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1 Introduction

The origin of the masses of the fundamental particles is one of the main open questions

in the standard model (SM) of particle physics [1–3]. Within the SM, the masses of the

electroweak vector bosons arise by the spontaneous breaking of electroweak symmetry by

the Higgs field [4–9]. Precision electroweak data constrain the mass of the SM Higgs boson

(mH) to be less than 158 GeV at the 95% confidence level (CL) [10, 11]. The ATLAS

and CMS experiments at the Large Hadron Collider (LHC), have reported the discovery

of a new boson with a mass of approximately 125 GeV with a significance of five or more

standard deviations each [12–14]. Both observations show consistency with the expected

properties of the SM Higgs boson at that mass. The CDF and D0 experiments at the

Tevatron have also reported evidence for a new particle in the mass range 120–135 GeV

with a significance of up to three standard deviations [15, 16]. The determination of

the properties of the observed boson, such as its couplings to other particles, mass, and

quantum numbers, including spin and parity, is crucial for establishing the nature of this

boson. Some of these properties are measured using the H→W+W− decay channel with

leptonic final states.

Finding such a signal in the complex environment of a hadron collider is not straight-

forward. A complete reconstruction of all the final-state particles is not possible because

of the presence of neutrinos which are not directly detected. Kinematic observables such

as the opening angle between the two charged leptons in the transverse plane, the dilepton

mass, and the transverse mass of the system of the two leptons and the neutrinos, can be

used to distinguish not only the Higgs boson signal from background processes with simi-

lar signature [17, 18], but also between the SM Higgs boson hypothesis and other narrow

exotic resonances with different spin or parity. Phenomenological studies of the amplitudes

for the decay of a Higgs or an exotic boson into the WW final state demonstrate a good

sensitivity to distinguish between the SM Higgs boson hypothesis (spin-parity 0+) and a

spin-2 resonance, which couples to the bosons through minimal couplings, referred to as

2+min [19]. Some sensitivity has also been shown with this final state to distinguish between

the 0+ and the pseudoscalar 0− boson hypotheses.
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Searches for the SM Higgs boson in the H→WW final state at the LHC have previ-

ously been performed using data at
√
s = 7 TeV by CMS [20–22], excluding the presence of

the SM Higgs boson at the 95% CL in the mass range 129–270 GeV, and by ATLAS [23], ex-

cluding the mass range 133–261 GeV. Using their full dataset at 7 and 8 TeV, ATLAS have

reported a H → WW signal with a statistical significance of 3.8 standard deviations [24]

as well as evidence for the spin zero nature of the Higgs boson [25].

This paper reports a measurement of the production and properties of the Higgs boson

in the WW decay channel using the entire dataset collected by the CMS experiment during

the 2011 and 2012 LHC running period. Various production modes, using events with two

or three charged leptons (`), electrons or muons, are investigated. The small contribution

proceeding through an intermediate τ lepton is included. For Higgs boson masses around

125 GeV, the expected branching fraction of the Higgs boson to a pair of W bosons is

about 22%. The production modes of the SM Higgs boson targeted by this analysis are the

dominant gluon fusion (ggH), the vector-boson fusion (VBF), and the associated production

with a W or Z boson (VH). The fraction of events from associated production with a top-

quark pair (ttH) passing the analysis selection is negligible, and therefore this process

is not considered in any of the measurements described in this paper. The analysis is

performed in five exclusive event categories based on the final-state leptons and jets: 2`2ν

+ 0/1 jet targeting the ggH production, 2`2ν +2 jets targeting the VBF production, 2`2ν

+ 2 jets targeting the VH production, 3`3ν targeting the WH production, and 3`ν +

2 jets targeting the ZH production with one hadronically decaying W boson. The overall

sensitivity is dominated by the first category while the other categories probe different

production modes of the SM Higgs boson. The search discussed here is performed for a

Higgs boson with mass in the range 110–600 GeV. The search range stops at mH = 200 GeV

for the analyses targeting the VH production since for larger masses the expected VH

cross section becomes negligible. In the dilepton categories, non-resonant WW production

gives rise to the largest background contribution while top-quark production is dominant in

events with high jet multiplicity. In the trilepton categories, WZ and ZZ production are the

main background processes. Because of the large inclusive cross section, the instrumental

backgrounds from W-boson and Z-boson production with associated jets or photons are

also present in the kinematic regions similar to that of the Higgs boson signal.

The paper is organized as follows. After a brief description of the CMS detector in

section 2 and the data and simulated samples in section 3, the event reconstruction is

detailed in section 4. The statistical procedure applied and the uncertainties considered

for the interpretation of the results are explained in section 5, followed by the description

of analysis strategies and performance for the dilepton categories and trilepton categories

in sections 6 and 7, respectively. Finally, the results from the measurements of the Higgs

boson production and properties combining all analysis categories are reported in section 8,

and the summary given in section 9.

2 CMS detector

The CMS detector, described in detail in ref. [26], is a multipurpose apparatus designed

to study high transverse momentum (pT) physics processes in proton-proton and heavy-
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ion collisions. CMS uses a right-handed coordinate system, with the origin at the nominal

interaction point, the x axis pointing to the center of the LHC, the y axis pointing upwards,

perpendicular to the plane of the LHC ring, and the z axis along the counterclockwise beam

direction. A superconducting solenoid occupies its central region, providing a magnetic

field of 3.8 T parallel to the beam direction. Charged-particle trajectories are measured

by the silicon pixel and strip trackers, which cover a pseudorapidity region of |η| < 2.5.

Here, the pseudorapidity is defined as η = − ln [tan (θ/2)], where θ is the polar angle

of the particle trajectory with respect to the direction of the counterclockwise beam. A

crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter

surround the tracking volume and cover |η| < 3. The steel/quartz-fiber Cherenkov hadron

forward (HF) calorimeter extends the coverage to |η| < 5. The muon system consists

of gas-ionization detectors embedded in the steel flux return yoke outside the solenoid,

and covers |η| < 2.4. The first level of the CMS trigger system, composed of custom

hardware processors, is designed to select the most interesting events in less than 4µs, using

information from the calorimeters and muon detectors. The high-level trigger processor

farm further reduces the event rate to a few hundred Hz before data storage.

3 Data and simulated samples

3.1 Data samples

The data samples used in this analysis correspond to an integrated luminosity of 4.9 fb−1

at a center-of-mass energy of
√
s = 7 TeV collected in 2011 and of 19.4 fb−1 at

√
s = 8 TeV

collected in 2012. The integrated luminosity is measured using data from the HF system

and the pixel detector [27, 28]. The uncertainties in the integrated luminosity measurement

are 2.2% in 2011 and 2.6% in 2012.

For the analyses described in this paper, events are triggered by requiring the presence

of one or two high-pT electrons or muons. The trigger paths consist of several single-lepton

triggers with relatively tight lepton identification. The trigger thresholds for the electron pT
are in the range of 17 to 27 GeV, while the muon pT threshold ranges from 17 to 24 GeV.

The higher thresholds are used for the periods of higher instantaneous luminosity. For

the dilepton triggers, the minimal pT of the leading and trailing lepton is 17 and 8 GeV,

respectively. The trigger efficiency for signal events that pass any of the analysis selections

is measured to be larger than 97% for the SM Higgs boson with mH ∼ 125 GeV. The

trigger efficiency increases with the Higgs boson mass. This efficiency is measured in data

using Z → `` events, recorded with dedicated triggers [29]. The uncertainty in the yields

derived from simulation due to the trigger efficiency is about 1%.

3.2 The Monte Carlo event generators

Several Monte Carlo (MC) event generators are used to simulate the signal and background

processes. The simulated samples are used to optimize the event selection, evaluate selec-

tion efficiencies and systematic uncertainties, and compute expected yields.

Simulated Higgs boson signals from gluon fusion and VBF are generated with the

powheg 1.0 generator [30]. Events for alternative spin and parity signal hypotheses are
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produced by a leading-order (LO) matrix element generator, jhugen 1.0 [19, 31]. The

simulation of associated-production samples uses the pythia 6.4 generator [32]. The mass

lineshape of the Higgs boson signal at the generator level is corrected to match the re-

sults presented in refs. [33–36], where the complex-pole mass scheme for the Higgs boson

propagator is used. The effects on the cross section due to the interference between the

SM Higgs boson signal and the gg → WW background, as computed in refs. [37, 38], are

included. The SM Higgs boson production cross sections are taken from [39–62].

The WZ, ZZ, VVV (V = W/Z), Drell-Yan (DY) production of Z/γ∗, W + jets, and

qq → WW processes are generated using the MadGraph 5.1 event generator [63], the

gg → WW process using the gg2ww 3.1 generator [64], and the tt and tW processes

are generated with powheg. The electroweak production of non-resonant WW + 2 jets

process, which is not part of the inclusive WW + jets sample, has been generated using

the phantom 1.1 event generator [65] including terms of order (α6
EW ). As a cross-check,

the MadGraph generator has also been used to generate such events. All other processes

are generated using pythia.

The set of parton distribution functions (PDF) used is CTEQ6L [66] for LO gener-

ators, while CT10 [67] is used for next-to-leading-order (NLO) generators. All the event

generators are interfaced to pythia for the showering of partons. For all processes, the

detector response is simulated using a detailed description of the CMS detector, based

on the Geant4 package [68]. Additional simulated pp interactions overlapping with the

event of interest in the same bunch crossing, denoted as pileup events, are added in the

simulated samples to reproduce the pileup distribution measured in data. The average

numbers of pileup events per beam crossing in the 2011 and 2012 data are approximately

9 and 21, respectively.

The Z/γ∗ → ττ and Wγ∗ background processes are evaluated with a combination

of simulated and data samples. The Z/γ∗ → ττ background process is estimated using

Z/γ∗ → µµ events selected in data, in which the muons are replaced with simulated τ

decays, thus providing a more accurate description of the experimental conditions with

respect to the full simulation. The tauola package [69] is used in the simulation of τ

decays to account for τ -polarization effects. The uncertainty in the estimation of this

background process is about 10%.

The MadGraph generator is used to estimate the Wγ∗ background contribution from

asymmetric virtual photon decays [70], in which one lepton escapes detection. To obtain

the normalization scale of the simulated events, a high-purity control sample of Wγ∗ events

with three reconstructed leptons is defined and compared to the simulation, as described

in appendix A. As a result of the analysis in that control sample, a factor of 1.5± 0.5 with

respect to the predicted LO cross section is found.

3.3 Theoretical uncertainties

The uncertainties in the signal and background production rates due to theoretical uncer-

tainties include several components, which are assumed to be independent: the PDFs and

αs, the underlying event and parton shower model, the effect of missing higher-order cor-
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rections via variations of the renormalization and factorization scales, and the corrections

for the interference between the signal and the background WW production.

The effect on the yields from variations in the choice of PDFs and the value of αs is

considered following the PDF4LHC prescription [71, 72], using the CT10, NNPDF2.1 [73],

and MSTW2008 [74] PDF sets. For the gluon-initiated signal processes (ggH and ttH), the

PDF uncertainty is about 8%, while for the quark-initiated processes (VBF and VH) it

is 3–5%. The PDF uncertainties for background processes are 3–6%. These uncertainties

are assumed to be correlated among processes with identical LO initial states, without

considering whether or not they are signal or background processes.

The systematic uncertainties due to the underlying event and parton shower model [75,

76] are estimated by comparing samples simulated with different MC event generators. In

particular, for the main signal process, ggH, the powheg MC generator, interfaced with

pythia for the parton shower and hadronization, is compared to the mc@nlo 4.0 gener-

ator [77], interfaced with herwig++ [78] for the parton shower and hadronization model.

Alternative qq → WW samples for dedicated studies are produced with the mc@nlo

and powheg event generators, and compared to the default MadGraph, while alter-

native top-quark samples are produced with MadGraph and compared to the default

powheg sample.

The uncertainties in the yields from missing higher-order corrections are evaluated

by independently varying up and down the factorization and renormalization scales by a

factor of two. The categorization of events based on jet multiplicity introduces additional

uncertainties, mainly driven by the factorization and renormalization scales, as explained

in refs. [39, 45, 79]. These uncertainties range between 10% and 40%, depending on the

jet category and production mode. They are calculated using the mcfm program [80] for

the VBF and VH signal and the diboson (WZ and ZZ) background processes, while for the

ggH process the hqt program [81, 82] is used.

The uncertainties associated with the interference effect between the SM Higgs boson

signal and the gg → WW background process is up to 30% at a Higgs boson mass of

600 GeV, and becomes negligible for masses below 400 GeV.

4 Event reconstruction

A particle-flow algorithm [83] is used to reconstruct the observable particles in the event.

Clusters of energy deposition measured by the calorimeters and charged-particle tracks

identified in the central tracking system and the muon detectors are combined to recon-

struct individual particles and to set quality criteria to select and define final-state observ-

ables.

For each event, the analyses require two or three high-pT lepton candidates (electrons

or muons) originating from a single primary vertex. Among the vertices identified in the

event, the vertex with the largest
∑
p2T, where the sum runs over all tracks associated with

the vertex, is chosen as the primary vertex.

Electron candidates are defined by a reconstructed charged-particle track in the track-

ing detector pointing to a cluster of energy deposition in the ECAL. A multivariate [84]
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approach to identify electrons is employed combining several measured quantities describ-

ing the track quality, the ECAL cluster shapes, and the compatibility of the measurements

from the two detectors. The electron energy is measured primarily from the ECAL cluster

energy. For low-pT electrons, a dedicated algorithm combines the momentum of the track

and the ECAL cluster energy, improving the energy resolution [85]. Muon candidates are

identified by signals of charged-particle tracks in the muon system that are compatible with

a track reconstructed in the central tracking system. The precision of the muon momentum

measurement from the curvature of the track in the magnetic field is ensured by minimum

requirements on the number of hits in the layers of sensors and on the quality of the full

track fit. Uncertainties in the lepton momentum scale and resolution are 0.5–4% per lepton

depending on the kinematic properties, and the effect on the yields at the analysis selection

level is approximately 2% for electrons and 1.5% for muons.

Electrons and muons are required to be isolated to distinguish between prompt leptons

from W/Z-boson decays and those from QCD production or misidentified leptons, usually

situated inside or near jets of hadrons. The variable ∆R =
√

(∆η)2 + (∆φ)2 is used to

measure the separation between reconstructed objects in the detector, where φ is the an-

gle (in radians) of the trajectory of the object in the plane transverse to the direction of

the proton beams. Isolation criteria are set based on the distribution of low-momentum

particles in the (η, φ) region around the leptons. To remove the contribution from the

overlapping pileup interactions in this isolation region, the charged particles included in

the computation of the isolation variable are required to originate from the lepton vertex.

A correction is applied to the neutral component in the isolation ∆R cone based on the

average energy density deposited by the neutral particles from additional interactions [86].

The correction is measured in a region of the detector away from the known hard scatter

in a control sample. Electron isolation is characterized by the ratio of the total transverse

momentum of the particles reconstructed in a ∆R = 0.3 cone around the electron, ex-

cluding the candidate itself, to the transverse energy of the electron. Isolated electrons are

selected by requiring this ratio to be below ∼10%. The exact threshold value depends on

the electron η and pT [79, 87]. For each muon candidate, the scalar sum of the transverse

energy of all particles originating from the primary vertex is reconstructed in ∆R cones of

several radii around the muon direction, excluding the contribution from the muon itself.

This information is combined using a multivariate algorithm that exploits the differen-

tial energy deposition in the isolation region to discriminate between the signal of prompt

muons and muons from hadron decays inside a jet.

Lepton selection efficiencies are determined using Z→ `` events [29]. Simulated sam-

ples are corrected by the difference in the efficiencies found in data and simulation. The

total uncertainty in lepton efficiencies, that includes effects from reconstruction, trigger,

and various identification criteria, amounts to about 2% per lepton. The lepton selection

criteria in the 7 and 8 TeV samples were tuned to maintain an efficiency independent of

the instantaneous luminosity.

Jets are reconstructed using the anti-kT clustering algorithm [88] with a distance pa-

rameter of 0.5, as implemented in the fastjet package [89, 90]. A similar correction as

for the lepton isolation is applied to account for the contribution to the jet energy from
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pileup events. Furthermore, the properties of the hard jets are modified by particles from

pileup interactions. A combinatorial background arises from low-pT jets from pileup inter-

actions which get clustered into high-pT jets. At
√
s = 8 TeV the number of pileup events

is larger than at
√
s = 7 TeV and a multivariate selection is applied to separate jets from

the primary interaction and those reconstructed due to energy deposits associated with

pileup interactions [91]. The discrimination is based on the differences in the jet shapes, on

the relative multiplicity of charged and neutral components, and on the different fraction

of transverse momentum which is carried by the hardest components. Within the tracker

acceptance the tracks belonging to each jet are also required to be compatible with the pri-

mary vertex. Jet energy corrections are applied as a function of the jet pT and η [92]. The

jet energy scale and resolution gives rise to an uncertainty in the yields of 2% (5%) for the

low (high) jet multiplicity events. Jets considered for the event categorization are required

to have pT > 30 GeV and |η| < 4.7. Studies have been performed selecting Z + jets events

and comparing the number of jets distribution as a function of the number of reconstructed

vertices. A rather flat behavior has been found, which indicates that the effect from pileup

interactions is properly mitigated.

Identification of decays of the bottom (b) quark is used to discriminate the background

processes containing top-quark that subsequently decays to a bottom-quark and a W boson.

The bottom-quark decay is identified by the presence of a soft-muon in the event from the

semileptonic decay of the bottom-quark and by bottom-quark jet (b-jet) tagging criteria

based on the impact parameter of the constituent tracks [93]. In particular, the Track

Counting High Efficiency algorithm is used with a value greater than 2.1 to assign a given

jet as b-tagged. Soft-muon candidates are defined without isolation requirements and are

required to have pT > 3 GeV. The set of veto criteria retain about 95% of the light-quark

jets, while rejecting about 70% of the b-jets. The performance of b-jet identification for

light-quark jets is verified in Z/γ∗→ `` candidate events, and is found to be consistent

between data and simulation within 1% for the events with up to one jet and within 3%

for the events with two central jets.

The missing transverse energy vector ~Emiss
T is defined as the negative vector sum of

the transverse momenta of all reconstructed particles (charged or neutral) in the event,

with Emiss
T = | ~Emiss

T |. For the dilepton analyses, a projected Emiss
T variable is defined as

the component of ~Emiss
T transverse to the nearest lepton if the lepton is situated within the

azimuthal angular window of ±π/2 from the ~Emiss
T direction, or the Emiss

T itself otherwise. A

selection using this observable efficiently rejects Z/γ∗ → ττ background events, in which the
~Emiss
T is preferentially aligned with leptons, as well as Z/γ∗→ `` events with mismeasured
~Emiss
T associated with poorly reconstructed leptons or jets. Since the ~Emiss

T resolution

is degraded by pileup, the minimum of two projected Emiss
T variables is used (Emiss∠

T ):

one constructed from all identified particles (full Emiss
T ), and another constructed from

the charged particles only (track Emiss
T ). The uncertainty in the resolution of the ~Emiss

T

measurement is approximately 10%, which is estimated from Z→ `` events with the same

lepton selection applied as in the rest of the analysis. Randomly smearing the measured
~Emiss
T by one standard deviation gives rise to a 2% variation in the estimation of signal

yields after the full selection for all analyses.
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5 Statistical procedure

The statistical methodology used to interpret subsets of data selected for the H → WW

analyses and to combine the results from the independent categories has been developed

by the ATLAS and CMS collaborations in the context of the LHC Higgs Combination

Group. A general description of the methodology can be found in refs. [94, 95]. Results

presented in this paper also make use of asymptotic formulae from ref. [96] and recent

updates available in the RooStats package [97].

Several quantities are defined to compare the observation in data with the expectation

for the analyses: upper limits on the production cross section of the H → WW process

with and without the presence of the observed new boson; a significance, or a p-value,

characterizing the probability of background fluctuations to reproduce an observed excess;

signal strengths (σ/σSM) that quantify the compatibility of the sizes of the observed excess

with the SM signal expectation; and results from a test of two independent signal hypothe-

ses, namely a SM-like Higgs boson with spin 0+ with respect to a 2+min resonance or a

pseudoscalar 0− boson. The modified frequentist method, CLs [98, 99], is used to define

the exclusion limits. A description of the statistical formulae defining these quantities is

found in ref. [13, 94].

The number of events in each category and in each bin of the discriminant distributions

used to extract the signal is modeled as a Poisson random variable, whose mean value is

the sum of the contributions from the processes under consideration. Systematic uncer-

tainties are represented by individual nuisance parameters with log-normal distributions.

An exception is applied to the qq → WW normalization in the 0-jet and 1-jet dilepton

shape-based fit analyses, described in section 6.2, which is an unconstrained parameter in

the fit. The uncertainties affect the overall normalization of the signal and backgrounds as

well as the shape of the predictions across the distribution of the observables. Correlation

between systematic uncertainties in different categories and final states are taken into ac-

count. In particular, the main sources of correlated systematic uncertainties are those in

the experimental measurements such as the integrated luminosity, the lepton and trigger

selection efficiencies, the lepton momentum scale, the jet energy scale and missing trans-

verse energy resolution (section 4), and the theoretical uncertainties affecting the signal

and background processes (section 3). Uncertainties in the background normalizations or

background model parameters from control regions (sections 6 and 7) and uncertainties of

statistical nature are uncorrelated. A summary of the systematic uncertainties is shown in

table 1, with focus on the 0-jet and 1-jet dilepton categories.

6 Final states with two charged leptons

The H → WW → 2`2ν decay features a signature with two isolated, high-pT, charged

leptons and moderate Emiss
T . After all selection criteria are applied, the contribution from

other Higgs boson decay channels is negligible. Kinematic distributions of the decay prod-

ucts exhibit the characteristic properties of the parent boson. The three main observables

are: the azimuthal opening angle between the two leptons (∆φ``), which is correlated to
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Source
H→ qq→ gg→ Non-Z resonant tt + tW Z/γ∗→ `` W + jets Vγ(∗)

WW WW WW WZ/ZZ

Luminosity 2.2–2.6 — — 2.2–2.6 — — — 2.2–2.6

Lepton efficiency 3.5 3.5 3.5 3.5 — — — 3.5

Lepton momentum scale 2.0 2.0 2.0 2.0 — — — 2.0

~Emiss
T resolution 2.0 2.0 2.0 2.0 — — — 1.0

Jet counting categorization 7–20 — 5.5 5.5 — — — 5.5

Signal cross section 5–15 — — — — — — —

qq→WW normalization — 10 — — — — — —

gg→WW normalization — — 30 — — — — —

WZ/ZZ cross section — — — 4.0 — — — —

tt + tW normalization — — — — 20 — — —

Z/γ∗→ `` normalization — — — — — 40 — —

W + jets normalization — — — — — — 36 —

MC statistics 1.0 1.0 1.0 4.0 5.0 20 20 20

Table 1. Summary of systematic uncertainties relative to the yields (in %) from various signal

and background processes. Precise values depend on the final state, jet category, and data taking

period. The values listed in the table apply to the 0-jet and 1-jet dilepton categories. The horizontal

bar (—) indicates that the corresponding uncertainty is not applicable. The jet categorization

uncertainty originates from the uncertainties in the renormalization and factorization scales that

change the fraction of events in each jet category. The systematic uncertainty from the same source

is considered fully correlated across all relevant processes listed.

the spin of the Higgs boson; the dilepton mass (m``), which is one of the most discriminat-

ing kinematic variables for a Higgs boson with low mass, especially against the Z/γ∗→ ``

background; and the transverse mass (mT) of the final state objects, which scales with the

Higgs boson mass. The transverse mass is defined as m2
T = 2p``TE

miss
T

(
1−cos ∆φ(``, ~Emiss

T )
)
,

where p``T is the dilepton transverse momentum and ∆φ(``, ~Emiss
T ) is the azimuthal angle

between the dilepton momentum and ~Emiss
T .

6.1 WW selection and background rejection

To increase the sensitivity to the SM Higgs boson signal, events are categorized into lepton

pairs of same flavor (two electrons or two muons, ee/µµ) and of different flavor (one electron

and one muon, eµ), and according to jet multiplicities in zero (0-jet), one (1-jet), and two or

more jet (2-jet) categories, where the jets are selected as described in section 4. Splitting the

events into categories that differ in signal and background composition imposes additional

constraints on the backgrounds and defines regions with high signal purity.

The Higgs boson signal events in 0-jet and 1-jet categories are mostly produced by

the gluon fusion process. These categories have relatively high yield and purity and al-

low measurements of the Higgs boson properties. The 2-jet category is further separated

into events with a characteristic signature of VBF production with two energetic forward-

backward jets and heavily suppressed additional hadronic activity due to the lack of color

flow between the parent quarks, and those with a VH signature in which two central jets
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Zero-jet and one-jet ggH tag Two-jet VBF tag Two-jet VH tag

Number of jets = 0/1 ≥ 2 ≥ 2

Default analysis
binned shape-based (eµ) binned shape-based (eµ)

counting
counting (ee, µµ) counting (ee, µµ)

Alternative analyses
parametric shape-based

counting binned shape-based
counting

VBF tagging — applied vetoed

Main backgrounds WW, top-quark, W + jets, Wγ(∗) WW, top-quark WW, top-quark

Table 2. A summary of the selection requirements and analysis approach, as well as the most

important background processes in the dilepton categories. The same-flavor final states make use

of a counting analysis approach in all categories.

originate from the vector boson decay. While the sensitivity of the 2-jet category is limited

with the current dataset, the two sub-categories explore specific production modes. A sum-

mary of the selection requirements and analysis approach, as well as the most important

background processes in the dilepton categories is shown in table 2.

For all jet multiplicity categories, candidate events are composed of exactly two oppo-

sitely charged leptons with pT > 20 GeV for the leading lepton (p`,max
T ) and pT > 10 GeV

for the trailing lepton (p`,min
T ). Events with additional leptons are analyzed separately, as

described in section 7. The electrons and muons considered in the analysis include a small

contribution from decays via intermediate τ leptons. The Emiss∠
T variable is required to

be above 20 GeV. The analysis is restricted to the kinematic region with m`` > 12 GeV,

p``T > 30 GeV, and mT > 30 GeV, where the signal-to-background ratio is high and the

background content is correctly described.

The main background processes from non-resonant WW production and from top-

quark production, including top-quark pair (tt) and single-top-quark (mainly tW) pro-

cesses, are estimated using data. Instrumental backgrounds arising from misidentified

(“non-prompt”) leptons in W+jets production and mismeasurement of ~Emiss
T in Z/γ∗+jets

events are also estimated from data. Contributions from Wγ, Wγ∗, and other sub-dominant

diboson (WZ and ZZ) and triboson (VVV, V = W/Z) production processes are estimated

partly from simulated samples, see section 3. The Wγ∗ cross section is measured from

data, as described in appendix A. The shapes of the discriminant variables used in the

signal extraction for the Wγ process are obtained from data, as explained in appendix B.

The non-prompt lepton background, originating from leptonic decays of heavy quarks,

hadrons misidentified as leptons, and electrons from photon conversions in W + jets and

QCD multijet production, is suppressed by the identification and isolation requirements on

electrons and muons, as described in section 4. The remaining contribution from the non-

prompt lepton background is estimated directly from data. A control sample is defined by

one lepton that passes the standard lepton selection criteria and another lepton candidate

that fails the criteria, but passes a looser selection, resulting in a sample of “pass-fail” lep-

ton pairs. The efficiency, εpass, for a jet that satisfies the loose lepton requirements to pass

the standard selection is determined using an independent sample dominated by events
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with non-prompt leptons from QCD multijet processes. This efficiency, parameterized as

a function of pT and η of the lepton, is then used to weight the events in the pass-fail

sample by εpass/(1 - εpass), to obtain the estimated contribution from the non-prompt lep-

ton background in the signal region. The systematic uncertainties from the determination

of εpass dominate the overall uncertainty of this method. The systematic uncertainty has

two sources: the dependence of εpass on the sample composition, and the method. The

first source is estimated by modifying the jet pT threshold in the QCD multijet sample,

which modifies the jet sample composition. The uncertainty in the method is obtained

from a closure test, where εpass is derived from simulated QCD multijet events and applied

to simulated samples to predict the number of background events. The total uncertainty

in εpass, including the statistical precision of the control sample, is of the order of 40%.

Validation of the estimate of this background using lepton pairs with the same charge is

described in section 6.2.

The Drell-Yan Z/γ∗ production is the largest source of same-flavor lepton pair pro-

duction because of its large production cross section and the finite resolution of the ~Emiss
T

measurement. In order to suppress this background, a few additional selection require-

ments are applied in the same-flavor final states. The resonant component of the Drell-Yan

production is rejected by requiring m`` to be more than 15 GeV away from the Z boson

mass. To suppress the remaining off-peak contribution, in the 8 TeV sample, a dedicated

multivariate selection combining Emiss
T and kinematic and topological variables is used. In

the 7 TeV sample the amount of pileup interactions is smaller on average and a selection

based on a set of simple kinematic variables is adopted. The p`,min
T and m`` thresholds are

raised to 15 GeV and 20 GeV respectively, and the selection based on Emiss∠
T is applied pro-

gressively tighter as a function of the number of reconstructed vertices, Nvtx, Emiss∠
T > (37

+ Nvtx/2) GeV. This requirement is chosen to obtain a background efficiency nearly con-

stant as a function of Nvtx. Events in which the direction of the dilepton momentum and

that of the most energetic jet with pT > 15 GeV have an angular difference in the transverse

plane greater than 165 degrees are rejected. For the 2-jet category, the dominant source of
~Emiss
T is the mismeasurement of the hadronic recoil and the best performance in terms of

signal-to-background separation is obtained by simply requiring Emiss
T > 45 GeV and the

azimuthal separation of the dilepton and dijet momenta to be ∆φ(``, jj) < 165 degrees.

These selection requirements effectively reduce the Drell-Yan background by three orders

of magnitude, while retaining more than 50% of the signal. The Z/γ∗ → ee/µµ contribu-

tion to the analysis in the same-flavor final states is obtained by normalizing the Drell-Yan

background to data in the region within ±7.5 GeV of the Z boson mass after flavor symmet-

ric contributions from other processes are subtracted using eµ events. The extrapolation

to the signal region is performed using the simulation together with a cross-check using

data. A more detailed explanation of the Drell-Yan background estimation is given in

appendix C. The largest uncertainty in the estimate arises from the dependence of this

extrapolation factor on Emiss
T and the multivariate Drell-Yan discriminant, and is about 20

to 50%. The contribution of this background is also evaluated with an alternative method

using γ + jets events, which provides results consistent with the primary method. The

Z boson and the photon exhibit similar kinematic properties at high pT and the hadronic
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recoil is similar in the two cases, and therefore a γ + jets sample is suitable to estimate

the Drell-Yan background.

To suppress the background from top-quark production, events that are top-tagged

are rejected based on soft-muon and b-jet identification (section 4). The reduction of the

top-quark background is about 50% in the 0-jet category and above 80% for events with

at least one jet with pT > 30 GeV. The top-quark background contribution in the analysis

is estimated using top-tagged events (Ntagged). The top-tagging efficiency (εtop-tagged) is

measured in a control sample dominated by tt and tW events, which is selected by requiring

one jet to be b-tagged. The number of top-quark background events (Nnot-tagged) expected

in the signal region is estimated as: Nnot-tagged = Ntagged × (1 − εtop-tagged)/εtop-tagged.

Background contributions from other sources are subtracted from the top-tagged sample.

The total uncertainty in Nnot-tagged amounts to about 20% in the 0-jet, 5% in the 1-jet,

and 30-40% in the 2-jet category. Additional selection requirements in the 2-jet category

limit the precision of the control sample. A more detailed explanation of the top-quark

background estimation is given in appendix D.

The criteria described above define the WW selection. The remaining data sample is

dominated by non-resonant WW events, in particular in the 0-jet category. The normal-

ization of the WW background is obtained from the data 0-jet and 1-jet categories. The

procedure depends on the analysis strategy being pursued, as described in section 6.2.1. In

the counting analysis, the WW contribution is normalized to data after subtracting back-

grounds from other sources in the signal-free region of high dilepton mass, m`` > 100 GeV,

for mH ≤ 200 GeV. For the higher Higgs boson mass hypotheses and in the 2-jet category,

the control region for WW production is contaminated by the signal together with other

backgrounds. In this case the WW background prediction is obtained from simulation

and the theoretical uncertainty is 20–30% for the VH and the VBF selection requirements.

Both shape and normalization of the WW background in the eµ final state for the 0-jet

and 1-jet categories are determined from a fit to data, as described in section 6.2. Studies

to validate the fitting procedure are also summarized in that section.

A summary of the estimation of the background processes in the dilepton categories

is shown in table 3.

The m`` distributions after the WW selection in the eµ final state for the 0-jet and

1-jet categories are shown in figure 1, together with the expectation for a SM Higgs boson

with mH = 125 GeV. The clear difference in the shape between the H → WW and the

non-resonant WW processes for m`` is mainly due to the spin-0 nature of the SM Higgs

boson. For a SM Higgs boson with mH = 125 GeV, an excess of events with respect

to the backgrounds is expected at low m``. For the 2-jet category, the dijet variables

which are used to distinguish VH production from VBF production are shown in figure 2.

Control regions in a similar kinematic topology are studied to cross-check the background

normalization and distribution.

6.2 The zero-jet and one-jet ggH tag

The analysis in this category provides good sensitivity to identify Higgs boson production,

and to test the spin-0 hypothesis against the spin-2 hypothesis. The majority of the SM
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Process Normalization Shape Control/template sample

WW data simulation events at high m`` and mT

Top-quark data simulation top-tagged events

W + jets data data events with loosely identified leptons

Wγ simulation data events with an identified photon

Wγ∗ data simulation Wγ∗ → 3µ sample

Z/γ∗ → µµ & Z/γ∗→ ee data simulation events at low Emiss
T

Z/γ∗ → ττ data data τ embedded sample

Table 3. Summary of the estimation of the background processes in dilepton categories in cases

where data events are used to estimate either the normalization or the shape of the discriminant

variables. A brief description of the control/template sample is given. The WW estimation in the

2-jet category is purely from simulation.
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Figure 1. Distributions of the dilepton invariant mass in the 0-jet category (left), and in the 1-jet

category (right), in the eµ final state for the main backgrounds (stacked histograms), and for a SM

Higgs boson signal with mH = 125 GeV (superimposed and stacked open histogram) at the WW

selection level. The last bin of the histograms includes overflows.

Higgs boson events originate from the gluon fusion process, and the event selection relies

entirely on the Higgs boson decay signature of two leptons and Emiss
T .

While the dominant background is the non-resonant WW production, a relatively small

contamination from W + jets and Wγ(∗) production nevertheless contributes sizeably to the

total uncertainty in the measurements since these processes are less precisely known and

can mimic the signal topology. Separating the analysis in lepton flavor pairs isolates the

most sensitive eµ final state from the ee/µµ final states, which have additional background

contributions from processes with a Z/γ∗→ `` decay. Splitting the sample into jet multi-

plicity categories with zero and one jet distinguishes the kinematic region dominated by

top-quark background (1-jet category) which has jets from bottom-quark fragmentation,

as shown in figure 1.
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Figure 2. Distributions of the pseudorapidity separation between two highest pT jets (left) and the

dijet invariant mass (right) in the 2-jet category for the main backgrounds (stacked histograms), and

for a SM Higgs boson signal with mH = 125 GeV (superimposed histogram) at the WW selection

level. The signal contributions are multiplied by 100. All three final states, ee, µµ, and eµ, are

included. The last bin of the histograms includes overflows.

6.2.1 Analysis strategy

To enhance the sensitivity to a Higgs boson signal, a counting analysis is performed in

each final state and category using a selection optimized for each mH hypothesis consid-

ered. In addition, a two-dimensional shape analysis is also pursued for the different-flavor

final state only. In this case, a binned template fit is performed using the most sensitive

variables to the presence of signal. This shape-based analysis is more sensitive than the

counting analysis to the presence of a Higgs boson, as shown in section 6.2.2, and is used

as the default analysis for the eµ final state. The counting analysis is used as the default

analysis for the ee/µµ final states, for which modeling of the Z/γ∗ background template is

challenging. Furthermore, an unbinned parametric fit is pursued using alternative variables

and a selection suitable for the measurement of the Higgs boson mass in the different-flavor

final state. The mass measurement using the parametric fit and the test of spin hypotheses

using a binned template fit are performed in the eµ final state.

Binned template fit in the different-flavor final states. Kinematic variables such

as m`` and mT are independent quantities that effectively discriminate the signal against

most of the backgrounds in the dilepton analysis in the 0-jet and 1-jet categories.

The binned fit is performed using template histograms that are obtained from the

signal and background models at the level of the WW selection. For the Higgs boson mass

hypotheses up to mH = 250 GeV the template ranges are 12 GeV < m`` < 200 GeV and

60 GeV < mT < 280 GeV. For mass hypotheses above 250 GeV the template ranges are

12 GeV < m`` < 600 GeV and 80 GeV < mT < 600 GeV, and a higher leading-lepton pT
threshold of p`,max

T > 50 GeV is required. The templates have 9 bins in m`` and 14 bins

in mT. The bin widths vary within the given range, and are optimized to achieve good
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Figure 3. Two-dimensional (mT, m``) distributions for 8 TeV data in the 0-jet category for the

mH = 125 GeV SM Higgs boson signal hypothesis (top left), the 2+minhypothesis (top right), the

background processes (bottom left), and the data (bottom right). The distributions are restricted

to the signal region expected for a low mass Higgs boson, that is: m`` [12–100] GeV and mT [60–

120] GeV.

separation between the SM Higgs boson signal and backgrounds, as well as between the two

spin hypotheses, while retaining adequate template statistics for all processes in the bins.

The signal and background templates, as well as the distribution observed in data,

are shown in figure 3 for the 0-jet category and in figure 4 for the 1-jet category for the

8 TeV analysis. The distributions are restricted to the signal region expected for a low

mass Higgs boson, that is: m`` [12–100] GeV and mT [60–120] GeV. The distribution of the

two variables and the correlation between them are distinct for the Higgs boson signal and

the backgrounds, and clearly separates the two spin hypotheses. Pseudo-experiments have

been performed to assess the stability of the (m``, mT) template fit method by randomly

varying the expected signal and background yields according to the Poisson statistics and

to the spread of the systematic uncertainties, as discussed below.

Unbinned parametric fit in the different-flavor final states. A dedicated analysis

to probe the Higgs boson mass is performed using a two-dimensional parametric maximum

likelihood fit to variables computed in the estimated decay frame of the Higgs boson can-

didate, the so-called “razor frame” [100]. One of the two variables is an estimator of the
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Figure 4. Two-dimensional (mT, m``) distributions in the 1-jet category for the mH = 125 GeV SM

Higgs boson signal hypothesis (top left), the 2+minhypothesis (top right), the background processes

(bottom left), and the data (bottom right). The distributions are restricted to the signal region

expected for a low mass Higgs boson, that is: m`` [12–100] GeV and mT [60–120] GeV.

Higgs boson mass and the other is the opening angle of the two charged leptons in the

razor frame. This analysis is performed for the Higgs boson mass range 115–180 GeV.

The razor mass variable is based on the generic process of pair production of heavy

particles, each decaying to an unseen particle plus jets or leptons that are reconstructed

in the detector. The application of this technique in SUSY analyses with hadronic and

leptonic final states has been extensively studied [101].

Given the presence of the two neutrinos in the final state, the longitudinal and trans-

verse boosts of the Higgs boson candidate cannot be determined. The razor frame is an

approximation of the Higgs boson rest frame, defined unambiguously from measured quan-

tities in the laboratory frame. A longitudinal boost to an intermediate frame, where the

visible energies are written in terms of an overall scale that is invariant under longitudinal

boosts, is defined as:

βR
∗

L ≡
p`1z + p`2z
E`1 + E`2

,

where p`iz is the component along the z axis of the four-momentum and E`i is the energy

of the ith lepton. In order to also account for the recoil of the Higgs boson candidate when

produced in association with jets, a transverse boost is further applied, estimated with

the measured ~Emiss
T . In the razor frame, an invariant quantity that serves as per-event
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estimator of the mass scale of the decaying Higgs boson candidate is defined as:

mR =

√
1

2

[
m2
`` − ~Emiss

T · ~p``T +
√

(m2
`` + (p``T )2)(m2

`` + (Emiss
T )2)

]
.

This variable has a resolution of around 15% for a Higgs boson with mH = 125 GeV,

regardless of the jet multiplicity. The distribution of the mR variable is parameterized with

a relatively simple function with a linear dependence on the Higgs boson mass, enabling

an unbinned fit to data and a smooth interpolation between mass hypotheses.

The parameterized distributions of the mR variable for different signal mass hypotheses

and backgrounds are shown in figure 5. The functional form of the Higgs boson signal in mR

is described by the convolution of a Breit-Wigner function, centered on the expected mH

and with a width equal to the expected Higgs boson width, and a Crystal Ball function [102]

to describe the resolution of the Gaussian core and the tail. For the Higgs boson mass

hypotheses considered in this analysis, the theoretical width of the SM Higgs boson is

negligible with respect to the experimental resolution.

The mR distribution for the majority of the backgrounds is described with a Landau

function [103], except for the Z → ττ process which is modeled with a double Gaussian

function. The parametric fit is carried out in bins of ∆φR, which is the azimuthal separation

between the two leptons computed in the same reference frame asmR. The two variables are

largely uncorrelated in the decay of the Higgs boson, while the distributions for backgrounds

are correlated. A total of 10 bins in ∆φR are used with finer (coarser) bin widths at smaller

(larger) value of ∆φR.

A selection tighter than that of the (mT, m``) template fits is chosen for this analysis

by applying p``T > 45 GeV and mT > 80 GeV. The reason for the tighter selection is to

reject a larger fraction of the W + jets and Wγ(∗) background processes, which otherwise

show a maximum at mR ∼ 125 GeV because of kinematic requirements. The upper bounds

on m`` and mT that are used for the (mT, m``) template fits are removed. The range of

50 GeV < mR < 500 GeV, which contains almost 100% of the signal, is used for the fit.

All the theoretical and experimental systematic uncertainties are taken into account

in the parametric fit. The shape uncertainties are estimated by refitting the distribution

produced with the systematic variation for each source. The parametric fit to the (mR,

∆φR) distribution has been validated using pseudo-experiments and the results show no

bias in the measurement of the signal and background yields neither for the 0-jet nor for

the 1-jet category.

Counting analysis. A simple counting experiment is performed as a basic cross-check

for all categories, and as default approach for the same-flavor ee/µµ final states. A tighter

selection is applied to increase the signal-to-background ratio using kinematic variables

that characterize the Higgs boson final state. The minimum requirement on dilepton pT is

raised to p``T > 45 GeV, and a series of selections are applied based on the lepton momenta

(p`,max
T and p`,min

T ), m``, the azimuthal separation between the two leptons (∆φ``), and

mT. The threshold values are optimized for each Higgs boson mass hypothesis. Table 4

summarizes the selection requirements used in the counting analysis for a few representative

mass points.
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Figure 5. Evolution of mR distribution with Higgs boson mass hypotheses (left), and distribution

of mR for signal and different backgrounds (right), all normalized to unity, for the 0-jet category in

the eµ final state.

mH [GeV] p`,max
T [GeV] p`,min

T [GeV] m`` [GeV] ∆φ`` [◦] mT [GeV]

120 >20 >10 >40 <115 [80,120]

125 >23 >10 >43 <100 [80,123]

130 >25 >10 >45 <90 [80,125]

160 >30 >25 >50 <60 [90,160]

200 >40 >25 >90 <100 [120,200]

400 >90 >25 >300 <175 [120,400]

600 >140 >25 >500 <175 [120,600]

Table 4. Event selection requirements for the counting analysis in 0-jet and 1-jet categories. For

the 2-jet categories the lower threshold on mT is set at 30 GeV.

6.2.2 Results

The data yields and the expected yields for the SM Higgs boson signal and various back-

grounds in each of the jet categories lepton-flavor final states are listed in tables 5 and 6

for the counting analysis for representative Higgs boson mass hypotheses up to mH =

600 GeV, and for the selection used for the shape-based analyses. For a SM Higgs boson

with mH = 125 GeV, a couple of hundred signal events are expected in total, and the purity

of the counting analysis selection is around 20% in the most sensitive eµ final state. The

looser selection used for the shape-based analyses recovers a large fraction of the signal

events, and also accommodates background-dominated regions allowing the fit to impose

constraints on the background contributions.

The overall signal efficiency uncertainty is estimated to be about 20% and is dom-

inated by the theoretical uncertainty due to missing higher-order corrections and PDF

uncertainties. The total uncertainty in the background estimations in the signal region is

about 15%, dominated by the statistical uncertainty in the number of observed events in
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mH [GeV]
ggH VBF+VH Data All bkg. WW

WZ + ZZ
tt + tW W + jets Wγ(∗)

(shape) + Z/γ∗→ ``

7 TeV eµ final state, 0-jet category

120 12.1± 2.6 0.15± 0.01 85 83.1± 7.7 62.1± 6.5 1.78± 0.40 3.39± 0.83 9.7± 2.8 6.0± 2.9

125 20.1± 4.3 0.19± 0.03 105 99.0± 9.0 75.4± 7.8 2.07± 0.41 4.2± 1.0 10.8± 3.1 6.5± 3.0

130 32.1± 6.9 0.42± 0.04 112 109.6± 9.9 84.3± 8.7 2.20± 0.42 5.0± 1.2 11.8± 3.4 6.4± 3.0

160 73± 16 0.98± 0.09 59 53.4± 5.0 44.8± 4.6 0.68± 0.08 4.1± 1.0 2.6± 1.1 1.2± 1.0

200 28.3± 6.4 0.49± 0.04 85 86.6± 7.9 71.3± 7.4 1.13± 0.12 11.1± 2.5 2.9± 1.2 0.14± 0.16

400 11.0± 3.0 0.16± 0.02 58 63.0± 5.9 40.0± 4.3 0.92± 0.10 17.4± 3.9 3.3± 1.3 1.36± 0.72

600 2.2± 1.0 0.07± 0.01 16 18.7± 1.9 11.7± 1.3 0.27± 0.04 5.3± 1.2 1.07± 0.54 0.30± 0.25

(mT, m``) 50± 10 0.44± 0.03 1207 1193± 50 861± 12 22.7± 1.2 91± 20 150± 39 68± 20

(mR, ∆φR) 30.8± 8.3 1.4± 0.1 765 769± 35 570± 20 0.3± 0.1 81± 27 61.0± 9.2 11.9± 1.1

7 TeV ee/µµ final state, 0-jet category

120 5.0± 1.1 0.06± 0.01 48 50.0± 5.2 35.4± 3.8 9.7± 3.5 1.44± 0.41 2.9± 1.0 0.64± 0.39

125 10.0± 2.2 0.07± 0.01 66 64.1± 6.7 46.6± 4.9 11.4± 4.4 1.97± 0.52 3.1± 1.1 0.94± 0.53

130 16.2± 3.5 0.19± 0.02 78 71.9± 7.4 54.7± 5.7 9.7± 4.3 2.54± 0.65 4.0± 1.4 0.94± 0.53

160 59± 13 0.74± 0.07 50 45.8± 5.4 37.5± 3.9 3.9± 3.5 3.31± 0.82 0.52± 0.52 0.58± 0.37

200 24.0± 5.4 0.43± 0.04 70 68.2± 6.3 55.5± 5.8 4.5± 1.8 6.9± 1.6 1.33± 0.78 —

400 8.8± 2.4 0.12± 0.01 45 46.8± 4.2 29.5± 3.2 3.57± 0.35 11.1± 2.5 2.5± 1.0 0.16± 0.17

600 1.59± 0.72 0.05± 0.01 13 12.1± 1.2 6.57± 0.79 1.14± 0.14 3.26± 0.79 1.12± 0.53 —

7 TeV eµ final state, 1-jet category

120 4.7± 1.5 0.51± 0.05 44 36.8± 3.6 16.3± 2.8 2.05± 0.41 11.10± 0.90 6.2± 1.9 1.04± 0.58

125 7.0± 2.3 0.86± 0.09 53 44.8± 4.3 20.1± 3.4 2.37± 0.42 13.9± 1.1 6.3± 2.0 2.0± 1.2

130 11.3± 3.8 1.37± 0.13 64 50.1± 4.7 22.6± 3.8 2.56± 0.43 15.9± 1.2 6.8± 2.1 2.2± 1.2

160 33± 11 4.10± 0.40 32 35.1± 3.3 18.0± 3.0 1.10± 0.12 14.1± 1.1 1.59± 0.79 0.29± 0.24

200 13.7± 4.1 2.40± 0.23 49 65.6± 5.8 31.0± 5.2 1.28± 0.14 31.1± 2.2 2.20± 0.98 0.04± 0.04

400 7.6± 2.3 0.74± 0.07 60 71.8± 5.6 31.0± 4.7 2.07± 0.69 34.1± 2.4 4.3± 1.6 0.31± 0.25

600 1.94± 0.82 0.32± 0.03 19 24.3± 2.2 10.8± 1.7 1.36± 0.68 9.75± 0.80 2.23± 0.88 0.16± 0.17

(mT, m``) 17.1± 5.5 2.09± 0.12 589 573± 22 249.9± 4.0 26.4± 1.4 226± 14 60± 16 10.1± 2.8

(mR, ∆φR) 15.1± 4.3 3.41± 0.21 457 518± 45 239.0± 8.6 0.9± 0.3 211± 44 39.4± 5.9 3.31± 0.32

7 TeV ee/µµ final state, 1-jet category

120 1.51± 0.50 0.19± 0.02 22 23.8± 3.6 7.6± 1.3 10.3± 3.2 4.87± 0.47 0.65± 0.48 0.31± 0.26

125 2.64± 0.89 0.38± 0.04 31 28.1± 4.5 10.1± 1.7 10.5± 4.1 6.34± 0.57 0.88± 0.55 0.31± 0.26

130 5.2± 1.7 0.60± 0.06 35 31.7± 4.5 11.7± 2.0 10.7± 3.9 7.39± 0.64 1.60± 0.75 0.31± 0.26

160 24.3± 7.7 2.89± 0.28 47 34.5± 4.6 13.0± 2.2 9.5± 3.8 10.20± 0.85 1.64± 0.93 0.15± 0.16

200 9.8± 3.0 1.58± 0.15 56 60.6± 6.6 21.9± 3.7 15.9± 5.1 20.6± 1.5 2.2± 1.1 —

400 5.3± 1.6 0.51± 0.05 65 46.2± 4.2 17.6± 2.7 7.1± 2.7 19.8± 1.4 1.69± 0.80 —

600 1.27± 0.54 0.20± 0.02 16 12.4± 1.2 5.67± 0.92 0.74± 0.09 4.94± 0.46 1.02± 0.51 —

Table 5. Signal prediction, observed number of events in data, and background estimates for
√
s =

7 TeV after applying the requirements used for the H→WW counting analysis and for the shape-

based analyses (eµ final state only). The combination of statistical uncertainties with experimental

and theoretical systematic uncertainties is reported. The Z/γ∗→ `` process includes the ee, µµ and

ττ final states. The shape-based selections correspond to the mH = 125 GeV selection.

the background control regions and the theoretical uncertainties affecting the non-resonant

WW production. A summary of the systematic uncertainties is given in table 1. The

obtained WW continuum normalization uncertainty is between 3% and 12% depending on

the jet category and center-of-mass energy.
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mH [GeV]
ggH VBF+VH Data All bkg. WW

WZ + ZZ
tt + tW W + jets Wγ(∗)

(shape) + Z/γ∗→ ``

8 TeV eµ final state 0-jet category

120 51± 11 1.35± 0.14 414 347± 28 246± 23 9.16± 0.77 15.8± 3.5 40± 10 36± 12

125 88± 19 2.19± 0.22 506 429± 34 310± 29 11.4± 1.0 19.9± 4.3 48± 13 39± 13

130 133± 28 2.97± 0.28 567 473± 37 346± 32 12.3± 1.1 21.9± 4.6 50± 13 42± 13

160 370± 80 8.75± 0.71 285 239± 19 196± 18 5.94± 0.61 24.9± 5.4 5.9± 2.0 6.3± 3.5

200 150± 33 3.91± 0.33 471 394± 32 318± 30 10.6± 1.0 55± 11 7.0± 2.5 3.8± 2.5

400 62± 17 1.24± 0.12 306 326± 29 209± 22 9.9± 1.1 92± 18 9.4± 3.6 5.2± 3.1

600 12.8± 5.8 0.63± 0.06 95 108± 10 66.3± 7.2 4.04± 0.52 30.2± 6.4 3.4± 1.4 3.9± 2.8

(mT, m``) 227± 46 10.27± 0.41 5747 5760± 210 4185± 63 178.3± 9.5 500± 96 620± 160 282± 76

(mR, ∆φR) 180± 49 8.11± 0.72 3751 3460± 80 2518± 62 71± 11 398± 27 279± 42 47.0± 4.6

8 TeV ee/µµ final state 0-jet category

120 30.4± 6.6 0.69± 0.10 340 289± 30 158± 15 92± 25 7.0± 1.7 23.7± 6.4 7.7± 3.3

125 55± 12 1.10± 0.14 423 361± 37 207± 19 106± 31 9.4± 2.2 29.0± 7.8 9.3± 3.8

130 85± 18 1.81± 0.21 455 410± 42 239± 22 119± 34 11.2± 2.5 30.5± 8.1 10.7± 4.1

160 319± 69 6.78± 0.58 258 214± 19 164± 15 28.5± 9.7 14.0± 3.2 5.7± 1.9 1.72± 0.92

200 120± 27 3.31± 0.28 389 351± 27 260± 24 39.7± 8.0 41.9± 8.7 7.0± 2.3 2.9± 1.3

400 53± 15 0.97± 0.09 290 314± 34 182± 19 52± 24 72± 14 6.8± 2.6 1.28± 0.87

600 11.1± 5.0 0.52± 0.05 94 92.7± 8.2 60.1± 6.6 7.46± 0.75 21.8± 4.7 2.7± 1.2 0.52± 0.54

8 TeV eµ final state 1-jet category

120 20.0± 6.5 4.02± 0.33 182 173± 12 65.7± 8.7 10.56± 0.96 63.3± 4.0 22.4± 6.0 10.7± 4.5

125 37± 12 6.53± 0.53 228 209± 14 80± 11 12.9± 1.2 79.2± 4.6 25.9± 6.9 11.2± 4.6

130 51± 17 9.60± 0.79 262 233± 15 90± 12 13.9± 1.3 90.4± 3.7 27.8± 7.4 11.4± 4.6

160 180± 57 30.6± 2.5 226 174± 11 73.3± 9.6 7.98± 0.83 83.2± 4.7 8.7± 2.8 1.07± 0.69

200 78± 23 15.2± 1.3 421 346± 19 130± 17 11.7± 1.2 188.2± 8.4 13.6± 4.0 2.9± 2.4

400 42± 13 4.39± 0.44 363 379± 23 134± 20 12.8± 1.2 213.4± 9.1 17.5± 5.5 1.41± 0.92

600 11.2± 4.7 2.08± 0.21 112 130.4± 9.3 50.4± 7.7 5.47± 0.61 65.0± 4.2 9.1± 3.0 0.44± 0.47

(mT, m``) 88± 28 19.83± 0.81 3281 3242± 90 1268± 21 193± 11 1443± 46 283± 72 55± 14

(mR, ∆φR) 91± 26 20.4± 1.7 2536 2400± 83 792± 28 1.9± 0.6 1260± 70 222± 33 13.21± 1.33

8 TeV ee/µµ final state 1-jet category

120 8.2± 2.7 1.65± 0.16 110 90.1± 7.3 31.0± 4.2 19.0± 4.8 30.7± 2.6 6.0± 1.9 3.3± 1.7

125 15.8± 5.1 3.09± 0.28 141 111.9± 8.6 39.9± 5.4 21.2± 5.4 40.8± 3.1 6.6± 2.0 3.3± 1.7

130 23.4± 7.8 4.74± 0.42 168 125.1± 9.4 45.7± 6.1 21.4± 5.6 47.0± 3.4 8.0± 2.4 2.9± 1.6

160 103± 33 16.8± 1.5 134 113.8± 8.2 46.8± 6.2 13.8± 3.9 48.0± 3.2 3.9± 1.5 1.3± 1.0

200 48± 14 8.57± 0.77 263 240± 14 86± 11 27.5± 5.9 120.6± 6.3 6.2± 2.0 —

400 29.5± 8.9 2.96± 0.30 215 236± 21 75± 11 33± 17 122.1± 6.0 4.9± 1.7 1.08± 0.88

600 7.1± 3.0 1.29± 0.13 63 63.5± 4.8 26.6± 4.1 4.21± 0.53 31.0± 2.2 1.71± 0.79 —

Table 6. Signal prediction, observed number of events in data, and background estimates for
√
s =

8 TeV after applying the requirements used for the H→WW counting analysis and for the shape-

based analyses (eµ final state only). The combination of statistical uncertainties with experimental

and theoretical systematic uncertainties is reported. The Z/γ∗→ `` process includes the ee, µµ and

ττ final states. The shape-based selections correspond to the mH = 125 GeV selection.

Given the expected number of signal and background events, the sensitivity is limited

by the systematic uncertainties for the counting analysis. The additional information from

the distributions of the kinematic variables enables a significant improvement over the
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Figure 6. Expected and observed 95% CL upper limits on the H→WW production cross section

relative to the SM Higgs boson expectation using the counting analysis (left) and the shape-based

template fit approach (right) in the 0-jet and 1-jet categories. The shape-based analysis results

use a binned template fit to (mT, m``) for the eµ final state, combined with the counting analysis

results for the ee/µµ final states.

counting analysis. Expected and observed 95% CL upper limits on the production cross

section of the H → WW process relative to the SM prediction are shown in figure 6, for

counting and shape-based analyses. An excess of events is observed for low Higgs boson

mass hypotheses, which makes the observed limits weaker than expected.

After the template fit to the (mT, m``) distribution, the observed signal events as a

function of mT and m`` are shown in figures 7 and 8, respectively. In these figures, each

process is normalized to the fit result and weighted using the other variable. This means for

the mT distribution, the m`` distribution is used to compute the ratio of the fitted signal (S)

to the sum of signal and background (S+B) in each bin of the m`` distribution integrating

over the mT variable. Since the mT and m`` variables are essentially uncorrelated, the

procedure allows to show unbiased background subtracted data distributions. The observed

distributions show good agreement with the expected SM Higgs boson distributions.

Similarly, the fit results for the parametric approach using the (mR, ∆φR) distribution

are shown in figures 9 and 10. The fit projection of the mR variable integrated over

∆φR is shown superimposed to the data distribution. The background-subtracted data

distributions are shown weighted by the S/(S+B) ratio using the same weighting method

previously described.

The expected and observed results for the H → WW → 2`2ν analyses in the 0/1-jet

bin are summarized in table 7. The upper limits on the H→WW production cross section

are slightly higher than the SM expectation. The observed significance is 4.0 standard

deviations for the default shape-based analysis for mH = 125 GeV using a template fit to

the (mT, m``) distribution and the expected significance is 5.2 standard deviations. The

best-fit signal strength, σ/σSM, which is the ratio of the measured H → WW signal yield

to the expectation for a SM Higgs boson is 0.76 ± 0.21.
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Figure 7. The mT distribution in the eµ final state for the 0-jet and 1-jet categories combined

for observed data superimposed on signal + background events and separately for the signal events

alone (left) and background-subtracted data with best-fit signal component (right). The signal and

background processes are normalized to the result of the template fit to the (mT, m``) distribution

and weighted according to the observed S/(S+B) ratio in each bin of the m`` distribution integrating

over the mT variable. To better visualize a peak structure, an extended mT range including

mT=[40,60] GeV is shown, with the normalization of signal and background events extrapolated

from the fit result.
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Figure 8. The m`` distribution in the eµ final state for the 0-jet and 1-jet categories combined

for observed data superimposed on signal + background events, and separately for the signal events

alone (left) and background-subtracted data with best-fit signal component (right). The signal and

background processes are normalized to the result of the template fit to the (mT, m``) distribution

and weighted according to the observed S/(S+B) ratio in each bin of the mT distribution integrating

over the m`` variable.

Validation of the template fits. The two-dimensional fit procedure has been exten-

sively validated through pseudo-experiments and fits in data control regions. The former

are used to validate the fit under known input conditions, while the latter are used to
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Figure 9. Distributions of mR showing the composition of signal and backgrounds, superimposed

on the signal events alone, in the eµ final state for the 0-jet (left) and 1-jet (right) categories for√
s = 8 TeV. The signal and background processes are normalized to the result of the parametric

fit to the (mR, ∆φR) distribution.
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Figure 10. The background-subtracted data distribution for mR (left) and ∆φR (right) with the

best-fit superimposed for the 0-jet and 1-jet categories combined for
√
s = 7 and 8 TeV. The signal

and background processes are normalized to the result of the parametric fit to the (mR, ∆φR) dis-

tribution. The events are weighted according to the observed S/(S+B) ratio of the second variable.

check the accuracy of background templates and the model of correlations between sys-

tematic uncertainties.

Assuming the SM expectation, the fit performance has been evaluated with pseudo-

experiments in terms of process normalizations and nuisance parameters, both under de-

fault conditions and in the presence of input biases, which correspond to ±1 standard

deviation on either normalization or shape of the most important backgrounds. Fit re-

sults are very stable and in most cases the signal yield is determined with no significant

bias. The largest deviation is observed for input bias applied on the W + jets background
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0/1-jet analysis 95% CL limits on σ/σSM Significance σ/σSM

mH = 125 GeV expected / observed expected / observed observed

(mT, m``) template fit (default) 0.4 / 1.2 5.2 / 4.0 sd 0.76 ± 0.21

(mR, ∆φR) parametric fit 0.5 / 1.4 5.0 / 4.0 sd 0.88 ± 0.25

Counting analysis 0.7 / 1.4 2.7 / 2.0 sd 0.72 ± 0.37

Table 7. A summary of the expected and observed 95% CL upper limits on the H → WW

production cross section relative to the SM prediction, the significances for the background-only

hypothesis to account for the excess in units of standard deviations (sd), and the best-fit signal

strength σ/σSM, the ratio of measured signal yield to the expected yield at mH = 125 GeV for

the 0-jet and 1-jet categories. The eµ and ee/µµ final states are combined for these results. The

shape-based analysis results using a binned template fit or a parametric fit for the eµ final state

are combined with counting analysis results for the ee/µµ final states. The binned template fit to

(mT, m``) is used to obtain the default results.

normalization, with an average shift no larger than 10% which is more than three times

smaller than the uncertainty in the signal yield. All nuisance parameter values and un-

certainties resulting from the fit performed on data are compatible with expectations from

pseudo-experiments. The most constrained parameters are related to the WW (and, sec-

ondarily, top-quark) background, as the fit can gauge it from a large signal-free region. It

is therefore crucial to verify with data that the WW correlation model is correct.

For the purpose of checking the WW model a dedicated test is developed. First, the

signal-free WW control sample is separated into two non-overlapping regions with a similar

number of events. Then, each region is fitted separately. In this fit, only the WW back-

ground is allowed to change. In order to avoid fluctuations due to non-WW components,

all other processes are fixed to the values obtained in the fit performed in the full range.

The first region (CR1, high mT) is defined by requiring 120 GeV < mT < 280 GeV and

12 GeV < m`` < 200 GeV, while the second region (CR2, high m``) is defined by requiring

60 GeV < mT < 120 GeV and 60 GeV < m`` < 200 GeV. The WW normalization and shape

obtained from the fit in one region are extrapolated to the other region and compared to

data. Figure 11 shows the mT and m`` distributions in the control regions CR1 and CR2

using fit results from the other control region. The uncertainty band is evaluated from

pseudo-experiments. In each bin of the two-dimensional distribution, the uncertainty in

the background processes is obtained from the fit in the full range. All distributions show

generally good agreement with data, indicating that the WW fit model is not biased.

Fits are performed in two types of control samples, one defined by b-tagged jets and

the other by two leptons with the same charge. The first sample is dominated by top-quark

processes, while the second sample is dominated by the W + jets and Wγ(∗) processes. In

both cases the background yields agree with the expectations and no signal component is

found. Distributions of the discriminating variables in some of these control regions are

shown in figure 12.

In summary, the templates for all main backgrounds (WW, tt + tW, W + jets, and

Wγ(∗)) have been tested in dedicated control regions with data. Both the fit procedure

and the background estimations are found to be very robust.
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Figure 11. Distributions of mT (left) and m`` (right) extrapolated to the control regions CR1

(top) and CR2 (bottom) in the 0-jet bin category, after fitting the other control region.

Finally, the template shape for the dominant qq→WW background process has been

cross-checked by replacing the template histogram obtained from the default generator

by another one and rederiving the shape uncertainty templates that are allowed to vary

in the fit. Table 8 summarizes the results of this procedure using MadGraph (a priori

default used in the analysis), mc@nlo, and powheg. The signal significance, and the

best-fit signal strength are found to be consistent with one another for the three different

qq→WW template models tested.

6.3 The two-jet VBF tag

The second-largest production mode for the SM Higgs boson is through VBF, for which

the cross section is approximately an order of magnitude smaller than that of the gluon

fusion process. In this process two vector bosons are radiated from initial-state quarks

and produce a Higgs boson at tree level. In the scattering process, the two initial-state
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Figure 12. Distributions of the dilepton mass (left) in the same-charge dilepton control region

in the 0-jet category and the transverse mass (right) in the top-tagged control region in the 1-jet

category of the eµ final state.

qq→WW 95% CL limits on σ/σSM Significance σ/σSM

generator expected / observed expected / observed observed

MadGraph (default) 0.4 / 1.2 5.2 / 4.0 sd 0.76 ± 0.21

mc@nlo 0.4 / 1.2 5.3 / 4.2 sd 0.82 ± 0.24

powheg 0.4 / 1.2 5.1 / 3.9 sd 0.74 ± 0.21

Table 8. A summary of the expected and observed 95% CL upper limits on the H → WW

production cross section relative to the SM prediction, significances in units of standard deviations

(sd), and the best-fit value of σ/σSM for the SM Higgs boson with a mass of 125 GeV for the 0-jet

and 1-jet categories using the template fit to (mT, m``), where three different generators have been

used to model the qq→WW background process.

partons may scatter at a polar angle from the beam axis large enough to be detected as

additional jets in the signal events. Furthermore, these two jets, being remnants of the

incoming proton beams, feature the distinct signature of having high momentum and large

separation in pseudorapidity, hence sizeable invariant mass, with an absence of additional

hadronic activity in the central rapidity region due to the lack of color exchange between

the parent quarks. By exploiting this specific signature, VBF searches typically have a good

signal-to-background ratio. In this analysis the signal-to-background ratio approaches one

after all the selection criteria are applied.

To select events with the characteristics of the VBF process, the two highest pT jets

in the event are required to have pseudorapidity separation of |∆ηjj | > 3.5 and to form an

invariant mass mjj > 500 GeV. Events with an additional jet situated in the pseudorapidity

range between the two leading jets are rejected. Both leptons are also required to be within

the pseudorapidity region defined by the two highest pT jets.
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6.3.1 Analysis strategy

Given the small event yield for the 2-jet category with VBF tag with the currently avail-

able datasets, the signal extraction uses a template fit to a single kinematic variable with

appropriately-sized bins. The dilepton mass, m``, has been chosen for its simple definition

and discrimination power, and also because the hadronic information is already extensively

used in the event selection. The counting analysis is pursued for the same-flavor category,

and also used as a cross-check of the shape-based approach for the different-flavor final state.

Since the fit to data uses only the m`` distribution, the events are preselected to

satisfy mT smaller than the Higgs boson mass of the given hypothesis. For Higgs boson

mass hypotheses of 250 GeV and above, p`,max
T is required to be greater than 50 GeV. The

m`` template has 14 bins for the 8 TeV sample and 10 bins for the 7 TeV sample, covering

the range from 12 GeV to 600 GeV.

For the counting analysis, the same requirements as the 0-jet and 1-jet analyses are

applied, as summarized in table 4, except for the lowermT threshold which is kept at 30 GeV

for all Higgs boson mass hypotheses. The results of the same-flavor counting analysis are

combined with the results of the different-flavor shape analysis to provide the result for

this category.

6.3.2 Results

The data yields and the expected yields for the SM Higgs boson signal and various back-

grounds in each of the lepton-flavor final states for the VBF analysis are listed in tables 9

and 10, for several representative Higgs boson mass hypotheses. For a Higgs boson with

mH = 125 GeV, a few signal events are expected to be observed with a signal-to-background

ratio of about one. The contribution to the VBF selection from gluon fusion Higgs bo-

son production after all selection requirements is approximately 20% of the total signal

yield [87].

Figure 13 shows the comparison of m`` between the prediction and the data for a

Higgs boson mass of 125 GeV after the selection for the shape-based analysis. The 95%

CL observed and median expected upper limits on the production cross section of the

H → WW process are shown in figure 14. Limits are reported for both counting and

shape-based analyses. The observed (expected) signal significance for the shape-based

approach is 1.3 (2.1) standard deviations for a SM Higgs boson with mass of 125 GeV. The

observed signal strength for this mass is σ/σSM = 0.62+0.58
−0.47. A summary of the results for

mH = 125 GeV is shown in table 11.

6.4 The two-jet VH tag

The analysis of the associated production of a SM Higgs boson with a W or a Z boson in the

dilepton final state selects events with two centrally produced (|η| < 2.5) jets from the decay

of the associated vector boson. The dijet invariant mass is required to be consistent with

the parent boson mass, i.e. in the range 65 GeV < mjj < 105 GeV, and the pseudorapidity

separation between the two jets within |∆ηjj | < 1.5. These requirements ensure no overlap

of this selection with the VBF analysis for which a pair of forward-backward jets is required.

Additionally, for mH < (≥) 180 GeV, events are required to have 60 (70) GeV < mT < mH.
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mH [GeV] ggH VBF+VH Data All bkg. WW
VZ + Wγ(∗)

tt + tW W + jets
+ Z/γ∗→ ``

7 TeV eµ final state, 2-jets category, VBF tag

120 0.07± 0.03 0.44± 0.06 0 0.50± 0.20 0.08± 0.03 0.15± 0.14 0.16± 0.07 0.10± 0.09

125 0.12± 0.04 0.73± 0.10 0 0.66± 0.23 0.12± 0.05 0.15± 0.15 0.20± 0.08 0.19± 0.14

130 0.13± 0.05 1.05± 0.14 0 0.76± 0.24 0.18± 0.08 0.17± 0.15 0.22± 0.09 0.19± 0.14

160 0.63± 0.21 3.01± 0.40 0 0.46± 0.13 0.17± 0.07 0.02± 0.01 0.27± 0.11 —

200 0.47± 0.14 2.42± 0.32 2 1.73± 0.42 0.58± 0.22 0.07± 0.02 0.84± 0.31 0.24± 0.18

400 0.34± 0.11 0.87± 0.11 4 2.03± 0.54 0.82± 0.36 0.05± 0.02 1.00± 0.37 0.16± 0.14

600 0.11± 0.04 0.31± 0.04 1 0.73± 0.22 0.35± 0.16 0.03± 0.01 0.27± 0.11 0.08± 0.10

125 (shape) 0.19± 0.09 1.05± 0.13 4 5.81± 0.96 0.92± 0.28 0.08± 0.01 3.47± 0.87 0.57± 0.24

7 TeV ee/µµ final state, 2-jets category, VBF tag

120 0.04± 0.02 0.14± 0.02 1 0.97± 1.02 0.08± 0.05 0.77± 1.02 0.13± 0.06 —

125 0.02± 0.01 0.26± 0.04 1 1.9± 2.1 0.10± 0.07 1.6± 2.1 0.14± 0.06 —

130 0.10± 0.04 0.42± 0.06 1 1.8± 1.9 0.14± 0.08 1.5± 1.9 0.16± 0.07 —

160 0.46± 0.16 1.87± 0.25 1 0.57± 0.34 0.22± 0.11 0.20± 0.31 0.15± 0.06 —

200 0.21± 0.07 1.29± 0.17 2 2.4± 2.1 0.42± 0.17 1.4± 2.0 0.44± 0.18 0.16± 0.14

400 0.18± 0.06 0.46± 0.06 1 0.58± 0.16 0.24± 0.11 0.01± 0.01 0.33± 0.12 —

600 0.06± 0.02 0.18± 0.02 0 0.24± 0.09 0.10± 0.04 0.01± 0.01 0.14± 0.07 —

Table 9. Signal prediction, observed number of events in data, and background estimates for√
s = 7 TeV after applying the H → WW VBF tag counting analysis selection requirements and

the requirements used for the shape-based approach (eµ final state only). The combined statistical,

experimental, and theoretical systematic uncertainties are reported. The Z/γ∗→ `` process includes

the dimuon, dielectron and ditau final state. The VZ background denotes the contributions from

WZ and ZZ processes.

6.4.1 Analysis strategy

The default analysis in the dilepton 2-jets category with VH tag is performed using a

counting analysis approach because this category is statistically limited for the current

datasets and the expected signal yield is relatively small. Further mH-dependent selections

are applied to suppress top-quark processes, Z/γ∗→ ``, and WW contamination based

on m`` and angular separation between the two leptons (∆R``). The lower threshold

on m`` is raised to m`` > 20 GeV for mH > 135 GeV, and the upper bound is m`` <

60 GeV for mH < 180 GeV and m`` < 80 GeV for the higher Higgs boson masses. The

maximum ∆R`` requirement varies between 1.5 and 2.0 from the lowest to the highest

mass hypotheses tested.

As demonstrated for other analyses previously described, the sensitivity to the Higgs

boson signal in this category is expected to gain from a fit to a kinematic distribution,

especially when the integrated luminosity increases. The method has been tested in the

eµ final state using the invariant mass of the dilepton system. The selection that is used

for the counting analysis is simplified with m`` < 200 GeV and ∆R`` < 2.5 for the shape-

based analysis. A total of 9 bins in m`` have been defined between the lower threshold

and 200 GeV.
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mH [GeV] ggH VBF+VH Data All bkg. WW
VZ + Wγ(∗)

tt + tW W + jets
+ Z/γ∗→ ``

8 TeV eµ final state, 2-jets category, VBF tag

120 0.43± 0.18 2.06± 0.28 2 3.34± 0.55 0.75± 0.22 0.36± 0.12 1.75± 0.42 0.48± 0.26

125 0.89± 0.35 3.41± 0.47 2 4.38± 0.81 0.86± 0.24 0.49± 0.14 2.67± 0.73 0.36± 0.22

130 1.55± 0.54 5.24± 0.73 5 4.87± 0.84 1.20± 0.30 0.56± 0.15 2.74± 0.74 0.36± 0.22

160 3.5± 1.1 14.8± 2.0 3 3.98± 0.78 1.21± 0.29 0.22± 0.10 2.55± 0.71 —

200 2.60± 0.74 12.0± 1.6 10 11.2± 1.8 2.96± 0.57 0.64± 0.17 7.2± 1.6 0.39± 0.31

400 1.82± 0.55 4.11± 0.57 9 12.1± 2.1 4.3± 1.3 0.47± 0.14 7.0± 1.6 0.30± 0.23

600 0.57± 0.23 1.70± 0.23 3 4.8± 1.2 2.02± 0.65 0.12± 0.07 2.4± 1.0 0.29± 0.19

125 (shape) 1.39± 0.62 4.80± 0.61 24 24.8± 3.2 4.5± 1.3 0.48± 0.08 14.0± 2.8 2.45± 0.57

8 TeV ee/µµ final state, 2-jets category, VBF tag

120 0.29± 0.13 1.23± 0.17 11 6.4± 1.9 0.52± 0.16 4.1± 1.8 1.12± 0.31 0.66± 0.38

125 0.32± 0.15 1.91± 0.27 12 6.6± 2.0 0.56± 0.17 4.2± 1.9 1.17± 0.31 0.66± 0.38

130 0.77± 0.29 2.99± 0.42 12 6.3± 2.0 0.56± 0.17 3.8± 1.9 1.26± 0.33 0.65± 0.38

160 1.62± 0.58 10.2± 1.4 7 5.4± 2.9 0.62± 0.18 3.4± 2.8 1.36± 0.35 0.09± 0.08

200 1.25± 0.39 6.61± 0.92 13 10.2± 2.5 1.58± 0.35 5.2± 2.4 2.97± 0.64 0.47± 0.31

400 1.25± 0.39 3.03± 0.42 13 8.1± 1.6 1.99± 0.63 0.10± 0.03 5.8± 1.5 0.19± 0.21

600 0.42± 0.17 1.43± 0.20 2 3.6± 1.0 0.95± 0.32 0.06± 0.03 2.47± 0.98 0.14± 0.12

Table 10. Signal prediction, observed number of events in data, and background estimates

for
√
s = 8 TeV after applying the H → WW VBF tag counting analysis selection requirements

and the requirements used for the shape-based approach (eµ final state only). The combination

of statistical uncertainties with experimental and theoretical systematic uncertainties is reported.

The Z/γ∗→ `` process includes the dimuon, dielectron and ditau final state. The VZ background

denotes the contributions from WZ and ZZ processes.

VBF analysis 95% CL limits on σ/σSM Significance σ/σSM

mH = 125 GeV expected / observed expected / observed observed

Shape-based (default) 1.1 / 1.7 2.1 / 1.3 sd 0.62+0.58
−0.47

Counting analysis 1.1 / 0.9 2.0 / — −0.35+0.43
−0.45

Table 11. A summary of the expected and observed 95% CL upper limits on the H → WW

production cross section relative to the SM prediction, the significances for the background-only

hypothesis to account for the excess in units of standard deviations (sd), and the best-fit σ/σSM
at mH = 125 GeV in the VBF analysis. The shape-based analysis results use the one-dimensional

binned template fit to m`` distribution for the eµ final state, combined with counting analysis

results for the ee/µµ final states. The difference in the observed results between the two analyses

is due to the large statistical fluctuations in the currently available data sample.

6.4.2 Results

The data yields and the expected yields for the Higgs boson signal and various backgrounds

in each of the categories for the VH analysis are listed in tables 12 and 13. For a Higgs boson

with mH = 125 GeV, a few signal events are expected with a signal-to-background ratio of
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Figure 13. The m`` distributions for the data and background predictions for 7 TeV (left) and

8 TeV (right) analyses in the different-flavor final state for the 2-jet category with VBF tag. Se-

lection criteria correspond to a Higgs boson mass of 125 GeV for the shape-based analysis. The

uncertainty bands correspond to the sum of the statistical and systematic uncertainties in the

background processes. The expected contribution for a Higgs boson signal with mH = 125 GeV

(red open histogram) is also shown, both separately and stacked with the background histograms.

For illustration purposes the region between 250 and 600 GeV is not shown in the figures, but is

used in the measurement.
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Figure 14. Expected and observed 95% CL upper limits on the H→WW production cross section

relative to the SM Higgs boson expectation using the counting analysis (left), and shape-based

template fit approach (right) in the 2-jet category with VBF tag. The shape-based analysis results

use the one-dimensional binned template fit to m`` distribution for the eµ final state, combined

with counting analysis inputs for the ee/µµ final states.

approximately 8%. Among the selected signal events, the contribution of the associated

production mode is ∼40%, and the majority of the remaining signal originates from gluon

fusion process.
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mH [GeV] ggH VBF+VH Data All bkg. WW
WZ + ZZ

tt + tW W + jets
+Z/γ∗→ ``

7 TeV eµ final state, 2-jets category, VH tag

120 0.20± 0.07 0.22± 0.04 4 6.6± 1.3 1.66± 0.40 0.67± 0.21 1.49± 0.90 1.12± 0.52

125 0.34± 0.11 0.42± 0.06 4 7.1± 1.4 1.80± 0.43 0.67± 0.21 1.9± 1.1 1.12± 0.52

130 0.44± 0.15 0.42± 0.06 5 7.9± 1.7 2.01± 0.47 0.68± 0.21 2.4± 1.4 1.17± 0.53

160 1.78± 0.59 0.95± 0.12 11 9.7± 1.5 3.02± 0.69 0.73± 0.21 3.2± 1.1 1.12± 0.47

200 0.89± 0.30 0.48± 0.06 12 10.5± 1.5 3.42± 0.78 0.55± 0.15 3.9± 1.1 0.98± 0.41

7 TeV ee/µµ final state, 2-jets category, VH tag

120 0.05± 0.02 0.04± 0.01 2 5.8± 1.3 0.59± 0.16 1.29± 0.33 3.9± 1.3 0.06± 0.05

125 0.12± 0.04 0.11± 0.03 2 7.5± 1.8 0.65± 0.18 1.62± 0.44 5.2± 1.7 0.06± 0.05

130 0.20± 0.07 0.15± 0.03 3 8.9± 2.0 0.85± 0.22 2.23± 0.67 5.8± 1.9 0.04± 0.03

160 0.89± 0.31 0.56± 0.08 5 12.2± 2.7 1.45± 0.35 2.95± 0.83 7.8± 2.6 —

190 0.62± 0.21 0.33± 0.05 6 13.3± 2.8 1.81± 0.43 3.39± 0.86 8.1± 2.7 —

Table 12. Signal prediction, observed number of events in data, and background estimates at
√
s =

7 TeV in the VH counting analysis. The combination of statistical uncertainties with experimental

and theoretical systematic uncertainties is reported.

mH [GeV] ggH VBF+VH Data All bkg. WW
WZ + ZZ

tt + tW W + jets
+Z/γ∗→ ``

8 TeV eµ final state, 2-jets category, VH tag

120 1.67± 0.57 1.23± 0.18 51 40.8± 5.0 8.3± 1.9 2.22± 0.37 22.1± 4.3 6.1± 1.3

125 2.32± 0.79 1.87± 0.25 55 42.8± 5.1 9.2± 2.1 2.31± 0.37 23.0± 4.4 6.2± 1.3

130 2.76± 0.94 2.86± 0.37 58 45.5± 5.5 9.8± 2.3 2.42± 0.38 24.5± 4.7 6.7± 1.5

160 11.2± 3.7 6.97± 0.75 93 79.6± 9.9 15.7± 3.5 3.24± 0.44 47.8± 8.9 10.8± 2.3

200 8.0± 2.6 3.91± 0.39 126 106± 13 23.6± 5.3 4.92± 0.68 60± 11 14.9± 3.1

125 (shape) 2.86± 0.92 2.30± 0.18 136 129± 15 28.3± 6.2 8.2± 1.3 67± 13 23.9± 4.8

8 TeV ee/µµ final state, 2-jets category, VH tag

120 0.76± 0.27 0.85± 0.14 74 76.6± 7.2 5.5± 1.3 48.9± 6.1 13.6± 3.1 7.6± 1.6

125 1.75± 0.60 0.94± 0.16 79 81.0± 7.2 6.3± 1.5 51.0± 5.9 14.4± 3.2 8.3± 1.8

130 2.13± 0.74 1.69± 0.25 83 88.0± 7.5 7.1± 1.7 55.8± 6.2 15.6± 3.5 8.6± 1.8

160 8.9± 3.0 5.06± 0.58 96 100± 11 12.7± 2.8 42.8± 8.3 33.5± 6.4 10.5± 2.2

200 4.4± 1.5 2.35± 0.25 131 134± 13 18.8± 4.2 52.0± 7.9 49.6± 9.5 12.0± 2.5

Table 13. Signal prediction, observed number of events in data, and background estimates at
√
s =

8 TeV in the VH counting and shape-based analyses. The combination of statistical uncertainties

with experimental and theoretical systematic uncertainties is reported.

The m`` distribution at
√
s = 8 TeV used as an input to the template fit in the eµ

final state after the corresponding selection for mH = 125 GeV is shown in figure 15. The

shape-based analysis has been tested and compared with the default counting analysis. No

shape-based analysis was developed at
√
s = 7 TeV because of very limited statistics.

The 95% CL observed and median expected upper limits on the production cross

section of the H → WW process are shown in figure 16. Limits are reported for both

counting and shape-based analyses. For the latter, the different-flavor final states are

combined with the same-flavor counting analysis.
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Figure 15. The m`` distribution for mH = 125 GeV used as input to the template fit in the eµ

final state for the VH analysis after the corresponding selection at
√
s = 8 TeV.
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Figure 16. Expected and observed 95% CL upper limits on the H → WW production cross

section relative to the SM Higgs boson expectation using the counting analysis (left), and the

shape-based template fit approach (right) in the VH category. The shape-based analysis results

use the one-dimensional binned template fit to the m`` distribution for the eµ final state, combined

with counting analysis results for the ee/µµ final states.

The expected and observed results for the VH analysis are summarized in table 14.

The upper limit on the H → WW production cross section using this category is about

five times the SM expectation, and the observed (expected) significance of the signal is 0.2

(0.6) standard deviations.

– 32 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
6

VH analysis 95% CL limits on σ/σSM Significance σ/σSM

mH = 125 GeV expected / observed expected / observed observed

Counting analysis (default) 4.1 / 4.5 0.6 / 0.2 sd 0.40+2.03
−1.93

Shape-based 4.0 / 4.7 0.6 / 0.4 sd 0.73+2.04
−1.85

Table 14. A summary of the expected and observed 95% CL upper limits on the H → WW

production cross section relative to the SM prediction, the significances for the background-only

hypothesis to account for the excess in units of standard deviations (sd), and the best-fit σ/σSM
at mH = 125 GeV for the VH analyses. The shape-based analysis results use the one-dimensional

binned template fit to the m`` distribution for the eµ final state, combined with counting analysis

results for the ee/µµ final states.

WH→ 3`3ν category ZH→ 3`ν+ 2 jets category

Number of jets =0 ≥2

Default analysis binned shape-based

Alternative analysis counting

Main backgrounds WZ, non-prompt leptons

Table 15. A summary of the selection requirements and analysis approach, as well as the most

important background processes in the trilepton categories. The same-flavor final states make use

of a counting analysis approach in all categories.

7 Final states with three charged leptons

Events with exactly three identified charged leptons also provide sensitivity to the VH

production mode. Three charged-lepton candidates with total charge equal to ±1 are

required, with pT >20 GeV for the leading lepton and pT >10 GeV for the other leptons.

Events with any further identified lepton passing the selection criteria defined in section 4

and pT >10 GeV are rejected. Two analyses have been developed for this topology. The

first analysis selects triboson (VVV, V = W/Z) candidates in which all bosons decay

leptonically, yielding an experimental signature of three isolated high-pT leptons, moderate

Emiss
T , and little hadronic activity. The second analysis requires one opposite-sign same-

flavor lepton pair compatible with a Z boson decay and two jets compatible with a hadronic

W-boson decay, making the analysis sensitive to ZH production. A brief summary of the

analyses in the trilepton categories is shown in table 15.

7.1 The WH → 3`3ν category

7.1.1 Analysis strategy

Signal candidates in this category are split into two final states to improve the sensitivity:

all events that have lepton pairs with the opposite charge and the same flavor are classified

as OSSF final state, all others have lepton pairs with the same charge and the same flavor,

and are classified as SSSF final state. While 1/4 of the events are selected in the SSSF
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final state, the expected background is rather small since physics processes leading to this

final state have small cross sections.

To remove the remaining Z + jets background events, the minimum of full Emiss
T and

track Emiss
T (min-MET) is required to be above 40 (30) GeV in the OSSF (SSSF) final

state. Since the Emiss
T resolution is degraded by pileup, the minimum of the two variables

increases the background rejection for a given signal efficiency. For this analysis, Emiss∠
T is

not used since having three leptons in the event degrades the performance of such variable.

To further suppress the top-quark background, events are rejected if there is at least one jet

with pT > 40 GeV, or if the event is top-tagged as described in section 4. The WZ→ 3`ν

background is largely reduced by requiring that all the OSSF lepton pairs have a dilepton

mass at least 25 GeV away from the Z mass peak. To reject the Vγ(∗) background, the

dilepton mass of all opposite-sign lepton pairs is required to be greater than 12 GeV. In

addition to all the above requirements, the signal region is defined by requiring that the

smallest dilepton mass m`` is less than 100 GeV, and that the smallest distance between

the opposite-sign leptons ∆R`+`− is less than 2.

Finally, a shape-based analysis is carried out as the main analysis because of its su-

perior sensitivity with respect to the counting analysis. In this analysis the requirement

on ∆R`+`− is not applied, and instead that variable is used as the discriminant. Tests

have shown this variable to provide the best discrimination between signal and background

events, both in terms of expected limits and of expected significance.

7.1.2 Background estimation

There are five main background processes in this category: WZ→ 3`ν, ZZ→ 4`, tribosons,

Zγ, and processes with non-prompt leptons. The first four contributions are estimated

from simulation, with corrections from data control samples, while the non-prompt lepton

background is solely evaluated from data.

The WZ→ 3`ν decay is the main background in the analysis. The overall normaliza-

tion is taken from data using trilepton events, where one of the same-flavor opposite-sign

lepton pairs has a mass less than 15 GeV away from the Z boson mass peak. All other

selection requirements are applied, except the ∆R`+`− and the upper m`` requirements.

The sample is completely dominated by this process, and for mH = 125 GeV less than one

signal event is expected in that region. The uncertainty in the normalization, which mainly

arises from the statistics of the control sample, is 5–10%.

The ZZ → 4` background is reduced by the Emiss
T requirement and the veto of events

containing a fourth lepton. The prediction from the simulation for this process is used

without any further correction. The triboson background processes are also estimated

with simulation.

The Zγ background is normalized in data using events in which the trilepton mass

is compatible with the Z mass. The number of selected events for this background after

the Emiss
T requirements is very small. A normalization uncertainty of 30% is assigned from

studies in events with m3` compatible with mZ.

The non-prompt lepton backgrounds are estimated as explained in section 6, with the

only difference that the contributions are derived from a control sample in data in which
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Process Normalization Shape Control/template sample

WZ data simulation events with m`` close to mZ

Zγ data simulation events with m3` close to mZ

Non-prompt leptons data data events with loosely identified leptons

Table 16. Summary of the estimation of the background processes in the WH → 3`3ν cate-

gory in cases where data events are used to estimate either the normalization or the shape of the

discriminant variables. A brief description of the control/template sample is given.

two leptons pass the standard criteria and the third one does not, but satisfies a relaxed

set of requirements (loose selection), resulting in a “two-pass and one-fail” sample. The

efficiency for a jet that satisfies the loose lepton selection to pass the tight selection, εpass, is

determined using an independent dataset dominated by non-prompt leptons from multijet

events. Finally, a scale factor of 0.78± 0.31 is obtained by comparing the prediction from

this method and a trilepton data sample in which a b-tagged jet is required. This last

sample is heavily enriched in top-quark processes and allows to calibrate the background

prediction. The systematic uncertainty from the efficiency determination dominates the

overall uncertainty of this method, which is estimated to be 40%.

A summary of the estimation of the background processes in the WH→ 3`3ν category

in cases where data events are used to estimate either the normalization or the shape of

the discriminant variables is shown in table 16.

7.1.3 Results

The observed number of data events and the expected number of signal and background

events at different stages of the analysis are shown in table 17. The signal contribution

from WH production with H → ττ decay to the total number of expected Higgs boson

events decreases from 55% to 10% in the mass range 110–130 GeV, and it is about 15% for

mH = 125 GeV. The ∆R`+`− distributions are shown in figure 17.

No significant excess of events is observed with respect to the background prediction,

and the 95% CL upper limits are calculated for the production cross section of the WH→
3`3ν process with respect to the SM Higgs boson expectation. The expected and observed

upper limits are shown in figure 18. Since the analysis is independent of mH, and the shape

of the ∆R`+`− distribution has a mild dependence on mH, smooth changes are expected for

different Higgs boson mass hypotheses. The observed (expected) upper limit at the 95%

CL is 3.8 (3.7) times larger than the SM expectation for mH = 125 GeV for the counting

analysis. For the shape-based analysis, the observed (expected) upper limit at the 95% CL

is 3.3 (3.0) times larger than the SM expectation for mH = 125 GeV. A summary of the

results for mH = 125 GeV is shown in table 18.

7.2 The ZH → 3`ν+2 jets category

7.2.1 Analysis strategy

To select ZH events, the first step is to identify the leptonic decay of the Z boson. Events

are required to have one pair of opposite-sign same-flavor leptons for which |m`` −mZ| <
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Selection stage
WH WH

Data All bkg. WZ Non-prompt
H→ ττ H→WW

7 TeV SSSF final state, WH→ 3`3ν category

3 lepton requirement 0.16 ± 0.02 0.42 ± 0.01 12 12.2 ± 1.3 1.95 ± 0.10 9.9 ± 1.3

Min-MET > 30 GeV 0.09 ± 0.01 0.31 ± 0.01 9 8.5 ± 1.1 1.29 ± 0.08 7.1 ± 1.1

Z removal 0.09 ± 0.01 0.31 ± 0.01 9 8.5 ± 1.1 1.29 ± 0.08 7.1 ± 1.1

Top-quark veto 0.07 ± 0.01 0.24 ± 0.01 2 1.90 ± 0.44 0.82 ± 0.06 1.04 ± 0.43

∆R`+`− & m`` 0.04 ± 0.01 0.22 ± 0.03 2 0.79 ± 0.20 0.53 ± 0.07 0.23 ± 0.19

7 TeV OSSF final state, WH→ 3`3ν category

3 lepton requirement 0.52 ± 0.03 1.32 ± 0.01 869 863 ± 12 475.2 ± 1.5 233.9 ± 6.8

Min-MET > 40 GeV 0.23 ± 0.02 0.81 ± 0.01 234 238.5 ± 2.5 207.3 ± 1.0 22.8 ± 2.3

Z removal 0.14 ± 0.02 0.61 ± 0.01 25 25.7 ± 1.5 13.62 ± 0.26 11.4 ± 1.5

Top-quark veto 0.10 ± 0.01 0.48 ± 0.01 8 9.76 ± 0.66 7.34 ± 0.19 1.96 ± 0.63

∆R`+`− & m`` 0.07 ± 0.01 0.45 ± 0.05 5 6.51 ± 0.84 4.96 ± 0.48 1.18 ± 0.69

8 TeV SSSF final state, WH→ 3`3ν category

3 lepton requirement 0.72 ± 0.08 1.64 ± 0.21 71 83.7 ± 3.0 7.88 ± 0.30 66.8 ± 2.9

Min-MET > 30 GeV 0.41 ± 0.06 1.21 ± 0.18 43 60.2 ± 2.5 5.16 ± 0.24 48.4 ± 2.5

Z removal 0.41 ± 0.06 1.21 ± 0.18 43 60.2 ± 2.5 5.16 ± 0.24 48.4 ± 2.5

Top-quark veto 0.29 ± 0.05 1.02 ± 0.17 7 10.41 ± 0.97 2.84 ± 0.18 6.60 ± 0.95

∆R`+`− & m`` 0.23 ± 0.05 1.00 ± 0.20 6 6.9 ± 2.0 1.71 ± 0.16 4.6 ± 2.0

8 TeV OSSF final state, WH→ 3`3ν category

3 lepton requirement 1.95 ± 0.12 6.08 ± 0.41 4340 4224 ± 21 2042.7 ± 4.8 1369.0 ± 13

Min-MET > 40 GeV 0.91 ± 0.09 3.47 ± 0.30 1137 1140.9 ± 6.0 900.0 ± 3.2 149.9 ± 4.9

Z removal 0.56 ± 0.07 2.69 ± 0.27 153 155.3 ± 3.4 59.1 ± 0.8 79.9 ± 3.3

Top-quark veto 0.35 ± 0.05 2.14 ± 0.23 45 47.7 ± 1.3 34.9 ± 0.6 9.6 ± 1.2

∆R`+`− & m`` 0.30 ± 0.06 2.10 ± 0.34 33 33.2 ± 3.4 24.0 ± 1.4 7.2 ± 3.1

Table 17. Signal prediction for the SM Higgs boson with mH = 125 GeV, number of observed

events in data, and estimated background at different stages of the WH → 3`3ν analysis. Only

statistical uncertainties in the yields are reported in the first four rows of the selection stages,

while all systematic uncertainties are considered in the last row. The column labeled as “non-

prompt” is the combination of the backgrounds from Z + jets and top-quark decays. ZZ, Vγ(∗),

and triboson processes are not reported separately since since they constitute a small fraction of

the total background. The 3-lepton selection stage also includes the m`` > 12 GeV requirement.

15 GeV. If there is more than one possible combination, the pair with an invariant mass

closest to the Z mass is chosen. To reject the Vγ(∗) background, the dilepton mass of all

opposite-sign lepton pairs is required to be greater than 12 GeV. To reject possible contri-

butions from Z bosons decaying to 4`, with one of the leptons not identified, the invariant

mass of the system of the three leptons is required to be |m``` −mZ| ≥ 10 GeV. As one of

the W bosons in this category decays hadronically, events are required to have at least two
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Figure 17. The ∆R`+`− distribution, after applying all other requirements for the WH → 3`3ν

analysis, in the SSSF final state at 7 TeV (top left), the OSSF final state at 7 TeV (top right), the

SSSF final state at 8 TeV (bottom left), and the OSSF final state at 8 TeV (bottom right). The

legend entry labeled as “non-prompt” is the combination of the backgrounds from Z + jets and

top-quark decays.

WH→ 3`3ν analysis 95% CL limits on σ/σSM Significance σ/σSM

mH = 125 GeV expected / observed expected / observed observed

Shape-based (default) 3.0 / 3.3 0.7 / 0.5 sd 0.57+1.28
−0.97

Counting analysis 3.7 / 3.8 0.6 / 0.2 sd 0.37+1.65
−1.52

Table 18. A summary of the expected and observed 95% CL upper limits on the signal production

cross section relative to the SM prediction, the significances for the background-only hypothesis to

account for the excess in units of standard deviations (sd), and the best-fit σ/σSM at mH = 125 GeV

for the WH→ 3`3ν category.
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Figure 18. Expected and observed 95% CL upper limits on the signal production cross section

relative to the SM Higgs boson expectation using the counting analysis (left) and the shape-based

template fit approach (right) in the WH→ 3`3ν category.

jets. The requirements described above define the preselection. The transverse component

of the leptonically decaying W boson is reconstructed from the remaining lepton, that is not

used to reconstruct the Z boson, and Emiss
T . Events are further required to have the trans-

verse mass mT of the leptonically decaying W boson to be less than 85 GeV, where m`ν
T

is defined as m`ν
T =

√
(pT,l + pT,ν)2 − (px,l + px,ν)2 − (py,l + py,ν)2, where the transverse

momentum components of the neutrino are approximated by the transverse components of
~Emiss
T . Furthermore, the invariant mass of the jet pair is required to be compatible with a

W decay: |mjj −mW| ≤ 60 GeV. The angle ∆φ(`ν, jj) between the system of the lepton

and the neutrino, approximated by ~Emiss
T , and the system of the two jets in the transverse

plane must be smaller than 1.8 radians. The selection criteria have been optimized for the

best S/
√
B using simulated samples for a SM Higgs boson signal with mH = 125 GeV.

The criteria listed above comprise the selection for both a counting and a shape-

based analysis in this category. For the shape-based analysis, which achieves better ex-

pected sensitivity than the counting analysis, the transverse mass of the Higgs boson

is reconstructed using the two jets, the ~Emiss
T and the lepton from the W boson de-

cay, m`ν2j
T =

√
(
∑
pT)2 − (

∑
px)2 − (

∑
py)2, where in each sum, all the final-state ob-

jects from the Higgs boson decay are included. Therefore
∑
pT is given by

∑
pT =

pT,` + pT,ν + pT,j1 + pT,j2, and similarly for
∑
px and

∑
py. For the counting analysis,

m`ν2j
T is also used with the mass-dependent selection requirements presented in table 19.

7.2.2 Background estimation

Four main background processes are present in the sample after full selection: WZ, ZZ,

tribosons, and processes involving non-prompt leptons. The first three contributions are

estimated from simulated samples, while the last one is evaluated from data. Unlike in

the case of the WH → 3`3ν category, the contribution from H → ττ is negligible in

this category.
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mH range [GeV] Threshold [GeV]

mH ≤ 135 m`ν2j
T < 140

135 < mH ≤ 160 m`ν2j
T < 170

160 < mH ≤ 170 m`ν2j
T < 180

mH > 170 —

Table 19. Mass-dependent set of requirements on m`ν2j
T used in the ZH → 3`ν + 2 jets counting

analysis.

Selection stage
ZH

Data All bkg. WZ + VVV Non-prompt ZZH→WW

7 TeV ZH→ 3`ν + 2 jets category

Preselection 0.52 ± 0.02 86 93 ± 2 62.1 ± 0.5 21 ± 2 10.0 ± 0.3

mT 0.49 ± 0.01 74 78 ± 2 50.4 ± 0.5 18 ± 2 9.5 ± 0.3

mjj 0.34 ± 0.01 33 34 ± 1 20.4 ± 0.3 8 ± 1 5.2 ± 0.2

∆φ(lν, jj) 0.25 ± 0.01 14 10.8 ± 0.6 6.3 ± 0.2 2.6 ± 0.6 1.9 ± 0.1

8 TeV ZH→ 3`ν + 2 jets category

Preselection 2.24 ± 0.06 493 426 ± 5 263 ± 2 113 ± 4 50.0 ± 0.2

mT 2.08 ± 0.06 386 352 ± 4 206 ± 1 101 ± 4 45.3 ± 0.2

mjj 1.35 ± 0.05 171 150 ± 3 87 ± 1 41 ± 3 22.0 ± 0.1

∆φ(lν, jj) 0.99 ± 0.04 48 50 ± 4 26.7 ± 2.0 15.7 ± 3.5 8.1 ± 0.4

Table 20. Expected signal, number of observed events in data, and estimated background at

different stages of the ZH → 3`ν + 2 jets shape-based analysis assuming a Higgs boson mass of

125 GeV. Only statistical uncertainties in the yields are reported in the first three rows of the

selection stages, while all systematic uncertainties are considered in the last one. The legend

entry labeled as “non-prompt” refers to the combination of the backgrounds from Z + jets and

top-quark decays.

The non-prompt lepton background processes are estimated as explained in section 7.1.

This kind of background arises predominantly from Z + jets production, a small contribu-

tion from top-quark production, and negligible contributions from other processes.

7.2.3 Results

The observed number of events and the expected number of signal and background events at

different stages of the shape-based analysis are shown in table 20. The m`ν2j
T distributions

are shown in figure 19. The final number of events for the counting analysis for four

different mH values at 7 and 8 TeV are presented in table 21.

No significant excess of events is observed with respect to the background prediction,

and the 95% CL upper limits are calculated for the production cross section of the ZH→
3`ν + 2 jets process with respect to the SM Higgs boson expectation. Four final states are
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mH [GeV] ZH,H→WW Data All bkg.

7 TeV ZH→ 3`ν + 2 jets category

125 0.20 ± 0.01 7 5.9 ± 0.6

150 0.71 ± 0.03 10 8.7 ± 0.6

170 0.75 ± 0.03 10 9.2 ± 0.6

190 0.41 ± 0.02 14 10.8 ± 0.6

8 TeV ZH→ 3`ν + 2 jets category

125 0.8 ± 0.1 26 25 ± 3

150 2.6 ± 0.1 34 38 ± 3

170 2.8 ± 0.1 37 41 ± 4

190 2.1 ± 0.1 49 50 ± 4

Table 21. Expected signal, number of observed events in data, and estimated background for

typical Higgs boson signal mass hypotheses used in the counting ZH → 3`ν + 2 jets analysis.

Statistical and systematic uncertainties in the yields. Statistical and systematic uncertainties in

the yields are reported.
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Figure 19. The m`ν2j
T distribution after all other requirements for the ZH→ 3`ν + 2 jets analysis

at 7 TeV (left), and at 8 TeV (right). The signal yield (red open histogram) is multiplied by 10 with

respect to the SM expectation. The legend entry labeled as “non-prompt” is the combination of

the backgrounds from Z + jets and top-quark decays.

taken as inputs to the combination: eee, eeµ, µµe, and µµµ. These four final states contain

approximately 18%, 23%, 24%, and 35% of events in the selected sample, respectively. The

upper limits at the 95% CL for both counting and shape-based analyses are shown in

figure 20. The observed (expected) upper limit at the 95% CL is 18.7 (17.8) times larger

than the SM expectation for mH = 125 GeV for the counting analysis. For the shape-based

analysis, the observed (expected) upper limit at the 95% CL is 21.4 (15.9) times larger

than the SM expectation for mH = 125 GeV.
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Figure 20. Expected and observed 95% CL upper limits on the signal production cross section

relative to the SM Higgs boson expectation using the counting analysis (left) and the shape-based

template fit approach (right) in the ZH→ 3`ν + 2 jets category.

8 Combined results

In this section, the combined results obtained using all the individual search categories

described in sections 6 and 7 are presented. The reference analysis for each individual

search category, selected on the basis of the expected signal sensitivity, is used in the

combination. A summary of the expected signal production mode fractions for the reference

analyses for a SM Higgs boson with a mass of 125.6 GeV at
√
s = 8 TeV is shown in table 22,

together with the total number of expected H → WW events at
√
s = 7 and 8 TeV. The

statistical methodology used in this combination is briefly described in section 5. The

Higgs boson mass hypothesis chosen to evaluate the measurements is mH = 125.6 GeV,

which corresponds to the mass measurement of the observed boson from the H→ ZZ→ 4`

decay channel [104]. It is important to emphasize that there is a relatively weak dependence

for these analyses on the Higgs boson mass.

8.1 Signal strength

The expected 95% CL upper limits on the production cross section of the H→WW process

with respect to the SM prediction for each category considered in the combination and the

combined result are shown in figure 21 (top) for the Higgs boson mass range 110–600 GeV.

Exclusion limits beyond 600 GeV deserve a specific study and are not addressed in this

paper. The combined observed and expected 95% CL upper limits on the production

cross section of the H → WW process with respect to the SM prediction are shown in

figure 21 (bottom). Results are shown in two ways: without assumptions on the presence

of a SM Higgs boson and considering the SM Higgs boson with mH = 125.6 GeV as part

of the background processes. In the first case, an excess of events is observed for low

mH hypothesis, which makes the observed limits much weaker than the expected ones. In

particular, the observed (expected) 95% CL upper limit on the H→WW production cross
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Category ggH (%) VBF (%) VH (%)
Total H→WW yield
√
s = 7 TeV

√
s = 8 TeV

Two-lepton analyses

0-jet different-flavor (shape-based) 95.7 1.2 3.1 52.6 245

0-jet same-flavor (counting) 98.1 0.9 1.0 10.4 58.5

1-jet different-flavor (shape-based) 81.6 10.3 8.1 19.8 111

1-jet same-flavor (counting) 83.6 11.2 5.2 3.1 19.6

2-jet VBF tag different-flavor (shape-based) 22.3 77.7 0.0 1.3 6.4

2-jet VBF tag same-flavor (counting) 14.2 85.8 0.0 0.3 2.3

2-jet VH tag different-flavor (counting) 55.5 4.7 39.8 0.8 4.3

2-jet VH tag same-flavor (counting) 65.1 4.1 30.8 0.2 2.8

Three-lepton analyses

WH→ 3`3ν (shape-based) 0.0 0.0 100.0 0.7 3.8

ZH→ 3`ν2 jets (shape-based) 0.0 0.0 100.0 0.3 1.0

Table 22. Summary of the expected signal production modes fractions for the reference analyses for

a SM Higgs boson with a mass of 125.6 GeV at
√
s = 8 TeV. The total number of H→WW events

is also reported at
√
s = 7 and 8 TeV. The shape-based analysis for the 0-jet and 1-jet categories

in the different-flavor final state correspond to the template fit to the (mT, m``) distribution.

section with respect to the SM prediction at mH = 125.6 GeV is 1.1 (0.3). The combination

of all categories excludes a SM Higgs boson in the mass range 127–600 GeV at the 95% CL,

while the expected exclusion range for the background-only hypothesis is 115–600 GeV.

In the second case, to search for another excess, the 95% CL upper limits are obtained

including the SM Higgs boson with mH = 125.6 GeV as a background process, and no

significant excess is found anywhere. Additional Higgs bosons with SM-like properties are

excluded in the mass range 114–600 GeV at the 95% confidence level when assuming that

a SM Higgs boson with mH = 125.6 GeV is present in the data.

The expected significance for the SM Higgs boson signal as a function of the mass

hypothesis for each category and for the combination is shown in figure 22 (top left).

The expected and observed significances for the combination are shown in figure 22 (top

right). The observed (expected) significance of the signal is 4.3 (5.8) standard deviations

for mH = 125.6 GeV. The observed σ/σSM as a function of the Higgs boson mass is

also shown in figure 22 (bottom). The σ/σSM value for mH = 125.6 GeV is 0.72+0.20
−0.18 =

0.72+0.12
−0.12 (stat.)+0.12

−0.10 (th. syst.)+0.10
−0.10 (exp. syst.), where the statistical, theoretical system-

atic, and experimental systematic uncertainties are reported separately. The statistical

component is estimated by fixing all the nuisance parameters to their best-fit values and

recomputing the likelihood profile. The most important systematic uncertainties are the

theoretical uncertainties in the signal, followed by those in the WW background process.

Other important sources of systematic uncertainties are the lepton, Emiss
T , and jet energy

experimental uncertainties, as well as the limited knowledge of the W + jets and Wγ(∗)

background processes. The observed σ/σSM for mH = 125.6 GeV for each category used in
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Figure 21. Expected 95% CL upper limits on the H → WW production cross section relative

to the SM expectation, shown as a function of the SM Higgs boson mass hypothesis, individually

for each search category considered in the combination, and the combined result from all categories

(top). Expected and observed results are shown with no assumptions on the presence of a Higgs

boson (bottom left) and considering the SM Higgs boson with mH = 125.6 GeV as part of the back-

ground processes (bottom right). As expected, the excess observed on the bottom left distribution

is reduced on the bottom right by considering the SM Higgs boson with mH = 125.6 GeV as part

of the background processes.

the combination is shown in figure 23. The results from all categories are consistent within

the uncertainties.

Figure 24 shows the confidence intervals in the two-dimensional (σ/σSM, mH) plane and

the one-dimensional likelihood profile in mH assuming the SM cross section and branching

fraction, σ/σSM=1, where the SM Higgs boson uncertainties in the production cross section

are considered. The results are obtained with the analysis using a parametric fit to the

(mR, ∆φR) distribution in the 0-jet and 1-jet categories of the eµ final state, as described

in section 6.2. The likelihood curve at σ/σSM=1 yields a best-fit mass of 125.5+3.6
−3.8 GeV.
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Figure 22. Expected significance as a function of the SM Higgs boson mass, individually for each

search category considered in the combination, and the combined result from all categories (top

left). Expected and observed significance (top right), and observed σ/σSM (bottom) as a function

of the SM Higgs boson mass for the combination of all H → WW categories. The very large

expected significance at mH ∼ 160 GeV is due to the branching fraction to WW close to unity for

those masses.

Furthermore, without the constraint on σ/σSM, the best-fit mass is at 128.2+6.6
−5.3 GeV. The

uncertainty on the best-fit mass value is consistent with the expected resolution of the

signal and the observed significance.

8.2 Couplings

The primary production mechanism contributing to the total cross section for the SM Higgs

boson is the ggH process, with a smaller fraction of the cross section coming from VBF and

VH production. Separating the ggH process from the other contributions is particularly

relevant to explore the Higgs boson couplings, since in the first case the coupling to the
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The observed σ/σSM value in the ZH → 3`ν 2 jets category is 6.41+7.43
−6.38. Given its relatively large

uncertainty with respect to the other categories it is not shown individually, but it is used in

the combination.

 [GeV]Hm
120 140 160

S
M

σ/σ

0

1

2

3

0

5

10

15

20

 Observed

 68% CL Observed

 95% CL Observed

CMS  (8 TeV)-1 (7 TeV) + 19.4 fb-14.9 fb

 0/1-jetµe

 [GeV]Hm
110 120 130 140

 ln
L

∆
-2

 

0

2

4

6

8

10

 0/1-jetµe

 = 1SMσ/σ

CMS  (8 TeV)-1 (7 TeV) + 19.4 fb-14.9 fb

Figure 24. Confidence intervals in the (σ/σSM, mH) plane using the parametric unbinned fit in

(mR, ∆φR) distribution (left) for the 0-jet and 1-jet categories in the eµ final states. Solid and

dashed lines indicate the 68% and 95% CL contours, respectively. On the right, the one-dimensional

likelihood profile for σ/σSM=1 is shown. The crossings with the horizontal line at −2∆ lnL = 1

(3.84) define the 68% (95%) CL interval. The SM Higgs boson production cross section uncertainties

are considered.
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Figure 25. Likelihood profiles on µggH and µVBF,VH at 68% (solid) and 95% CL (dotted). The

expected (black) and observed (red) distributions for mH = 125.6 GeV are shown.

fermions of the virtual loop is involved, while in the others tree-level couplings to vector

bosons play a role. The likelihood profiles for the signal strength modifiers associated with

production modes dominated by couplings to fermions (µggH) and vector bosons (µVBF,VH)

are shown at the 68% and 95% CL in figure 25. The expected and observed likelihood

profiles for mH = 125.6 GeV for the three production modes, ggH, VBF, and VH, are

shown separately in figure 26.

A way to verify the theory prediction is to compare the Higgs boson coupling constants

to fermions and electroweak vector bosons with the SM expectation [36]. Two coupling

modifiers κV and κf are assigned to vector and fermion vertices, respectively. They are

then used to scale the expected product of cross section and branching fraction to match

the observed signal yields in the data:

σ × BR(X→ H→WW) = κ2i
κ2V
κ2H

σSM × BRSM(X→ H→WW),

where κH = κH(κf , κV) is the total width modifier, defined as a function of the two fit

parameters κV and κf . The κi modifier is κf for the ggH process and κV for the VBF

and VH processes. The assumption is made that only SM fields contribute to the total

width. In the context of this analysis the branching fraction is always scaled by κ2V/κ
2
H;

the only direct coupling of the Higgs boson to fermions occurs in the gluon fusion process,

whose strength is then parametrized by κf . The two-dimensional likelihoods of the κV
and κf parameters, for both the observed value and the SM expectation, are shown in

figure 27 (left).
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Figure 26. Expected and observed likelihood profiles for mH = 125.6 GeV for the three production

modes separately, ggH (top left), VBF (top right), and VH (bottom). In each case, the modifiers

for the other productions modes are profiled. The crossings with the horizontal line at −2∆ lnL =

1 (3.84) define the 68% (95%) CL interval.

An alternative general scenario can be obtained by allowing for non-vanishing Higgs

boson decays beyond the SM (BRBSM), while at the same time constraining the fit to κV ≤
1, which is well-motivated by the electroweak symmetry breaking, with κ2H = κ2H(SM)/(1−
BRBSM). The likelihood scan distribution versus BRBSM is shown in figure 27 (right)

computed for this scenario. With these assumptions, an observed (expected) upper limit

on BRBSM at the 95% CL is set at 0.86 (0.75) using the H → WW decay channel alone.

This limit can be interpreted as, e.g., an indirect limit on invisible Higgs boson decays.

8.3 Spin and parity

The different-flavor 0-jet and 1-jet categories are used to distinguish between a 0+ boson

like the SM Higgs boson and a 2+min boson or a pseudoscalar 0− boson. The 2+min signal

– 47 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
6

Vκ
0 0.5 1 1.5

fκ

0

0.5

1

1.5

2

 WW (all channels)→H 
Observed
68% CL Observed
95% CL Observed
Exp. for SM H
68% CL Expected
95% CL Expected

CMS  (8 TeV)-1 (7 TeV) + 19.4 fb-14.9 fb

BSMBR
0 0.2 0.4 0.6 0.8 1

 ln
 L

∆
-2

0

1

2

3

4

5

6

7

8
CMS  (8 TeV)-1 (7 TeV) + 19.4 fb-14.9 fb

 WW (all channels)→H

Observed

Exp. for SM H

 1≤Vκ, fκ, BSMBR

Figure 27. The two-dimensional likelihood of the κV and κf parameters (left). The observed value

(red) and the SM expectation (black) are shown, together with the 68% (solid) and 95% (dotted)

CL contours. The likelihood scan versus BRBSM (right) for the observed data (solid) and the

expectation (dashed) in the presence of the SM Higgs boson with mH = 125.6 GeV are shown. The

crossing with the horizontal line at −2∆ lnL = 1 (3.84) defines the 68% (95%) CL. The parameters

κV and κf are profiled in the scan of BRBSM, with κV ≤ 1.

templates for the gg → X and qq → X processes, and the 0− signal template for the

gg→ X process, are obtained from jhugen.

The results for the 2+min case are shown as a function of the qq→ X component, fqq.

The yields of the gg → X and qq → X processes are nominally taken from the simulated

samples assuming the SM Higgs boson cross section. A signal-plus-background model is

built for each hypothesis, based on two-dimensional templates in mT and m``, using the

same bin widths and data selection as for the low mH case described in section 6.2. For the

SM Higgs boson case, the signal templates derived from powheg include the gluon fusion,

VBF, and VH production modes. The background templates are the same as in the SM

Higgs boson search analysis. The two-dimensional (mT, m``) distributions for the 0+ and

2+min hypotheses are shown in figure 3 for the 0-jet category and in figure 4 for the 1-jet

category for the 8 TeV analysis. The distribution of the two variables and the correlation

between them clearly separates the two spin hypotheses, which are related to the different

`ν masses and `` azimuthal angle distributions [19].

For each hypothesis a binned maximum likelihood (L) fit is performed, to simultane-

ously extract the signal strength and background contributions. This likelihood fit model

is the same as in the SM Higgs boson search. Fits are performed for both models, and

the likelihoods are calculated with the signal rates allowed to float independently for each

signal type. The test statistic, q = −2 ln(LJP /L0+), where L0+ and LJP are the best-

fit likelihood values for the SM Higgs boson and the alternative hypothesis is then used

to quantify the consistency of the two models with data. The expected separation be-

tween the two hypotheses, defined as the median of q expected under the JP hypothesis,

is quoted in two scenarios, when events are generated with a-priori expectation for the
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Figure 28. Distributions of −2 ln(L2+min
/L0+), combining the 0-jet and 1-jet categories in the eµ

final state, for the 0+ and 2+min hypotheses at mH = 125.6 GeV. The distributions are produced

assuming σ/σSM=1 (left) and using the σ/σSM value determined from the fit to data (right). The

distributions are shown for the case fqq =0% (top) and fqq =100% (bottom). The observed value

is indicated by the red arrow.

signal yields (σ/σSM ≡ 1) and when the signal strength is determined from the fit to data

(σ/σSM ≈ 0.75).

The distributions of q for the 0+ and 2+min hypotheses at mH = 125.6 GeV for the two

scenarios above and assuming fqq =0% or fqq =100% are shown in figure 28. Assuming

σ/σSM = 1 for both hypotheses, the median test statistic for the 0+ and 2+min hypotheses

as well as its observed value, as a function of fqq of the 2+min particle is shown in figure 29

(left). The same results using the σ/σSM value determined from the fit to data are shown

in figure 29 (right). In all cases the data favor the SM hypothesis with respect to the 2+min

hypothesis. The alternative hypothesis 2+min is excluded at a 83.7% (99.8%) CL or higher

for fqq = 0% (100%) when the σ/σSM value determined from the fit to data is used.
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Figure 30. Distributions of −2 ln(L0−/L0+), combining the 0-jet and 1-jet categories in the

eµ final state, for the 0+ and 0− hypotheses at mH = 125.6 GeV. The distributions are produced

assuming σ/σSM=1 (left) and using the signal strength determined from the fit to data (right). The

observed value is indicated by the red arrow.

The same procedure described above is applied to perform a test of hypotheses between

a 0+ boson like the SM Higgs boson and a pseudoscalar 0− boson. The average separation

between the two hypotheses is about one standard deviation, as shown in figure 30. The

alternative hypothesis 0− is disfavored with a CLs value of 34.7% when the σ/σSM value

determined from the fit to data is used. A summary of the list of models used in the

analysis of the spin and parity hypotheses, JP , are shown in table 23 together with the

expected and observed separation JP /0+.
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JP model JP production Expected (σ/σSM = 1) obs. 0+ obs. JP CLs

2+min fqq=0% 1.8σ (2.6σ) +0.6σ +1.2σ 16.3%

2+min fqq=50% 2.3σ (3.2σ) +0.2σ +2.1σ 3.3%

2+min fqq=100% 2.9σ (3.9σ) -0.2σ +3.1σ 0.2%

0− any 0.8σ (1.1σ) -0.5σ +1.2σ 34.7%

Table 23. A summary of the models used in the analysis of the spin and parity hypotheses. The

expected separation is quoted for two scenarios, where the value of σ/σSM for each hypothesis is

determined from the fit to data and where events are generated with σ/σSM = 1. The observed

separation quotes consistency of the observation with the 0+ model or JP model and corresponds

to the scenario where σ/σSM is determined from the fit to data. The last column quotes the CLs

value that defines the minimum confidence level (1− CLs) at which the JP model is excluded.

9 Summary

A search for the SM Higgs boson decaying to a W-boson pair at the LHC has been re-

ported. The event samples used in the analysis correspond to an integrated luminosity of

4.9 fb−1 and 19.4 fb−1 collected by the CMS detector in pp collisions at
√
s = 7 and 8 TeV,

respectively. The WW candidates are selected in events with exactly two or three charged

leptons. The analysis has been performed in the Higgs boson mass range 110–600 GeV.

An excess of events is observed above background, consistent with the expectations from

the SM Higgs boson of mass around 125 GeV. The probability to observe an excess equal

or larger than the one seen, under the background-only hypothesis, corresponds to a sig-

nificance of 4.3 standard deviations for mH = 125.6 GeV. The observed σ/σSM value for

mH = 125.6 GeV is 0.72+0.20
−0.18. The spin-parity JP = 0+ hypothesis is favored against a

narrow resonance with JP = 2+ or JP = 0− that decays to a W-boson pair. This result

provides strong evidence for a Higgs-like boson decaying to a W-boson pair.
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A Measurement of the Wγ∗ cross section scale factor

The Wγ∗ electroweak process is included in standard CMS simulations as a part of the

WZ process using MadGraph. Nevertheless the low-mass dilepton region is not properly
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covered since the standard simulations have a generator-level requirement at mγ∗ > 12 GeV

and there could be a significant rate of events below that threshold passing the selection

criteria described in section 4. Since the WZ and Wγ∗ processes may contribute as back-

ground to the Higgs boson signal whenever one of the three leptons in the final state is

not selected, the low mass part of Wγ∗ background has been simulated using MadGraph,

requiring two leptons each with pT > 5 GeV and no restrictions on the third one. Electron

and muon masses have been taken into account to properly simulate the kinematic cut-offs.

The key point is to observe the process in data and validate the simulation. In particular,

the cross section of the process needs to be measured to have a reliable prediction for the

background outside the control region.

The cases where the virtual photon decays into a pair of electrons or muons have both

been considered. The first is characterized by a cross section that is about three times

larger than the latter, since the production threshold, defined by m`, is lower. In both

cases, at least one of the two leptons is soft, with an average pT of ∼5 GeV. In the `±e+e−

case the way of mimicking the signal is similar to that of the Wγ background, with the

photon converting in the material close to the interaction vertex, making the leptons look as

though they were produced promptly. For the `±µ+µ− final state, the low pT of the softest

muon often prevents it from reaching the muon detector and being correctly identified.

To measure the production rate of Wγ∗ in data, the `±µ+µ− final state has been

studied, since the large background from multijet production makes it difficult to extract

the Wγ∗ signal in the `±e+e− case. A region that has a high purity of Wγ∗ events is

defined using the following selection criteria:

• the muons associated with the virtual photon need to have opposite signs. In the 3µ

final state, the opposite-sign pair with the lowest mass is assumed to originate from

the γ∗;

• mµ±µ∓ < 12 GeV is required;

• since events have two muons very close to each other, the muon isolation is redefined

to exclude muons from the isolation energy calculation;

• to suppress the top-quark background, events with more than two reconstructed jets

are rejected, and events with at least one jet will be rejected if that jet is b-tagged;

• to suppress the multijet background, the minimum transverse mass of each lepton and
~Emiss
T must be larger than 25 GeV, and the transverse mass of the lepton associated

with the W boson and ~Emiss
T must be larger than 45 GeV;

• the J/ψ meson decays are rejected by requiring |mµ±µ∓ − mJ/ψ| > 0.1 GeV. There

is no need to apply a requirement against Upsilon decays due to the very small

cross section.

The contribution from other background processes is rather small. The only process

which is not completely negligible is W + jets, as shown in figure 31.
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Figure 31. The m`` mass distribution for opposite-sign muons after the Wγ∗ selection. The Wγ∗

contribution is normalized to match the data.

The measured K-factor with respect to the LO cross section is around 1.5, consistent

with observations involving other electroweak processes computed at LO. This gives further

confidence on the accuracy of the simulation. Some disagreement is observed between

data and simulation in the virtual photon mass shape, due to the mismodeling of the

reconstruction efficiency of close-by muons at very low pT. To account for this difference

in the normalization measurement, the K-factor has been computed in different regions

of the mass spectrum and compared to that obtained from the full range. The same

analysis is performed in four independent categories: events with mµ±µ∓ < 2 GeV and

2 ≤ mµ±µ∓ < 12 GeV, in both `±µ+µ− final states. The average spread is taken as

systematic uncertainty, leading to a K-factor value of 1.5± 0.5.

B Estimation of the Wγ background template shapes

In the dilepton final states, the Wγ background normalization is taken from simulated

samples, while the distributions of the final discriminant variables are taken from data. To

obtain the shapes, a sample of events with a lepton and an identified photon is used. For the

photon the same counting selection as applied in ref. [13] is used. The ratio of the photon-

to-lepton identification efficiency as a function of the photon η and pT is used to properly

weight the lepton-photon event sample. The possible background contamination from

non-prompt photons or leptons shows a negligible effect on the shape of the distributions

relevant for the analysis. The m`` and mT distributions for the Wγ process in events

at the dilepton selection level as described in section 4 for simulated events and from a

sample with a lepton and a photon are shown in figure 32. The lepton-photon sample has

about 200 times more events than the simulated sample. Good agreement between the

distributions is observed.
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Figure 32. The m`` (left) and mT (right) distributions for the W + γ process in events passing

the dilepton selection. The dots show the distribution from simulated events, while the histogram

shows the distribution from a data sample with a lepton and a photon, which has about 200 times

more events.

C Estimation of the Drell-Yan background in the same-flavor dilepton

final states

A method based on measurements in data is used to estimate the Z/γ∗→ `` contributions

in the same-flavor `+`− final states. The expected contributions from Z/γ∗→ `` events

outside a region around the Z mass in data can be estimated by counting the number of

events near the Z mass region in data, subtracting from it the non-Z contributions, and

scaling it by a ratio Rout/in defined as the fraction of events outside and inside the Z mass

region in the simulation. The Z mass region is defined as |m`` −mZ| < 7.5 GeV. Such a

tight window is chosen to reduce the non-Z contributions from top-quark and multi-boson

backgrounds. The non-Z contributions close to the Z mass region in data are estimated

from the number of events in the e±µ∓ final state N eµ
in , applying a correction factor that

accounts for the difference in selection efficiency between electrons and muons kee/µµ. The

Rout/in factor can be estimated both from simulated events and data. In simulation it is

defined as the ratio NMC
out /N

MC
in .

The number of Drell-Yan events in the signal region is therefore:

N ``,exp
out = R``out/in

(
N ``

in −
1

2
N eµ

in k``

)
,

where kee =

√
Nee,loose

in

Nµµ,loose
in

for Z/γ∗→ ee and kµµ =

√
Nµµ,loose

in

Nee,loose
in

for Z/γ∗ → µµ. The factor

1
2 comes from the relative branching fraction between the `` and eµ final states. In the

k`` calculation, the selection on the missing transverse energy is loosened to increase the

available number of events under the Z peak. The value of kee is about 0.8, with a very

loose dependence both on the center-of-mass energy and jet category.
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The ZZ and WZ (ZV) processes contribute to the events in the m`` control region

dominated by the Drell-Yan. The contribution from ZV becomes comparable to that of

Z/γ∗→ `` after a tight Emiss∠
T selection, since those events contain genuine ~Emiss

T for which

the detector simulation is reliable. The expected ZV peaking contribution is subtracted

from the yield in the Z peak using the simulation. The ZV events without Emiss
T require-

ments are suppressed by the same large factor as the Drell-Yan ones, and therefore their

contribution at the level of the final selection is as negligible as it would be in the yield at

the Z peak without Emiss
T requirement.

When considering the full selection the Drell-Yan and ZV components allow for the

extrapolation from control region to signal region to be different for the two processes.

This Z/γ∗→ `` estimation method relies on the assumption that the dependence of the

ratio Rout/in on the Emiss
T requirement is relatively flat. On the other hand, the value of

Rout/in changes as a consequence of the different kinematic requirements applied to select

the Higgs boson signal regions for different Higgs boson mass hypotheses. Therefore Rout/in

is evaluated applying selection requirements close to the full Higgs boson selections: all re-

quirements are applied except for variables depending on Emiss
T . As no statistically signifi-

cant difference is observed between the ee and µµ final states, both of them are combined.

The Rout/in value is cross-checked in data as well. After the full selection, and after

all efficiency corrections, background processes contribute equally to ee, eµ, µe, and µµ

final states. On the other hand, Drell-Yan only contributes to the ee and µµ final states.

Therefore the eµ and µe contributions can be subtracted from the ee and µµ samples

to obtain an estimate of the Drell-Yan background. The Rout/in values as a function of

the multivariate Drell-Yan output variable, described in section 4, in the 0-jet and 1-jet

categories for the mH = 125 GeV counting analysis at
√
s = 8 TeV are shown in figure 33.

D Estimation of top-quark backgrounds in the dilepton final states

In the dilepton analysis, the top-quark-induced background originates from tt and tW

processes [105], the latter being especially important in the 0-jet category. A consistent

theoretical description of the two processes at higher orders is not straightforward to attain

as already at NLO some tW diagrams coincide with LO tt ones. The simulated samples

used in the analysis exploit an approach recently proposed, which addresses the overlap

by discarding the common diagrams from the tW process either at the amplitude level

(“diagram removal”) or at the cross section level (“diagram subtraction”). The former is

considered the default scheme, whereas the latter is used as a cross-check.

The top-quark background is estimated at the WW selection level where a common

scale factor for the tt and tW simulated samples is computed. Once properly normalized,

those samples are used to predict the corresponding yields after the mass-dependent Higgs

boson selection requirements in the counting analyses and to produce the templates in the

shape-based analyses.

The procedure for top-quark background estimation can be summarized as follows.

The top-quark background is suppressed using a top-tagging veto. If the tagging efficiency

– 56 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
6

DY MVA output

-0.5 0 0.5 1

 / 
bi

n
ou

t/i
n

R

0

1

2

3
 = 125 GeVHm

CMS  (8 TeV)-119.4 fb

 data 

 Drell-Yan MC

DY MVA output

-0.5 0 0.5 1

 / 
bi

n
ou

t/i
n

R

0

0.2

0.4

0.6

0.8

1
 = 125 GeVHm

CMS  (8 TeV)-119.4 fb

 data 

 Drell-Yan MC

Figure 33. The Rout/in values as a function of the multivariate Drell-Yan output variable in the

0-jet (left) and 1-jet (right) categories for the mH = 125 GeV counting analysis at
√
s = 8 TeV. High

output values are signal-like events, while low output values are more likely to be Drell-Yan events.

The vertical dashed line indicates the minimum threshold on the discriminant value used to select

events for the analysis, which is 0.88 for the 0-jet and 0.84 for the 1-jet category. The dependence

of the Rout/in ratio on the Drell-Yan discriminant value and the agreement between the data and

the simulation are studied in the regions below this threshold.

is known, the top-quark background can be estimated as:

Nnot-tagged = Ntagged × (1− εtop-tagged)/εtop-tagged,

where Nnot-tagged is the estimated number of top-quark events in the signal region that pass

the veto, Ntagged is the number of top-quark events that are top-tagged and εtop-tagged is

the top-tagging efficiency as measured in a control region dominated by top-quark events.

For the evaluation of Ntagged and εtop-tagged, non-top-quark backgrounds are properly sub-

tracted using the estimates depending on the jet category. The systematic uncertainty

in the top-quark background estimation is due to the uncertainty in non-top-quark back-

ground contributions and the statistical uncertainty in the efficiency measurement. The

actual implementation of the estimation method depends on the jet category, and is de-

tailed below.

D.1 Method for the 0-jet category

Rejection for the top-quark background is achieved by top-tagging of events via the iden-

tification of a low-pT b-tagged jet or a soft-muon as defined in section 4. The estimation

of this background relies on the measurement of the top-tagging efficiency in data.

In the 0-jet category, the key ingredient for the top-quark background estimation is

that tt events are characterized by two b-jets with pT below 30 GeV, while tW events have

one low-pT b-jet. Nevertheless a fraction x of tW events contains two bottom-quark jets

and these events are effectively indistinguishable from tt. The procedure described in the

following steps properly accounts for this feature:
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• First, the top-tagging efficiency for one “top-taggable” leg (εdata1-leg) is computed. A

region enriched in top-quark background events is defined requiring exactly one b-

tagged jet with pT > 30 GeV; this is the denominator. Events in this sample but

with an additional b-tagged jet with 10 GeV < pT < 30 GeV or one soft-muon define

the numerator. The ratio of the yields in the numerator and denominator provides

εdata1-leg. This efficiency is computed for tt only; i.e., non-top-quark backgrounds and

tW yields are subtracted from the measured data in the control region. The tW

yield is estimated from the simulation, which is normalized accordingly, using the

predictions previously evaluated from the 1-jet category.

• The overall top-tagging efficiency, εdatatop-tagged, is defined to account for the fraction x

of tW events that look like tt, that is with two top-taggable legs:

εdatatop-tagged =
[
fMC
tt + x(1− fMC

tt )
] [

1− (1− εdata1-leg)
2
]

+ (1− fMC
tt )(1− x)εdata1-leg,

where the first term accounts for events with two taggable legs and the second term for

events with one taggable leg. The fMC
tt

factor represents the fraction of tt events with

respect to the total tt+tW and it is determined from simulation in the 0-jet category

at the WW selection level, without applying the top-quark veto requirements. The

fraction x matches the value of ε1-leg estimated from the tW simulation. This is

considered a good approximation because ε1-leg is the fraction of events with one b-

tagged jet with pT larger than 30 GeV (the first “top-taggable” leg) out of all events

with a top-tagged leg (a b-tagged jet below 30 GeV or a soft-muon).

• Finally, a dedicated control region is defined in the 0-jet category by requiring top-

tagged events. The data yields in this region, corrected for the contamination from

other backgrounds, are then used together with the top-tagging efficiency to predict

the top-quark background:

N top
WW region = N top

top-tagged

1− εdatatop-tagged

εdatatop-tagged

= (Ndata
top-tagged −Ndata

other-bkg.)
1− εdatatop-tagged

εdatatop-tagged

.

The m`` and mT distributions in the 0-jet category for top-tagged events in the

different-flavor final state at the WW selection level for the
√
s = 8 TeV data sample

are shown in figure 34.

D.2 Method for the 1-jet category

To measure the top-tagging efficiency in the 1-jet category, top-quark events with two

reconstructed jets are used as the control sample. The top-tagging efficiency for the highest

pT jet is approximately the same in the 1-jet and 2-jet categories. Therefore, the top-tagging

efficiency for the highest pT jet is used and it is measured in the 2-jet category where, in

order to increase the top-quark purity, the second jet is required to be b-tagged.

The residual number of top-quark events in the 1-jet category is then given by,

N1-jet
non-tagged = N1-jet

tagged × (1− εhighest-pT-jet)/εhighest-pT-jet;
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Figure 34. The m`` (left) and mT (right) distributions in the 0-jet category for top-tagged events

in the different-flavor final state at the WW selection level for
√
s = 8 TeV data sample. The

uncertainty band includes the statistical and systematic uncertainty of all background processes.

where N1-jet
tagged is the number of events where the counted jet is tagged and none of the other

non-counted jets are tagged, and εhighest-pT-jet is the top-tagging efficiency for the highest

pT jet measured from the 2-jet category. The closure test, performed by comparing the

estimate using this procedure in simulated events, gives the same result to within 2%.

The scale factor is actually derived in a region that is slightly different from the signal

region, but then it is consistently applied to the yield from simulated samples in the signal

region. The difference is due to the soft-muon selection. In the signal region, events with

soft-muons are always rejected. Instead, in the 1-jet top-quark background estimation,

soft-muons are allowed inside the leading jet. This is also done in the top-veto region,

in the top-tag region and in the efficiency measurement. The reason is the correlation

between soft-muons, and b-tagging, since when a soft-muon is present in the jet, its b-

tagging efficiency is slightly higher. To avoid this correlation, the top-quark background is

estimated without any requirement on soft-muons close to the jet.

The m`` and mT distributions in the 1-jet category for top-tagged events in the

different-flavor final state at the WW selection level for the
√
s = 8 TeV data sample

are shown in figure 35.

D.3 Method for the 2-jet category

Estimation of the top-quark background in the 2-jet categories is complicated by the ad-

ditional requirements involved in tagging VBF and VH events since the data sample is

largely reduced.

The method employed measures the top-tagging efficiency for the most central jet in

the event as a function of its η in an inclusive top-quark-enriched control sample, and then

applies that rate to fully selected events where the most central jet is top-tagged. In this

way the possible kinematical differences between the control and signal regions are taken

into account.

– 59 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
6

 [GeV]llm

0 50 100 150 200

E
ve

nt
s 

/ b
in

0

100

200

300

400

 data

 WW→ H 
(*)γ W

 W+jets

 WZ+ZZ+VVV

 top

 DY+jets

 WW

 = 125 GeVHm

 1-jetµtop-tagged, e

CMS  (8 TeV)-119.4 fb

 [GeV]Tm

0 100 200

E
ve

nt
s 

/ b
in

0

200

400

 data

 WW→ H 
(*)γ W

 W+jets

 WZ+ZZ+VVV

 top

 DY+jets

 WW

 = 125 GeVHm

 1-jetµtop-tagged, e

CMS  (8 TeV)-119.4 fb

Figure 35. The m`` (left) and mT (right) distributions in the 1-jet category for top-tagged events

in the different-flavor final state at the WW selection level for the
√
s = 8 TeV data sample. The

uncertainty band includes the statistical and systematic uncertainty of all background processes.
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Figure 36. The m`` (left) and mT (right) distributions in the 2-jet category for top-tagged events

after applying the WW and VBF-tag selections for the
√
s = 8 TeV data sample. The uncertainty

band includes the statistical and systematic uncertainty for all background processes.

Therefore, the residual number of top-quark events in the 2-jet category after applying

the selection is given by,

N top
non-tagged = N top

tagged × (1− εcentral-jet)/εcentral-jet,

where N top
non-tagged (N top

tagged) is the number of events where the most central jet is (not)

top-tagged, and εcentral-jet is the top-tagging efficiency as a function of η of the jet. A very

small fraction of top-quark events has both jets outside the tracker acceptance and that

fraction is considered when estimating the systematic uncertainty of the method.

The m`` and mT distributions in the 2-jet category for top-tagged events after applying

the dilepton 2-jet VBF tag selection for the
√
s = 8 TeV data sample are shown in figure 36.
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thesis, Università degli Studi di Milano-Bicocca, Milano, Italy (2013).

[88] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04

(2008) 063 [arXiv:0802.1189] [INSPIRE].

– 65 –

http://arxiv.org/abs/1101.0536
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0536
http://arxiv.org/abs/1101.0538
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0538
http://dx.doi.org/10.1016/j.nuclphysb.2011.03.021
http://arxiv.org/abs/1101.1300
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.1300
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0002
http://dx.doi.org/10.1007/JHEP09(2011)109
http://arxiv.org/abs/1107.0330
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0330
http://dx.doi.org/10.1140/epjc/s10052-012-2080-4
http://arxiv.org/abs/1204.1411
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1411
http://dx.doi.org/10.1088/1126-6708/2002/06/029
http://arxiv.org/abs/hep-ph/0204244
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0204244
http://dx.doi.org/10.1088/1126-6708/2001/01/010
http://arxiv.org/abs/hep-ph/0011363
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0011363
http://cds.cern.ch/record/1455454
http://dx.doi.org/10.1016/j.nuclphysBPS.2010.08.011
http://dx.doi.org/10.1016/j.nuclphysBPS.2010.08.011
http://arxiv.org/abs/1007.3492
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3492
http://dx.doi.org/10.1016/j.nuclphysb.2005.12.022
http://arxiv.org/abs/hep-ph/0508068
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508068
http://dx.doi.org/10.1016/S0370-2693(03)00656-7
http://arxiv.org/abs/hep-ph/0302104
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0302104
http://cds.cern.ch/record/1194487
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ACAT)040
http://arxiv.org/abs/physics/0703039
http://inspirehep.net/search?p=find+EPRINT+physics/0703039
http://dx.doi.org/10.1088/1748-0221/8/09/P09009
http://arxiv.org/abs/1306.2016
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2016
http://dx.doi.org/10.1016/j.physletb.2007.09.077
http://dx.doi.org/10.1016/j.physletb.2007.09.077
http://arxiv.org/abs/0707.1378
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1378
http://hdl.handle.net/10281/40097
http://hdl.handle.net/10281/40097
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1189


J
H
E
P
0
1
(
2
0
1
4
)
0
9
6

[89] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012)

1896 [arXiv:1111.6097] [INSPIRE].

[90] M. Cacciari and G.P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys. Lett. B

641 (2006) 57 [hep-ph/0512210] [INSPIRE].

[91] CMS collabroation, Pileup jet identification, CMS-PAS-JME-13-005 (2013).

[92] CMS collaboration, Determination of jet energy calibration and transverse momentum

resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE].

[93] CMS collaboration, Identification of b-quark jets with the CMS experiment, 2012 JINST 8

P04013.

[94] ATLAS, LHCG, CMS collaborations, Procedure for the LHC Higgs boson search

combination in Summer 2011, ATL-PHYS-PUB-2011-11 (2011) [CMS-NOTE-2011-005].

[95] CMS collaboration, Combined results of searches for the standard model Higgs boson in pp

collisions at
√
s = 7 TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

[96] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based

tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [arXiv:1007.1727] [INSPIRE].

[97] L. Moneta et al., The RooStats Project, PoS(ACAT2010)057 [arXiv:1009.1003] [INSPIRE].

[98] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693

[INSPIRE].

[99] T. Junk, Confidence level computation for combining searches with small statistics, Nucl.

Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].

[100] C. Rogan, Kinematical variables towards new dynamics at the LHC, arXiv:1006.2727

[INSPIRE].

[101] CMS collaboration, Inclusive search for supersymmetry using the razor variables in pp

collisions at
√
s = 7 TeV, Phys. Rev. Lett. 111 (2013) 081802 [arXiv:1212.6961] [INSPIRE].

[102] M.J. Oreglia, A study of the reactions ψ′ → γγψ, Ph.D. thesis, Stanford University, U.S.A

(1980), SLAC Report SLAC-R-236.

[103] L. Landau, On the energy loss of fast particles by ionization, J. Phys. (USSR) 8 (1944) 201

[INSPIRE].

[104] CMS collaboration, Properties of the Higgs-like boson in the decay H → ZZ → 4l in pp

collisions at
√
s = 7 and 8 TeV, CMS-PAS-HIG-13-002 (2013).

[105] CMS collaboration, Evidence for associated production of a single top quark and W boson

in pp collisions at
√
s = 7 TeV, Phys. Rev. Lett. 110 (2013) 022003 [arXiv:1209.3489]

[INSPIRE].

– 66 –

http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6097
http://dx.doi.org/10.1016/j.physletb.2006.08.037
http://dx.doi.org/10.1016/j.physletb.2006.08.037
http://arxiv.org/abs/hep-ph/0512210
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0512210
http://cds.cern.ch/record/1581583
http://dx.doi.org/10.1088/1748-0221/6/11/P11002
http://arxiv.org/abs/1107.4277
http://inspirehep.net/search?p=find+J+JINST,6,P11002
http://dx.doi.org/10.1088/1748-0221/8/04/P04013
http://dx.doi.org/10.1088/1748-0221/8/04/P04013
http://cds.cern.ch/record/1379837
http://dx.doi.org/10.1016/j.physletb.2012.02.064
http://arxiv.org/abs/1202.1488
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1488
http://dx.doi.org/10.1140/epjc/s10052-011-1554-0
http://arxiv.org/abs/1007.1727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1727
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ACAT2010)057
http://arxiv.org/abs/1009.1003
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1003
http://dx.doi.org/10.1088/0954-3899/28/10/313
http://inspirehep.net/search?p=find+J+J.Phys.,G28,2693
http://dx.doi.org/10.1016/S0168-9002(99)00498-2
http://dx.doi.org/10.1016/S0168-9002(99)00498-2
http://arxiv.org/abs/hep-ex/9902006
http://inspirehep.net/search?p=find+J+Nucl.Instrum.Meth.,A434,435
http://arxiv.org/abs/1006.2727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2727
http://dx.doi.org/10.1103/PhysRevLett.111.081802
http://arxiv.org/abs/1212.6961
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6961
http://www.slac.stanford.edu/pubs/slacreports/slac-r-236.html
http://inspirehep.net/search?p=find+J+JOPYA,8,201
http://cds.cern.ch/record/1523767
http://dx.doi.org/10.1103/PhysRevLett.110.022003
http://arxiv.org/abs/1209.3489
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3489


J
H
E
P
0
1
(
2
0
1
4
)
0
9
6

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan1, M. Friedl, R. Frühwirth1,
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G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, E. Galloa,

S. Gonzia,b, V. Goria,b, P. Lenzia,b, M. Meschinia, S. Paolettia, G. Sguazzonia,

A. Tropianoa,b

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
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M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa,

C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Penzoa, A. Schizzia,b, T. Umera,b,

A. Zanettia

Kangwon National University, Chunchon, Korea

S. Chang, T.Y. Kim, S.K. Nam

– 73 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
6

Kyungpook National University, Daegu, Korea

D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles,

Kwangju, Korea

J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea

M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania

A. Juodagalvis

University of Malaya Jabatan Fizik, Kuala Lumpur, Malaysia

J.R. Komaragiri

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz32, R. Lopez-Fernandez,

J. Mart́ınez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potośı, San Luis Potośı, Mexico
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