1,495 research outputs found
Identifying geochemical hot moments and their controls on a contaminated river floodplain system using wavelet and entropy approaches
Geochemical hot moments are defined here as short periods of time that are associated with disproportionally high levels of concentrations (biogeochemically-driven or transport-related) relative to longer intervening time periods. We used entropy and wavelet techniques to identify temporal variability in geochemical constituents and their controls along three transects within a contaminated floodplain system near Rifle CO. Results indicated that transport-dominated hot moments drove overall geochemical processing in the contaminated groundwater and seep zones. These hot moments were associated with seasonal hydrologic variability (∼4 months) in the contaminated aquifer and with annual hydrologic cycle and residence times in the seep zone. Hot moments associated with a naturally reduced zone within the aquifer were found to be biogeochemically-driven, with a different dominant frequency (∼3 months) and no correlation to hydrologic or weather variations, in contrast to what is observed in other regions of the floodplain
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Design and Implementation of Secure Location Service Using Software Engineering Approach in the Age of Industry 4.0
Data privacy and security are major concerns in any location-based system. In majority of location-based systems, data security is ensured via data replacement policies. Data replacement or hiding policy requires additional measures for providing required security standards for Industry 4.0. Whereas, cryptography primitives and protocols are integral part of any network and can be re-used for ensuring user’s locations in Industry 4.0 based applications. In this work, an application has been designed and developed that used RSA encryption/decryption algorithm for ensuring location data’s confidentiality. The proposed system is distributed in nature and gives access to location’s information after users get authenticated and authorized. In the proposed system, a threshold-based subset mechanism is adopted for keys and their storage. Server is designed to securely store the location information for clients and provide this information to those set of clients or users who are able to verify sum of subset of keys. This work has elaborated the location-based data confidentiality designs in a distributed client/server environment and presented the in-depth system working with different flow diagrams. The command line and graphical User Interface (GUI)-based implementation shows that the proposed system is capable of working with standard system requirements (i5 processor, 4 GB RAM and 64-bits operating system). In addition to location information, system is able to provide much important information (including IP address, timestamp, time to access, hop count) that enhances the overall system capabilities
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Biopsychosocial predictors of perceived life expectancy in a national sample of older men and women.
Perceived life expectancy (PLE) is predictive of mortality risk in older adults, but the factors that may contribute to mental conceptions of PLE are unknown. We aimed to describe the sociodemographic, biomedical, behavioral, and psychological predictors of self-reported PLE estimates among older English adults. Data were from 6662 adults aged 50-79 years in the population-based English Longitudinal Study of Ageing (cross-sectional sample from 2012/13). PLE was assessed in the face-to-face study interview ("What are the chances you will live to be age x or more?" where x = current age plus 10-15 years). Responses were categorized as 'low' (0-49%), 'medium' (50-74%), and 'high' (75-100%). Adjusted prevalence ratios (PRs) and 95% confidence intervals (CIs) for low vs. high PLE were estimated using population-weighted modified Poisson regression with robust error variance. Overall, 1208/6662 (18%) participants reported a low PLE, 2806/6662 (42%) reported a medium PLE, and 2648/6662 (40%) reported a high PLE. The predictors of reporting a low PLE included older age (PR = 1.64; 95% CI: 1.50-1.76 per 10 years), male sex (PR = 1.14; 95% CI: 1.02-1.26), being a smoker (PR = 1.39; 95% CI: 1.22-1.59 vs. never/former smoker), and having a diagnosis of cancer or diabetes. A low sense of control over life was associated with low PLE, as was low satisfaction with life and worse self-rated health. Those with a higher perceived social standing were less likely to report a low PLE (PR = 0.90; 95% CI: 0.87-0.93 per 10-point increase, out of 100). This study provides novel insight into potential influences on older adults' expectations of their longevity, including aspects of psychological well-being. These results should be corroborated to better determine their implications for health-related decision-making, planning, and behavior among older adults
Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017
Background
Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories.
Methods
We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections.
Findings
Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets.
Interpretation
Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev
Peer reviewe
Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states
Peer reviewe
- …
