138 research outputs found

    Apoptosis-Inducing Factor Regulates Skeletal Muscle Progenitor Cell Number and Muscle Phenotype

    Get PDF
    Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in “slow” muscles such as soleus, as well as in “fast” muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation

    Impact of a 3-year mass drug administration pilot project for taeniasis control in Madagascar

    Get PDF
    Taenia solium is endemic in Madagascar and presents a significant burden on the population and the health system. The parasite cycles through humans who host the adult tapeworm, and pigs that host the larval stages. Accidental infection of humans may occur with the larval stages which encyst in the nervous central system causing neurocysticercosis, a major cause of seizure disorders and a public health problem. One of the interventions to facilitate the control of the disease is mass drug administration (MDA) of the human population with taeniacide. Here we describe a pilot project conducted in Antanifotsy district of Madagascar from 2015 to 2017 where three annual rounds of MDA (praziquantel, 10mg/Kg) were undertaken in 52 villages. Changes in the prevalence of taeniasis were assessed before, during and after the treatments. A total of 221,308 treatments were given to all eligible people above 5 years of age representing a 95% coverage of the targeted population. No major adverse effects were notified related to the implementation of the MDA. The prevalence of taeniasis was measured using Kato-Katz and copro-antigen techniques. Analyses undertaken combining the results of the Kato-Katz with copro-antigen, or using the Kato-Katz results alone, showed that there was a significant reduction in taeniasis 4 months after the last MDA, but 12 months later (16 months after the last MDA) the taeniasis prevalence had returned to its original levels. Results of the pilot project emphasize the need of a multi-sectorial One-Health approach for the sustained control of T. solium

    Dichotomy between the transcriptomic landscape of naturally versus accelerated aged murine hearts

    Get PDF
    We investigated the transcriptomic landscape of the murine myocardium along the course of natural aging and in three distinct mouse models of premature aging with established aging-related cardiac dysfunction. Genome-wide total RNA-seq was performed and the expression patterns of protein-coding genes and non-coding RNAs were compared between hearts from naturally aging mice, mice with cardiac-specific deficiency of a component of the DNA repair machinery, mice with reduced mitochondrial antioxidant capacity and mice with reduced telomere length. Our results demonstrate that no dramatic changes are evident in the transcriptomes of naturally senescent murine hearts until two years of age, in contrast to the transcriptome of accelerated aged mice. Additionally, these mice displayed model-specific alterations of the expression levels of protein-coding and non-coding genes with hardly any overlap with age-related signatures. Our data demonstrate very limited similarities between the transcriptomes of all our murine aging models and question their reliability to study human cardiovascular senescence

    A pig model of acute Staphylococcus aureus induced pyemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sepsis caused by <it>Staphylococcus aureus </it>constitutes an important cause of morbidity and mortality in humans, and the incidence of this disease-entity is increasing. In this paper we describe the initial microbial dynamics and lesions in pigs experimentally infected with <it>S. aureus</it>, with the aim of mimicking human sepsis and pyemia.</p> <p>Methods</p> <p>The study was conducted in anaesthetized and intravenously inoculated pigs, and was based on bacteriological examination of blood and testing of blood for IL-6 and C-reactive protein. Following killing of the animals and necropsy bacteriological and histological examinations of different organs were performed 4, 5 or 6 h after inoculation.</p> <p>Results</p> <p>Clearance of bacteria from the blood was completed within the first 2 h in some of the pigs and the highest bacterial load was recorded in the lungs as compared to the spleen, liver and bones. This probably was a consequence of both the intravenous route of inoculation and the presence of pulmonary intravascular macrophages. Inoculation of bacteria induced formation of acute microabscesses in the lungs, spleen and liver, but not in the kidneys or bones. No generalized inflammatory response was recorded, i.e. IL-6 was not detected in the blood and C-reactive protein did not increase, probably because of the short time course of the study.</p> <p>Conclusion</p> <p>This study demonstrates the successful induction of acute pyemia (microabscesses), and forms a basis for future experiments that should include inoculation with strains of <it>S. aureus </it>isolated from man and an extension of the timeframe aiming at inducing sepsis, severe sepsis and septic shock.</p

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping

    Get PDF
    Peer reviewe

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa

    Get PDF
    West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.status: publishe

    Carbone des sols en Afrique

    Get PDF
    Les sols sont une ressource essentielle à préserver pour la production d’aliments, de fibres, de biomasse, pour la filtration de l’eau, la préservation de la biodiversité et le stockage du carbone. En tant que réservoirs de carbone, les sols sont par ailleurs appelés à jouer un rôle primordial dans la lutte contre l’augmentation de la concentration de gaz à effet de serre. Ils sont ainsi au centre des objectifs de développement durable (ODD) des Nations unies, notamment les ODD 2 « Faim zéro », 13 « Lutte contre le changement climatique », 15 « Vie terrestre », 12 « Consommation et production responsables » ou encore 1 « Pas de pauvreté ». Cet ouvrage présente un état des lieux des sols africains dans toute leur diversité, mais au-delà, il documente les capacités de stockage de carbone selon les types de sols et leurs usages en Afrique. Il propose également des recommandations autour de l’acquisition et de l’interprétation des données, ainsi que des options pour préserver, voire augmenter les stocks de carbone dans les sols. Tous les chercheurs et acteurs du développement impliqués dans les recherches sur le rôle du carbone des sols sont concernés par cette synthèse collective. Fruit d’une collaboration entre chercheurs africains et européens, ce livre insiste sur la nécessité de prendre en compte la grande variété des contextes agricoles et forestiers africains pour améliorer nos connaissances sur les capacités de stockage de carbone des sols et lutter contre le changement climatique
    corecore