
Received: 28 December 2020 Revised: 25 March 2021 Accepted: 4 April 2021

DOI: 10.1002/nme.6693

R E S E A R C H A R T I C L E

Solving variational inequalities and cone complementarity
problems in nonsmooth dynamics using the alternating
direction method of multipliers

Alessandro Tasora Dario Mangoni Simone Benatti Rinaldo Garziera

Department of Engineering and
Architecture, University of Parma, Parma,
Italy

Correspondence
Alessandro Tasora, Department of
Engineering and Architecture, University
of Parma, Parco Area delle Scienze, 181/A,
43124 Parma, Italy.
Email: alessandro.tasora@unipr.it

Abstract
This work presents a numerical method for the solution of variational inequal-
ities arising in nonsmooth flexible multibody problems that involve set-valued
forces. For the special case of hard frictional contacts, the method solves a sec-
ond order cone complementarity problem. We ground our algorithm on the
Alternating Direction Method of Multipliers (ADMM), an efficient and robust
optimization method that draws on few computational primitives. In order
to improve computational performance, we reformulated the original ADMM
scheme in order to exploit the sparsity of constraint jacobians and we added
optimizations such as warm starting and adaptive step scaling. The proposed
method can be used in scenarios that pose major difficulties to other methods
available in literature for complementarity in contact dynamics, namely when
using very stiff finite elements and when simulating articulated mechanisms
with odd mass ratios. The method can have applications in the fields of robotics,
vehicle dynamics, virtual reality, and multiphysics simulation in general.

K E Y W O R D S

ADMM, contact, friction, nonsmooth dynamics, simulation

1 INTRODUCTION

Problems involving frictional contacts can be found in many engineering fields. Their simulation is a challeng-
ing task because the discontinuous nature of contact phenomena discourages the adoption of conventional time
integration schemes, which assume continuous velocities and accelerations. In fact, if on the one hand it is
possible to turn a discontinuous model into a smooth Ordinary Differential Equation by approximating con-
tact forces via spring-damper penalty forces, on the other this usually requires the adoption of extremely small
time steps.

In search of better numerical performance and stability, even in case of large time steps, we rather formulate the
original nonsmooth dynamical problem as a Measure Differential Inclusion (MDI). MDIs were pioneered by Moreau in
the eighties, among others, aiming at a viable approach to the simulation of mechanical systems with hard contacts.1,2

Being differential inclusions, they can directly embed set-valued force laws, such as the Coulomb friction model, but

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

Int J Numer Methods Eng. 2021;1–21. wileyonlinelibrary.com/journal/nme 1

https://orcid.org/0000-0002-2664-7895
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.6693&domain=pdf&date_stamp=2021-05-07

2 TASORA et al.

they also generalize to the case where velocity is assumed to be a (possibly) discontinuous function of bounded variation,
therefore they admit impulsive events.3

MDIs can be solved using special time stepping methods that offer high stability and robustness, however this comes
at the cost of solving a Complementarity Problem (CP) per each time step.4 These CPs correspond to the broader class of
Variational Inequalities (VI).5,6

In general, the solution of VIs or CPs represents the major numerical bottleneck in the entire time stepping process
of the MDI, especially when dealing with many parts or many contacts. For instance, similar scenarios can happen when
simulating packaging devices, ground–machine interaction, rock dynamics, masonry structures, and granular materials,
where the unknowns of the VIs (contact forces) can amount to thousands or millions. This challenge stimulated research
on efficient numerical methods in the last three decades.

Among the former strategies for solving this class of problems, we cite the idea of solving a Linear Complementarity
Problem (LCP) per each time step.7 Once cast as a LCP, the VI problem can be solved by direct LCP solvers such as the
Lemke algorithm. However, LCP direct solvers often lead to complex subiterations that do not scale well with increasing
number of unknowns, hence they are not much used nowadays. Another drawback of casting the problem as a LCP is that
they introduce a polyhedral approximation, for example the Coulomb friction cone would be approximated as a faceted
pyramid, introducing a numerical source of anisotropy.

At the other end of the spectrum are iterative methods that aim at high robustness and efficiency even at the expense
of sacrificing accuracy, since this is often acceptable in fields like real-time simulation, video games and virtual reality.8
In these fields, the most used approach nowadays consists in fixed point iterations, similarly to Gauss-Seidel, SOR or
Jacobi stationary methods, interleaved with simple projections onto the constraint sets at each iteration.9-11 The major
issue of these methods is that they exhibit slow convergence when the system contains long kinematic chains or long
sequences of contacts, such as when including high stacks of objects.12 Their convergence is even more challenged if odd
mass ratios are encountered: this often happens when simulating industrial robots, earth-moving machines, complex
vehicle suspensions, car drivelines. In these cases the convergence might stall soon, hence if the iterations are truncated
in order to meet a time budget in real-time applications, the resulting simulation can be affected by low accuracy—usually
detectable in the form of objects that interpenetrate at the point of contact and mechanisms that fall apart. Optimizations
like warm starting and substepping can alleviate the drawbacks of these methods.13

A more advanced class of solvers is represented by non-smooth Newton methods, such as the one presented in Refer-
ence 14, that assume a generic Nonlinear Complementarity Problem (NCP), again a subcase of a VI, and that enforce the
NCP complementarity constraints using nonsmooth functions like the Fisher–Burmeister function. In these methods, a
generalized nonsmooth Newton method can be used to find the zero of the functions, but this comes at the cost of solving
a linear system per each iteration.

Recent efforts pushed forward the idea of casting the VI of nonsmooth dynamics as a convex optimization problem,
namely a Quadratic Program (QP) with convex constraints. This requires a simplifying assumption about the Coulomb
friction being associative instead of nonassociative. This artificial associativity of the friction model means that the rel-
ative sliding velocity in a contact point will be restricted to the dual cone of the Coulomb friction cone, whereas the
original model has a more relaxed condition, assuming that such velocity could be even parallel to the surface: the prac-
tical consequence is that grazing motion cause an artificial lift-off—however, this artifact can be attenuated thanks to the
introduction of a stabilization term.15 In this setting, the problem is also a convex Cone Complementarity Problem (CCP).
The convexity assumption allows the adoption of numerical methods already available for large-scale optimization prob-
lems. In Reference 16, the Barzilai–Borwein spectral projected gradient is used to this end, and in Reference 17 we used
the Nesterov accelerated projected gradient descend to simulate large-scale contact problems. These are first-order opti-
mization methods, in the sense that they do not require the computation of the Hessian matrix: in fact they rely only on
matrix-by-vector multiplications and inner products (similarly to Krylov subspace methods in the field of linear systems),
plus a fast projection operator. Although they offer superior convergence with respect to fixed point iterations, they are
not easily applicable to problems involving finite elements. In fact, this class of solvers often perform the matrix-by-vector
primitive over a Schur complement matrix, a product of constraint jacobians and inverse of the mass matrix. Since the
mass matrix is often (block) diagonal, the Schur complement can be quickly factored at the beginning of the iteration,
but if finite elements are used, the Schur matrix would also involve to some extent the inverse of element stiffness matri-
ces and damping matrices, a costly and inefficient operation unless special developments are considered.18 Extending
complementarity approaches in order to encompass finite elements is important because recent research has shown that
complementarity-based formulations for large deformation dynamics with contacts often show superior performance
when compared to penalty-based approaches.19,20

TASORA et al. 3

Another class of solvers that can draw on the optimization-based approach are Interior Point Methods (IPMs). These
solvers share some similarities with the previously mentioned nonsmooth Newton methods, in that they require the
solution of a saddle-point linear system at each iteration. IPMs offer the best theoretical convergence for the problem
at hand.21 However, their implementation is complex, and despite the encouraging theoretical properties, in practical
scenarios they do not scale well for large problems. One of their drawbacks, also, is that at the present state of knowledge
there are no efficient ways to warm-start them.22 This led us to investigate other methods for constrained optimization
problems.

The Alternating Direction Method of Multipliers (ADMM) has been proposed in the 1970s23,24 as a practical way to
solve constrained optimization problems by iterating over the minimization of two (not necessarily differentiable) objec-
tives. ADMM introduces auxiliary variables and casts the original problem as the minimization of a separable objective
subject to a linear constraint between the original variables and the auxiliary variables. With a proper choice of auxiliary
variables, the minimization of the separable function is obtained iterating on two distinct minimization steps of lower
complexity. The method iterates updating primal variables, auxiliary variables and dual variables similarly to a fixed point
iteration: as such, they compare less favourably to IPMs if one is interested in convergence to high precision; however,
recent developments showed that in practical scenarios they offer superior speed, scalability, and robustness.25 These pos-
itive properties triggered a recent revival of ADMM and similar operator-splitting methods even as alternatives to IPMs,
especially in distributed convex optimization with large-scale problems where moderate precision is acceptable.26

ADMM methods have been used in many fields, with recent and notable examples in computer graphics,27 computa-
tional fluid dynamics,28 simulation of deformable structures,29 and contact dynamics.30,31

In the field of robotics, a sequential unconstrained minimization technique (SUMT) method based on augmented
Lagrangian has been discussed in References 32,33, to our knowledge for the first time in a context of nonsmooth
dynamics: SUMT leads to an iteration with the same structure of ADMM, for the same type of constraints.

Recent developments addressed the possibility of accelerating the ADMM method. In Reference 34 an acceleration
scheme has been proposed for special cases of symmetric ADMMs, and assuming that one of the two objectives is dif-
ferentiable. In Reference 35 the Nesterov acceleration method has been proposed for problems where at least one of the
two objectives is quadratic, and under the assumption that both objectives are strongly convex; if the latter assumption
is not guaranteed, restarting strategies are needed. In Reference 36 a similar acceleration method has been proposed,
with

(
1
k2

)
convergence rate, but without the assumption that one of the objectives must be quadratic. Other types of

improvements, based on the Anderson fixed point acceleration, have been put forward in References 27,37, showing high
performance in computer graphics applications.

Recent developments also focused on the possibility of parallelizing the ADMM iterations on GPU and parallel
architectures.38

In Reference 39 a specialized ADMM method for quadratic problems has been presented: building off this method,
we develop a solver that can exploit the nature of nonsmooth dynamical problems. An attractive property of the approach
is that it requires the solution of a linear system per each iteration, but unlike IPMs, the linear system most often
remains unchanged during the iterations, so a factorization can be reused multiple times with a great benefit in terms
of speed.

In the approach proposed herein, unknowns are primal variables (velocity measures) and dual variables (impulses in
contact points and joints), the convex cone constraints stem from the Coulomb friction law, and the system matrix includes
terms from the mass matrices and from the tangent stiffness/damping matrices (hence it is sparse, but not necessarily
diagonal).

This paper will present a model for the non-smooth dynamics, it will show how to cast it as a QP with convex conic
constraint, it will present the ADMM method to solve it, it will discuss practical implementation details and then it will
show benchmarks.

2 DEFINITIONS

In this section we list some basic definitions that we will use in the rest of the paper.

Definition 1. A second-order cone, also Lorentz cone, is a self-dual self-scaled symmetric cone defined as

 =
{
(x0, x1) ∈ R × R

p−1 ∶ ‖x1‖2 ≤ x0
}
= −∗. (1)

4 TASORA et al.

Definition 2. The dual cone ∗ of a set in a vector space equipped with an inner product, is always convex and is
defined as

∗ =
{

y ∈ R
n ∶ ⟨y, x⟩ ≥ 0 ∀x ∈

}
. (2)

Definition 3. The polar cone is defined as

◦ =
{

y ∈ R
n ∶ ⟨y, x⟩ ≤ 0 ∀x ∈

}
= −∗. (3)

Definition 4. The normal cone to a closed convex set at the point x ∈ is closed and convex and is defined as

(x) = {y ∈ R
n ∶ ⟨y, x − z⟩ ≥ 0,∀z ∈ }. (4)

Definition 5. The indicator function of a subset ∈ is a scalar function I ∶ → R defined as:

I(x) =

{
0 if x ∈

∞ if x ∉
. (5)

Remark. The indicator function of any closed set is lower semicontinuous.

Definition 6. The subdifferential 𝜕f (x0) at x0 of a convex, possibly nondifferentiable scalar function f ∶ Rn → R, is the
closed convex set of all subgradients g at x0:

𝜕f (x0) = {g ∶ f (x) − f (x0) ≥ ⟨g, (x − x0)⟩ ∀x ∈ } . (6)

Remark. The subdifferential is a set-valued function 𝜕f (x) ∶ Rn ⇉ Rn in general, but as a special case, if f (x) is
differentiable, 𝜕f (x) = {∇f (x)}.
Remark. The subdifferential of an indicator function of a convex set is also its normal cone:

𝜕I(x) = (x). (7)

Definition 7. The projection of y on a nonempty closed convex set is a Rn → Rn mapping defined as:

Π (y) = argminx∈ ‖x − y‖2
2 . (8)

Remark. If f (y) is the indicator function I (y) to a nonempty closed convex set , defined as in (5), then proxf (y) is the
orthogonal projection onto that set:

proxI (y) = Π (y). (9)

3 THE NONSMOOTH MULTIBODY MODEL

Different time stepping schemes have been proposed for MDIs, here we refer to the one discussed in Reference 12 with-
out lack of generality. After regularization and convexification and discretization, the MDIs leads to a major numerical
bottleneck to be solved at each time step: a (mixed) CCP with unknowns v and 𝜸𝜖:

⎧⎪⎨⎪⎩
Hv − k − D𝜖𝜸𝜖 = 0 (10a)

DT
𝜖 v + b𝜖 = u𝜖 (10b)

−Υ◦ ∋ u𝜖 ⊥ 𝜸𝜖 ∈ Υ (10b)

where

• unknown v ∈ Rnv is the speed at the end of the time step h,
• unknown 𝜸𝜖 ∈ Rnc is the reaction in contacts and bilateral joints, a vector-signed measure with Lebesgue decomposi-

tion in atomic parts (impacts) and continuous parts (continuous reactions),
• H ∈ Rnv×nv is a positive definite matrix containing M, the block-diagonal matrix of the masses and inertia tensors of the

bodies; if stiff loads are added too (ex. when finite elements come into play) it becomes a block-sparse matrix including
the tangent stiffness and damping matrices, for instance H = M − h2∇q f − h∇v f in case of the first-order time steppers
in References 12,18,

TASORA et al. 5

• D𝜖 ∈ Rnv×nc is a sparse matrix, the transpose jacobian of all constraints,
• k ∈ Rnv is a vector containing terms proportional to applied forces f and to the last-known speed,
• b ∈ Rnc is a vector containing constraint stabilization terms and rheonomic terms,
• Υ is the Cartesian product of all cones of admissible constraint forces, Υ=

⨉
jΥj, in detail:

• if a frictional contact is added, Υj ⊂ R3 is a second-order Lorentz cone (see Definition 1) with aperture proportional to
friction coefficient,

• if a bilateral constraint is added, Υj = R and Υ◦
j = {0},

• if a unilateral constraint is added, Υj = R+ and Υ◦
j = R−,

• Υ◦ is the polar cone, see Definition 3.

For more details on the model we refer to Reference 40.
Since H is positive definite, from (10a) one also gets:

v = H−1(k + D𝜖𝜸𝜖), (11)

and Equation (10b) can be written as

u𝜖 = N𝜸𝜖 + r𝜖,

where we introduced the Schur complement*

N = DT
𝜖 H−1D𝜖, (12)

and the vector
r𝜖 = DT

𝜖 H−1k + b𝜖. (13)

In this way, one can also reformulate the problem as the following CCP:

−Υ◦ ∋ N𝜸𝜖 + r𝜖 ⟂ 𝜸𝜖 ∈ Υ. (14)

This CCP corresponds exactly to a first-order optimality condition of a convex quadratic program:

min 1
2
𝜸

T
𝜖 N𝜸𝜖 + rT

𝜖 𝜸𝜖 (15a)

s.t. 𝜸𝜖 ∈ Υ, (15b)

and in fact, the CCP (14) can be written in the more conventional language of the Karush–Kuhn–Tucker optimality
conditions on dual variables y multipliers, for y = −u𝜖 , and primal variables 𝜸𝜖:

N𝜸𝜖 + r𝜖 + Iy = 0 (16a)
𝜸𝜖 = z (16b)

Υ ∋ z ⟂ y ∈ Υ◦ (16c)

After the convex program (15) is solved by ADMM, one can compute v using (11) with an immediate step.
The ADMM method in Reference 39 can be used to solve problems in the form

Px + q + ATy = 0 (17a)
Ax − b = z (17b)
 ∋ z, y ∈ (z), (17c)

*The N matrix, which is the Schur complement of the matrix of the linear system Equations (10a) and (10b), is also called Delassus operator in the
contact dynamics community.

6 TASORA et al.

and recalling Definitions (3) and (4), one can see that (16) is a special case of (17) where A= I, P=N, = Υ, q = r, x = 𝜸𝜖 ,
b = 0, where some optimizations can take place because of the structure of our problem.

We remark that the ADMM method just makes the assumption of Υ being convex, so the problem can be generalized
to 𝜸𝜖 ∈ where is a generic convex set, and at the same time we assume an associated† flow u𝜖 ∈ −(𝜸𝜖). For instance,
 could be a capped friction cone to represent plasticization of contacts, or a cone translated downward to represent
possible adhesion in contact up to a threshold, or the Von Mises yield region if 𝜸𝜖 represent stresses in finite elements
undergoing plasticization.

Also, aiming at highest generality, in presence of finite elements one might need to use tangent stiffness matrices
K and damping matrices D to accommodate an implicit integration scheme for stiff elements, and this means that the
Schur complement would be computed as N = DT

𝜖 H−1D𝜖 . Here H is a linear combination of M, K, D (depending on the
integration scheme) and in general is not block-diagonal anymore.

4 THE ADMM SOLVER

For variables (x, z) ∈ Rm × Rn, the ADMM methods solve constrained optimization problems with separable structure

min f (x) + g(z) (18a)
s.t. Ax + Bz − b = 0, (18b)

where f ∶ Rnx → R and g ∶ Rnz → R are proper convex lower-semi-continuous functions, and A ∈ R
nx×ny , B ∈ R

nz×ny are
linear operators.

The optimality conditions require that primal feasibility

Ax⋆ + Bz⋆ − b = 0, (19)

and dual feasibility
0 ∈ 𝜕f (x⋆) + ATy⋆ (20a)
0 ∈ 𝜕g(z⋆) + BTy⋆, (20b)

must hold at the solution (x⋆, z⋆, y⋆), saddle point of the Lagrangian with dual variables y ∈ R
ny .

By introducing an augmented Lagrangian

𝜌(x, z, y) = f (x) + g(z) + yT(Ax + Bz − b) + 𝜌

2
‖Ax + Bz − b‖2

2 . (21)

the ADMM method converges to the solution (x⋆, z⋆, y⋆) by iterating over two distinct minimization problems as in the
following loop:

xk+1 ∈ arg min
x

𝜌(x, zk, yk). (22)

zk+1 ∈ arg min
z

𝜌(xk+1, z, yk). (23)

yk+1 = yk + 𝜌(Axk+1 + Bzk+1 − b). (24)

The convergence of such method has rate
(

1
k

)
. Although the convergence is fast in the first iterations, it tends to

deteriorate later as in most fixed-point iterations; however in practical scenarios where loose tolerances can be accepted,
even this basic formulation of ADMM proves to be efficient and robust.

The performance of ADMM depends on the efficiency of the updates in (22) and (23). We will design the
method such that the step (23) will correspond to a very efficient projection onto a cone with separable structure,

†Not all dissipative constitutive models are associated. For example, in some computational plasticity models, the plastic flow might deviate with
respect to the normal to the yield surface. Moreover, the Coulomb contact model itself is not associated—in fact the contact velocity u can range into a
wider cone than the polar of the friction cone, but our MDI model compensates for such effect via a stabilization term. We will assume associated
models heretofore, and we do not deal with non-associated models to avoid additional complexity for the moment.

TASORA et al. 7

whereas the only bottleneck will be (22), corresponding to a quadratic optimization to be solved with a linear
system.

In order to rewrite (15) as a sum of two functions as in (20), we introduce 𝜸𝜖 ∈ Rnc as primal variables, z ∈ Rnc as aux-
iliary variables, we add 𝜸𝜖 − z = 0 as the linear constraint, we reformulate the 𝜸𝜖 ∈ Υ constraint by adding a nonsmooth
penalty function IΥ(z) given by an indicator function (see Definition 5), and finally we have

min 1
2
𝜸

T
𝜖 N𝜸𝜖 + rT

𝜖 𝜸𝜖 + IΥ(z) (25a)

s.t. 𝜸𝜖 = z. (25b)

We can write the augmented Lagrangian introducing a step size parameter 𝜌 and a vector of dual variables y, obtaining:

𝜌

(
𝜸𝜖, z, y

)
= 1

2
𝜸

T
𝜖 N𝜸𝜖 + rT

𝜖 𝜸𝜖 + IΥ(z)

+ yT(𝜸𝜖 − z) + 𝜌

2
‖‖𝜸𝜖 − z‖‖2

2 , (26)

that is also, using the property yTr + 𝜌

2
‖r‖2

2 = 𝜌

2
‖‖‖r + 1

𝜌
y‖‖‖2

2
− 1

2𝜌
‖y‖2

2, the following

𝜌

(
𝜸𝜖, z, y

)
= 1

2
𝜸

T
𝜖 N𝜸𝜖 + rT

𝜖 𝜸𝜖 + IΥ(z)

+ 𝜌

2
‖‖‖‖𝜸𝜖 − z + 1

𝜌
y
‖‖‖‖2

2
− 1

2𝜌
‖y‖2

2 . (27)

The first step of ADMM requires to compute

𝜸
k+1
𝜖 = arg min

𝜸𝜖

𝜌

(
𝜸𝜖, zk, yk) . (28)

= arg min
𝜸𝜖

1
2
𝜸

T
𝜖 N𝜸𝜖 + rT

𝜖 𝜸𝜖 +
𝜌

2
(𝜸𝜖 − zk + 1

𝜌
yk)T(𝜸𝜖 − zk + 1

𝜌
yk) − 1

2𝜌
‖‖‖yk‖‖‖2

2
. (29)

= arg min
𝜸𝜖

1
2
𝜸

T
𝜖 (N + 𝜌I)𝜸𝜖 + (r𝜖 − 𝜌zk + yk)T

𝜸𝜖 + Ck. (30)

This is an unconstrained convex quadratic program whose optimality conditions lead to the following linear problem:

[N + 𝜌I] 𝜸k+1
𝜖 = 𝜌zk − r − yk. (31)

The linear system (31) can be solved as it is, but in our case it would be better to exploit the fact that the Schur matrix
N is a product DT

𝜖 H−1D𝜖 . We would like to avoid computing H−1, even storing a precomputed inverse for all iterations
would be unpractical because often dense (except when H is a diagonal mass matrix M). So we propose to replace (31)
with an equivalent saddle point problem:

Theorem 1. Let 𝜸k+1
𝜖 be a solution to (31), then it is also a solution to[

H D𝜖

DT
𝜖 −𝜌I

]{
vk+1

−𝜸k+1
𝜖

}
=

{
k

−b𝜖 + 𝜌zk − yk

}
. (32)

Proof. Performing the multiplication of the upper part of the saddle point matrix one has Hvk+1 − D𝜖𝜸
k+1
𝜖 = k,

pre-multiplying by H−1 one gets vk+1 = H−1D𝜖𝜸
k+1
𝜖 + H−1k. The multiplication of the lower part gives DT

𝜖 vk+1 + 𝜌I𝜸k+1
𝜖 =

−b𝜖 + 𝜌zk − yk, hence after substitution of vk+1 one gets DT
𝜖 H−1D𝜖𝜸

k+1
𝜖 + DT

𝜖 H−1k + 𝜌I𝜸k+1
𝜖 = −b𝜖 + 𝜌zk − yk. Recalling

the definition of N in (12) and the definition of r𝜖 in (13), this can be written also as (N + 𝜌I)𝜸k+1
𝜖 = 𝜌zk − r − yk. ▪

Corollary 1. The linear system (32) introduces an auxiliary variable v ∈ Rnv , however, the matrix is very sparse and does
not require storing or computing any H−1 matrix as we should do if using (31).

Corollary 2. A positive side effect of this approach is that its auxiliary variable v is also the velocity term in the original
mixed CCP (10), so one does not need to compute it as v = H−1(k + D𝜖𝜸𝜖) after the iteration converged because it is already
a byproduct of the linear solver in (32).

8 TASORA et al.

Corollary 3. If constraint compliance is added to the MDI, a compliance matrix C𝜖 can be present in the CCP, thus leading
to a modified version of (10b):

DT
𝜖 v + C𝜖𝜸𝜖 + b𝜖 = u𝜖.

In such case one would have N = DT
𝜖 H−1D𝜖 + C𝜖 , and (32) would change into:[
H D𝜖

DT
𝜖 −𝜌I − C𝜖

]{
vk+1

−𝜸k+1
𝜖

}
=

{
k

−b𝜖 + 𝜌zk − yk

}
. (33a)

The second step of ADMM requires to compute

zk+1 = arg min
z

𝜌

(
𝜸

k+1
𝜖 , z, yk) .

This is a minimization problem too, but it can be rephrased in terms of a projection on the Υ set, which has a separable
structure. In fact, recalling (27) and removing constant terms:

zk+1 = arg min
z

IΥ(z) +
𝜌

2
‖‖‖‖𝜸k+1

𝜖 − z + 1
𝜌

yk‖‖‖‖2

2
. (34)

Using the Definition 7, this leads to:

zk+1 = ΠΥ

(
𝜸

k+1
𝜖 + 1

𝜌
yk
)
. (35)

Note that the projection ΠΥ can be performed efficiently in our case, because Υ is the Cartesian product of nc Coulomb
second-order friction cones of lower dimension, assuming a set of nc contacts:

Υ = Υ1 × Υ2 × … × Υnc , Υi ⊂ R
3.

The separable structure allows the projection to be performed as a tuple of simpler projections:

ΠΥ(p) =
{
ΠΥ1(p1),ΠΥ2(p2), … ,ΠΥnc

(pnc
)
}
, pi ∈ R3.

In a more general setting, where 𝜸𝜖 contains both contact reactions and reactions in bilateral and unilateral joints, the
projection operator for the ith bilateral reaction is simply ΠR(pi) = pi and the projection operator for the ith unilateral
reaction is ΠR+(pi) = max(0, pi).

Note that the entire ΠΥ projection requires an inexpensive and parallelizable operation.
A basic form of ADMM will then iterate over these updates:[

H D𝜖

DT
𝜖 −𝜌I − C

]{
vk+1

−𝜸k+1
𝜖

}
=

{
k

−b𝜖 + 𝜌zk − yk

}
. (36)

zk+1 = ΠΥ

(
𝜸

k+1
𝜖 + 1

𝜌
yk
)
. (37)

yk+1 = yk + 𝜌
(
𝜸

k+1
𝜖 − zk+1) . (38)

Before being able to apply this iteration in real problems, we should introduce some optimizations that will make a
big difference for the performance of the method, and that will be discussed in the next section.

5 IMPLEMENTATION

5.1 Residuals and termination

In order to monitor the convergence of the method, a measure of residual quantities must be introduced. Given the
definitions (19), (20a), (20b), one can define a primal and a dual residual as:

TASORA et al. 9

rk+1
primal = 𝜸

k+1
𝜖 − zk+1. (39)

rk+1
dual = N𝜸

k+1
𝜖 + r + yk+1. (40)

An alternative way to compute rk+1
dual, that does not need to use the N matrix, is

rk+1
dual = DT

𝜖 vk+1 + C𝜖𝜸
k+1
𝜖 + r + yk+1.

Another option (see Reference 25) is to compute it as

rk+1
dual = 𝜌(zk+1 − zk),

which is even faster, at the expense of storing the previous value of z.
The iteration is terminated when both rprimal and rdual fall under prescribed tolerances.
Here primal and dual residuals have an interesting physical interpretation: a large primal residual means that the

solution provides reaction forces that do not satisfy the set inclusions (e.g., the friction might be overestimated), whereas
a large dual residual means that the speed (in the contact point metric) is wrong. That is, in the discussed time stepping
scheme, the measuring units of rprimal is the same of reaction impulses, e.g. N.s, whereas the measuring units of rprimal
can be considered the same of speeds, for example, m/s.

We remark that, depending on the measuring units, the two residual errors can have different importance: this means
that it is useful to set two distinct tolerances 𝜖primal and 𝜖dual. Different heuristics can be used to define relative tolerances
too, as shown in Reference 39.

5.2 Step size selection

The basic method outlined in (36)–(38) uses a fixed step 𝜌.
In general, small values of 𝜌 cause a fast reduction of the dual residual, but a slow reduction of the primal residual.

This has a physical interpretation: truncating iterations based on too small 𝜌 most often lead to solutions where parts do
not interpenetrate, but some contact forces do not satisfy the inclusion in the Coulomb cone. That is, some parts might
stick like contacts were glued.

On the other hand, large values of 𝜌 cause a fast reduction of the primal residual, but a slow reduction of the dual
residual. This means that truncating iterations with too large 𝜌 most often lead to solutions where contact forces satisfy
very well the inclusion in the Coulomb friction cones, but parts might interpenetrate.

Clearly, this calls for the introduction of a scheme that adaptively changes the step size 𝜌 in order to achieve a balanced
reduction of both residuals. In most cases one can use heuristics and adjust 𝜌 only one or two times during the iterations,
hence allowing to reuse the factorization of the linear system (36) as much as possible. In fact, the most time-consuming
step is the factorization of the matrix in (36), but this happens only at the first iteration and at all iterations where 𝜌

changes, otherwise one can reuse the last factorization because the matrix is the same, and perform only the back solve
step with the different right-hand side. On average, in our tests, the back solve operation took less than 1/10 of the time
needed for the factorization.

We tested different policies for scaling the 𝜌 step in our algorithm. All policies share the following concept: start-
ing from an initial value 𝜌0, the step is scaled once each ns iterations such that the primal and dual residuals are well
balanced,41 that is:

𝜌k+1 = 𝜌k𝜂𝜌. (41)

We define the balanced scaling policy as

𝜂𝜌 =
‖‖‖rk

primal
‖‖‖∞‖‖‖rk

dual
‖‖‖∞ . (42)

We define the balanced normalized scaling policy as

10 TASORA et al.

𝜂𝜌 =
⎛⎜⎜⎜⎝

‖‖‖rk
primal

‖‖‖∞
max

(‖‖zk‖‖∞, ‖‖‖𝜸k
𝜖
‖‖‖∞)⎞⎟⎟⎟⎠

⎛⎜⎜⎝
‖‖‖rk

dual
‖‖‖∞‖‖yk‖‖∞

⎞⎟⎟⎠
−1

. (43)

Another idea is presented in Reference 42, where the the step is changed using the Barzilai–Borwein spectral formula.
This is referenced as the spectral scaling policy in the following.

In all the cases above, one needs safeguards to avoid excessive scaling, for example we limit the scaling factor 𝜂𝜌 by
clamping it in the

[
1

50
, 50

]
interval by default. Also, in order to avoid an excessive number of factorizations, one could

force the scaling factor to 𝜂𝜌 = 1 (hence no change in 𝜌) if it is not too far from the unity anyway—for example, by default
we use a tolerance interval

[
1
2
, 2
]
, and if the scaling falls inside that interval, it is forced to 𝜂𝜌 = 1.

5.3 Custom treatment of bilateral joints

We experimented with the idea of using a 𝜌 value that changes on a per-constraint basis. If one could know in advance
which contact will be active at the solution, one could split 𝜌i values between very high or very low values for the fastest
convergence; however, this is not possible because the set of active constraints is known only at the solution. However,
we still can use a simple heuristics consisting in forcing a small value 𝜌b = 1 × 10−9 for constraints belonging to the set
B of bilateral constraints, where one knows in advance that the corresponding dual variable yi would be null anyway.
This produces better convergence results in systems containing both contacts and many bilateral joints, such as when
simulating articulated robots that grasp some objects.

This means that, instead of using a scalar 𝜌k, in our code we use a diagonal matrix Θk defined as:

Θk = Θ(𝜌k), Θk
i,j =

⎧⎪⎨⎪⎩
0 if i ≠ j
𝜌b if i = j and i ∈ B

𝜌k if i = j and i ∉ B

(44)

6 FINAL ALGORITHM

Using the above results, one can finally obtain the ADDM algorithm for solving the CCP of the nonsmooth dynamics
timestepper:

The algorithm above contains a single computational bottleneck, that is the solution of the linear system. However,
if a direct solver is used, a LU decomposition‡ could be computed at the beginning and then recomputed only when the
step size is adjusted, otherwise in all other iterations with 𝜌k+1 = 𝜌k the decomposition is unaltered and only a relatively
inexpensive back solve is required.

6.1 Preconditioning

We experienced that the convergence of Algorithm 1 is negatively affected by the presence of odd mass ratios in the
mechanical system. The immediate effect of uneven mass ratio is a broadening of the spectrum of the N matrix. Note
that this can be also a consequence of using different measuring units for different constraint multipliers 𝛾i, for instance
even a system with odd mass ratios can have a badly conditioned N matrix if some constraint reactions are assumed in
newtons, other in kilo newtons—clearly, as the choice of measuring units is arbitrary, one should find a way to make the
solver as much insensitive as possible to the scaling of the constraints.

‡In many cases the H matrix is hermitian, for example when just block-diagonal mass matrices are used, hence the decomposition of the symmetric
indefinite saddle point matrix can be done via a LDL decomposition, which is faster than the LU decomposition. However there are cased where
un-symmetric tangent stiffness matrices might be added to H, as happens in some finite element problems, precluding this approach.

TASORA et al. 11

Algorithm 1. ADMM for solving CCPs in nonsmooth dynamics

Input: Initial approximations y0, z0

Outputs: Solution 𝜸
⋆
𝜖 , v⋆, optionally also y⋆, z⋆

1: Θ0 = Θ(𝜌0)
2: while k ≤ nmaxiters do

3:

[
H D𝜖

DT −Θk − C𝜖

]{
vk+1

−𝜸k+1
𝜖

}
=

{
k

−b𝜖 + Θkzk − yk

}
⊳ Solve for vk+1, 𝜸k+1

𝜖

4: zk+1 = ΠΥ
(
𝜸

k+1
𝜖 + (Θk)−1yk) ⊳ Project onto Υ

5: yk+1 = yk + Θk (
𝜸

k+1
𝜖 − zk+1)

6: rk+1
primal = 𝜸

k+1
𝜖 − zk+1

7: rk+1
dual = Θk(zk+1 − zk)

8: if ‖‖‖rk+1
primal

‖‖‖<𝜖primal and ‖‖‖rk+1
dual

‖‖‖<𝜖dual then
9: break

10: end if
11: 𝜌k+1 = StepAdjustPolicy(𝜌k)
12: Θk+1 = Θ(𝜌k+1)
13: end while

A possible remedy for this difficulty is to perform a simplified form of preconditioning by doing a diagonal scaling of
N and r𝜖 before starting the iteration, thus operating on the scaled form of the problem:

min 1
2
�̆�

T
𝜖 N̆�̆�𝜖 + r̆T

𝜖 �̆�𝜖, (45)

s.t. �̆�𝜖 ∈ Ῠ, (46)

with �̆�𝜖 = S−1
𝜸𝜖 , N̆ = SNS, r̆T

𝜖 = SrT
𝜖 . We set Sii =

√
1

Nii
. Note that other more advanced (and CPU intensive) precon-

ditioners could be used, for example in Reference 39 a modified Ruitz equilibration is proposed. After the solution is
computed, one can quickly recover 𝜸𝜖 = S�̆�𝜖 .

Note that in search of high performance we never build explicitly N̆ and r̆T
𝜖 : what we need is just a scaling of the saddle

point matrix involved in (36), that will simply include the scaled jacobians D̆𝜖 = D𝜖S, the scaled compliance C̆𝜖 = SC𝜖S,
the scaled term b̆𝜖 = Sb𝜖 , the scaled set Ῠ =

{
�̆� ∶ S�̆�𝜖 ∈ Υ

}
.

The scaled form of the problem would require a projection ΠῨ, however this can be simplified we use the same
Sii values for each triplet corresponding to the jth friction cone constraint, for uniform scaling of the jth cone, thus
ΠῨ(z̆) = ΠΥ(z̆). More in general, for a convex set , again assuming a uniform scaling for each j set, one can use the
simplification

Π̆(z̆) = Π̆(S
−1z) = S−1Π(z) = S−1Π(Sz̆).

The preconditioned form of the ADMM algorithm, that we call P-ADMM heretofore, is not reported here for compactness:
it is enough to replace the above scaled quantities in Algorithm 1, where �̆�𝜖, y̆, z̆ will replace 𝜸𝜖, y, z, then a final step is
added after convergence, to recover the unscaled solution: 𝜸𝜖 = S�̆�𝜖 . Moreover, if one is interested in the residuals in the
not-scaled original form, for instance to verify convergence, these can be computed as

rk+1
primal = S

(
�̆�

k+1
𝜖 − z̆k+1

)
rk+1

dual = S−1Θk(z̆k+1 − z̆k).

As an alternative, one can see that the preconditioned algorithm can be written with the original variables
𝜸𝜖, y, z if one substitutes the scaled variables and performs some algebraic simplifications, obtaining the following
steps:

12 TASORA et al.

[
H D𝜖

DT −ΘkS−2 − C𝜖

]{
vk+1

−𝜸k+1
𝜖

}
=

{
k

−b𝜖 + ΘkS−2zk − yk

}
. (47a)

zk+1 = ΠΥ

(
𝜸

k+1
𝜖 + (Θk)−1S2yk

)
. (47b)

yk+1 = yk + ΘkS−2 (
𝜸

k+1
𝜖 − zk+1) . (47c)

The method above corresponds to using the original ADMM algorithm with a nonuniform step ΘkS−2, with (S−2)ii =Nii,
hence it avoids the necessity of scaling all variables and matrices. However, when one needs to compute the residu-
als (for instance for termination criteria or for step scaling policies), in this simplified algorithm (47) those must be
computed as:

rk+1
primal =

(
𝜸

k+1
𝜖 − zk+1)

rk+1
dual = ΘkS−2(zk+1 − zk)

r̆k+1
primal = S−1 (

𝜸
k+1
𝜖 − zk+1)

r̆k+1
dual = ΘkS−1(zk+1 − zk).

6.2 Warm starting

One of the nice properties of ADMM methods is that they can be easily warm started, something that for
example is difficult to do with IPMs. This is a relevant feature in our context, because we must solve the
problem (14) at each time step, where one can expect some degree of temporal coherency in the values of
𝜸𝜖 between each step. This is especially true for simulations involving stacked objects, like when simulat-
ing environments for robots, granular flows or masonry buildings, because the contact forces often show lim-
ited changes over time, and the amount of contacts that change state can be limited. If so, one can reuse
the last computed values of 𝜸𝜖 in the previous time step to warm-start the ADMM solver at the next time
step.

This poses two difficulties. First of all, one must develop algorithms and data structures that are able to con-
vey information from the contact at time tA to a time tB = tA + h. In fact, after ADMM computes the contact forces
at step tA, those could be saved into the contact data structures; however, those contacts would be recomputed by
the collision detection engine at the next time step tB: since the objects move, also the contact manifold changes,
thus it is not trivial to compute which contacts are persistent between the two steps. By using tolerances, one can
detect if some contacts at time tB are the same contacts used at time tA, if so, their last reaction forces 𝜸𝜖 can
be copied to the new contacts and used for the warm starting, whereas completely new contacts are initialized
with 𝜸𝜖 = 0.

Furthermore, one can see that the ADDM Algorithm 1 is a fixed point {yk+1, zk+1} = g
(
{yk, zk}

)
, thus one needs

{y0, z0} to warm start it, rather than 𝜸
0
𝜖 . This leads to two options: store both y and z values in the contact data (wasting

some memory in case of large scale simulations, and complicating both data structures and bookkeeping) otherwise
assume that the last ADMM run converged exactly up to rprimal = 0, so one could just store 𝜸𝜖 values in contacts, and then
compute

v0 = H−1(k + D𝜖𝜸
0
𝜖)

y0 = −(DT
𝜖 v0 + C𝜸0

𝜖 + b𝜖)
z0 = 𝜸

0
𝜖 .

This idea, implemented in Algorithm 2, provides a speedup of 2×–10× in our tests.
Note that also the last 𝜌k value from the previous time step can be used as the initial 𝜌0 for the next step, adding a

further optimization. Statistically, given some degree of temporal coherency in the mechanical system, such pretuned
value would be better than a default value like 𝜌0 = 0.1.

TASORA et al. 13

Algorithm 2. Warm-started ADMM

Input: Initial approximation 𝜸
0
𝜖 , optional: v0

Output: Solution 𝜸
⋆
𝜖 , v⋆, optionally also y⋆, z⋆

1: if v0 is not provided then
2: v0 = H−1(k + D𝜖𝜸

0
𝜖)

3: end if
4: y0 = −(DT

𝜖 v0 + C𝜸0
𝜖 + b𝜖)

5: z0 = 𝜸
0
𝜖

6: 𝜸
⋆
𝜖 , v⋆ = ADMM(y0, z0)

7 ACCELERATED ADMM

Following the idea presented in Reference 35, one can improve the convergence of ADMM by introducing a
predictor-corrector step based on the Nesterov acceleration, with minimal computational overhead. Heretofore we will
call this variant as FADDM (Fast ADMM). The convergence of the original Nesterov-accelerated ADMM requires the
assumption that both f (x) and g(z) in (20) are strongly convex.

Definition 8. A function f ∶ Rn → R, possibly nondifferentiable, is 𝛽-strongly convex if for all points x, y in its domain it
holds:

f (x) − f (y) ≥ ⟨u, x − y⟩ + 𝛽

2
‖x − y‖2 ∀u ∈ 𝜕f (y). (48)

In our case, f (x) is a quadratic function, hence strongly convex, but g(z) is an indicator function, hence convex but
not strongly convex. In the case where just one of the two functions is strongly convex, a restart scheme can be applied
as in Reference 35, where the method reverts to the original ADMM if the combined residual rk+1

comb = Θ−1‖‖yk+1 − yk‖‖2 +
Θ‖‖‖𝜸k+1

𝜖 − 𝜸
k
𝜖

‖‖‖2
is not monotonically decreasing. The monotone decrease is assessed with a factor 𝜖r < 1, as a default value

we use 𝜖r = 0.999 to avoid too frequent restarts. Using the same performance optimization strategies that we used to
develop Algorithm 1, we finally obtain Algorithm 3.

We note in passing that the Algorithm 3 is based on a z → 𝜸𝜖 → y update ordering whereas the Algorithm 1 is based
on a 𝜸𝜖 → z → y ordering, leading to a slightly modified warm starting method.

Also, a preconditioned version with diagonal scaling can be obtained with the already discussed transformation of
(46), leading to a method that we call P-FADMM in the following.

8 BENCHMARKS

In the literature there are many examples of iterative solvers for nonsmooth dynamics, but many of them are targeting
mostly computer-graphics applications, where efficiency and robustness are more important than fidelity and precision.
For instance, many benchmarks in computer graphics involve objects with low stiffness (e.g., tissues, ropes, plastics),
whereas we need to test our solver with structures of engineering interest, such as steel structures. Also, the proposed
method allows an accurate retrieval of the contact stresses, something that is particularly important for mechanics-related
applications and that can be neglected in the computer graphics field. On the basis of these requirements we designed
the benchmarks that follow.

At each time step the ADMM solver requires an updated set of contacts with the corresponding D𝜖 jacobians: to this
end a contact detection algorithm provides an updated set of pairs of potential colliding points between the geometric
primitives (edges, faces, curved surfaces) if such points are within a distance threshold. When a deformable structure is
present, the contact detection algorithm finds the contact points using the triangles of a tessellated surface that covers
the outer skin of the finite elements.

All benchmarks have been computed on a Intel® Core® i7-8750H CPU, clocked at 2.20 GHz, with six physical cores
and 16 GB of RAM. The ADMM method has been implemented in C++ within the Chrono open-source library,43 using
the Eigen library v.3.37 for dense and sparse linear algebra, and Intel® MKL Pardiso44 as a direct solver for sparse linear
systems.

14 TASORA et al.

Algorithm 3. FADMM for solving CCPs in nonsmooth dynamics

Input: Initial approximations 𝜸0
𝜖 , y0

Output: Solution 𝜸
⋆
𝜖 , v⋆, optionally also y⋆, z⋆

1: 𝛼0 = 1, Θ = Θ(𝜌), r0
comb = ∞

2: while k ≤ nmax iters do
3: zk+1 = ΠΥ

(
𝜸

k
𝜖 + (Θk)−1yk) ⊳ Project onto Υ

4:

[
H D𝜖

DT −Θ − C𝜖

]{
vk+1

−𝜸k+1
𝜖

}
=

{
k

−b𝜖 + Θzk+1 − yk

}
⊳ Solve for vk+1, 𝜸k+1

𝜖

5: yk+1 = yk + Θ
(
𝜸

k+1
𝜖 − zk+1)

6: rk+1
primal = 𝜸

k+1
𝜖 − zk+1

7: rk+1
dual = Θ(zk+1 − zk)

8: if ‖‖‖rk+1
primal

‖‖‖< 𝜖primal and ‖‖‖rk+1
dual

‖‖‖< 𝜖dual then
9: break

10: end if
11: rk+1

comb = Θ−1 ‖‖yk+1 − yk‖‖2 + Θ ‖‖‖𝜸k+1
𝜖 − 𝜸

k
𝜖

‖‖‖2
12: if rk+1

comb<𝜖rrk
comb then

13: 𝛼k+1 = 1+
√

1+4(𝛼k)2

2

14: 𝜸
k+1
𝜖 = 𝜸

k
𝜖 +

𝛼k−1
𝛼k+1 (𝜸

k+1
𝜖 − 𝜸

k
𝜖)

15: vk+1 = vk + 𝛼k−1
𝛼k+1 (vk+1 − vk)

16: yk+1 = yk + 𝛼k−1
𝛼k+1 (yk+1 − yk)

17: else
18: 𝛼k+1 = 1
19: rk+1

comb = 1
𝜖r

rk
comb

20: end if
21: end while

F I G U R E 1 Setup of Test 1

8.1 High stack with odd mass ratio

This benchmark represents a typical worst case scenario in non-smooth dynamics, where a heavy object sits on a high
stack of rigid bodies of much lower mass, as shown in Figure 1. The stable stacking is already a demanding case for contact
dynamics, but the presence of extremely odd mass ratios add a further complication.

To this end we designed two subcases: Test 1.a and Test 1.b. Both feature a vertical stack of 20 spheres with mass
m= 10 kg each, except the 10th sphere that has a mass of m= 10, 000 kg. A further sphere with mass m= 1000 kg is placed

TASORA et al. 15

F I G U R E 2 Convergence of alternating direction method of multipliers
methods compared to the Jacobi projected fixed point iteration, for Test 1.b
The plot shows the violation of unilateral constraints in terms of penetrating
residual velocity

F I G U R E 3 Convergence of primal and dual residuals in Test 1a

F I G U R E 4 Convergence of primal and dual residuals in Test 1.b

on the floor. All rigid bodies are subject to a vertical gravitational field g= 9.8 m/s2. For Test 1.a one has the analytical
solution (all contacts are active). The Test 1.b differs from Test 1.a in that the heavy sphere is pulled upward by a force
twice its weight, hence causing a separation at the contact below it.

As expected, in both Test 1.a and Test 1.b the projected Jacobi iteration, one of the most common methods in non-
smooth dynamics, has a very bad convergence rate§. As shown in Figure 2, the ADMM method presented in this paper
behave much better than the projected Jacobi iteration and, interesting enough, it also converges faster than the Precon-
ditioned Spectral Projected Gradient with Fall-Back (P-SPG-FB), an efficient method for non-smooth problems presented
in Reference 17.

For Test 1.a, Figure 3 shows that the ADMM method using the balanced adaptive step size can converge to the exact
solution in less than 20 iterations (the primal residual is not visible in the semi-logarithmic plot as it is immediately zero
from the first iteration) (Figures 4–6).

§It is a known fact that the simulation of high stacks of objects is a major difficulty in non-smooth dynamics, especially in real-time simulators and in
video games where the projected fixed-point iterations are truncated to keep the computational time within a limited frame budget. In those cases, the
limited precision of the solution will lead to underestimated contact forces, undesired slow interpenetration of the parts and, ultimately, to unnatural
collapses of stacks.

16 TASORA et al.

F I G U R E 5 Convergence of primal and dual residuals in Test
1.a for varying frequency ns of automatic updates to the step size, in
the ADMM algorithm

F I G U R E 6 Convergence of primal and dual residuals in Test
1.a for varying values of the step size 𝜌 in the FADMM algorithm

F I G U R E 7 Snapshot from Test 2, the wrecking ball
benchmark (600 bricks in four walls)

Note also that we force the update of the step every ns steps because each update of 𝜌 corresponds of a costly factoriza-
tion of a large matrix. Figure 7 shows that, in this benchmark, the convergence improves for denser updates, meeting the
tolerance in the same amount of updates: this would suggest using a small ns anyway. However, for more complex and
randomized scenarios, we found that a good tradeoff is ns = 5. This tradeoff value can change depending on the speed of
solver used for the factorization: the higher the performance for the back solve respect to the factorization, the higher is
the optimal ns.

The FADMM method with the default fixed step 𝜌 = 0.05, instead, converges slowly. Repeating the FADMM test with
different step sizes as shown in Figure 6, however, the convergence is greatly improved, suggesting that the FADMM
method is sensitive to the initial choice of the time step.

For Test 1.b, convergence plots in Figure 4 show that the FADMM is very efficient even if starting from a fixed
not optimal step size, although the performance deteriorates if no preconditioning is used. The ADMM method with
balanced step adaptivity ns = 5 converges quite well, especially with the help of a preconditioner. We note that ADMM
converges even if primal and dual residuals might exhibit oscillatory behavior (in such cases, the combined residual would
be monotonically decreasing anyway35).

TASORA et al. 17

Showing that a solver is capable of handling this class of object-stacking problems is relevant, for instance, to the field
of civil engineering, because it shares the same difficulties of simulating tall masonry structures when assessing stability
and seismic response via discrete elements.45

8.2 Wrecking ball

We modeled four parallel walls made with 10 rows of 15 bricks each. Bricks length, height, width are, respectively, 3.96, 2,
4 m, and their density is 100 kg/m3. A wrecking ball with diameter 8 m and density 8000 kg/m3 impacts horizontally with
the 600 bricks. The density of the bricks respect to the ball is deliberately high in order to generate a badly conditioned
problem with odd mass ratios. The friction coefficient is 𝜇 = 0.4 and the time step is h= 0.02 s. Figure 7 shows a snapshot
from the simulation. The convergence of the ADMM method, as shown in Figure 8 for a random time step, is noticeably
superior to the convergence of fixed point iterations such as projected Jacobi. The method exhibit even better convergence
when using the diagonal preconditioning (46), as shown Figure 9, because of the odd scaling of the masses (Figure 10).

F I G U R E 8 Constraint violation compared to fixed point Jacobi
iterations and to spectral projected gradient methods, in Test 2

F I G U R E 9 Primal-dual convergence of the algorithm in Test 2

F I G U R E 10 Effect of regularization or compliance in contacts
in Test 2

18 TASORA et al.

F I G U R E 11 Test 3. Robot interacting with the environment via contacts between the gripper and few boxes. The robot features
extremely odd mass ratios, rheonomic constraints and redundant constraints

8.3 Robotic manipulator

This benchmark features a 6-DOF industrial robot whose end effector interacts with 15 boxes with height 0.3 m and
width 0.4 m, moving them in the working area via contacts and collisions, as shown in Figure 11. The friction coefficient
between the boxes is 𝜇 = 0.4, the time step is h= 0.01 s. The difficulty highlighted by this benchmark is the simultaneous
presence of nonsmooth contacts and bilateral constraints in a critical articulated mechanism. In fact the simulation of a
robot arm actuated via motorized joints is a trivial problem, but here we do the opposite: we drive the end effector via a
rheonomic constraint defining an imposed trajectory respect to the base, hence the rest of the arm will naturally move
to the configuration prescribed by joint constraints; however, since the mass of the end effector is much lighter than the
bicept, since some joints are redundant¶ and since the robot passes close to a singularity, the simulation of the robot
alone is a challenging task. That is, even without contacts, most iterative solvers like SOR or Jacobi would converge too
slowly, and even Krylov linear solvers like GMRES, CG, MINRES would require many iterations unless equipped by some
preconditioner. In our test, convergence to high precision is achieved in 15 iterations at most, where just one or two of
them require a refactorization of the saddle-point matrix. Moreover, when there are no contacts, the solution is provided
in exactly one step, as the iteration boils down to a single factorization followed by a forward/back solve just like when
simulating the robot via a direct solver in the conventional context of smooth dynamics.

8.4 Deformable bars

This benchmark aims at estimating the efficiency and robustness of the method in problems involving also finite ele-
ments. Few methods already exist in the literature that can simulate deformable structures in the context of nonsmooth
dynamics, but most of them target the field of interactive computer graphics, where the stiffness of structures is often
very low. In our case, being interested in engineering applications, we require that the method would be able to handle
both very deformable structures (ex. rubber-like materials) as well as very stiff structures. In this benchmark, we simu-
late the fall of 15 deformable bars, each modeled with a mesh of tetrahedral finite elements, for a total of 9360 degrees
of freedom. At initial state bars are not touching and are dropped in five groups of three, each group with random yaw
rotation and with increasing height in the 0.1 … 0.5 m range. The outer skin of the bars can collide with each other
and with rigid bodies—in this case there is just a single rigid body, namely the flat ground. At the contact points there
is a friction coefficient 𝜇 = 0.3 and a null restitution coefficient, the time step is h= 0.05 s. In all simulations the mate-
rial of the bars has a density of 1× 103 kg/m3, a 0.01 Rayleigh damping coefficient and a Poisson ratio 𝜈 = 0.3, but in the
case of Test 4.a (see Figure 12) the Young modulus is E = 1× 106 Pa, whereas in Test 4.b (see Figure 13) the Young mod-
ulus is many orders of magnitude higher: E = 2× 1011 Pa. Tests has shown that our ADMM method converges equally
well even in the case of extreme stiffness, converging to the required tolerances with comparable number of iterations.
At each time step, both Test 4.a and Test 4.b required an average number of three factorizations for the adjustment of
the 𝜌i step and a variable number of forward/back solves in the range of 4÷ 50. When bars come into contact, an average

¶The robot has a gravity compensator modeled via two revolute joints and one cylindrical joint, leading to an overconstrained loop.

TASORA et al. 19

F I G U R E 12 Test 4.a. Frictional contact between deformable bars with low stiffness, at t = 0.1 s, t = 0.2 s, t = 0.3 s, t = 0.4 s. False color
of the mesh represents the instantaneous norm of the speed of the nodes

F I G U R E 13 Test 4.b. Frictional contact between deformable bars with high stiffness (E = 200 GPa) at t = 0.1 s, t = 0.2 s, t = 0.3 s, t = 0.4 s

number of 1650 contacts is found, leading to saddle-point linear problems with about 15 thousands of unknowns that are
factorized, on average, in 0.116 s using the sparse direct solver. Each forward/back solve requires 0.0069 s on average.
Each time step then required about 1 s of CPU time.

9 RESULTS AND CONCLUSION

We performed benchmarks involving multibody systems with contacts between multiple parts, showing that the per-
formance of the ADMM method is capable of handling problems that would converge too slowly using conventional
projected fixed point methods or first-order spectral methods.

Our ADMM method requires few computational primitives: basically a projection of dual variables on conic sets,
a forward/backward solve of a linear system, and its factorization. The latter is a computational bottleneck, but it can
be performed only once per run, as the matrix does not change often during the iterations. We noted that ADMM can
be successfully applied to problems that exhibit temporal coherence because, unlike IPMs, it supports warm-starting. A
good estimation of the ADMM step size proved to be fundamental in achieving good convergence: using adaptive step
scaling we obtained an efficient auto-tuning algorithm. Another optimization that allowed superior performance is the
adoption of a diagonal preconditioning, with block scaling for the triplets of lagrangian multipliers relative to the conic
constraints.

Further research on this topic might address the acceleration of the ADMM method by means of Anderson accel-
eration and the solution of nonconvex problems with complex and non-associated frictional models that go beyond the
standard Coulomb model.

NOMENCLATURE
ADMM Alternating Direction Method of Multipliers
CCP Cone Complementarity Problem
CP Complementarity Problem
FADMM Fast Alternating Direction Method of Multipliers
LCP Linear Complementarity Problem
MDI Measure Differential Inclusion
NCP Nonlinear Complementarity Problem
QP Quadratic Program
VI Variational Inequality

20 TASORA et al.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in https://github.com/projectchrono/
chrono

ORCID
Alessandro Tasora https://orcid.org/0000-0002-2664-7895

REFERENCES
1. Moreau JJ. Liaisons unilatérales sans frottement et chocs inélastiques. Comptes rendus hebdomadaires des séances de l’Académie des

sciences. 1983;296:1473-1476.
2. Moreau JJ, Panagiotopoulos PD, Strang G. Topics in Nonsmooth Mechanics. Basel, Switzerland: Birkhäuser; 1988.
3. Glocker C. Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Vol 1. Berlin, Germany: Springer Science & Business Media; 2013.
4. Acary V, Brogliato B. Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Vol 35. Berlin,

Germany: Springer Science & Business Media; 2008.
5. Kinderleher D, Stampacchia G. An Introduction to Variational Inequalities and Their Application. New York, NY: Academic Press; 1980.
6. Harker PT, Pang JS. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms

and applications. Math Program. 1990;48(1):161-220. https://doi.org/10.1007/BF01582255.
7. Stewart DE, Trinkle JC. An implicit time-stepping scheme for rigid-body dynamics with inelastic collisions and Coulomb friction. Int

J Numer Methods Eng. 1996;39:2673-2691.
8. Bender J, Müller M, Otaduy MA, Teschner M, Macklin M. A survey on position-based simulation methods in computer graphics. Comput

Graph Forum. 2014;33(6):228-251. https://doi.org/10.1111/cgf.12346.
9. Anitescu M, Tasora A. An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput Optim Appl.

2010;47(2):207-235. https://doi.org/10.1007/s10589-008-9223-4.
10. Tonge R, Benevolenski F, Voroshilov A. Mass splitting for jitter-free parallel rigid body simulation. ACM Trans Graph. 2012;31(4):105.
11. Tasora A, Anitescu M. A complementarity-based rolling friction model for rigid contacts. Meccanica. 2013;48(7):1643-1659. https://doi.

org/10.1007/s11012-013-9694-y.
12. Tasora A, Anitescu M. A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput

Methods Appl Mech Eng. 2011;200(5-8):439-453. https://doi.org/10.1016/j.cma.2010.06.030.
13. Macklin M, Storey K, Lu M, et al. Small steps in physics simulation. Paper presented at: Proceedings of the ACM SIGGRAPH. Association

for Computing Machinery SCA ’19; 2019:1-7; New York, NY.
14. Macklin M, Erleben K, Müller M, Chentanez N, Jeschke S, Makoviychuk V. Non-smooth Newton methods for deformable multi-body

dynamics. ACM Trans Graph. 2019;38(5):140:1-140:20. https://doi.org/10.1145/3338695.
15. Anitescu M. Optimization-based simulation of nonsmooth rigid multibody dynamics. Math Program. 2006;105(1):113-143. https://doi.

org/10.1007/s10107-005-0590-7.
16. Heyn T, Anitescu M, Tasora A, Negrut D. Using Krylov subspace and spectral methods for solving complementarity problems in

many-body contact dynamics simulation. IJNME. 2013;95(7):541-561. https://doi.org/10.1002/nme.4513.
17. Mazhar H, Heyn T, Tasora A, Negrut D. Using Nesterov’s method to accelerate multibody dynamics with friction and contact. ACM Trans

Graph. 2015;34(3):32:1-32:14.
18. Frâncu M, Moldoveanu F. Position based simulation of solids with accurate contact handling. Comput Graph. 2017;69:12-23. https://doi.

org/10.1016/j.cag.2017.09.004.
19. Yu X, Matikainen MK, Harish AB, Mikkola A. Procedure for non-smooth contact for planar flexible beams with cone complementarity

problem. Proc Inst Mech Eng Part K J Multi-body Dyn. 2020:1464419320957450. https://doi.org/10.1177/1464419320957450.
20. Bozorgmehri B, Yu X, Matikainen MK, Harish AB, Mikkola A. A study of contact methods in the application of large deformation dynamics

in self-contact beam. Nonlinear Dyn. 2021;103(1):581-616. https://doi.org/10.1007/s11071-020-05984-x.
21. Potra FA, Wright SJ. Interior-point methods. J Comput Appl Math. 2000;124(1):281-302. https://doi.org/10.1016/S0377-0427(00)00433-7.
22. Mangoni D, Tasora A, Garziera R. A primal-dual predictor-corrector interior point method for non-smooth contact dynamics. Comput

Methods Appl Mech Eng. 2018;330:351-367. https://doi.org/10.1016/j.cma.2017.10.030.
23. Glowinski R, Marrocco A. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe

de problémes de Dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique.
1975;9(2):41-76.

24. Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math
Appl. 1976;2(1):17-40. https://doi.org/10.1016/0898-1221(76)90003-1.

25. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of
multipliers. Found Trends Mach Learn. 2011;3(1):1-122. https://doi.org/10.1561/2200000016.

26. Cannon M, Goulart P, Garstka M. COSMO: a conic operator splitting method for large convex problems. Paper presented at: Proceedings
of the European Control Conference, Naples, Italy; 2019.

27. Zhang J, Peng Y, Ouyang W, Deng B. Accelerating ADMM for efficient simulation and optimization. ACM Trans Graph.
2019;38(6):163:1-163:21. https://doi.org/10.1145/3355089.3356491.

https://orcid.org/0000-0002-2664-7895
https://orcid.org/0000-0002-2664-7895
https://doi.org/10.1007/BF01582255
https://doi.org/10.1111/cgf.12346
https://doi.org/10.1007/s10589-008-9223-4
https://doi.org/10.1007/s11012-013-9694-y
https://doi.org/10.1007/s11012-013-9694-y
https://doi.org/10.1016/j.cma.2010.06.030
https://doi.org/10.1145/3338695
https://doi.org/10.1007/s10107-005-0590-7
https://doi.org/10.1007/s10107-005-0590-7
https://doi.org/10.1002/nme.4513
https://doi.org/10.1016/j.cag.2017.09.004
https://doi.org/10.1016/j.cag.2017.09.004
https://doi.org/10.1177/1464419320957450
https://doi.org/10.1007/s11071-020-05984-x
https://doi.org/10.1016/S0377-0427(00)00433-7
https://doi.org/10.1016/j.cma.2017.10.030
https://doi.org/10.1016/0898-1221(76)90003-1
https://doi.org/10.1561/2200000016
https://doi.org/10.1145/3355089.3356491

TASORA et al. 21

28. Gregson J, Ihrke I, Thuerey N, Heidrich W. From capture to simulation: connecting forward and inverse problems in fluids. ACM Trans
Graph. 2014;33(4):139:1-139:11. https://doi.org/10.1145/2601097.2601147.

29. Overby M, Brown GE, Li J, Narain R. ADMM ⊇ projective dynamics: fast simulation of hyperelastic models with dynamic constraints.
IEEE Trans Vis Comput Graph. 2017;23(10):2222-2234. https://doi.org/10.1109/TVCG.2017.2730875.

30. Daviet G. Simple and scalable frictional contacts for thin nodal objects. ACM Trans Graph. 2020;39(4):61:61:1-61:61:16. https://doi.org/
10.1145/3386569.3392439.

31. Le Lidec Q, Kalevatykh I, Laptev I, Schmid C, Carpentier J. Differentiable simulation for physical system identification; 2020. Available
online (HAL).

32. Yunt K, Glocker C. Trajectory optimization of mechanical hybrid systems using SUMT. Paper presented at: Proceedings of the 9th IEEE
International Workshop on Advanced Motion Control, Istanbul, Turkey; 2006:665-671.

33. Yunt K. An augmented Lagrangian based shooting method for the optimal trajectory generation of switching Lagrangian systems. Dyn
Contin Discrete Impuls Syst Ser B Appl Algorithms. 2011;18(5):615-645.

34. Goldfarb D, Ma S, Scheinberg K. Fast alternating linearization methods for minimizing the sum of two convex functions. Math Program.
2013;141(1):349-382. https://doi.org/10.1007/s10107-012-0530-2.

35. Goldstein T, O’Donoghue B, Setzer S, Baraniuk R. Fast alternating direction optimization methods. SIAM J Imaging Sci.
2014;7(3):1588-1623. https://doi.org/10.1137/120896219.

36. Kadkhodaie M, Christakopoulou K, Sanjabi M, Banerjee A. Accelerated alternating direction method of multipliers. Paper presented at:
Proceedings of the ACM Association for Computing Machinery KDD ’15; 2015:497-506; New York, NY.

37. Ouyang W, Peng Y, Yao Y, Zhang J, Deng B. Anderson acceleration for nonconvex ADMM based on Douglas-Rachford splitting. Comput
Graph Forum. 2020;39(5):221-239. https://doi.org/10.1111/cgf.14081.

38. Schubiger M, Banjac G, Lygeros J. GPU acceleration of ADMM for large-scale quadratic programming. J Parall Distrib Comput.
2020;144:55-67. https://doi.org/10.1016/j.jpdc.2020.05.021.

39. Stellato B, Banjac G, Goulart P, Bemporad A, Boyd S. OSQP: an operator splitting solver for quadratic programs. Math Program Comput.
2020. https://doi.org/10.1007/s12532-020-00179-2.

40. Negrut D, Serban R, Tasora A. Posing multibody dynamics with friction and contact as a differential complementarity problem. ASME
J Comput Nonlinear Dyn. 2017;13(1):014503. https://doi.org/10.1115/1.4037415.

41. Wohlberg B. ADMM penalty parameter selection by residual balancing; 2017. arXiv: 1704.06209. arXiv:1704.06209 [cs, eess, math].
42. Xu Z, Figueiredo M, Goldstein T. Adaptive ADMM with spectral penalty parameter selection. Paper presented at: Proceedings of the 20th

International Conference on Artificial Intelligence and Statistics, PMLR, Ft. Lauderdale, FL; 54; 2017:718-727.
43. Tasora A, Serban R, Mazhar H, et al. CHRONO: an open source multi-physics dynamics engine. In: Kozubek T, ed. High Performance

Computing in Science and Engineering – Lecture Notes in Computer Science. New York, NY: Springer; 2016:19-49.
44. Schenk O, Gärtner K. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generat Comput Syst.

2004;20(3):475-487. https://doi.org/10.1016/j.future.2003.07.011.
45. Beatini V, Royer-Carfagni G, Tasora A. A regularized non-smooth contact dynamics approach for architectural masonry structures.

Comput Struct. 2017;187:88-100.

How to cite this article: Tasora A, Mangoni D, Benatti S, Garziera R. Solving variational inequalities and cone
complementarity problems in nonsmooth dynamics using the alternating direction method of multipliers. Int J
Numer Methods Eng. 2021;1–21. https://doi.org/10.1002/nme.6693

https://doi.org/10.1145/2601097.2601147
https://doi.org/10.1109/TVCG.2017.2730875
https://doi.org/10.1145/3386569.3392439
https://doi.org/10.1145/3386569.3392439
https://doi.org/10.1007/s10107-012-0530-2
https://doi.org/10.1137/120896219
https://doi.org/10.1111/cgf.14081
https://doi.org/10.1016/j.jpdc.2020.05.021
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1115/1.4037415
https://doi.org/10.1016/j.future.2003.07.011
https://doi.org/10.1002/nme.6693

