57 research outputs found

    Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections.

    Get PDF
    Background: A number of oral diseases, including periodontitis, derive from microbial biofilms and are associated with increased antimicrobial resistance. Despite the widespread use of mouthwashes being used as adjunctive measures to control these biofilms, their prolonged use is not recommended due to various side effects. Therefore, alternative broad-spectrum antimicrobials that minimise these effects are highly sought after. Carbohydrate derived fulvic acid (CHD-FA) is an organic acid which has previously demonstrated to be microbiocidal against Candida albicans biofilms, therefore, the aims of this study were to evaluate the antibacterial activity of CHD-FA against orally derived biofilms and to investigate adjunctive biological effects.<p></p> Methods: Minimum inhibitory concentrations were evaluated for CHD-FA and chlorhexidine (CHX) against a range of oral bacteria using standardised microdilution testing for planktonic and sessile. Scanning electron microscopy was also employed to visualise changes in oral biofilms after antimicrobial treatment. Cytotoxicity of these compounds was assessed against oral epithelial cells, and the effect of CHD-FA on host inflammatory markers was assessed by measuring mRNA and protein expression.<p></p> Results: CHD-FA was highly active against all of the oral bacteria tested, including Porphyromonas gingivalis, with a sessile minimum inhibitory concentration of 0.5%. This concentration was shown to kill multi-species biofilms by approximately 90%, levels comparable to that of chlorhexidine (CHX). In a mammalian cell culture model, pretreatment of epithelial cells with buffered CHD-FA was shown to significantly down-regulate key inflammatory mediators, including interleukin-8 (IL-8), after stimulation with a multi-species biofilm.<p></p> Conclusions: Overall, CHD-FA was shown to possess broad-spectrum antibacterial activity, with a supplementary function of being able to down-regulate inflammation. These properties offer an attractive spectrum of function from a naturally derived compound, which could be used as an alternative topical treatment strategy for oral biofilm diseases. Further studies in vitro and in vivo are required to determine the precise mechanism by which CHD-FA modulates the host immune response.<p></p&gt

    Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women

    Get PDF
    Background: Most BRCA1\textit{BRCA1} or BRCA2\textit{BRCA2} mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1\textit{BRCA1} and BRCA2\textit{BRCA2} are rare, and the consequences of transheterozygosity are poorly understood. Methods: From 32,295 female BRCA1/2\textit{BRCA1/2} mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at BRCA1\textit{BRCA1} (SH1) or BRCA2\textit{BRCA2} (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2. Results: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; pp = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 (pp = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 (pp = 0.231), but was on average 4.5 years younger in TH than in SH2 (pp < 0.001). BC in TH was more likely to be estrogen receptor (ER) positive (pp = 0.010) or progesterone receptor (PR) positive (pp = 0.013) than in SH1, but less likely to be ER positive (pp < 0.001) or PR positive (pp = 0.012) than SH2. Among 15 tumors from TH patients, there was no clear pattern of loss of heterozygosity (LOH) for BRCA1\textit{BRCA1} or BRCA2\textit{BRCA2} in either BC or OC. Conclusions: Our observations suggest that clinical TH phenotypes resemble SH1. However, TH breast tumor marker characteristics are phenotypically intermediate to SH1 and SH2.ACA and the CIMBA data management are funded by Cancer Research UK (C12292/A20861 and C12292/A11174). TRR was supported by R01-CA083855, R01-CA102776, and P50-CA083638. KLN, TMF, and SMD are supported by the Basser Research Center at the University of Pennsylvania. BP is supported by R01-CA112520. Cancer Research UK provided financial support for this work. ACA is a Senior Cancer Research UK Cancer Research Fellow. DFE is Cancer Research UK Principal Research Fellow. Tumor analysis was funded by STOP CANCER (to SJR). Study-specific acknowledgements are as provided in the manuscript

    DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers

    Get PDF

    Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression:Identification of a modifier of breast cancer risk at locus 11q22.3

    Get PDF
    Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways.Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of similar to 320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2.We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 x 10(-6)). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance.We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.</p

    Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.Peer reviewe

    A transcriptome-wide association study among 97,898 women to identify candidate susceptibility genes for epithelial ovarian cancer risk

    Get PDF
    Large-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in non-coding regions, and causal genes underlying these associations remain largely unknown. Here we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian-tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P<2.2×10-6, we identified 35 genes including FZD4 at 11q14.2 (Z=5.08, P=3.83×10-7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly-associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and 3 genes remained (P<1.47 x 10-3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis

    Polygenic risk modeling for prediction of epithelial ovarian cancer risk

    Get PDF
    Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers.

    Get PDF
    BackgroundHeight and body mass index (BMI) are associated with higher ovarian cancer risk in the general population, but whether such associations exist among BRCA1/2 mutation carriers is unknown.MethodsWe applied a Mendelian randomisation approach to examine height/BMI with ovarian cancer risk using the Consortium of Investigators for the Modifiers of BRCA1/2 (CIMBA) data set, comprising 14,676 BRCA1 and 7912 BRCA2 mutation carriers, with 2923 ovarian cancer cases. We created a height genetic score (height-GS) using 586 height-associated variants and a BMI genetic score (BMI-GS) using 93 BMI-associated variants. Associations were assessed using weighted Cox models.ResultsObserved height was not associated with ovarian cancer risk (hazard ratio [HR]: 1.07 per 10-cm increase in height, 95% confidence interval [CI]: 0.94-1.23). Height-GS showed similar results (HR = 1.02, 95% CI: 0.85-1.23). Higher BMI was significantly associated with increased risk in premenopausal women with HR = 1.25 (95% CI: 1.06-1.48) and HR = 1.59 (95% CI: 1.08-2.33) per 5-kg/m2 increase in observed and genetically determined BMI, respectively. No association was found for postmenopausal women. Interaction between menopausal status and BMI was significant (Pinteraction ConclusionOur observation of a positive association between BMI and ovarian cancer risk in premenopausal BRCA1/2 mutation carriers is consistent with findings in the general population
    corecore