60 research outputs found

    The evolution of binary populations in cool, clumpy star clusters

    Get PDF
    Observations and theory suggest that star clusters can form in a subvirial (cool) state and are highly substructured. Such initial conditions have been proposed to explain the level of mass segregation in clusters through dynamics, and have also been successful in explaining the origin of trapezium-like systems. In this paper we investigate, using N-body simulations, whether such a dynamical scenario is consistent with the observed binary properties in the Orion Nebula Cluster (ONC). We find that several different primordial binary populations are consistent with the overall fraction and separation distribution of visual binaries in the ONC (in the range 67 - 670 au), and that these binary systems are heavily processed. The substructured, cool-collapse scenario requires a primordial binary fraction approaching 100 per cent. We find that the most important factor in processing the primordial binaries is the initial level of substructure; a highly substructured cluster processes up to 20 per cent more systems than a less substructured cluster because of localised pockets of high stellar density in the substructure. Binaries are processed in the substructure before the cluster reaches its densest phase, suggesting that even clusters remaining in virial equilibrium or undergoing supervirial expansion would dynamically alter their primordial binary population. Therefore even some expanding associations may not preserve their primordial binary population.Comment: 12 pages, 7 figures; accepted for publication in MNRA

    The dynamical evolution of very-low mass binaries in open clusters

    Get PDF
    Very low-mass binaries (VLMBs), with system masses <0.2 Msun appear to have very different properties to stellar binaries. This has led to the suggestion that VLMBs form a distinct and different population. As most stars are born in clusters, dynamical evolution can significantly alter any initial binary population, preferentially destroying wide binaries. In this paper we examine the dynamical evolution of initially different VLMB distributions in clusters to investigate how different the initial and final distributions can be. We find that the majority of the observed VLMB systems, which have separations <20 au, cannot be destroyed in even the densest clusters. Therefore, the distribution of VLMBs with separations <20 au now must have been the birth population (although we note that the observations of this population may be very incomplete). Most VLMBs with separations >100 au can be destroyed in high-density clusters, but are mainly unaffected in low-density clusters. Therefore, the initial VLMB population must contain many more binaries with these separations than now, or such systems must be made by capture during cluster dissolution. M-dwarf binaries are processed in the same way as VLMBs and so the difference in the current field populations either points to fundamentally different birth populations, or significant observational incompleteness in one or both samples.Comment: 11 pages, 10 figues, accepted for publication in MNRA

    Spatial differences between stars and brown dwarfs: a dynamical origin?

    Full text link
    We use NN-body simulations to compare the evolution of spatial distributions of stars and brown dwarfs in young star-forming regions. We use three different diagnostics; the ratio of stars to brown dwarfs as a function of distance from the region's centre, RSSR\mathcal{R}_{\rm SSR}, the local surface density of stars compared to brown dwarfs, ΣLDR\Sigma_{\rm LDR}, and we compare the global spatial distributions using the ΛMSR\Lambda_{\rm MSR} method. From a suite of twenty initially statistically identical simulations, 6/20 attain RSSR<<1\mathcal{R}_{\rm SSR} << 1 andand ΣLDR<<1\Sigma_{\rm LDR} << 1 andand ΛMSR<<1\Lambda_{\rm MSR} << 1, indicating that dynamical interactions could be responsible for observed differences in the spatial distributions of stars and brown dwarfs in star-forming regions. However, many simulations also display apparently contradictory results - for example, in some cases the brown dwarfs have much lower local densities than stars (ΣLDR<<1\Sigma_{\rm LDR} << 1), but their global spatial distributions are indistinguishable (ΛMSR=1\Lambda_{\rm MSR} = 1) and the relative proportion of stars and brown dwarfs remains constant across the region (RSSR=1\mathcal{R}_{\rm SSR} = 1). Our results suggest that extreme caution should be exercised when interpreting any observed difference in the spatial distribution of stars and brown dwarfs, and that a much larger observational sample of regions/clusters (with complete mass functions) is necessary to investigate whether or not brown dwarfs form through similar mechanisms to stars.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    On the mass segregation of stars and brown dwarfs in Taurus

    Get PDF
    We use the new minimum spanning tree (MST) method to look for mass segregation in the Taurus association. The method computes the ratio of MST lengths of any chosen subset of objects, including the most massive stars and brown dwarfs, to the MST lengths of random sets of stars and brown dwarfs in the cluster. This mass segregation ratio (Lambda_MSR) enables a quantitative measure of the spatial distribution of high-mass and low-mass stars, and brown dwarfs to be made in Taurus. We find that the most massive stars in Taurus are inversely mass segregated, with Lambda_MSR = 0.70 +/- 0.10 (Lambda_MSR = 1 corresponds to no mass segregation), which differs from the strong mass segregation signatures found in more dense and massive clusters such as Orion. The brown dwarfs in Taurus are not mass segregated, although we find evidence that some low-mass stars are, with an Lambda_MSR = 1.25 +/- 0.15. Finally, we compare our results to previous measures of the spatial distribution of stars and brown dwarfs in Taurus, and briefly discuss their implications.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    Do binaries in clusters form in the same way as in the field?

    Get PDF
    We examine the dynamical destruction of binary systems in star clusters of different densities. We find that at high densities (10^4 - 10^5 Msun pc^-3) almost all binaries with separations > 10^3 AU are destroyed after a few crossing times. At low densities (order(10^2) Msun pc^-3) many binaries with separations > 10^3 AU are destroyed, and no binaries with separations > 10^4 AU survive after a few crossing times. Therefore the binary separations in clusters can be used as a tracer of the dynamical age and past density of a cluster. We argue that the central region of the Orion Nebula Cluster was around 100 times denser in the past with a half-mass radius of only 0.1 - 0.2 pc as (a) it is expanding, (b) it has very few binaries with separations > 10^3 AU, and (c) it is well-mixed and therefore dynamically old. We also examine the origin of the field binary population. Binaries with separations < 10^2 AU are not significantly modified in any cluster, therefore at these separations the field reflects the sum of all star formation. Binaries with separations in the range 10^2 - 10^4 AU are progressively more and more heavily affected by dynamical disruption in increasingly dense clusters. If most star formation is clustered, these binaries must be over-produced relative to the field. Finally, no binary with a separation > 10^4 AU can survive in any cluster and so must be produced by isolated star formation, but only if all isolated star formation produces extremely wide binaries.Comment: 12 pages, 6 figures, accepted for publication in MNRA

    Formation rates of star clusters in the hierarchical merging scenario

    Get PDF
    Stars form with a complex and highly structured distribution. For a smooth star cluster to form from these initial conditions, the star cluster must erase this substructure. We study how substructure is removed using N-body simulations that realistically handle two-body relaxation. In contrast to previous studies, we find that hierarchical cluster formation occurs chiefly as a result of scattering of stars out of clumps, and not through clump merging. Two-body relaxation, in particular within the body of a clump, can significantly increase the rate at which substructure is erased beyond that of clump merging alone. Hence the relaxation time of individual clumps is a key parameter controlling the rate at which smooth, spherical star clusters can form. The initial virial ratio of the clumps is an additional key parameter controlling the formation rate of a cluster. Reducing the initial virial ratio causes a star cluster to lose its substructure more rapidly

    Binaries in the field: fossils of the star formation process?

    Get PDF
    Recent observations of binary stars in the Galactic field show that the binary fraction and the mean orbital separation both decrease as a function of decreasing primary mass. We present N-body simulations of the effects of dynamical evolution in star-forming regions on primordial binary stars to determine whether these observed trends can be explained by the dynamical processing of a common binary population. We find that dynamical processing of a binary population with an initial binary fraction of unity and an initial excess of intermediate/wide separation (100–104 au) binaries does not reproduce the observed properties in the field, even in initially dense (∼103 M⊙ pc−3) star-forming regions. If instead we adopt a field-like population as the initial conditions, most brown dwarf and M-dwarf binaries are dynamically hard and their overall fractions and separation distributions are unaffected by dynamical evolution. G-dwarf and A-star binaries in the field are dynamically intermediate in our simulated dense regions and dynamical processing does destroy some systems with separations >100 au. However, the formation of wide binaries through the dissolution of supervirial regions is a strong function of primary mass, and the wide G-dwarf and A-star binaries that are destroyed by dynamical evolution in subvirial regions are replenished by the formation of binaries in supervirial regions. We therefore suggest that the binary population in the field is indicative of the primordial binary population in star-forming regions, at least for systems with primary masses in the range 0.02–3.0 M⊙

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    A Foreign Policy Analysis perspective on the domestic politics turn in IR Theory

    Get PDF
    corecore