2,321 research outputs found

    An Analysis of the Nature and Circumstances of Early Mycenaean Warfare Based on a Study of the Pre LH IIIB Mycenaean Shields

    Get PDF
    The purpose of this thesis is to produce a definitive study of how the Mycenaean full body shields impacted on Mycenaean warfare and answer the question "is the current understanding of the how the Mycenaean tower shield was historically used accurate?" In the process this thesis will look at how Mycenaean military was organised, the role it played in the society of the time, and how warfare was physically waged – researched through the mediums of documentary evidence and weaponry. As the swords of this period and spears in general have received recent attention in publication, this thesis will focus on that most unique of early Mycenaean defensive armaments, the full body shields of both tower and figure-of-eight design. This thesis is an original contribution to the period being studied, and will make use of all resources at its disposal to arrive at its conclusion

    In Vivo Assessment of Arsenic Bioavailability in Rice and Its Significance for Human Health Risk Assessment

    Get PDF
    BACKGROUND: Millions of people worldwide consume arsenic-contaminated rice; however, little is known about the uptake and bioavailability of arsenic species after arsenic-contaminated rice ingestion. OBJECTIVES: In this study, we assessed arsenic speciation in greenhouse-grown and supermarket-bought rice, and determined arsenic bioavailability in cooked rice using an in vivo swine model. RESULTS: In supermarket-bought rice, arsenic was present entirely in the inorganic form compared to greenhouse-grown rice (using irrigation water contaminated with sodium arsenate), where most (~ 86%) arsenic was present as dimethylarsinic acid (organic arsenic). Because of the low absolute bioavailability of dimethylarsinic acid and the high proportion of dimethylarsinic acid in greenhouse-grown rice, only 33 ± 3% (mean ± SD) of the total rice-bound arsenic was bioavailable. Conversely, in supermarket-bought rice cooked in water contaminated with sodium arsenate, arsenic was present entirely in the inorganic form, and bioavailability was high (89 ± 9%). CONCLUSIONS: These results indicate that arsenic bioavailability in rice is highly dependent on arsenic speciation, which in turn can vary depending on rice cultivar, arsenic in irrigation water, and the presence and nature of arsenic speciation in cooking water. Arsenic speciation and bioavailability are therefore critical parameters for reducing uncertainties when estimating exposure from the consumption of rice grown and cooked using arsenic-contaminated water

    The deglacial history of 79N glacier and the Northeast Greenland Ice Stream

    Get PDF
    The Northeast Greenland Ice Stream (NEGIS) is the main artery for ice discharge from the northeast sector of the Greenland Ice Sheet (GrIS) to the North Atlantic. Understanding the past, present and future stability of the NEGIS with respect to atmospheric and oceanic forcing is of global importance as it drains around 17% of the GrIS and has a sea-level equivalent of 1.6 m. This paper reconstructs the deglacial and Holocene history of Nioghalvfjerdsbræ (or 79N Glacier); a major outlet of the NEGIS.At high elevation (>900 m asl) autochthonous blockfield, a lack of glacially moulded bedrock and pre LGM exposure ages point to a complex exposure/burial history extending back over half a million years. However, post Marine Isotope Stage 12, enhanced glacial erosion led to fjord incision and plateaux abandonment. Between 900 and 600 m asl the terrain is largely unmodified by glacial scour but post LGM erratics indicate the advection of cold-based ice through the fjord. In contrast, below ∼600 m asl Nioghalvfjerdsfjorden exhibits a geomorphological signal indicative of a warm-based ice stream operating during the last glacial cycle. Dated ice marginal landforms and terrain along the fjord walls show initial thinning rates were slow between ∼23 and 10 ka, but post-10 ka it is evident that Nioghalvfjerdsfjorden deglaciated extremely quickly with complete fjord deglaciation below ∼500 m asl between 10.0 and 8.5 ka.Both increasing air and ocean temperatures were pivotal in driving surface lowering and submarine melt during deglaciation, but the final withdrawal of ice through Nioghalvfjerdsfjorden was facilitated by the action of marine ice sheet instability. Our estimates show that thinning and retreat rates reached a maximum of 5.29 ma−1 and 613 ma−1, respectively, as the ice margin withdrew westwards. This would place the Early Holocene disintegration of this outlet of the NEGIS at the upper bounds of contemporary thinning and retreat rates seen both in Greenland and Antarctica. Combined with recent evidence of ice stream shutdown during the Holocene, as well as predictions of changing ice flow dynamics within downstream sections of the NEGIS catchment, this suggests that significant re-organisation of the terminal zone of the ice stream is imminent over the next century

    The deglacial history of 79N glacier and the Northeast Greenland Ice Stream

    Get PDF
    Acknowledgements This work was funded by NERC Standard Grant NE/N011228/1. We thank the Alfred Wegner Institute, and particularly Hicham Rafiq and Daniel Steinhage, for their significant logistic support through the iGRIFF project. Additional support was provided from Station Nord (Jørgen Skafte), Nordland Air, Air Greenland, the Joint Arctic Command and the Department of Geography, Durham University. Naalakkersuisut, Government of Greenland, provided Scientific Survey (VU-00121) and Export (046/2017) licences for this work. We would also like to thank our Field Ranger Isak (Nanu-Travel) and dog Ooni for keeping us safe in the field. TCN Sample preparation was carried out at the National Environmental Isotope Facility, Scottish Universities Environmental Research Centre under grant allocation 9185.0814. Chris Orton in the Cartographic Unit, Geography, Durham University edited several figures. This paper is dedicated to Mr Arnold Jones – a true Quaternarist.Peer reviewe

    A novel causal mechanism for grey squirrel bark stripping: The Calcium Hypothesis

    Get PDF
    AbstractGrey squirrels, Sciurus carolinensis, damage trees in the UK by stripping bark and eating the underlying phloem; squirrel motivation for damage is, however, unknown. Damage can result in deterioration of timber quality and a significant economic toll on the forestry industry. Prediction of severe damage followed by targeted killing of squirrels is the current recommended management option. However, the use of warfarin (an anticoagulant poison) is now restricted in the UK and other more humane methods of killing are labour-intensive, so an alternative solution is needed. A better understanding of what motivates grey squirrels to strip bark may enable a preventive approach to be developed. Whilst the bark stripping literature has explored predictive factors affecting the likelihood of damage, causal understanding is lacking. The aim of this review is to introduce the Calcium Hypothesis as a possible explanation for bark stripping, with a view to informing the prevention of damage. The Calcium Hypothesis states that grey squirrels damage trees to ameliorate a calcium deficiency. The main predictive factors of bark stripping behaviour each inform and lend support to the Calcium Hypothesis. Calcium is stored in tree phloem, and damage increases with phloem width, providing squirrels with more calcium per unit area ingested. Calcium levels increase in trees as active growth resumes after winter dormancy, this occurs immediately prior to the main bark stripping season of May–July, and trees growing most vigorously are at increased risk of damage. It is likely grey squirrels also have a requirement for calcium during the bark stripping season. Adult females will be under post-parturition pressures such as lactation, and juveniles will be going through their main period of bone growth, both of which likely represent a requirement for calcium – which supports an observed positive correlation between juvenile abundance and bark stripping. A high autumnal seed crop increases juvenile recruitment the following spring, and could also induce a requirement for calcium to a population due to the high phosphorus to calcium ratio of seeds. To further investigate the hypothesis, the extent to which grey squirrels can utilise calcium oxalate, as calcium occurs in bark, should be determined, and also the extent to which grey squirrels undergo seasonal periods of calcium deficiency. Increasing our causal understanding of bark stripping could inform the future development of preventive measures to aid forest management

    The deglacial history of 79N glacier and the Northeast Greenland Ice Stream

    Get PDF
    The Northeast Greenland Ice Stream (NEGIS) is the main artery for ice discharge from the northeast sector of the Greenland Ice Sheet (GrIS) to the North Atlantic. Understanding the past, present and future stability of the NEGIS with respect to atmospheric and oceanic forcing is of global importance as it drains around 17% of the GrIS and has a sea-level equivalent of 1.6 m. This paper reconstructs the deglacial and Holocene history of Nioghalvfjerdsbræ (or 79N Glacier); a major outlet of the NEGIS. At high elevation (>900 m asl) autochthonous blockfield, a lack of glacially moulded bedrock and pre LGM exposure ages point to a complex exposure/burial history extending back over half a million years. However, post Marine Isotope Stage 12, enhanced glacial erosion led to fjord incision and plateaux abandonment. Between 900 and 600 m asl the terrain is largely unmodified by glacial scour but post LGM erratics indicate the advection of cold-based ice through the fjord. In contrast, below ∼600 m asl Nioghalvfjerdsfjorden exhibits a geomorphological signal indicative of a warm-based ice stream operating during the last glacial cycle. Dated ice marginal landforms and terrain along the fjord walls show initial thinning rates were slow between ∼23 and 10 ka, but post-10 ka it is evident that Nioghalvfjerdsfjorden deglaciated extremely quickly with complete fjord deglaciation below ∼500 m asl between 10.0 and 8.5 ka. Both increasing air and ocean temperatures were pivotal in driving surface lowering and submarine melt during deglaciation, but the final withdrawal of ice through Nioghalvfjerdsfjorden was facilitated by the action of marine ice sheet instability. Our estimates show that thinning and retreat rates reached a maximum of 5.29 ma−1 and 613 ma−1, respectively, as the ice margin withdrew westwards. This would place the Early Holocene disintegration of this outlet of the NEGIS at the upper bounds of contemporary thinning and retreat rates seen both in Greenland and Antarctica. Combined with recent evidence of ice stream shutdown during the Holocene, as well as predictions of changing ice flow dynamics within downstream sections of the NEGIS catchment, this suggests that significant re-organisation of the terminal zone of the ice stream is imminent over the next century

    The National Lung Matrix Trial: translating the biology of stratification in advanced non-small-cell lung cancer

    Get PDF
    © The Author 2015.Background: The management of NSCLC has been transformed by stratified medicine. The National Lung Matrix Trial (NLMT) is a UK-wide study exploring the activity of rationally selected biomarker/targeted therapy combinations. Patients and methods: The Cancer Research UK (CRUK) Stratified Medicine Programme 2 is undertaking the large volume national molecular pre-screening which integrates with the NLMT. At study initiation, there are eight drugs being used to target 18 molecular cohorts. The aim is to determine whether there is sufficient signal of activity in any drug-biomarker combination to warrant further investigation. A Bayesian adaptive design that gives a more realistic approach to decision making and flexibility to make conclusions without fixing the sample size was chosen. The screening platform is an adaptable 28-gene Nextera next-generation sequencing platform designed by Illumina, covering the range of molecular abnormalities being targeted. The adaptive design allows new biomarker-drug combination cohorts to be incorporated by substantial amendment. The pre-clinical justification for each biomarker-drug combination has been rigorously assessed creating molecular exclusion rules and a trumping strategy in patients harbouring concomitant actionable genetic abnormalities. Discrete routes of pathway activation or inactivation determined by cancer genome aberrations are treated as separate cohorts. Key translational analyses include the deep genomic analysis of pre- and post-treatment biopsies, the establishment of patient-derived xenograft models and longitudinal ctDNA collection, in order to define predictive biomarkers, mechanisms of resistance and early markers of response and relapse. Conclusion: The SMP2 platform will provide large scale genetic screening to inform entry into the NLMT, a trial explicitly aimed at discovering novel actionable cohorts in NSCLC

    Genome-wide mapping of cystitis due to Streptococcus agalactiae and Escherichia coli in mice identifies a unique bladder transcriptome that signifies pathogen-specific antimicrobial defense against urinary tract infection

    Get PDF
    The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms, including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize the bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35-year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; quantitative reverse transcriptase PCR (qRT-PCR) was used to analyze selected gene responses identified in array data sets. A surprisingly small significant-gene list of 172 genes was identified at 24 h; this compared to 2,507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2 h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2 h. Bioinformatics analyses, including integrative system-level network mapping, revealed multiple activated biological pathways in the GBS bladder transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens
    corecore