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Abstract

Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as
Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus
characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and
Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan
parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional
role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA
exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as
well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when
exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and
Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and
Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme
as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic
stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a
result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on
the innate pathways of protozoan cell death.
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Introduction

A better understanding of the mechanisms involved in proto-

zoan cell death could provide an opportunity to design parasite-

specific pro-apoptotic drugs in the aim of controlling parasitic

disease.

Although protozoan parasites exhibit most of the cellular and

molecular markers described in higher eukaryotes [1], information

on molecular pathways involved in protozoan cell death (CD) is

still limited [2]. It is known, however, that the metazoan caspase

genes encoding major CD effector proteases are absent in pro-

karyotes, plants, fungi and protozoan parasites such as Leishmania

and Plasmodium [3,4]. In silico studies of these organisms have

revealed the presence of metacaspases (MCA) with a C14 domain

harbouring a cysteine and histidine caspase-like catalytic dyad

[5,6]. The structural homology of the catalytic domains between

metacaspase and caspase suggests that metacaspase could be

involved in CD through an apoptotic-like pathway [7,8,9]. Indeed,

its activity requires a functional catalytic domain generated by

autoprocessing, which is reminiscent of some caspase activation

[10,11,12,13]. Recently, the importance of the CD effector

function of metacaspase has been supported by experimental

evidence in Arabidopsis thaliana (A. thaliana) and in Leishmania major

(L. major) [14,15].

While a single metacaspase (LmjMCA) with the expected catalytic

amino acids is encoded in the genome of L. major (LmjF35.1580),

three metacaspase genes are annotated in the Plasmodium falciparum

(P. falciparum) genome, PfMCA1 (PF13_0289), PfMCA2 (PF14_

0363) and PfMCA3 (PF14_0160). PfMCA1 is the only P. falciparum

metacaspase presenting the required histidine and cysteine catalytic

dyad [13]. Interestingly, when PfMCA1 is expressed in vitro or in

COS7 cells, it undergoes autoprocessing, which removes the

prodomain [13]. This processing of PfMCA1 and the release of

PfMCA1 catalytic domain is likely to be important for its CD

function in P. falciparum as was similarly demonstrated with A. thaliana

MCA (AtMCA) and LmjMCA [14,15].

The single yeast metacaspase (YCA1) of Saccharomyces cerevisae (S.

cerevisae) is involved in stress-induced apoptosis instigated by

oxidation, acidification or aging [10,16,17]. The importance of

YCA1 activity has been disputed by a subsequent study [18]; a

discrepancy that perhaps highlights the pathway’s sensitivity to

specific experimental conditions of CD induction. S. cerevisiae is a

useful model system to study metacaspase function [10] in which

the MCA of various protozoa have been expressed with the

purpose of elucidating their functional phenotype and effector

molecules. The expression of Trypanosoma brucei (T. brucei) meta-

caspase 4 (TbMCA4) in yeast exhibits a phenotype of mild re-

spiratory deficiency [19] while AtMCA and LmjMCA expression
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are known to induce death in budding yeasts [11,12]. The MCA

cysteine protease activity is known to have an arginine/lysine

specificity [11,12,18], therefore, excluding caspase-like substrates.

This increased affinity towards arginine substrates correlates with

enzymatic processing of the precursor polypeptide in an active

catalytic domain [12].

Although most protozoan parasites do not encode caspase(s),

CD in protozoan parasites make use of pan-caspase substrates or

inhibitors such as carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-

fluoromethylketone (z-VAD-fmk), supporting the hypothesis that

proteases other than metacaspases act in the CD pathway of

protozoan parasites. As recently shown in P. falciparum [20], the

CD pathway could be mediated by activation of clan CA cysteine

proteases, such as cathepsins and calpains, linked to downstream

mitochondrial outer membrane permeabilization (MOMP) as

well as the release of CA protease amplified by mitochondrial

dysfunction and DNA degradation. Z-VAD-fmk is often used as a

phenotypic marker of CD and known to block it in several

unicellular organisms such as Dictyostelium and yeast [21,22]. In

Leishmania, cathepsin-B-like is accountable for the binding of z-

VAD-fmk and is implicated in CD [23]. Thus far, it is not known

whether metacaspase and CA protease(s) are part of the same

pathway, or whether their actions are complementarily linked,

leading to MOMP, reactive oxygen species production, cyto-

chrome c release and DNA fragmentation.

Parasites encounter oxidative stress when exposed to antipar-

asitic drugs such as antimony or chloroquine [24,25,26], in the

insect vector [27,28], when entering the host cell [29,30,31,32] or

in the host [33,34]. In this study, using complemented metacas-

pase-deficient yeast cells (Dyca1), we compared the catalytic

domain function of the PfMCA1 (PfMCA1-cd-Sc), YCA1 and L.

major catalytic domain (LmjMCA-cd) under oxidative stress. In

such conditions, metacaspase expression induced cell death in

yeast as well as decreased growth in surviving cells. Furthermore,

the CD pathway observed in these MCA-expressing yeast cells was

dependent on a z-VAD-fmk inhibitable specific protease. Based on

previous results and the outcome of this study, we propose a model

of protozoan cell death that places metacaspase as an initiator

enzyme activating a downstream effector protease.

Results

Expression of PfMCA1-cd-Sc in yeast
A chemically synthesized nucleotide sequence coding for the

PfMCA1 catalytic domain (PfMCA1-cd-Sc) was designed in

accordance with the S. cerevisiae codon usage table and cloned

into the pESC-HIS vector with a C-terminal M2-flag. Interest-

ingly, no protein expression was observed by immunoblotting

when the natural PfMCA1-cd was used (data not shown), which

may have been due to the particular codon usage in P. falciparum

[35]. Upon incubation with galactose, PfMCA1-cd-Sc expression

was induced in yeast metacaspase null mutants, producing the

expected 35kDa polypeptide (theoretical mass of PfMCA1-cd-Sc:

35.55 kDa) that was recognized by anti-M2 antibody (Figure 1,

lane 8). Processing was observed for PfMCA1-cd-Sc generating a

polypeptide of about 21 kDa (Figure 1, lane 8). Galactose

incubation also allowed the expression of two other metacaspases

in the Dyca1 cells, i.e the full length YCA1 and the catalytic

domain of the L. major metacaspase (LmjMCA-cd). As revealed

by immunoblotting using an anti-M2 antibody, two polypeptides

of 50 kDa and 35 kDa were detected corresponding to the

predicted molecular mass of YCA1 (52.40 kDa) and LmjMCA-cd

(36.09 kDa) (Figure 1, lanes 4 and 6). Furthermore, as previously

reported [10,12], YCA1 and LmjMCA-cd were autoprocessed

giving rise to two bands of approximately 45 kDa and 31 kDa

respectively (Figure 1, lanes 4 and 6). No band was detected in cells

transfected with the vector control (Figure 1, lane 2).

Enzymatic activity of PfMCA1-cd-Sc
We first determined whether PfMCA1-cd-Sc cleaved substrates

with an aspartate or arginine in the P1 position. When the caspase

specific Ac-DEVD-AMC fluorogenic substrate was used, we failed

to detect any significant activity in lysates of cells expressing

LmjMCA-cd or PfMCA1-cd-Sc either in the presence or in the

absence of calcium whereas a strong aspartate-protease activity

(735 mFU/min/mg) could be detected in yeast cells expressing

human caspase-6 (data not shown). The MCA arginine-protease

specific activity was tested for LmjMCA-cd and PfMCA1-cd-Sc in

cell lysates using the fluorogenic substrate z-VRPR-AMC, an

optimized substrate for MCAs (Figure 2) [36]. Because it is known

that MCA could be calcium dependent in T. brucei, A. thaliana and

Allomyces arbuscula [11,18,37,38,39], we therefore performed our

experiments in the absence or presence of calcium. Using a

Student’s t test, we can conclude that LmjMCA-cd showed sig-

nificant activity for the z-VRPR-AMC substrate compared to the

control (p,0.05) (Figure 2). Addition of CaCl2 did not signifi-

cantly increase its activity. In such assays, presence of calcium does

not seem to be essential [40]. In contrast, PfMCA1-cd-Sc was

highly calcium dependent, not having any VRPR-specific protease

activity in the absence of CaCl2. Indeed, only when calcium

Figure 1. Heterologous expression of PfMCA1-cd-Sc in Saccharomyces cerevisiae. S. cerevisiae metacaspase 1 (YCA1), the peptidase-C14
domain of the L. major metacaspase 1 (LmjMCA-cd) and the optimized nucleic sequence of the peptidase-C14 catalytic domain of PfMCA1 (PfMCA1-
cd-Sc) were expressed in yeast for 18 hours with galactose (+) as carbon source. Cells were lysed and 10 mg of the total protein extract was analysed
by immunoblotting with anti-M2. For each recombinant protein, the expected molecular mass is represented by a single black star; a double black
star represents products of autocatalytic processing.
doi:10.1371/journal.pone.0023867.g001
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concentration was increased to 10 mM, was its activity significant

(p,0.05) (Figure 2). These results confirmed that the two proto-

zoan metacaspases harbour a significant activity for substrates

having arginine in their P1 position although they could differ in

their calcium concentration requirement.

PfMCA1-cd-Sc induces CD under oxidative stress
Autoprocessing of metacaspase polypeptides is required for full

activity in the yeast CD pathway induced by oxidative stress

[41,42]. To assess the specific role of the catalytic domain of

PfMCA1 in CD we compared the effector function of YCA1,

LmjMCA-cd and PfMCA1-cd-Sc under oxidative stress. Trans-

fected yeast cells were exposed to 1 mM H2O2 and grown in 2%

galactose for 30 hours. In order to estimate yeast CD, we

performed a cell viability plating assay, an established method of

quantifying the effect of MCA on CD, where cell counts are

directly linked to cell survival but not to cell proliferation or

retarded growth [16,22]. An equivalent number of cells were

plated and colony-forming units (cfu) were counted after 48 hours

(Figure 3). We observed significantly different cell viability between

the different lines and treatments used as determined by a 2-way

ANOVA test (p,0.001 and p,0.001 respectively). As previously

reported [10], Dyca1 yeast cells transfected with empty vector

(pESC-HIS) grew similarly in the absence or presence of H2O2

(9868% vs 99613%) (Figure 3), suggesting that YCA1 expression

was required for H2O2-induced CD in yeast. When YCA1 was

expressed in Dyca1 yeast cells, we observed a decrease in yeast

viability compared to non-treated YCA1 expressing cells or to the

control vector in the presence of H2O2 (70%68% vs 99%613%).

This decrease was significant as determined by a Student t test

(p = 0.04) and a Dunnett’s test (p = 0.0065) (Figure 3 and Figure

S2). In the presence of H2O2, yeast cell viability was even more

affected when expression of LmjMCA-cd or PfMCA1-cd-Sc was

induced. We evaluated the survival rate at 33% (62%) and 18%

(61%) for cells expressing LmjMCA-cd and PfMCA1-cd-Sc

respectively (Figure 3). This difference in cell viability observed

between S. cerevisae, Leishmania and Plasmodium metacaspases could

be due to the relative amount of the catalytic domain present in

the different transfected yeast cells since the survival rate is lower

in cells expressing more of the processed catalytic domain. To

investigate enzymatic pathways involved in this metacaspase-

dependent yeast CD, the pan-caspase inhibitor z-VAD-fmk was

added to the yeast growth culture medium. No significant

difference was observed in the percentage of viability in cells

transfected with the control vector regardless of the presence of

H2O2 or z-VAD-fmk (Figure 3). However, addition of the

inhibitor (20 mM) resulted in a significant increase in cell viability

in cell lines expressing YCA1, LmjMCA-cd or PfMCA1-cd-Sc

(100%68%, 7068% and 9364% respectively, as compared to

H2O2 treated cell and analysed by the Student t test, where

p,0.01, and by the Tukey’s test where p = 0.005, p,0.001and

p,0.001 respectively). Taken together, these results show that CD

induced by H2O2 in yeast required expression of MCA but could

be rescued by z-VAD-fmk suggesting that this pathway proceeded

through MCA and a downstream VAD-fmk sensitive enzyme.

Interestingly, although we observed that yeast cells expressing

Plasmodium or Leishmania MCAs responded similarly in the presence

of H2O2 or H2O2 + z-VAD-fmk as determined by a Tukey’s test

(p = 0.899), they were significantly more sensitive to H2O2 than

Figure 2. PfMCA1-cd-Sc presents a Ca2+-dependent arginine
protease activity. Dyca1 yeasts transfected with the control vector,
LmjMCA-cd or PfMCA1-cd-Sc were grown with galactose for 26 hours.
100 mg of total protein extract was tested with the fluorogenic
substrates z-VRPR-AMC for 45 min in combination with or without
CaCl2 (10 mM). Trypsin was used as a positive control of the arginine
proteolytic activity (data not shown). Data are represented as the mean
6 S.D (n = 3) of the activity relative to the activity present in yeast cells
transfected with the vector control. Asterisks (*) indicate a significant
increase compared to control in the same condition as determined by a
Student’s t test (p,0.05).
doi:10.1371/journal.pone.0023867.g002

Figure 3. PfMCA1-cd-Sc induces yeast cell death under oxidative stress. Dyca1 yeast cells transfected with YCA1, LmjMCA-cd, PfMCA1-cd-Sc
or the control vector were grown in the presence of galactose and 1 mM H2O2 for 30 hours with or without inhibitor (z-VAD-fmk, 20 mM). 250 cells
were spread on YPG plate and cultured for 48 hours before colony-forming units were counted to estimate cell viability. Data are represented as the
mean of cell viability (%)6 S.D. (n = 3). a indicates a significant difference in the percentage of viability between non treated and H2O2 treated cells as
determined by a Tukey’s test (p,0.05). b indicates a significant difference in viability between MCA expressing lines and the vector control line in the
presence of H2O2 as determined by a Dunnett’s test (p,0.05). c indicates a significant difference in viability when z-VAD-fmk is present in comparison
to conditions with H2O2 as determined by a Tukey’s test (p,0.05).
doi:10.1371/journal.pone.0023867.g003

Cell Death in Protozoan Parasites

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23867



YCA1 expressing yeast as determined by the same statistical

analysis (p,0.001). A statistical interaction was found between

lines and treatments indicating that they responded differently to

the three conditions (2-way ANOVA test; p,0.001). The reason

for this variable responsiveness between YCA and protozoan

MCA expressing lines is not known but may be due to the relative

amounts of the catalytic domain.

PfMCA1-cd-Sc induces features of late apoptosis in yeast
To assess whether yeast CD induced by PfMCA1-cd-Sc,

LmjMCA-cd or YCA1 under oxidative stress exhibited apoptotic

features, we stained the dying cells for the classic markers of

apoptosis: propidium iodide (PI) and Annexin V for analysis by

FACS. Under normal conditions, Annexin V positive and PI

negative cells were not observed for any of the clones (Figure 4A,

lane 1) indicating that, at least in the conditions used in our assay,

yeast did not exhibit typical early apoptotic markers. By contrast, a

significant population of cells expressing markers of late apoptosis

(e.g. Annexin V/PI double positive cells) were observed after the

addition of H2O2 in yeast cells expressing YCA1 or PfMCA1-cd-

Sc (Figure 4A lane 2). Here, the double positive population

increased from 11% under normal conditions to 24% when YCA1

Figure 4. PfMCA1-cd-Sc induces characteristics of late apoptosis in yeast. Dyca1 yeast cells expressing YCA1, LmjMCA-cd or PfMCA1-cd-Sc
were not treated or treated with 1 mM H2O2 for 33 hours with or without inhibitor (z-VAD-fmk, 20 mM each). Cells were stained with Annexin V (AnV)
and propidium iodide (PI). (A) Bivariate flow cytometry analysis of 10000 stained cells. Black arrows indicate dead cells featuring characteristics of late
apoptosis (Annexin V positive, PI-positive). Necrotic cells are PI positive and Annexin V negative. (B) Monovariate analysis of cells stained with Annexin
V (upper line) or PI (lower line).
doi:10.1371/journal.pone.0023867.g004
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complemented Dyca1 cells were grown under oxidative stress.

Similarly, for yeast expressing PfMCA1-cd-Sc, we found a 30%

double positive population. Analysis revealed no significant

difference in this staining for yeast cells transfected with

LmjMCA-cd DNA in the presence or in the absence of H2O2 as

was the case when cells were transfected by a plasmid lacking

MCA used as negative control. However, a monovariant analysis

showed that PI labelling was significantly higher for yeast cells

expressing LmjMCA-cd in the presence of H2O2 as determined by

a Student’s t test (p,0.05) (Figure 4B). To determine whether late

apoptosis markers were related to a VAD dependent pathway, we

added the z-VAD-fmk inhibitor (20 mM final) in H2O2-stressed

culture. In such conditions, we observed 11% and 12% of Annexin

V/PI positive cells for YCA1 and PfMCA1-cd-Sc respectively.

These percentages were similar to those in the absence of oxidative

stress (11% and 7%) confirming that a VAD inhibitor can rescue

cells and thus abrogates the effect of metacaspase. In conclusion,

these data indicate that YCA1, LmjMCA-cd and PfMCA1-cd-Sc

expression in H2O2 stressed Dyca1 yeast induces a hallmark of late

apoptosis in a VAD-dependent manner.

Effect of PfMCA1-cd-Sc expression on yeast growth
The involvement of metacaspase proteins in the retardation of

cell growth has been previously reported [43,44] and led us

to investigate whether CD mediated by PfMCA1-cd-Sc was

associated with a dysregulation of cell cycle progression. The

growth rate, as measured by an MTS assay, was determined every

2 hours in liquid culture (Figure 5). We observed a significant

difference in growth rate between the lines and treatments used as

determined by a 2-way ANOVA test (p,0.001 and p,0.001

respectively). Under oxidative stress, the growth rate of PfMCA1-

cd-SC expressing cells was significantly reduced compared to

either non -treated PfMCA1-cd-SC expressing cells (38%64%

versus 93%) or to H2O2 treated cells transfected with the vector

alone (100%), as determined by the Student t test (p,0.01) or by

the Tukey’s or Dunnett’s tests respectively (p,0.001 for both). We

observed a small but significant decrease in growth rate for yeast

expressing LmjMCA-cd when treated with H2O2 in comparison to

cells transfected with the vector alone (p = 0.045). However, no

difference was observed when growth was compared to untreated

LmjMCA-cd expressing controls (p = 0.692). Finally, no significant

effect on yeast cell cycle progression was observed in YCA1

complemented cells. Differences observed between PfMCA1-cd-Sc

and the two other MCAs was certainly due to the lower level of

expression of these polypeptides (Figure 1) in the complemented

yeast as compared to PfMCA1-cd-Sc. The addition of z-VAD-fmk

significantly abolished the effect of PfMCA1-cd-Sc as determined

by the Student t test (p,0.01) suggesting that the two enzymes, i.e.

metacaspase and z-VAD-fmk sensitive enzyme, could be part of

the same pathway.

Involvement of a VAD-protease pathway in yeast expressing

PfMCA1-cd-Sc led us to consider whether a similar pathway

might be involved in P. falciparum proliferation under antimalarial

drug pressure (Figure 6). We performed our experiment using

erythrocytic stages of P. falciparum, as most of the available anti-

malarial drugs target this stage in vivo; here, we evaluated the effect

of z-VAD on maturation of chloroquine-treated parasites by

culturing two different P. falciparum clones in the presence or in the

absence of z-VAD-fmk: clone 3D7 which is sensitive to chloro-

quine (IC50 = 23611 nM) and 7G8 resistant to it (IC50 =

161655 nM). We then measured the effect on parasitemia and

parasite maturation at 6, 24 and 44 hours after incubation with the

respective IC90 chloroquine concentrations (IC90 = 81628 nM for

3D7 and IC90 = 6796260 nM for 7G8). As expected, 3D7 and

7G8 parasites were killed at their respective IC90. However, after

addition of z-VAD-fmk to a final concentration of 50 mM or

100 mM, a growth rate of 20% and 46% were obtained in the

untreated, CQ-sensitive control (Figure 6A) while no effect on

proliferation or maturation was observed in the CQ resistant

clone. Determination of the different maturation forms indicated

that 3D7 parasites were able to complete their erythrocytic cycle

when the z-VAD-fmk inhibitor was added to CQ treated cultures

(Figure 6B). Further, CQ sensitivity of these clones was reduced in

the presence of 100 mM of z-VAD-fmk (Table 1) where the IC90

value significantly increased for the susceptible 3D7 clone (from

81628 nM to 560667 nM; p,0.05) while no significance was

found for CQ resistant 7G8 clones in either IC50 or IC90 value

(Table 1). These data support the hypothesis that the CD pathway

induced by chloroquine stress in P. falciparum is dependant on a z-

VAD-fmk inhibitable protease.

Discussion

In this study, we have performed a comparative functional

analysis of MCA from three different organisms, S. cerevisiae, P.

falciparum and L. major and provided evidence for a CD pathway

Figure 5. PfMCA1-cd-Sc retards yeast growth under oxidative stress. YCA1, LmjMCA-cd and PfMCA1-cd-Sc were expressed in Dyca1 cells
with H2O2 (1 mM) and with or without inhibitor (z-VAD-fmK, 20 mM). Transfected yeasts were grown for 30 hours before yeast proliferation was
determined by the MTS proliferation assay. MTS activity was measured by spectrophotometry at 492 nm every 2 hours and the growth rate was
determined as described in methods. Data are represented as the mean 6 S.D. (n = 3). a indicates a significant difference in the percentage of viability
between non treated and H2O2 treated cells as determined by a Tukey’s test (p,0.05). b indicates a significant difference in viability between MCA
expressing lines and the vector control line in the presence of H2O2 as determined by a Dunnett’s test (p,0.05). c indicates a significant difference in
viability when z-VAD-fmk is present in comparison to conditions with H2O2 as determined by a Tukey’s test (p,0.05).
doi:10.1371/journal.pone.0023867.g005
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implicating MCA and a VAD-binding enzyme. In PfMCA1-cd-

Sc-expressing yeast, we observed 82% cell death after oxidative

stress compared with 30% and 67 % in cells expressing YCA1 and

LmjMCA-cd, respectively. It is likely that this increased sensitivity

is the consequence of higher levels of expression of the P. falciparum

catalytic domain in comparison to YCA1 and LmjMCA-cd. These

results are in agreement with our previous observations that 1) CD

is dependent on the expression of an MCA catalytic domain and 2)

the catalytic domain is more efficient in inducing CD than the full-

length protein, which requires processing to gain complete activity

[12,15].

Morphology does not clearly delineate the boundaries between

necrosis, apoptosis, necroapoptosis or other CD outcomes [45] and

thus, dead cells were identified by membrane disruption (PI

Figure 6. Z-VAD-fmk partially abrogates cell death and growth inhibition induced by CQ in Plasmodium falciparum parasites. (A) A CQ
sensitive clone (3D7) and a CQ resistant clone (7G8) were cultured with or without CQ to a final concentration corresponding to IC90 in presence or
absence of z-VAD-fmk (50 mM or 100 mM final concentration). Parasitemia was evaluated by Giemsa staining at 6, 24 and 44 hours and the relative
growth compared to untreated parasites was determined. Data are represented as the mean 6 S.D. (n = 3). Asterisks indicate a significant increasing
of parasitemia compared to cultures treated with CQ without inhibitor (Student’s test * = p,0.01). (B) Percentage of each maturation forms observed
for a 3D7 P. falciparum culture at 6 hours, 24 hours and 48 hours following CQ addition (at final concentration corresponding to IC90) with or without
z-VAD-fmk (100 mM). Data are represented as the mean 6 S.D. (n = 3).
doi:10.1371/journal.pone.0023867.g006

Table 1. z-VAD-fmk decreases 3D7 P. falciparum CQ sensitivity.

3D7 7G8

IC50 IC90 IC95 IC50 IC90 IC95

CQ 23611 81628 107624 161655 6796260 7926275

CQ +50 mM z-VAD-fmk 206650* 646668* 745670* 3636117 1095668 1289697

CQ +100 mM z-VAD-fmk 161632* 560667* 720613* 266696 8986205 10776185

CQ +0.05% DMSO 1663 58623 84636 172612 488669 582698

CQ +0.1% DMSO 35616 94628 112622 177632 476654 561657

P. falciparum CQ sensitive (3D7) or resistant (7G8) clones were cultured under a graded concentration of CQ in combination with 50 mM or 100 mM z-VAD-fmk. IC50, IC90

and IC95 were determined using the SYBR Green I fluorescence method. Use of pure DMSO at a similar percentage to that created by the addition of z-VAD-fmk acted as
a control. Data are represented as the mean S.D. (n = 3). Asterisks indicate a significant increase of IC compared to IC obtained without inhibitor (* = p,0.05).
doi:10.1371/journal.pone.0023867.t001
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staining). After H2O2 treatment, 43%, 36% and 32% of the cells

were PI positive in PfMCA1-cd-Sc, YCA1 and LmjMCA-cd-

expressing populations, respectively (Figure 4A). Double staining of

PI and Annexin V is indicative of necrosis or late apoptosis; a

phenotype that has been predominant in several similar CD studies

on yeast [16,46]. Interestingly, in our experimental design, PI

staining decreased in the presence of z-VAD-fmk, similarly to

cathepsin-B like deficient Leishmania parasites [23] suggesting that

necrosis-like CD can be suppressed by treatment with specific

inhibitors or in genetically deficient parasites lacking lysosomal

enzymes such as cathepsin-B, which can bind z-VAD-fmk [23].

Although we cannot definitively conclude whether CD in protozoan

parasites is necrotic or apoptotic, our data support a CD mechanism

that is under genetic control harbouring both necrotic and apoptotic

features. Further investigation based on Annexin V and PI staining

would help distinguish between necrosis and apoptosis when

samples are analysed at different time points in the presence of

specific inhibitors. Specifically, analysing the nuclear translocation

of endonuclease G [47,48] or inhibition of apoptosis by overex-

pression of Bcl-XL [49,50] may allow us to better differentiate

between the two processes.

P. falciparum erythrocytic stages are the major targets of most

available antimalarial drugs. We have previously shown that

parasites died under chloroquine (CQ) pressure, forming pyknotic

parasites in a VAD-protease dependent manner [13,51]. This

caspase-like CD was specific to P. falciparum killed by CQ. Here,

we confirmed these data showing that z-VAD-fmk restores

proliferation under CQ pressure and reduces the CQ sensitivity

(Figure 6). We can speculate that CQ sensitivity is increased in cell

death competent parasites but can be decreased by specific

inhibition. This point provides preliminary evidence that pro-

apoptotic or -necrotic partner drugs could be tested alongside

standard anti-malarial drugs in order to increase or restore their

efficacy in instances of multi-resistance.

Cell death is prevented when MCA is absent or after z-VAD-

fmk treatment in Plasmodium and in MCA over-expressing yeast

cells (Figure 3 and Figure 4). This suggests that two different

proteolytic activities are implicated in the cell death pathway, i.e.

MCA and a VAD-binding enzyme. In plant embryogenesis, the

CD pathway requires a caspase-like protease activity where the

executioner, AtMCA2, harbours an arginine-specific activity

essential for CD [14,52,53]. Apoptotic features in T. cruzi, induced

by FHS-treatment have been associated with an increased

YVADase activity [54], whereas VADase is attributed to the

phenotype seen in P. berghei and P. falciparum when induced by CQ

[55,56]. However, protozoan parasites do not code for caspase but

rather metacaspases, members of an arginine and/or lysine

specific protease family [10,12,37,40], which cannot account for

the caspase-like activity. Thus, CD induced by oxidative stress is

likely to be mediated by metacaspase with arginine-specific

proteolytic activity in a VAD-dependent pathway. Such a pathway

could also be present in plants and in unicellular organisms.

Although we have yet not identified the z-VAD-fmk binding

enzyme in Plasmodium as reported in Leishmania [23], nor provided

evidence that MCA acted directly on a VAD-binding enzyme (i.e.

cathepsin B released from its cellular compartment), our results on

VAD-fmk counteracting the MCA effect lead us to propose a

general model in which metacaspase is placed upstream of a VAD-

fmk inhibited protease. Activated by stress agents such as H2O2,

metacaspase is processed into an active catalytic domain that could

be involved in activating a downstream protease. This latter

enzyme may function as the final effector of CD. Thus, we

complete the protease cascade model of Ch’ng et al. [20],

proposing that the CD pathway is mediated by MCA, which

consequently activates clan CA cysteine proteases, such as

cathepsins. This is linked to downstream mitochondrial outer

membrane permeabilization (MOMP) and an additional release of

CA protease that is amplified by mitochondrial dysfunction and

DNA degradation (Figure 7). Placing MCA in an upstream

position in the CD cascade could explain why, in some reports, no

prominent effect on cell death is observed in metacaspase deficient

organisms [57,58,59] or that a relevant loss-of- function phenotype

was not observed in metacaspase gene silencing or disruption of

parasite MCA alleles, suggesting that either 1) a redundant CD

signalling pathway exists in parasites, 2) the CD induction is able

to by-pass MCA action [58] or, 3) as was shown in A. thaliana,

different allelic MCA forms can regulate each other complicating

the characterization of the CD pathway [14].

Recent reports have highlighted the diversity of metacaspase

functions possibly related to the ancient origin of this family [60]

and not restricted to CD [7,8,61]. Some metacaspases seem to

play a central role in cell growth, for example, overexpression of T.

brucei metacaspase 4 (TbMCA4) in budding yeast resulted in

growth inhibition compared to wild type cells [19] while triple

RNAi of MCA2, MCA3 and MCA5 in T. brucei led to total growth

arrest [57]. In Leishmania, overexpression of the single metacaspase

LmjMCA induced growth retardation and alteration of cytokinesis

[44]. Paradoxically, overexpression of the S. pombe metacaspase 1

(Pca1+) stimulated cell growth [62] and it was shown that the

metacaspase found in the primitive chytridiomycete fungus,

Allomyces arbuscula, may promote the cell cycle, as it is upregulated

during the vegetative growth phase [39]. This inspired us to explore

the role of PfMCA1-cd-Sc in the cell cycle and interestingly, we

observed a decrease of the growth rate from 93% for the vector

control to 38% for yeast expressing the catalytic domain of P.

falciparum. These data confirm the catalytic role of PfMCA1-cd-Sc in

CD and in cell growth retardation, but whether these two functions

are related and whether cell growth retardation is a necessary step of

CD requires further investigation.

Figure 7. Metacaspase proteins in cell death and cell growth
pathways. Metacaspase proteins could play a key role in the balance
between life and death at a cellular level. Here they are predicted as the
initiator proteins inducing cell death through a z-VAD-fmk inhibitable
effector protease. The wide range of metacaspase functions suggests
this activation could occur through 1) protein relocalization, 2)
remodelling, or 3) specific processing mediated by an arginine-specific
proteolytic activity. A secondary pathway could occur via the activation
of other (meta)caspase proteins (MCAx) leading to a functionally
redundant pathway.
doi:10.1371/journal.pone.0023867.g007
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The interest for adjunctive therapy, such as the use of

erythropoietin in children suffering of cerebral malaria is now

increasing [51], and it is conceivable that activation of parasite

metacaspases and/or of the downstream VAD-binding enzyme

may help increase the speed of parasite clearance as well as the

efficiency of anti-parasitic drugs. For such a therapeutic approach

to be valuable, a better understanding of how and why parasites

and unicellular organisms undergo CD is of absolute importance.

Methods

DNA constructs, protein expression and
immunodetection

To obtain expression in S. cerevisiae, we optimized the DNA

sequence encoding the PfMCA1 catalytic domain (amino acid

residues 287 to 573). This was done according to the S. cerevisiae

codon usage tables based on yeast coding sequences (codon usage

table Eyeast.cut) or on highly expressed genes (codon usage table

Eysc_h.cut; http://www.kazusa.or.jp/codon/). Modifications

were performed to obtain similar percentage of S. cerevisiae codon

usage and GC percentage. Additionally 39end signals and poly(A)

sites were removed and these optimized nucleic sequences are

described in Figure S1. The probability of heterologous expression

of PfMCA1-cd-Sc in yeast was evaluated with the codon usage

adaptation index factor (CAI factor) and a value of 0.808 was

obtained indicating a high chance of protein expression in S.

cerevisiae. Similarly, GC percentage was improved from 26.8% for

the native gene to 37.2% for the optimized one, a value similar to

the GC percentage of the S. cerevisiae coding sequences (39.77%).

A consensus Kozak sequence (59-GCCGCCACC-39) was added

upstream to the initiator codon of PfMCA1-cd-Sc. Two restriction

sites, EcoR1 and Not1, were added in 59 and 39 of the construct.

The optimized nucleic PfMCA1-cd-Sc sequence was synthetized

chemically and inserted into the pUC57 vector by the GeneCust

Company (GeneCust, Dudelang, Luxembourg). Competent

Top10 cells were transformed with the PfMCA1-cd-Sc-pUC57

plasmid, which then was digested with EcoR1 and Not1. This was

cloned into the pESC-HIS vector in frame with the M2-FLAG

(Stratagene; La Jolla, CA, USA) to generate a construct (pESC-

PfMCA1-cd-Sc) coding for a C-terminal FLAG-tagged PfMCA1-

cd-Sc protein under the control of the GAL10 promoter. The

complete PfMCA1-cd-Sc construct was sequenced on both DNA

strands (Genome Express, Meylan, France). The pESC-HIS DNA

constructs encoding a full length C-terminal M2-tagged yeast

metacaspase 1 (pESC-YCA1) as well as the catalytic domain of L.

major metacaspase 1 (pESC-LmjMCA-cd) were described previ-

ously [12]. The Euroscarf YCA1 disrupted strain (Dyca1 yeast cells)

[Accession No. Y02453 (BY4741; MAT a; his3D1; leu2D0;

met15D0; ura3D0; YOR197w::kanMX4)] was transfected with

the constructs pESC-HIS, pESC-YCA1, pESC-LmjMCA-cd and

pESC-PfMCA1-cd-Sc respectively.

Yeast culture and protein expression
The YCA1 deficient yeast was transfected with the constructs

pESC-HIS, pESC-YCA1, pESC-LmjMCA-cd and pESC-

PfMCA1-cd-Sc respectively. Transfected yeast cells were selected

and grown in synthetic/dropout (SD/DO) culture medium con-

sisting of yeast nitrogen base (6,7 g/L, Becton, Dickinson and

Company, Sparks, MD), a dropout amino acid solution without

histidine (20 mg/L adenine hemisulfate salt, arginine monohy-

drochloride, methionine, tryptophan and uracil; 30 mg/L isoleu-

cine, lysine monohydrochlorid and tyrosine; 50 mg/L phenylal-

anine; 100 mg/L leucine; 150 mg/L valine and 200 mg/L threo-

nine), geneticin (200 mg/L, Invitrogen, Carlsbad, CA, USA) and

2% glucose. Cells were grown on SD/DO plates with 2% agar

(Becton, Dickinson and Company) and plates incubated at 30uC
for 4 days. Ten millilitres of SD/DO non-inducing selective

medium were inoculated with one colony and incubated overnight

at 30uC with continuous shaking. Cultures were diluted to an

OD600 of 0.05 in 10 ml SD/DO non-inducing selective medium

and kept in culture until reaching an OD600 of approximately 0.5.

Cells were centrifuged and diluted in 1 vol. of SD/DO medium

containing 2% galactose instead of glucose for induction of protein

expression for 18 hours. Cells were centrifuged and the pellets

were kept frozen at 280uC before use.

Immunodetection
Frozen pellets were resuspended in 150 mL of lysis buffer

(50 mM KH2PO4 pH 7.5, 500 mM NaCl, 1 mM EDTA, 5 mM

DTT, 1% vol CHAPS) and vortexed ten times in the presence of

0.08 g of 0.25 mm glass beads. Quantification of total protein was

performed by BCA (Thermo Scientific Pierce, Rockford, IL,

USA). Total protein (10 mg) was loaded and separated on a 12%

polyacrylamide gel and electrophoretically transferred to a

nitrocellulose membrane (Immobilon-P; Millipore, Billerica, MA,

USA). Membranes were blocked with 5% (w/v) milk in TBST

buffer (25 mM Tris-HCL, pH 7.4, 140 mM NaCl, 0.1 (v/v)

Tween 20) for 1 hour at RT. The M2 epitope was detected using

the commercially available anti-M2 antibody (1:2000 dilution, Cat

200471, Stratagene, La Jolla, CA, USA) in TBST buffer with 1%

(w/v) milk for 1 hour at RT. Membranes were washed in TBST

buffer and incubated with an anti-mouse IgG horseradish

peroxidase–conjugated secondary antibody (1:2500 dilution, Cat:

W4021, Promega, Madison, WI, USA) for 1 hour at RT with 1%

(w/v) milk in TBST buffer. The immunostained proteins were

visualized with enhanced chemiluminescence (Lumi-Light West-

ern blotting substrate, and Lumi-Film, Roche Applied Science,

Indianapolis, IN, USA).

Survival test
The effect of oxidative stress on yeast expressing metacaspase

proteins was quantified by a plating assay. Transfected yeast cells

were grown for 30 hours in 2% galactose containing SD/DO

culture medium with or without H2O2 (1 mM final concentration,

Sigma-Aldrich, Saint Louis, MO, USA) and in the presence or

absence of 20 mM final concentration of z-VAD-fmk protease

inhibitor. After cell counting in a Neubauer chamber, 250 cells

were plated on a non selective solid YPD culture medium

consisting in 20 g/L Difco peptone (Merk, Darmstadt, Germany),

10 g/L yeast extract (Becton, Dickinson and Company, Sparks,

MD, USA), 20 g/L agar (Becton, Dickinson and Company,

Sparks, MD, USA), and 2% glucose. Yeast cells were grown for 48

hours at 30uC and colonies were counted. Assays were performed

in duplicate in three independent experiments.

Proliferation test
Yeast growth rate and proliferation were assessed by the CellTiter

96 Aqueous Non-Radioactive Cell Proliferation assay (MTS assay;

Promega, Madison, Wisconsi, USA). This was performed 30 hours

post induction concomitantly with the survival test. Briefly, once

protein expression had been induced, the same number of cells was

added to 96 well plates (100 mL at OD600 = 0.5) with 20 mL of the

combined MTS/PMS solution. Plates were incubated at 30uC with

continuous agitation then absorbance was measured at 492 nm

every second hour during a 12 hours period. Growth rate (GR) was

calculated according to the number of generations that developed

per unit of time in an exponentially growing culture between 4 and
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8 hours, and therefore calculated as GRfln(OD492 at 8 hours-OD492

at 4 hours)/4.

Cell death markers
Annexin V (AnV) and propidium iodide (PI) labelling were used

to investigate yeast apoptotic features. Cells were exposed to

different conditions for 33 hours as previously described in the

survival test. For each condition, 107 cells were washed in 50 mL

sorbitol buffer (1.2 M sorbitol, 0.5 mM MgCl2, 35 mM KH2PO4,

pH 6.8), resuspended in 50 mL Tris/DTT buffer (100 mM Tris

pH 9.4, 10 mM DTT), washed in the sorbitol buffer before being

incubated for 1.5 hour under continuous agitation at 30uC with

50 mL Zymolyase solution (Zymolyase 20 T, Seikagaku Corp.,

Tokyo, Japan, 1 mg/mL in sorbitol buffer). Cells were centrifuged,

resuspended in 50 mL binding buffer and 5 mL Annexin V was

added for 20 min at RT in the dark. Cells were centrifuged again

and the pellet was diluted in 250 mL binding buffer with PI (10 mg/

mL final concentration). Fluorescence analysis of 10000 cells was

performed with a BD FACScanTM apparatus. Data were analysed

using CellQuestTM (Becton-Dickinson Bioscience, San Jose, CA,

USA) and FlowJoTM V.7.2.5 software (Tree Stra Inc., Ashland, OR,

USA).

Enzymatic activity
To investigate metacaspase protease activity, two fluorogenic

substrates z-DEVD-AMC (Biomol International LP, Plymouth

Meeting, PA, USA) and z-VRPR-AMC [36] were used. From total

protein extract for immunodetection, 100 mg of protein was diluted

in 200 mL activity buffer (150 mM NaCl, 25 mM HEPES, 10%

glycerol, 0.1% CHAPS, 10 mM DTT) containing z-DEVD-AMC

or z-VRPR-AMC at 50 mM. Additionally, 10 mM final concen-

tration of CaCl2 was added to the activity buffer. The amount of

AMC liberated during the reaction was measured fluorimetrically

each 15 min during a 45 min period at RT (excitation: 355 nm;

emission: 460 nm). Protease activity assays were performed in

duplicate, in three independent experiments.

In vitro parasite cultivation and inhibitory concentration
(IC) determination

Asexual P. falciparum cultures of reference clone 3D7 (chloro-

quine sensitive; obtained from ATCC/MR4) and 7G8 (chloro-

quine resistant; obtained from ATCC/MR4) were maintained in

culture by standard methods. 3D7 and 7G8 clones of P. falciparum

were cultivated using O+ human erythrocytes at 5% hematocrit in

RPMI 1640 medium with phenol red (Invitrogen, Carlsbad, CA,

USA) supplemented with 24 mM sodium bicarbonate, 35 mM

HEPES buffer, 10 mg/mL gentamycin, and 0.005 g/L albumax.

Parasitized red blood cells (pRBCs) were maintained as thin layers

at 37uC in an environment containing 5% O2, 5% CO2 and 90%

N2 on a 24 hours medium-change schedule. Parasite growth was

determined as the percentage of infected erythrocytes (parasitemia)

monitored by observation of Giemsa-stained smears. Determina-

tion of the 50, 90 and 95% inhibitory concentrations (IC50, IC90,

IC95) was performed using an assay based on the incorporation of

the SYBR Green I molecule, a fluorescent DNA double-strand dye

[63]. Cultures were diluted to reduce parasitemia to 0.5%, and

hematocrit to 1.5% with fresh human RBCs. A total of 175 ml/

well was added in duplicate to a 96-well plate containing 25 ml of

chloroquine diphosphate (Sigma-Aldrich, Inc, St-Louis), from

0 nM to 1600 nM final concentration with or without z-VAD-fmk

(50 mM or 100 mM final concentration). Following a 72 hour

incubation period, the plates were frozen and stored at 280uC
until the SYBR green I assay. The plates were thawed at RT and

100 ml of the culture was transferred to a new 96-well plate,

followed by the addition of 100 ml of SYBR green I (Molecular

Probes, Invitrogen, Carlsbad, CA) in lysis buffer (0.2 ml of SYBR

green I/ml of 26lysis buffer, which consisted of 20 mM Tris,

5 mM EDTA, 0,008% (wt/vol) saponin and 0.08% (wt/vol)

Triton X-100). The plates were covered and incubated at RT for 1

hour. The fluorescence intensity was measured with a GENius

Plus plate reader (Tecan USA, Research Triangle, NC) (excita-

tion: 485 nm; emission: 535 nm; gain set: 60). The IC50, IC90 and

IC95 obtained after incubation were calculated by using the HN-

NonLin V1-1 software.

Statistical analysis
Minitab software (version 15.1) was used for the statistical

analysis. Before evaluation, normal distribution of data and equal

variance were verified with the Anderson-Darling and the

Bartlett’s test respectively. The impact of the different treatments

was tested in a one- or 2-way ANOVA when data were normally

distributed. Paired comparisons were performed using Student t’s,

Tukey’s test or Dunett’s testings. Results are represented as mean

of 3 independent experiments +/- SD values. Differences were

considered significant at p,0.05 or highly significant at p,0.01.

Supporting Information

Figure S1 Nucleic sequences of the native PfMCA1
peptidase-C14 domain (PfMCA1-cd, A) and the opti-
mized PfMCA1-cd-Sc (B).

(TIF)

Figure S2 PfMCA1-cd-Sc induces yeast cell death under
oxidative stress. Dyca1 transfected yeasts with PfMCA1-cd-Sc,

YCA1, LmjMCA-cd or vector control were grown with galactose

and 1mM H2O2 for 30 hours with or without inhibitor (z-VAD-

fmk 20 mM). 250 cells were spread on YPG plate and cultured for

2 days. Pictures show colony-forming units before cell viability was

estimated. Pictures are representative of three independent

experiments. Plate diameter is 100 mm.

(TIF)
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