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Zoltan Kis2,29, Stefan Kloth2,21, Claudia Kohl2,21, Miša Korva2,30, Annette Kraus2,31, Eeva Kuisma1,2, Andreas Kurth2,21,
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West Africa is currently witnessing the most extensive Ebola virus
(EBOV) outbreak so far recorded1–3. Until now, there have been
27,013 reported cases and 11,134 deaths. The origin of the virus is
thought to have been a zoonotic transmission from a bat to a two-
year-old boy in December 2013 (ref. 2). From this index case the
virus was spread by human-to-human contact throughout Guinea,
Sierra Leone and Liberia. However, the origin of the particular
virus in each country and time of transmission is not known and
currently relies on epidemiological analysis, which may be unre-
liable owing to the difficulties of obtaining patient information.
Here we trace the genetic evolution of EBOV in the current out-
break that has resulted in multiple lineages. Deep sequencing of
179 patient samples processed by the European Mobile Laboratory,
the first diagnostics unit to be deployed to the epicentre of the
outbreak in Guinea, reveals an epidemiological and evolutionary

history of the epidemic from March 2014 to January 2015. Analysis
of EBOV genome evolution has also benefited from a similar
sequencing effort of patient samples from Sierra Leone. Our results
confirm that the EBOV from Guinea moved into Sierra Leone,
most likely in April or early May. The viruses of the Guinea/
Sierra Leone lineage mixed around June/July 2014. Viral sequences
covering August, September and October 2014 indicate that this
lineage evolved independently within Guinea. These data can be
used in conjunction with epidemiological information to test ret-
rospectively the effectiveness of control measures, and provides an
unprecedented window into the evolution of an ongoing viral hae-
morrhagic fever outbreak.

We used a deep sequencing approach to gain insight into the evolu-
tion of Ebola virus (EBOV) in Guinea from the ongoing West African
outbreak. This was an approach based on analysis pipelines developed
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for a guinea-pig model of EBOV infection and Hendra virus infection
of human and bat cells4,5. Here we use this approach to derive con-
sensus EBOV genomes from individual patient samples that can be
used to study viral genome evolution during the course of the outbreak.
Viral genomes were derived primarily from blood samples that had
been taken from patients in Guinea and sent to the European Mobile
Laboratory (EMLab), deployed by the World Health Organisation
within the Médecins Sans Frontières Ebola Treatment Centre
Guéckédou in March 2014 to aid the diagnostic effort. With the per-
mission of Guinean authorities a biobank of samples was assembled
which had known provenance of EBOV infection. Linked to each
sample were the following data: patient location (to district level),
sample collection date, disease onset and outcome. The collection
dates were a median of 4 days after the date of onset of symptoms.
Baseline data was cleaned, formatted and imported into the
Geographic Information System, ESRI ArcGIS. Statistical tools were
used to generate tabular output and to join the numeric case data with
the district level boundaries of Guinea, Liberia and Sierra Leone (dis-
trict geometries freely available from http://www.gadm.org/) (Fig. 1a).

The viral genome sequence was derived from RNA sequencing
analysis of the patient samples with no pre-amplification of the viral
genome. In general we selected a range of samples from both males and
females of different ages and a fair representation of sequences for each
month (Extended Data Fig. 1), and with Ct values less than 20 for
EBOV RNA. In this selected patient cohort, with a relatively high viral
load, there was approximately 80% mortality. The read depth mapping
to the EBOV genome varied between samples and regions in the
genome (Fig. 1b) and in general the number of sequence reads
obtained for each genome correlated with the amount of viral load
as determined by quantitative reverse-transcription PCR (qRT–PCR)
(Fig. 1c).

Phylogenetic analysis revealed the dynamic nature of the epidemic
and molecular change in the viral sequence (Fig. 2a). Several distinct
lineages were identified, with an initial lineage A (Figs 2a, 3 and
Extended Data Fig. 2) linked to early Guinean cases dating from
March 2014 including the three original viruses published by Baize
et al.2. A second lineage, B, emerged in May and June and comprises all
the sequences from Gire et al.6 and the remainder of those described
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Figure 1 | Geographical location, sequence read depth, and read depth vs
Ct value of patient samples. a, Geographical location of patient samples. The
origin of the sequenced samples (one sample per patient) from Guinea, Sierra
Leone, and Liberia processed by EMLab Guéckédou are plotted as numbers of
cases by district. EMLab data are overlaid on an Ebola outbreak distribution
map where cumulative cases are plotted as a heat map (low (yellow) to high
(brown)) of confirmed cases from March 2014 to January 2015. Case data
sourced from World Health Organization (WHO) Ebola response situation
reports (http://apps.who.int/ebola/en/ebola-situation-reports); Geographic
Information Systems (GIS) data sourced from Environmental Systems
Research Institute (ESRI) and Database of Global Administrative Areas

(GADM; http://www.gadm.org/). b, Sequence depth per nucleotide position.
The number of reads for each nucleotide position was plotted across the
full length of the virus genome for each of the 179 virus isolates we analysed.
In red is shown the uniformity of the depth across individual genomes,
although the median number of reads per nucleotide position had a variation
spanning over four log10 units. c, Linear regression of the log10 median
sequence depth of each virus isolate versus the Ct value of the viral load as
determined by qRT–PCR. Red dots indicate samples taken from patients who
went on to survive EBOV infection and grey shaded dots are from patients
who records suggest died from EBOV infection.
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here. As the epidemic expanded, lineage A remained confined in
Guinea from March to June 2014, except for one sequence from 18
July 2014. A single Liberian sequence from March 2014 grouped
within this lineage. No further EBOV genomes that we sequenced
from samples taken after July 2014 belonged to lineage A. This clade
was likely to have been associated with the original outbreak in Guinea
and was almost successfully contained in May 2014 by the interven-
tions of the multi-agency response. Two clusters of Sierra Leone
viruses described by Gire et al.6 (denoted by the authors as clusters
SL1 and SL2), both of which contain later viruses from Guinea and
Liberia, suggest continued spread across the border during this time.
Early cases in SL1 and SL2 were both associated with a single funeral6,
so it is possible that this event may have reignited the epidemic.
Thereafter, lineage B spread into Guinea, Liberia and Sierra Leone.
This lineage is associated with the large epidemics in these three coun-
tries and persisted into 2015. The spatiotemporal spread of these
viruses based on the phylogenetic analysis presented in Figs 2a and 3
was summarized (Extended Data Fig. 3) and indicated how the virus
may have spread between the neighbouring countries. There was no

evidence from the data that increases or decreases in mortality were
associated with any particular virus cluster (Extended Data Fig. 4).

The Bayesian time-scaled phylogenetic analysis estimated an aver-
age rate of evolution over the genome of 1.42 3 1023 substitutions per
site per year with 95% credible intervals of 1.22 3 1023 and 1.62 3

1023. Details of the model assumptions are given in the Methods
section. This rate is lower than that initially described for the West
African outbreak by Gire et al.6 but still higher than the long-term,
between-outbreak rate of 0.8 3 1023 estimated using viruses back to
the 1976 Yambuku outbreak6. This apparent drop in rate of evolution
between these two studies is consistent with the explanation provided
by Gire et al.6 that the short sampling interval (March to June) pro-
vided insufficient time for the action of purifying selection. However,
the much longer sampling interval in the present study may simply be
providing a more precise estimate of the rate. It should be noted,
however, that the between-outbreak rate will exclusively reflect trans-
mission and evolution that has occurred in the non-human reservoir
species, so may not be directly comparable to the rate within a human
outbreak. We observed no evidence of a change in evolutionary rate
over the course of the epidemic with the accumulation of genetic
change having a linear relationship with time (Fig. 2b), confirming
that the apparent decline in rate between the two studies is an obser-
vational phenomenon7 rather than a change in the virus.

The estimate of the date of the most recent common ancestor of the
sampled viruses is mid-January 2014 (95% credible intervals 12
December 2013, 18 February 2014). Although this is an estimate of
first transmission event that resulted in more than one lineage in our
sample, this provides an upper bound on the date of emergence of the
virus into the human population. This date estimate is consistent with
the epidemiological tracing of the first suspected cases to December
20132.

Given the error-prone nature of EBOV genome replication we
examined the potential amino acid variation in EBOV proteins from
the start of our sample collection in March 2014 to January 2015. The
location of amino acid changes on EBOV proteins and their relative
representation in the 179 assembled genomes were compared to an
isolate identified in March 2014 (ref. 2) (Fig. 4). While there is amino
acid variation in all of the genomes sampled, there were very few
changes in viral protein 30 (VP30), viral protein 40 (VP40) and viral
protein 24 (VP24), and these changes are only in less than ,2% of the
genomes sampled. However, a single amino acid substitution in VP24
is associated with adaptation to a new host4,8, and this may be due to
interactions with host-cell proteins9,10. While some of the variation
may be attributed to a purely random molecular clock pattern, in
GP, VP35, NP and L there are some amino acid variations that are
present in over ,15% of the genomes sampled. For example, in GP
there is an A to V substitution in ,70.5% of the genomes sampled
compared to the reference genome. Implications of the mutations
within GP in relation to immune escape of therapeutics and vaccines
will need to be assessed in pseudotype neutralization assays using
EBOV monoclonal antibodies and serum from people who have been
vaccinated.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
No statistical methods were used to predetermine sample size. There was no
randomization or blinding in selection of samples for sequencing.
Ethics statement. The National Committee of Ethics in Medical Research of
Guinea approved the use of diagnostic leftover samples and corresponding patient
data for this study (permit no. 11/CNERS/14). As the samples had been collected
as part of the public health response to contain the outbreak in Guinea, informed
consent was not obtained from patients.
Genome sequencing and consensus building. Viral genome sequence was
derived from the RNA extracted for diagnostic purposes from blood samples in
the field with no pre-amplification of the viral genome. These samples were
processed by the EMLab and are detailed in Supplementary Table 1, which indi-
cates sample name, geographical location, date of onset of symptoms, date sample
was collected, and the Ct value of EBOV RNA at the date of test. The clinical status
is also indicated as well as malaria co-infection where known. Extracted RNA was
DNase treated with Turbo DNase (Ambion) using the rigorous protocol. RNA
sequencing libraries were prepared from the resultant RNA using the Epicentre
ScriptSeq v2 RNA-Seq Library Preparation Kit. Following 10–15 cycles of amp-
lification, libraries were purified using AMPure XP beads. Each library was quan-
tified using Qubit and the size distribution assessed using the Agilent 2100
Bioanalyzer. These final libraries were pooled in equimolar amounts using the
Qubit and Bioanalyzer data with 9–10 libraries per pool. The quantity and quality
of the pool was assessed by Bioanalyzer and subsequently by qPCR using the
Illumina Library Quantification Kit from Kapa on a Roche Light Cycler
LC480II according to manufacturer’s instructions. Each pool of libraries was
sequenced on one lane of a HiSeq2500 at 2 3 125-bp paired-end sequencing with
v4 chemistry.

The trimmed fastq files were first aligned to a copy of the human genome using
Bowtie2 (ref. 12) and the unaligned reads were then mapped with Bowtie2 to a list
of 3731 known viral genomes excluding EBOV genomes. The reads that were still
unmapped were then aligned to the EBOV genome—either the prototype strain
isolated in Zaire in 1976 (AF086833.2) or a strain isolated during the current
outbreak (KJ660348.2). For this step we again used Bowtie2 and the resultant
alignment files were filtered with samtools to remove unmapped reads and reads
with a mapping quality score below 11, followed by filtering with markdup to
remove PCR duplicates. The resultant BAM file was then analysed by
Quasirecomb13 to generate a phred-weighted table of nucleotide frequencies which
were parsed with a custom perl script to generate a consensus genome in fasta
format. This consensus genome was then used as a reference genome to which we
remapped the sequence reads which did not map to the human genome or other

viruses in order to generate a second consensus. In this way we were able to
manually determine if the reference genome used by Bowtie2 influenced the
process of calling a consensus genome. In addition, we used FreeBayes to inde-
pendently call and identify SNPs and indels. The pipeline is entirely open source
and implemented in the Galaxy environment14, a Galaxy compatible workflow,
novel scripts and XML wrappers needed for implementation in Galaxy are freely
available and included in Supplementary Data File 1. Sequence alignment maps
were manually inspected and curated over regions with consistent low coverage
(for example, at the 59 ends).
Phylogenetic analysis. Phylogenetic analysis comprised the 179 EBOV genomes
from this study, 78 genomes from Sierra Leone6, three sequences from Guinea2

and two sampled from Mali15. The genomes were partitioned into four sets of
sites—1st, 2nd and 3rd codon positions of the protein-coding regions and the non-
coding intergenic regions—with each partition being assigned a generalized time
reversible substitution model16, gamma distributed rate heterogeneity17 and a
relative rate of evolution. This model was used to construct a Bayesian nucleotide
divergence tree (Fig. 2) using MrBayes11 and a time-scaled phylogenetic analysis
(Fig. 3) using BEAST18 with a log-normal distributed relaxed molecular clock19,
and the ‘Skygrid’ non-parametric coalescent tree prior20. The alignments and
control files for both analyses are available in Supplementary Data Files 2 and 3
and provide documentation of all model parameters.

12. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature
Methods 9, 357–359 (2012).

13. Topfer, A. et al. Probabilistic inference of viral quasispecies subject to
recombination. J. Comput. Biol. 20, 113–123 (2013).

14. Goecks, J., Nekrutenko, A., Taylor, J. & Galaxy, T. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computational
research in the life sciences. Genome Biol. 11, R86 (2010).

15. Hoenen, T. et al.Mutation rate and genotype variation of Ebola virus from Mali case
sequences. Science, (2015).
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Some Mathematical Questions in Biology: DNA Sequence Analysis (American
Mathematical Society, 1986).
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variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).

18. Drummond,A. J., Suchard,M.A., Xie,D.&Rambaut,A.Bayesianphylogeneticswith
BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

19. Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and
dating with confidence. PLoS Biol. 4, e88 (2006).

20. Gill, M. S. et al. Improving Bayesian population dynamics inference: a coalescent-
based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).

RESEARCH LETTER

G2015 Macmillan Publishers Limited. All rights reserved



Extended Data Figure 1 | Spatial and temporal location of patient samples.
Geographical locations of sequenced samples are plotted by district as
panels for each month of collection (March 2014–January 2015). In brief, the
number of samples obtained for each month was as follows: March 2014, 11;

April 2014, 14; May 2014, 14; June 2014, 22; July 2014, 16; August 2014, 19;
September 2014, 18; October 2014, 21; November 2014, 11; December 2014, 22;
January 2015, 11. Total number of samples sequenced, 179.
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Extended Data Figure 2 | Enlarged view of phylogenetic tree presented in Fig. 3. Posterior support shown where .0.5.
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Extended Data Figure 3 | Temporal spread of EBOV based on phylogenetic
analyses in Figs 2a and 3. Colour scheme is as follows: Guinea is red/blue (1st
half/2nd half of 2014, respectively), Sierra Leone is grey-black, Liberia is green,
Mali is brown. Lineage A (A) is associated with the initial focus of the outbreak
(Guéckédou, Macenta and Kissidougou) in March 2014, expanded around this
area and then declined around July 2014. From lineage A a second lineage (B)

emerged in May/June 2014 and expanded into Sierra Leone (end of May 2014)
and Liberia (small arrow). Lineage B continued to spread into Sierra Leone,
Liberia, and further into Guinea (beyond the original focus into most districts of
Guinea). EBOV disease entered Mali from Guinea via two separate routes
(from the Beyla district (possibly originally from Kissidougou) in October 2014
and from the Siguiri district in November 2014).
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Extended Data Figure 4 | Survival rate amongst individuals with known
EBOV sequences. The total survival rate for the 179 sequenced virus isolates
included in this study is presented, as is the survival rate for two sub-lineages,
GN1 and GN2, as defined by phylogenetic inference in Figs 2a and 3. The

sequences available for GN1 were collected during the period of March–July
2014 and the sequences available for GN2 were collected during the period of
August 2014–January 2015. Red dots indicate survivors.
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