157 research outputs found

    Lie Symmetries and Criticality of Semilinear Differential Systems

    No full text
    We discuss the notion of criticality of semilinear differential equations and systems, its relations to scaling transformations and the Noether approach to Pokhozhaev's identities. For this purpose we propose a definition for criticality based on the S. Lie symmetry theory. We show that this definition is compatible with the well-known notion of critical exponent by considering various examples. We also review some related recent papers

    Are the natural sciences ready for truth, healing, and reconciliation with Indigenous peoples in Canada? Exploring ‘settler readiness’ at a world-class freshwater research station

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordThe Experimental Lakes Area in Northwestern Ontario, Canada, is a globally prominent freshwater research facility, conducting impactful whole-of-lake experiments on so-called ‘pristine’ lakes and watersheds. These lakes are located in traditional Anishinaabe (Indigenous) territory and the home of 28 Treaty #3 Nations, something rarely acknowledged until now. Indeed, Indigenous peoples in the area have historically been excluded from the research facility’s governance and research. Shortly after it changed hands in 2014—from the federal government to the not-for-profit International Institute of Sustainable Development (IISD)—the Truth and Reconciliation Commission (TRC) of Canada released its Calls to Action to all Canadians. The newly named International Institute of Sustainable Development-Experimental Lakes Area (IISD-ELA) began to respond with a number of initiatives aimed to develop relationships with local Indigenous peoples and communities. In this paper, from the perspectives of IISD-ELA staff members, we share findings from an exploratory study into the relationships beginning to develop between IISD-ELA and Treaty #3 Nations. We used semi-structured interviews (n = 10) to identify how staff perceived their initial efforts and contextualize those with the current literature on meaningfully engagement in reconciliation. Our analysis highlights perceived barriers, including time, resources, and funding constraints, as well as an acknowledged lack of cultural awareness and sensitivity training. Participants also recognized the need to engage Indigenous knowledge holders and embrace their ways of knowing at the research station. While the study is small in scale, as an international leader in freshwater science, transparency in the IISD-ELA’s journey in reconciliation has the potential to inform, influence, and ‘unsettle’ settler-colonial scientists, field stations, and institutions across the country and beyond.Canada Research Chairs Progra

    EXTRA SPINDLE POLES (Separase) controls anisotropic cell expansion in Norway spruce (Picea abies) embryos independently of its role in anaphase progression

    Get PDF
    The caspase-related protease separase (EXTRA SPINDLE POLES, ESP) plays a major role in chromatid disjunction and cell expansion in Arabidopsis thaliana. Whether the expansion phenotypes are linked to defects in cell division in Arabidopsis ESP mutants remains elusive. Here we present the identification, cloning and characterization of the gymnosperm Norway spruce (Picea abies, Pa) ESP. We used the P. abies somatic embryo system and a combination of reverse genetics and microscopy to explore the roles of Pa ESP during embryogenesis. Pa ESP was expressed in the proliferating embryonal mass, while it was absent in the suspensor cells. Pa ESP associated with kinetochore microtubules in metaphase and then with anaphase spindle midzone. During cytokinesis, it localized on the phragmoplast microtubules and on the cell plate. Pa ESP deficiency perturbed anisotropic expansion and reduced mitotic divisions in cotyledonary embryos. Furthermore, whilst Pa ESP can rescue the chromatid nondisjunction phenotype of Arabidopsis ESP mutants, it cannot rescue anisotropic cell expansion. Our data demonstrate that the roles of ESP in daughter chromatid separation and cell expansion are conserved between gymnosperms and angiosperms. However, the mechanisms of ESP-mediated regulation of cell expansion seem to be lineage-specific

    Numerical Ricci-flat metrics on K3

    Full text link
    We develop numerical algorithms for solving the Einstein equation on Calabi-Yau manifolds at arbitrary values of their complex structure and Kahler parameters. We show that Kahler geometry can be exploited for significant gains in computational efficiency. As a proof of principle, we apply our methods to a one-parameter family of K3 surfaces constructed as blow-ups of the T^4/Z_2 orbifold with many discrete symmetries. High-resolution metrics may be obtained on a time scale of days using a desktop computer. We compute various geometric and spectral quantities from our numerical metrics. Using similar resources we expect our methods to practically extend to Calabi-Yau three-folds with a high degree of discrete symmetry, although we expect the general three-fold to remain a challenge due to memory requirements.Comment: 38 pages, 10 figures; program code and animations of figures downloadable from http://schwinger.harvard.edu/~wiseman/K3/ ; v2 minor corrections, references adde

    Characteristics of the response of the microalga (Dunaliella viridis) to cerium compounds in culture

    Get PDF
    Recently, nanobiotechnology has been developing intensively; therefore, various properties of nanoparticles, which depend on their origin, concentration, and size, are of interest. It is known that CeO2 nanoparticles cause a positive biological effect. These particles are able to penetrate through biomembranes. At the same time, there are assumptions about a high degree of biological risks when using nanomaterials, and it is obvious that the biosafety of nanomaterials is decisive in the development of new products, including for medicine. The cytotoxicity of samples of cerium salts and cerium dioxide nanoparticles of different sizes was assessed at different concentrations using D. viridis. The cytotoxicity level by morphological and functional disorders of D. viridis was investigated, as determined by the change in cell shape, accumulation of inclusions, loss of flagellum, change in nature and movement, the formation of micro- and macroaggregates by D. viridis cells and exometabolite release. The cytotoxicity coefficient was calculated as a quotient of total detected changes divided by their number. It was shown that cerium salts (cerium (IV) ammonium nitrate and cerium (III) chloride) had pronounced cytotoxicity, which exceeded cytotoxicity values of the control by 7 and 6 times, respectively. Cerium dioxide nanoparticles with a size of 6 nm at a concentration of 0.01 M showed intermediate cytotoxicity, which exceeded control values by 3.5 times, and after the effect of nanoparticles with a size of 2 nm at a concentration of 0.1 M, the cytotoxicity coefficient corresponded to control values. The addition of inactivated blood serum to the incubation mixture resulted in a decreased cytotoxic effect of cerium dioxide. The use of D. viridis as a test system will supplement the arsenal of biotesting tools for nanomaterials and the study of the mechanisms of their effect

    Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies)

    Get PDF
    Establishment of the shoot apical meristem (SAM) in Arabidopsis embryos requires the KNOXI transcription factor SHOOT MERISTEMLESS. In Norway spruce (Picea abies), four KNOXI family members (HBK1, HBK2, HBK3 and HBK4) have been identified, but a corresponding role in SAM development has not been demonstrated. As a first step to differentiate between the functions of the four Norway spruce HBK genes, we have here analyzed their expression profiles during the process of somatic embryo development. This was made both under normal embryo development and under conditions of reduced SAM formation by treatment with the polar auxin transport inhibitor NPA. Concomitantly with the formation of an embryonic SAM, the HBK2 and HBK4 genes displayed a significant up-regulation that was delayed by NPA treatment. In contrast, HBK1 and HBK3 were up-regulated prior to SAM formation, and their temporal expression was not affected by NPA. Ectopic expression of the four HBK genes in transgenic Arabidopsis plants further supported similar functions of HBK2 and HBK4, distinct from those of HBK1 and HBK3. Together, the results suggest that HBK2 and HBK4 exert similar functions related to the SAM differentiation and somatic embryo development in Norway spruce, while HBK1 and HBK3 have more general functions during embryo development

    Plasmodium falciparum metacaspase PfMCA-1 triggers a z-VAD-fmk inhibitable protease to promote cell death.

    Get PDF
    Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore