8 research outputs found

    Isolation and characterization of ZK002, a novel dual function snake venom protein from Deinagkistrodon acutus with anti-angiogenic and anti-inflammatory properties

    Get PDF
    Introduction: Pathological angiogenesis, the abnormal or excessive generation of blood vessels, plays an important role in many diseases including cancer, diabetic retinopathy, psoriasis, and arthritis. Additionally, increasing evidence supports the close linkage between angiogenesis and inflammation. Snake venoms are a rich natural source of biologically active molecules and carry rich potential for the discovery of anti-angiogenic and anti-inflammatory modulators.Methods: Here, we isolated and purified a novel protein, ZK002, from the venom of the snake Deinagkistrodon acutus, and investigated its anti-angiogenic and anti-inflammatory activities and mechanisms.Results: ZK002 was identified as a 30 kDa heterodimeric protein of α and β chains, which exhibited anti-angiogenic activity in various in vitro assays. Mechanistically, ZK002 inhibited activation of VEGF signaling and related mediators including eNOS, p38, LIMK, and HSP27. ZK002 also upregulated the metalloproteinase inhibitor TIMP3 and inhibited components of the VEGF-induced signaling cascade, PPP3R2 and SH2D2A. The anti-angiogenic activity of ZK002 was confirmed in multiple in vivo models. ZK002 could also inhibit the in vitro expression of pro-inflammatory cytokines, as well as in vivo inflammation in the carrageenin-induced edema rat model.Conclusion: Our findings highlight the potential for further development of ZK002 as a dual function therapeutic against diseases with involvement of pathogenic angiogenesis and chronic inflammation

    Arnicolide D, from the herb <i>Centipeda minima,</i> Is a Therapeutic Candidate against Nasopharyngeal Carcinoma

    No full text
    Nasopharyngeal carcinoma (NPC) is a high morbidity and mortality cancer with an obvious racial and geographic bias, particularly endemic to Southeast China. Our previous studies demonstrated that Centipeda minima extract (CME) exhibited anti-cancer effects in human NPC cell lines. Arnicolide C and arnicolide D are sesquiterpene lactones isolated from Centipeda minima. In this study, for the first time, we investigated their anti-NPC effects and further explored the related molecular mechanisms. The effects of both arnicolide C and arnicolide D were tested in NPC cells CNE-1, CNE-2, SUNE-1, HONE1, and C666-1. The results showed that the two compounds inhibited NPC cell viability in a concentration- and time-dependent manner. As the inhibitory effect of arnicolide D was the more pronounced of the two, our following studies focused on this compound. Arnicolide D could induce cell cycle arrest at G2/M, and induce cell apoptosis. The molecular mechanism of cell cycle regulation and apoptosis induction was investigated, and the results showed that arnicolide D could downregulate cyclin D3, cdc2, p-PI3K, p-AKT, p-mTOR, and p-STAT3, and upregulate cleaved PARP, cleaved caspase 9, and Bax. Regulation of cyclin B1, cdk6, and Bcl-2 expression by arnicolide D showed dynamic changes according to dose and time. Taken together, arnicolide D modulated the cell cycle, activated the caspase signaling pathway, and inhibited the PI3K/AKT/mTOR and STAT3 signaling pathways. These findings provide a solid base of evidence for arnicolide D as a lead compound for further development, and act as proof for the viability of drug development from traditional Chinese medicines

    <i>Lactobacillus casei</i> Strain Shirota Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Increasing Taurine-Conjugated Bile Acids and Inhibiting NF-κB Signaling <i>via</i> Stabilization of Iκ<i>B</i>α.

    No full text
    Inflammatory bowel disease (IBD) is a chronic progressive intestinal inflammatory disease, characterized by an altered gut microbiota composition and accompanying alterations in circulatory bile acids. Increasing evidence supports the beneficial effect of probiotics intake on health. Introduction of probiotics to the intestines can modulate gut microbiota composition and in turn regulate the host immune system and modify the inflammatory response. Probiotics can also improve intestinal barrier function and exhibit a positive impact on host physiological and pathological conditions via gut microbiota-derived metabolites. Previous studies have demonstrated that Lactobacillus casei strain Shirota (LcS) treatment could inhibit clinical manifestation of colitis in dextran sulfate sodium (DSS)-induced mice, however, the underlying mechanisms remain unknown. In this study, we employed the DSS-induced acute colitis mouse model to investigate the anti-inflammatory effects of LcS and related mechanisms. Administration of LcS ameliorated the severity of DSS-induced colitis and enhanced intestinal integrity via induction of mucin-2 and occludin expression in colons. Fecal microbiota analysis showed that LcS increased the relative abundance of beneficial bacterial species in colitic mice, whereas the relative abundance of pathobionts was reduced. Additionally, LcS treatment modulated circulating bile acid profiles in colitic mice. In mice treated with LcS, we identified increased levels of primary taurine-conjugated bile acids, including taurocholic acid (TCA) and taurochenodeoxycholic acid (TCDCA). LcS treatment also increased the levels of secondary taurine-conjugated bile acids, including taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA). Moreover, LcS treatment exhibited a suppressive effect on the hydroxylated primary bile acids α-muricholic acid (α-MCA) and β-muricholic acid (β-MCA). We further demonstrated that LcS treatment suppressed the expression of pro-inflammatory mediators interferon-gamma (IFN-γ) and nitric oxide (NO), and increased the expression of the anti-inflammatory mediator interleukin-10 (IL-10) in colon tissues, potentially as a result of altered bile acid profiles. Mechanistically, we showed that LcS treatment suppressed the activation of nuclear factor-kappa B (NF-κB) signaling via stabilization of inhibitor of NF-κB alpha (IκBα). Altogether, we have demonstrated the therapeutic effects of LcS in DSS-induced colitis, providing new insights into its effect on bile acid metabolism and the related anti-inflammatory mechanisms. Our findings provide support for the application of LcS in the treatment of IBD

    Scalable synthesis enabling multilevel bio-evaluations of natural products for discovery of lead compounds

    No full text
    Isodon diterpenoids, promising anti-cancer agents found in certain tropical plants, are difficult to obtain. Here, the authors developed a synthetic strategy to synthesise several different members of this group, including neolaxiflorin L which emerged from this study as a promising drug candidate

    A Smart Europium-Ruthenium Complex as Anticancer Prodrug: Controllable Drug Release and Real-Time Monitoring under Different Light Excitations

    No full text
    A unique, dual-function, photoactivatable anticancer prodrug, RuEuL, has been tailored that features a ruthenium(II) complex linked to a cyclen-europium chelate via a pi-conjugated bridge. Under irradiation at 488 nm, the dark-inactive prodrug undergoes photodissociation, releasing the DNA-damaging ruthenium species. Under evaluation window irradiation (lambda(irr) = one-photon 350 nm or two-photon 700 nm), the drug delivery process can be quantitatively monitored in real-time because of the long-lived red europium: emission. Linear relationships between released drug concentration and ESI-MS or luminescence responses are established. Finally, the efficiency of the new prodrug is demonstrated both in vitro RuEuL anticancer prodrug over some existing ones and open the way for decisive improvements in multipurpose prodrugs

    EBNA1-targeted probe for the imaging and growth inhibition of tumours associated with the Epstein–Barr virus

    Get PDF
    Epstein–Barr nuclear antigen 1 (EBNA1), a dimeric oncoprotein of the Epstein–Barr virus (EBV), is essential for both viral-genome maintenance and the survival of infected cells. Despite EBNA1’s potential as a therapeutic target, tools for the direct monitoring of EBNA1 in vitro and in vivo are lacking. Here, we show that a peptide-based inhibitor that luminesces when bound to EBNA1 inside the nucleus of EBV+ cells can regulate EBNA1 homodimer formation and selectively inhibit the growth of EBV+ tumours of nasopharyngeal carcinoma cells (C666-1 and NPC43) and Burkitt’s lymphoma Raji cells. We also show that the peptide-based probe leads to 93% growth inhibition of EBV+ tumours in mice. Our findings support the hypothesis that selective inhibition of EBNA1 dimerization can be used to afford better EBV-related cancer differentiation, and highlight the potential application of the probe as a new generation of biotracers for investigating the fundamental biological function of EBNA1 and for exploring its application as a therapeutic target

    References

    No full text

    References

    No full text
    corecore