520 research outputs found

    Memetic cooperative coevolution of Elman recurrent neural networks

    Get PDF
    Cooperative coevolution decomposes an optimi- sation problem into subcomponents and collectively solves them using evolutionary algorithms. Memetic algorithms provides enhancement to evolutionary algorithms with local search. Recently, the incorporation of local search into a memetic cooperative coevolution method has shown to be efficient for training feedforward networks on pattern classification problems. This paper applies the memetic cooperative coevolution method for training recurrent neural networks on grammatical inference problems. The results show that the proposed method achieves better performance in terms of optimisation time and robustness

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Solving variational inequalities and cone complementarity problems in nonsmooth dynamics using the alternating direction method of multipliers

    Get PDF
    This work presents a numerical method for the solution of variational inequalities arising in nonsmooth flexible multibody problems that involve set-valued forces. For the special case of hard frictional contacts, the method solves a second order cone complementarity problem. We ground our algorithm on the Alternating Direction Method of Multipliers (ADMM), an efficient and robust optimization method that draws on few computational primitives. In order to improve computational performance, we reformulated the original ADMM scheme in order to exploit the sparsity of constraint jacobians and we added optimizations such as warm starting and adaptive step scaling. The proposed method can be used in scenarios that pose major difficulties to other methods available in literature for complementarity in contact dynamics, namely when using very stiff finite elements and when simulating articulated mechanisms with odd mass ratios. The method can have applications in the fields of robotics, vehicle dynamics, virtual reality, and multiphysics simulation in general

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques
    • …
    corecore