved PG localization and preservation. Further human studies are needed to assess its effect on postoperative hypocalcemia and hypoparathyroidism
Parathyroid gland detection using an intraoperative autofluorescence handheld imager – early feasibility study
IntroductionParathyroid glands may be compromised during thyroid surgery which can lead to hypoparathyroidism and hypocalcemia. Identifying the parathyroid glands relies on the surgeon’s experience and the only way to confirm their presence was through tissue biopsy. Near infrared autofluorescence technology offers an opportunity for real-time, non-invasive identification of the parathyroid glands.MethodsWe used a new research prototype (hANDY-I) developed by Optosurgical, LLC. It offers coaxial excitation light and a dual-Red Green Blue/Near Infrared sensor that guides anatomical landmarks and can aid in identification of parathyroid glands by showing a combined autofluorescence and colored image simultaneously.ResultsWe tested the imager during 23 thyroid surgery cases, where initial clinical feasibility data showed that out of 75 parathyroid glands inspected, 71 showed strong autofluorescence signal and were correctly identified (95% accuracy) by the imager.ConclusionsThe hANDY-I prototype demonstrated promising results in this feasibility study by aiding in real-time visualization of the parathyroid glands. However, further testing by conducting randomized clinical trials with a bigger sample size is required to study the effect on levels of hypoparathyroidism and hypocalcemia
Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration
Huntington's disease (HD) is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt) protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%–4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to co-immunoprecipitate with full-length Htt from mouse brain. These studies demonstrate that high-throughput screening for protein interactions combined with genetic validation in a model organism is a powerful approach for identifying novel candidate modifiers of polyglutamine toxicity
- …
