1,051 research outputs found

    Karyotypic description of the stingless bee Oxytrigona cf. flaveola (Hymenoptera, Apidae, Meliponina) of a colony from Tangará da Serra, Mato Grosso State, Brazil

    Get PDF
    The aim was to broaden knowledge on the cytogenetics of the subtribe Meliponina, by furnishing cytogenetic data as a contribution to the characterization of bees from the genus Oxytrigona. Individuals of the species Oxytrigona cf. flaveola, members of a colony from Tangará da Serra, Mato Grosso State, Brazil, were studied. The chromosome number was 2n = 34, distributed among four chromosomal morphologies, with the karyotype formula 8m+8sm+16st+2t. Size heteromorphism in the first metacentric pair, subsequently confirmed by sequential staining with fluorochrome (DA/DAPI/CMA3 ), was apparent in all the examined individuals The nucleolar organizing regions (NORs) are possibly located in this metacentric chromosome pair. These data will contribute towards a better understanding of the genus Oxytrigona. Given that species in this group are threatened, the importance of their preservation and conservation can be shown in a sensible, concise fashion through studies such as this

    Bursts of vertex activation and epidemics in evolving networks

    Get PDF
    The dynamic nature of contact patterns creates diverse temporal structures. In particular, empirical studies have shown that contact patterns follow heterogeneous inter-event time intervals, meaning that periods of high activity are followed by long periods of inactivity. To investigate the impact of these heterogeneities in the spread of infection from a theoretical perspective, we propose a stochastic model to generate temporal networks where vertices make instantaneous contacts following heterogeneous inter-event intervals, and may leave and enter the system. We study how these properties affect the prevalence of an infection and estimate , the number of secondary infections of an infectious individual in a completely susceptible population, by modeling simulated infections (SI and SIR) that co-evolve with the network structure. We find that heterogeneous contact patterns cause earlier and larger epidemics in the SIR model in comparison to homogeneous scenarios for a vast range of parameter values, while smaller epidemics may happen in some combinations of parameters. In the case of SI and heterogeneous patterns, the epidemics develop faster in the earlier stages followed by a slowdown in the asymptotic limit. For increasing vertex turnover rates, heterogeneous patterns generally cause higher prevalence in comparison to homogeneous scenarios with the same average inter-event interval. We find that is generally higher for heterogeneous patterns, except for sufficiently large infection duration and transmission probability

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Filter-based stochastic algorithm for global optimization

    Get PDF
    We propose the general Filter-based Stochastic Algorithm (FbSA) for the global optimization of nonconvex and nonsmooth constrained problems. Under certain conditions on the probability distributions that generate the sample points, almost sure convergence is proved. In order to optimize problems with computationally expensive black-box objective functions, we develop the FbSA-RBF algorithm based on the general FbSA and assisted by Radial Basis Function (RBF) surrogate models to approximate the objective function. At each iteration, the resulting algorithm constructs/updates a surrogate model of the objective function and generates trial points using a dynamic coordinate search strategy similar to the one used in the Dynamically Dimensioned Search method. To identify a promising best trial point, a non-dominance concept based on the values of the surrogate model and the constraint violation at the trial points is used. Theoretical results concerning the sufficient conditions for the almost surely convergence of the algorithm are presented. Preliminary numerical experiments show that the FbSA-RBF is competitive when compared with other known methods in the literature.The authors are grateful to the anonymous referees for their fruitful comments and suggestions.The first and second authors were partially supported by Brazilian Funds through CAPES andCNPq by Grants PDSE 99999.009400/2014-01 and 309303/2017-6. The research of the thirdand fourth authors were partially financed by Portuguese Funds through FCT (Fundação para Ciência e Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM and UIDB/00319/2020

    Collective electrical oscillations of a diatom population induced by dark stress

    Get PDF
    Diatoms are photosynthetic microalgae, a group with a major environmental role on the planet due to the biogeochemical cycling of silica and global fixation of carbon. However, they can evolve into harmful blooms through a resourceful communication mechanism, not yet fully understood. Here, we demonstrate that a population of diatoms under darkness show quasi-periodic electrical oscillations, or intercellular waves. The origin is paracrine signaling, which is a feedback, or survival, mechanism that counteracts changes in the physicochemical environment. The intracellular messenger is related to Ca2+ ions since spatiotemporal changes in their concentration match the characteristics of the intercellular waves. Our conclusion is supported by using a Ca2+ channel inhibitor. The transport of Ca2+ ions through the membrane to the extracellular medium is blocked and the intercellular waves disappear. The translation of microalgae cooperative signaling paves the way for early detection and prevention of harmful blooms and an extensive range of stress-induced alterations in the aquatic ecosystem.Portuguese Foundation for Science and Technology (FCT) [SFRH/BPD/91518/2012, UID/Multi/04326/2013]; SNMB - INOV: Innovation for a more competitive shellfish sector; Operational Program (OP); European Union through the European Structural Funds and Investment Funds (FEEI); European Maritime and Fisheries Fund (EMFF)info:eu-repo/semantics/publishedVersio

    Ultrasensitive gold micro-structured electrodes enabling the detection of extra-cellular long-lasting potentials in astrocytes populations

    Get PDF
    Ultra-sensitive electrodes for extracellular recordings were fabricated and electrically characterized. A signal detection limit defined by a noise level of 0.3-0.4 mu V for a bandwidth of 12.5 Hz was achieved. To obtain this high sensitivity, large area (4 mm(2)) electrodes were used. The electrode surface is also micro-structured with an array of gold mushroom-like shapes to further enhance the active area. In comparison with a flat gold surface, the micro-structured surface increases the capacitance of the electrode/electrolyte interface by 54%. The electrode low impedance and low noise enable the detection of weak and low frequency quasi-periodic signals produced by astrocytes populations that thus far had remained inaccessible using conventional extracellular electrodes. Signals with 5 mu V in amplitude and lasting for 5-10 s were measured, with a peak-to-peak signal-to-noise ratio of 16. The electrodes and the methodology developed here can be used as an ultrasensitive electrophysiological tool to reveal the synchronization dynamics of ultra-slow ionic signalling between non-electrogenic cells.Portuguese Foundation for Science and Technology (FCT), through the project "Implantable organic devices for advanced therapies" (INNOVATE) [PTDC/EEI-AUT/5442/2014]; Instituto de Telecomunicacoes [UID/Multi/04326/2013]; Associated Laboratory - Institute of Nanoscience and Nanotechnology [POCI-01-0145-FEDER-016623]; [PTDC/CTM-NAN/3146/2014
    corecore