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Abstract

Global Optimization with Hybrid
Evolutionary Computation

Hassan A Bashir
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2014

An investigation has been made into hybrid systems which include stochastic
and deterministic optimization. This thesis aims to provide new and relevant
insights into the design of the nature-inspired hybrid optimization paradigms. It
combines evolutionary and gradient-based methods. These hybrid evolutionary
methods yield improved performance when applied to complex global optimiza-
tion tasks and recent research has shown many of such hybridization policies.

The thesis has three broad contributions. Firstly, by examination of stochas-
tic optimization, supported by case studies, we utilised the Price’s theorem to
formulate a new population evolvability measure which assesses the dynamical
characteristics of evolutionary operators. This leads to the development of a new
convergence assessment method. A novel diversity control mechanism that uses
heuristic initialisation and convergence detection mechanism is then proposed.
Empirical support is provided to explicitly analyse the benefits of effective diver-
sity control for continuous optimization.

Secondly, this study utilised research relevance trees to evolve hybrid systems
which combine various evolutionary computation (EC) models with the sequential
quadratic programming (SQP) algorithm in a collaborative manner. We reviewed
the convergence characteristics of various numerical optimization methods, and
the concept of automatic differentiation is applied to design a vectorised forward
derivative accumulation technique; this enables provision of accurate derivatives
to the SQP algorithm. The SQP serves as a local optimizer in the deterministic
phase of the hybrid models. Through benchmarking on stationary and dynamic
problems, results showed that the proposed models achieved sufficient diversity
control, which suggests improved exploration-exploitation balance.

Thirdly, to mitigate the challenges of ‘inappropriate’ parameter settings, this
thesis proposes closed-loop adaptive mechanisms which dynamically evolve ef-
fective step sizes for the evolutionary operators. It then examines the effect of
incorporating a derivative-free algorithm which extends the hybrid model to a
flexible and reusable algorithmic framework.
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Nomenclature

t Iteration or generation counter

X,X∗ An arbitrary sample solution, also called individual, such that

X ∈ Rn, and the optimal solution point

xi, x
∗
i , x̄i, xi A given variable for a sample solution X, a variable for the

optimal solution point, lower and upper bounds for variable xi

x′i Chromosome representation of sample solution xi, e.g. in binary

bits

P, P0, Pt A set of candidate solution, i.e., evolutionary pool, the initial

population, and the population at generation t

N, n Population size, i.e., the cardinality of P , which is N = |P |, and

the problem size or dimensionality

D,D Search domain, i.e., the feasible boundaries for the search, and

a search neighbourhood within the search domain, such that

D ⊂ D
f, f ∗, f̄ Fitness, i.e., a quality of candidate solution that translates to

chances of survival during selection, the Fitness of optimal so-

lution x∗, and the average fitness

f( ) Objective function

g( ) Constraints (or bound) set

M, PM Mutation operation, and Probability (rate) of mutation

X , PX Crossover operation, and Probability (rate) of crossover

PElite, NElite Elite population and the size of the Elite pool

α, αt Step length parameter, and its value at iteration t

d, dt Search direction vector, and its value at iteration t

H Hessian matrix ∇2f(x) ∈ Rn×n

ϕ( ), q( ),L( ) Merit function, Quadratic problem, and Lagrange function

CDiv, C̃Div A vector of the coefficient of diversity, and its normalised value
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∆Q,∆qi The change in average fitness Qi across successive generations,

and the change between parent’s average fitness (qi) and that of

its offspring (q′i)

σXover Crossover envelope, also called population or crossover evolv-

ability which is twice the standard deviation interval (2σ) of the

crossover’s contribution to the fitness growth

αC, µM Recombination or crossover weighting parameter, and Mutation

effective precision parameter; both these parameters useful for

operator adaptation in EC model having real-valued data struc-

ture.

PEvo, PDiv Evolution pool and Diversity pool

κ, ρ(κ), φκ Number of search space partitions, Vector of partition sizes, and

the subspaces (or partitions)

Elast Absolute error in the final solution obtained just before a dy-

namic change in problem’s landscape.

xEC , xSQP Optimal solution returned by the EC algorithm, and that re-

turned by the SQP algorithm

s, sf Sampling period, and sampling frequency

rt(t), rs(t) Relative performance at iteration t, and its value at sampling

period s

roffline, ronline Offline and online relative performance measures

Ti Dynamic change types Ti = T1, T2, . . . , T6

δiR Radius of search neighbourhood along dimension i

XD, f(XD) A set of sample solutions within a given neighbourhood D, and

a set of their respective fitness values

δcost Derivative cost ratio defined as the ratio of the cost of function

evaluation to that of evaluating its derivatives, δcost ∈ [0, 1]
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Chapter 1

Introduction

The growing human aspirations for improved livelihood mean that whenever we

are presented with diverse and numerous (sometimes uncountable) alternatives,

we generally opt for the best possible one. Numerous situations arise naturally

and require us to seek the best possible option that would maximise our gains

within the confines of our reaches. For instance, the daily morning commute to

workplace or school is a classical example of a task that requires seeking the best

(safest, shortest, cheapest, most suitable, etc.) route. Likewise, a manufacturer

seeking to boost production rate invariably opts for the most cost effective pro-

duction strategy within the available production resources. In essence, our daily

aspirations result in an increasing desire to maximise gain, profit, quality, etc.

and/or minimise loss, cost, energy, time, or utility, etc.

Technically, the process of selecting the best out of the many possible decisions

(options) is called Optimization; the best possible decision (or option) is called the

optimal solution; and the optimal solution task is called an optimization problem.

The technologies available today and the recent growth in the development of

new algorithms and modelling techniques mean that optimization can apply to

various disciplines. In fact, the applications of optimization have gone beyond the

confines of applied and computational mathematics to all areas of engineering,

life sciences, finance and other sciences. Optimization, as a tool, received wide

acceptance from both industry and academia. Perhaps, it is this multidisciplinary

nature of the field, coupled with its wealth and diverse applicability, that made

some early pioneers believe that “Optimization is a cornerstone for the develop-

ment of modern civilisation (Sun and Yuan, 2006).” Hence, there continue to be

increasing need for thorough understanding of optimization problems and their

19
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solution methodologies.

This thesis aims to investigate global optimization from the perspectives of

hybrid evolutionary computation. This chapter presents a top-level overview of

optimization (i.e., the problem domain) in Section 1.1. It then discusses the

various solution methods in Section 1.2. Section 1.3 of this chapter presents the

motivations, in form of research questions, for studying this domain. Section 1.4

outlines the scope of this study and Section 1.5 summarises the contributions of

this research. Finally, Section 1.6 delineates the organisation of this thesis.

1.1 Global Optimization – perspective

Optimization methods search for optimal solutions to problems in continuous,

discrete (or combinatorial), and/or multiobjective domains. This study focuses

on nonlinear continuous optimization problems that are generally global in nature.

This is because there are many application problems – from various domains –

that are modelled as continuous optimization tasks, examples include:

• Industrial control systems : Controlling a chemical process or an (elec-

tro)mechanical device, such as a robot arm, to meet certain performance

requirements, like robustness and/or efficiency;

• Finance: Optimizing the (often statistical) models that predict market fluc-

tuations (sales forecast), or in designing an investment portfolio to maximise

expected return within some acceptable levels of risk;

• Seeking optimal path: Finding an optimal trajectory for an aircraft or a

robot arm;

• Aerodynamic design: Determining the optimal shape of an automobile com-

ponent in a manufacturing system, this is especially critical in aircraft and

sport utility equipment; and

• Task scheduling : Planning of operations in manufacturing plants to max-

imise production level within the limited available resources which often

requires meeting quality standards while satisfying customer demands.

Notice that, common to all these optimization tasks are the following three

important aspects:



CHAPTER 1. INTRODUCTION 21

1. Objective: This is a measure that assesses the extent to which the optimiza-

tion goal is realised, and it is typically modelled as a mathematical (cost)

function;

2. Design variables : These form the set of all possible choices that must be

made to ensure successful realisation of the overall objective. These implicit

choices are technically referred to as decision or design variables and are the

parameters around which the optimization task can be formulated; and

3. Constraints : These are the requirements within which the optimization

objective is limited. It can be a limitation due to resource, time or space

and or acceptable error levels or tolerance. Typically, the domain for each

design variable is bounded so as to explicitly define what constitute feasible

solutions.

Generally, optimization problems involve multiple, often conflicting, design

requirements. As a result, the search for an optimum solution is challenging.

Figure 1.1 illustrates typical views of the solution spaces in local and global

optimization problems. For the local optimization problems (Figure 1.1a), only

one optimal solution exists, but such problems are mostly idealistic. The global

problems (Figure 1.1b), on the other hand, involve a combination of many local

and global optimal solutions. In fact, the majority of optimization tasks are of

the global type. Regardless, optimization methods are expected to find the global

optimum solution within minimum possible computational cost.

1.2 Optimization Methods

Several solution techniques exist for the different types of the aforementioned

optimization problems. These techniques can be broadly classified into two main

categories: classical (analytic) and heuristic methods. As will be described in

the following sections, the classical methods are usually numerical and determin-

istic1 in nature, whereas the heuristic methods are generally population-based

stochastic2 strategies.

1A search or optimization algorithm is said to be deterministic if it consistently follows the
same execution path (and returns the same solution) when it is repeatedly run from the same
starting solution.

2Stochastic methods are the opposite of deterministic methods and are therefore probabilistic
(random); they may not follow the same execution path (or return the same solution) when
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Figure 1.1: An illustration of local and global optimization landscapes. (a) A
local optimization problem (top) has only a single optimal solution (bottom).
(b) Global optimization problem (the well-known Michalewicz Benchmark) (top)
with many optimum solutions and ridge-like plateaus (bottom).

1.2.1 Classical Optimization Methods

Classical solution approaches have their origins in linear programming methods

invented by Dantzig (1963) during the late 1940s. Subsequently, further numer-

ical algorithms, including gradient-based methods, conjugate gradient methods,

Newton and quasi-Newton methods, are applied to solve a variety of large scale

numerical optimization problems. Classical methods are also classified as exact

or complete methods.

Due to their deterministic nature, classical methods are most efficient in lo-

cating local optima; however, their designs generally lack heuristics to prioritise

some solutions over others. Therefore, they are inclined to converge to the opti-

mum within (or nearest to) the neighbourhood of their initialisation region. In

Chapter 3, this thesis provides an in-depth analysis of the convergence dynamics

of such gradient-based methods. Chapter 3 also presents a technique (developed

during this research) that speed-up the process of evaluating derivatives for these

methods.

repeatedly run from the same starting solution.
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1.2.2 Heuristic Optimization Methods

Recognising the inherent limitations of classical methods, researchers proposed

a variety of methods which aim to solve global optimization by using various

heuristics3. These algorithms are also called approximate algorithms due to

their stochastic (probabilistic) construction. These approximate methods are

usually easier to implement than their exact counterparts, and although they

are stochastic, they differ from pure random searches since their randomness is

guided through intelligent and informative decisions.

Heuristic methods are mostly based on analogies with natural processes (Zhigl-

javsky and Žilinskas, 2008) and can be successfully applied to a wide range of

optimization problems with little or no modifications in order to adapt to any spe-

cific problem. Heuristics methods based on the concept of natural selection (i.e.

the principles of evolutionary genetics) have come to be identified as evolution-

ary computation (EC). Prominent examples are genetic algorithms (GA), genetic

programming (GP), evolutionary programming (EP) and evolutionary strategy

(ES) (Fogel, 1994). Other stochastic heuristics include simulated annealing, tabu

search, ant colony optimization, artificial immune system, scatter search, estima-

tion of distribution algorithms, multi-start and iterated local search algorithms.

All these are typical examples of metaheuristics that fall under the category of

approximate algorithms.

Among the many heuristic methods, GAs are probably the most widely used

types of evolutionary algorithms (EAs) (Goldberg, 1989). GAs are originally

inspired by Holland (1975, 1992) and they simulate the processes of natural evo-

lution. The inspirational basis for such nature inspired methods stems from the

fact that it is not unreasonable to assume that natural mechanisms will have done

a pretty good job in optimizing the way living things interact and adapt to their

environment. It is therefore reasonable to look into natural systems and see how

they succeed in such long term adaptation through evolution.

Genetic algorithms may require a large amount of computation due to their

population-based design, but they have desirable characteristics. For example,

GAs can discard a local optimal solution in order to evolve a better sub-optimal

3Meta(heuristics) is a term used to delineate a universal algorithmic framework designed to
solve optimization problems based on probabilistic decisions made during the search process,
see Glover (1986).
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solution. Generally, GAs have higher potentials of converging to optimum solu-

tion(s) especially for complex global optimization tasks (Gen and Cheng, 1997).

As is discussed in Chapter 2 genetic algorithms are non-problem dependent, non-

derivative and quite flexible methods.

Despite the inherent flexibilities and robustness of EAs, their success has

constantly been hindered by the eventual retardation in search progress towards

the end of the evolutionary cycle. By means of the probabilistic evolutionary

processes, EAs significantly improve the average fitness (i.e., quality) of the search

pool during the early stages of the evolution, but this inevitably fades, sometimes

drastically, as the average fitness of the search pool grows. The illustration in

Figure 1.2 demonstrates the typical fitness characteristics of the standard genetic

algorithm on solving a 2-dimensional global optimization problem.

Assuming a maximisation problem, Figure 1.2 shows that the gradient (∆) of

the average fitness curve is quite steep (having n-fold fitness increase) at the initial

stage, but this almost monotonically shrinks during the course of the evolution

(∆1 > ∆2 > · · · > ∆n). This eventual collapse in speed as the search nears

convergence is a major limitation to successful use of EAs in online and safety

critical applications.

1.2.3 Hybrid Optimization Methods

It has been realised for some time that the effort to solve majority of large scale

global optimization tasks has continued to face huge challenges, this is regardless

of whether an exact or heuristic (approximate) method is used. As a result, there

is a growing interest in the concepts that combine various algorithmic paradigms

from different branches of the field. The act of combining various algorithms has

now been popularised as “hybrid algorithms” or “hybrid metaheuristics”. A skil-

ful hybridization of algorithms is believed to provide a more flexible and efficient

solution method that is suitable for large scale real-world problems (Blum and

Roli, 2008). Hence, as argued by Raidl (2006) and Blum et al. (2010) amongst

others, the hybrid framework motivates the design of robust systems that si-

multaneously harness the benefits of the individual algorithms and discard their

inherent weaknesses.

A central objective of this study is to propose an efficient and robust opti-

mization method on the hybrid framework. Thus, although the chapters in Part
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Figure 1.2: Retardation of fitness growth over successive generations in a typical
evolutionary optimization model. The curve shows the characteristic growth in
the average population’s fitness due to objective function f(x) over successive
generations.

I of this thesis mainly focus on understanding and analysing the individual algo-

rithms, the investigations in Part II specifically address the hybridization aspect

from the domains of stationary and non-stationary problems.

1.3 Research Questions

Global optimization methods have found applications in many domains (Werbos,

2011), and the literature contains a great deal of work on investigating the various

optimization problems and their solution methods. However, in a wide scope, this

study is motivated by the growing need to gain further insights into the underlying

processes of the various optimization methods and to improve their applicability

on various global optimization tasks. In particular, this thesis attempts to address

the following research questions denoted by Qn which span the classical, heuristic

and hybrid optimization domains.
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1.3.1 Exploring new understandings for the stochastic and

deterministic optimization methods

Q1: From the classical (deterministic) optimization side, the commonly used

gradient-based methods are by design tailored to solve local optimization

tasks. Since this study aims to hybridize such algorithm with a stochastic

method to facilitate global optimization, the first question here is:

“Could the convergence rate of the gradient-based algorithm be improved

in the presence of accurate and inexpensive derivatives? What impact

would that have on the global convergence of the overall hybrid system?”

Q2: On the stochastic (evolutionary) optimization side, in the 1970s, Price (1972)

has formulated an interesting theorem that allows investigating the individ-

ual characteristics of the evolutionary operators. But this has so far only

been used to analyse the effect of the evolutionary operators on the fit-

ness growth during the search. Thus, the question here is, by using Price’s

theorem:

“Could the dynamical characteristics of evolutionary operators yield new

insights into the convergence status of the evolutionary pool?”

Exploring this leads to the next question:

“Could such information be exploited to facilitate robust convergence

analysis in EC?”

Q3: In view of the crucial role (i.e., ensuring evolutionary progress) the pres-

ence of diversity plays in an evolutionary search, this study examines the

standard EC framework to envisage how population diversity fares during

evolution. The question that triggers this is:

“Could better understanding of convergence and diversity relationships

(that is, evolvability) provide useful insights for improving the present

convergence detection methods?”

Having achieved this, another question of interest is:

“Could a diversity control technique that utilises convergence detection

facilitate continuous evolution in hybrid EAs?”
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1.3.2 Investigating hybrid frameworks and their

extensions

Q4: There is a rising interest in the research for effective hybrid systems. This

sparks some obvious questions:

“Upon what heuristics or assumptions are the current hybrid systems

built and why?”

But, rather more targeted question is:

“Could real-time convergence information be used as underlying control

mechanism to design effective collaborative hybrid systems?”

Q5: A number of parameter control/adaptation mechanisms have been reported

in the literature and are essentially meant to minimise the need for manual

parameter tuning (Eiben et al., 1999); in addition, such adaptive methods

also improve robustness but occasionally has a slight cost in efficiency. Thus,

this thesis investigates:

“How would a closed-loop parameter adaptation strategy that monitors the

instantaneous state of a search pool affect the performance of a hybrid

EA? Besides minimising manual parameter tuning, what impact would

this have on the robustness and efficiency of the hybrid EA?”

Q6: Because of the robust nature of evolutionary optimization systems, EAs are

becoming popular tools for optimization of dynamic problems4 (Li et al.,

2008). Having analysed the performance of hybrid EAs on the stationary

global optimization tasks, it is of interest to examine:

“How do the proposed hybrid algorithms (both the collaborative and its

extended version) compare to the state-of-the-art EAs which are specifi-

cally built for dynamic problems?”

1.4 Scope

From the problem domain perspective, the scope of this study was to address

global (linear/nonlinear) optimization tasks in the real-parameter (continuous)

4Often, many real-world optimization tasks tend to be noisy – exhibiting non-stationary
nature.
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domain. Thus, all the analyses herein involve such optimization problems mod-

elled as continuous optimization problems. For the investigations however, the

strategy adopted in this study was largely experimental and analytical. There-

fore, in order to validate the hypotheses (research questions), it was necessary to

design and evolve data structures and algorithms in this work; also, to validate

the resultant hybrids, a collection of IEEE global optimization benchmarks that

are mathematically formulated as continuous (differentiable with at least second

derivatives available) functions is used.

1.5 Contributions

This study focuses on gaining new understandings for the stochastic and deter-

ministic optimization methods so as to design effective hybrids utilising the two

domains. The main contributions are in the development of new convergence

and diversity assessment criteria (Part I), and then applying them to design col-

laborative hybrid systems (Part II) – though throughout the thesis many other

contributions are presented. This section summarises the research contributions,

but specific details are given at the end of every chapter, and a more detailed

account is devoted to the Conclusion chapter (Chapter 9).

Following the research undertaken on hybrid evolutionary optimization during

this study, in respect to the abovementioned research questions, this thesis makes

the following contributions:

1) Population Evolvability: An identification of new role for the dynamical char-

acteristics of evolutionary operators (Chapter 4); this leads to the proposal of

a novel population evolvability measure (using Price’s theorem) that facilitates

convergence detection.

2) Diversity Control Mechanism: An empirical analysis of the dynamics of pop-

ulation diversity (Chapter 5) during evolution, demonstrating how to sustain

continuous optimization using a novel diversity control mechanism, which cou-

ples dual-populations and heuristic initialisation through the robust conver-

gence measure proposed in Chapter 4.

3) Collaborative Hybrid Framework: A proposal for a novel collaborative hybrid

framework (Chapter 6), which combines the global and local algorithms, this

exploits the convergence information (Chapter 4) of the global algorithm to
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dynamically opt for local refinement of the current best solutions. This model

is then extended into a framework for continuous optimization – making it

suitable for optimization in both stationary and non-stationary environments

(Chapter 7).

4) Closed-loop Parameter Adaptation: This thesis proposes a closed-loop parame-

ter adaptation mechanism for the hybrid EC models. We examined the impact

of such adaptation method on evolutionary progress with regard to robustness

and convergence efficiency (Section 7.6).

5) Extended Hybrid System: An extension of the proposed hybrid framework

to include two direct methods (combining a derivative-based and derivative-

free local search methods) and benchmarking its performance against several

state-of-the-art EAs on IEEE dynamic optimization test-beds (Chapter 8).

But aside from that, on surveying the vast EC literature, the thesis evolves

the state-of-the-art documentation by identifying an ongoing debate on the con-

nection between simulated and biological evolution (Chapter 2). In particular, on

whether to include more aspects of biological evolution (such as, novelty search)

into the simulated evolution. While the benefit (if any) of prioritising novelty over

fitness quality is still debatable in this field, we argue that more focus should be

on improving optimization capabilities rather than trying to replicate the exact

biological evolutionary phenomenon.

1.6 Thesis Structure

This thesis is partitioned into two parts. Part I (Chapters 2-5) overviews and in-

vestigates the two main optimization domains, namely stochastic and determinis-

tic optimization. Then, Part II (Chapters 6-8) concentrates on hybrid modelling

of these models for effective optimization of both stationary and non-stationary

problems. Across the various chapters of this thesis an assortment of overviews –

in form of taxonomies and what we called theory research relevance trees (TRRT)

– is used to review the several aspects of evolutionary optimization, see the in-

troduction to Chapter 2 and Sections 5.3, 6.2, and 7.3.
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PART I:

Chapter 2 is of an introductory nature, it classifies the field of optimization

from both the stochastic and deterministic perspectives. Chapter 2 lays an ex-

tensive background on stochastic optimization from the viewpoint of evolutionary

computation; it highlights the impact of parameterisation in evolutionary opti-

mization with examples from both theoretical and practical viewpoints. The

chapter reports widely on the variety of elitist replacement strategies.

Chapter 3 introduces the deterministic optimization methodologies. It analy-

ses the search directions, step sizes and convergence rates of the various gradient-

based local search algorithms. Chapter 3 investigates the role of accurate deriva-

tives to a gradient-based local search algorithm. It then presents an algorithmic

approach to derivative evaluation with a view to provide a cost effective way to

evaluating exact derivatives for continuous (smooth) problems.

Chapter 4 is experimentally based, it investigates the contributions of evolu-

tionary operators in isolation; it then demonstrates how to utilise the effect of

individual operators to analyse and assess convergence of evolutionary pool in

real-time.

Chapter 5 analyses the various diversity measures used in evolutionary com-

putation (EC). It then demonstrates how to achieve effective diversity control by

coupling dual search pools through a robust convergence detection mechanism.

The chapter introduces a framework suitable for continuous optimization.

PART II:

Chapter 6 overviews the current state of hybridization with EAs and provides

a taxonomy of the trend in the hybrid optimization. To boosts overall search

efficiency without compromising global convergence characteristics, Chapter 6

utilises the robust convergence detection mechanism (earlier proposed in Chapter

4) to propose a collaborative hybrid of global and local search methods.

Chapter 7 adopts the diversity control mechanisms proposed in Chapter 5

(i.e., dual-populations with heuristic initialisation) and extends the hybrid model

into a framework for continuous optimization. Then, Chapter 7 evaluates the new

hybrid frameworks on global optimization benchmarks in dynamic environments.

Chapter 7 also developed a closed-loop adaptive parameterisation method for the

mutation and recombination operators in EC. To analyse the effect of adaptation
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on hybrid evolutionary models, Chapter 7 empirically compares the new adap-

tive hybrid model with its non-adaptive counterpart on the same set of dynamic

optimization benchmarks.

Chapter 8 analyses the effect of incorporating a derivative-free local search

method into the hybrid model. The chapter proposes an extended hybrid sys-

tem built on a flexible algorithmic framework. This extended approach allows

hybridizing the global (EC) with a diverse set of local refinement methods for

robust and effective optimization across various domains.

Chapter 9 summaries this thesis. It provides extensive remarks on the con-

tributions of this research vis-à-vis the aforementioned research questions. The

chapter concludes the study by suggesting a number of future research avenues

from theoretic, design, and implementation viewpoints.

1.7 Publications and Project

This thesis is partly from a collection of papers and project conducted during

this research. This section details the publications, articles in preparation, and

some previous publications related to this study.

Conference Proceedings

H. A. Bashir and R. S. Neville, “Convergence measurement in evolutionary com-

putation using Price’s theorem,” IEEE Congress on Evolutionary Computation

(CEC), 2012, pp. 1961-1968, 2012. (Bashir and Neville, 2012a).

H. A. Bashir and R. S. Neville, “A hybrid evolutionary computation algorithm

for global optimization,” IEEE Congress on Evolutionary Computation (CEC),

2012, pp. 2700-2707, 2012. (Bashir and Neville, 2012b).

In preparation (Journal)

H. A. Bashir and R. S. Neville, “Diversity Control in Evolutionary Computa-

tion using Asynchronous Dual-Populations with Search Space Partitioning,” (In

preparation), 2014.

H. A. Bashir and R. S. Neville, “Convergence Analysis in EC – From Diversity

Measure to Evolvability Measure,” (In preparation), 2014.
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Selected previous publications

Some other previously published works (with other collaborators), which have

contents related to this research.

H. A. Bashir and X. Liang, “Interior Point Method based Sequential Quadratic

Programming Algorithm with Quadratic Search for Nonlinear Optimization,”

International Journal of Computer Information Systems and Industrial Manage-

ment Applications, vol. 3, pp. 51-60, 2011. (Bashir and Ximing, 2011).

X. Liang, S. Li, and A. B. Hassan, “A novel PID controller tuning method based

on optimization technique,” Journal of Central South University of Technology,

vol. 17, pp. 1036-1042, 2010. (Ximing et al., 2010).

The Evolution in Action (EiA) Project

To facilitate thorough understanding of EC processes for the experimentations in

this study, the evolution in action (EiA) tool has been developed. The design of

EiA combines real-time data (extracted during the modelling and simulation) into

a real-time video of the evolutionary optimization process. The project was origi-

nally aimed at providing a visualisation that could enhance our understanding of

the underlying principles governing the design of efficient and robust evolutionary

optimization model. It is, however, now a useful tool that could facilitate teach-

ing and research on optimization using evolutionary computation methodologies

in general. In fact, EiA turns out to yield invaluable insights which stimulate

many of the various proposals across the different parts of this thesis.
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Chapter 2

Stochastic Optimization –

An Evolutionary Perspective

This chapter introduces stochastic optimization and presents a general classi-

fication for the field of optimization in Section 2.1. The chapter also reviews

simulated evolution, its developmental aspects and the notion of evolutionary

spaces in Sections 2.2 to 2.4. Section 2.5 overviews parameterisation in evolu-

tionary computation (EC) and examines a practical example of an evolutionary

process. The chapter further reviews the theoretical building blocks of evolution-

ary optimization in Section 2.6. Section 2.6.6 reports widely on the replacement

strategy based on elitism principle; it presents an adaptive elitist replacement

scheme which is underpinned in the parameterisation of the evolutionary models

proposed in the later part of this thesis. Finally, the chapter concludes with a

summary in Section 2.7.

2.1 Overview

In a typical real-world scenario, optimization tasks mostly involve large, rough

and/or sparse search spaces. In most cases, it would be inconceivable to accom-

modate the computational requirements of the traditional operations research

or mathematical programming approaches to exhaustively search for an opti-

mal solution. Thus, researchers shift from applying deterministic techniques on

“hard” problems to using approximate search methodologies that seek for a “good

enough” solution in a reasonable computational time.

The classification tree in Figure 2.1 shows that several solution techniques

34
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exist for the different types of optimization problems. Numerical algorithms are

the traditional solution; typified by the popular linear programming simplex al-

gorithm (Dantzig, 1963). Such algorithms are categorised as exact or complete

methods and constitute the start-of-the-art approaches for solving various types

of optimization problems in the diverse fields of mathematical programming (MP)

and operations research (OR).

The development of new paradigms, based on various heuristics1, follows the

realisation that traditional methods generally lack global perspective in exploring

the problem search space. In addition, the convergence guarantees of the tradi-

tional approaches are often limited to a locally optimal solution in the vicinity

of their initialisation point. Thus, the emergence of new paradigms, popularly

called approximate methods (Figure 2.1) opens up new possibilities for the de-

velopment of successful approaches that can be applied to a wide range of opti-

mization problems. The heuristics utilised by the approximate methods require

little or no modifications when applied to various problem domains.

Approximate methods can be categorised into special - and general-purpose

methods. On one hand, the design of special-purpose approximate methods

mainly seeks to exploit some structural pattern in the problem under consid-

eration. Consequently, such bespoke models tend to perform extraordinarily well

on the particular set of problems for which they are optimized. However, the tai-

lored design renders such methods inefficient even on similar problems. On the

other hand, the general purpose approximate heuristics constitute the so-called

stochastic optimization methods. Their distinctiveness centred on their ability to

optimize in domains where:

• there is lack of a well-defined functional model relating the input variables

to the output response of a given system;

• a model exists but its evaluation cost is prohibitively expensive; or

• the optimization surface (i.e., the fitness landscape) is complex, rugged

(with plateaus), or has many locally optimal solutions (highly multimodal)

with no exploitable structure.

1The term (meta)heuristics is a generic term that was introduced to delineate a universal
algorithmic framework designed to solve different optimization problems based on probabilistic
decisions made during the search process.
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Figure 2.1: Classification of optimization methodologies.

Algorithms that fall in the category of approximate methods come from

large number of heuristics established on different backgrounds and theoretical

paradigms. The evolutionary computation (EC) methods, such as genetic al-

gorithms (GA), genetic programming (GP) and evolutionary strategy (ES), are

only a few examples of the naturally inspired stochastic heuristics. A comprehen-

sive survey with historical details can be found in Fogel (1994). Since this thesis

aims to investigate global optimization problems and propose solutions from the

global perspective2, the review in this chapter is focused on the population based

stochastic optimization frameworks under the paradigm of evolutionary compu-

tation.

While the stochastic optimization methods are usually easier to implement

compared to their exact counterparts, on the downside, their lack of “sound” the-

oretical convergence guarantee often hinders their direct (online) use in mission-

critical and safety-critical applications.

However, striving for more theoretically rigorous justifications, the EC com-

munity has, in the last couple of decades, seen several investigations that seek

to formally describe the success of the evolutionary-based stochastic optimiza-

tion methods. This probably began with the work of Vose (1995) on modelling

genetic algorithms by Markov chain theory. Later, Rudolph (2000) analytically

2In a global search space, stochastic local optimization approaches, such as stochastic hill-
climber easily fall into the trap of local optima.
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estimated the takeover times (see Section 2.6.3) for a variety of tournament se-

lection methods as Markov chains and describes how takeover time is considered

as an absorption time of a Markov chain having only one absorbing state. Green-

halgh and Marshall (2000), also modelled GA as Markov chain and determined

upper as well as lower bounds for maximum iteration limit with a probability

δ of having seen the optimum point. These approaches have already provided

a remarkable insight into the convergence properties and dynamical behaviour

of the nature-inspired optimization approaches. They have also led to the de-

velopment of the so-called dynamical models of evolutionary algorithms by Rowe

(2001). More recent work involve formalisation of the computational complexities

of evolutionary systems and their convergence characteristics using a statistical

means of estimating computational complexity called “drift analysis”. The in-

vestigations by He and Yao (2004) and Zhang et al. (2010) formulated the drift

conditions based upon which an evolutionary algorithm can be said to possess a

polynomial/exponential order.

2.2 Biological plausibility of Simulated

Evolution – The ongoing debate

The pioneers of the various simulated evolutionary3 methodologies were inspired

by the natural phenomenon of evolution. However, the extent to which these

methodologies should conform to the biological notion of evolutionary genetics

has remained a subject of contention in the EC domain. On one hand, a number

of researches assert that successful EC designs should mimic and comply with the

various phenomena of natural evolution. This includes the ability to sustain and,

in some cases, prioritise population evolvability over fitness growth. Obviously

the maintenance of evolvability is a long-term goal inherent in natural evolution.

Therefore, aligned to this viewpoint is the notion of “novelty search” (Lehman

and Stanley, 2011). Novelty search is an optimization method that favours in-

tense exploration by prioritising diversification over fitness exploitation. Thus,

supporting the insights gained from natural phenomenon of evolution, Bäck et al.

(1997) posits:

3Simulated evolution, as defined by Fogel et al. (1966), is “the process of duplicating certain
aspects of the evolutionary system”.
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“...we are far from using all potentially helpful features of evolution within evolu-

tionary algorithms” (Bäck et al., 1997).

However, other investigations suggest utilising the very minimal concepts of

natural evolution necessary to realise simulated evolutionary system suitable for

optimization purposes, thus, Yao (2002) argue that:

“Although research in evolutionary computation could help us understand some

natural phenomena better, its primary aim is not to build biologically plausible

models” (Yao, 2002).

In this regard, the two viewpoints fundamentally seek to balance the op-

timization goals of fitness exploitation and search diversification via simulated

evolution. Often called exploration and exploitation trade-off, this issue forms a

key argument put forward in Chapter 5 of this thesis. In fact, preserving the

ability to evolve new solutions while effectively harnessing the already found high

quality ones is crucial to any successful global optimization approach.

2.3 Developmental Aspects of Evolutionary

Computation

Evolution is a process that originated from the biologically inspired neo-Darwinian

paradigm, i.e., the principle of survival of the fittest (Fogel, 1997). Evolution-

ary algorithms (EAs) are designed to mimic the intrinsic mechanisms of natural

evolution and to progressively yield improved solutions to a wide range of opti-

mization problems. The domain independent design of evolutionary algorithms

facilitates their successful application on various problem domains without any

incorporation of domain specific information.

As highlighted in the introductory chapter, the more popular evolutionary

computation algorithms are the genetic algorithm (GA)4 (Holland, 1975), evo-

lutionary strategies (ES) genetic programming (GP), and evolutionary program-

ming (EP). These techniques largely share common basis and differ mainly in

4Genetic algorithm was first introduced by Holland (1975) in the early 70s and it will be
used in this study. Unless otherwise stated, any subsequent mentions of EC or EA in this thesis
will be referring to the genetic algorithm.
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Figure 2.2: Flowchart of a Typical Genetic Algorithm.

some of their data structures, and in variation and reproduction operators. The

terminologies used to describe the processes of simulated evolution, in most of

parts of this thesis, are mainly borrowed from the fields of evolutionary genetics.

Thus, a summary of their succinct meanings as used herein is given in Table 2.1.

In general, a genetic algorithm is an iterative procedure (Figure 2.2) that

evolves a pool of candidate solutions across generations. If t is the generation

counter, then GA starts with a fixed sized initial population P (t) : |P (t)| = N .

A candidate solution point xi is called an individual, and represents a single

possible solution to the problem under consideration, i.e., in the phenotype space

xi ∈ P . A candidate solution, x′i ∈ G, is a representation of an individual

by a computational data structure called chromosome in the genotype space G.

Usually, a chromosome is encoded as a string of symbols of finite-length called

genes. An encoded chromosome may be in the form of binary bit string, real-

valued or some other specialised representations (Holland, 1975).

The sample solutions in the initial population are usually created randomly

or via a simple heuristic construction, more detail on this is in Sections 5.3.1 and

5.4.5. At every generation, a stochastic selection process (Section 2.6.2) is applied

on the initial population to choose better solutions following an evaluation that

is based on some measures of fitness. The solutions that survive the selection

process constitute a new set called parent and are qualified to take part in the

remaining evolutionary processes.
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Table 2.1: Evolutionary Nomenclature

Terminology Symbol Description

Individual x An arbitrary sample solution, also called candidate solution

Gene − In biology, it is a hereditary unit of creation, in simulated evo-
lution it is a representation unit that makes up an individual
solution

Chromosome − A data structure (e.g. a string of binary) of fixed length of
genes encoding a solution

Allele − A possible value a gene can take at any locusa in a chromo-
some, e.g. a value of 0 or 1 for a binary bit

Population P A set of candidate solution setup to undergo an evolutionary
cycle

Parent Pa, Pai A set or any sample solution involved in an evolutionary pro-
cess expected to produce new solution(s)

Offspring O,Oi A new solution or set of solutions formed via evolving a single
or group of parent solutions

Specie − A category/variety of solutions amenable to undergo certain
evolutionary process

Niche − A batch of localised solutions sharing common features
and/or occupying a specific region of an evolutionary search
space

Phenotype p A solution in its original form that can be evaluated

Phenotype space P The original problem space in which solutions get evaluated

Genotype g A representation of solution in a given encoding useful for
crossover and mutation

Genotype space G The solution encoding or representation space, e.g. a binary,
gray, real-valued space, etc.

Generation G A complete cycle/iteration/epoch of an evolutionary model

Fitness f A quality of candidate solution that translates to chances of
survival during selection

aLocus: i.e. the specific site of a particular gene in a chromosome.

In order to explore other areas of the search space, the parent solutions (chro-

mosomes) undergo recombination and/or mutation operations (Section 2.6.4) to

generate a new set of chromosomes called offspring. The recombination entails

exchange of characteristics by merging two parent chromosomes using a crossover

operator, whereas mutation operation is a genetic alteration of a randomly chosen

parent chromosome by a mutation operator.
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Algorithm 2.1 A Standard Model of Genetic Algorithm
1: begin
2: t← 0;
3: initialise P (t) uniform at random;
4: evaluate the fitness of P (t);
5: while not termination do
6: Qs(t)← select from P (t);
7: Qr(t)← recombine Qs(t);
8: Qm(t)← mutate Qr(t);
9: evaluate the fitness of Qm(t);

10: P (t+ 1)← select from {Qm(t) ∪ P (t)};
11: t← t+ 1;
12: end while
13: end

A new generation of chromosomes is then formed via a pre-defined replace-

ment procedure (Section 2.6.5) by selecting from either the combined pool of

parents and offspring or the offspring pool based on a prescribed fitness measure.

Fitter individuals have higher chances of been selected and the average fitness of

the population is expected to grow with successive generations. The evolutionary

cycle (Figure 2.2) continues until a termination criterion is met. Typical termi-

nation conditions enforce a user-defined limit on function evaluations, execution

time, or when the search pool sufficiently converges to the optimum – or at least

a suboptimal – solution. Note the classification of the key GA components on the

basis of their operating evolution spaces in Figure 2.2. Analysis of the important

distinction between the phenotype and genotype spaces follows in Section 2.4.

The complete dynamics of GA is as depicted in Algorithm 2.1. Notice from

Algorithm 2.1 that, at any generation t, the parameters: P (t), Qs(t), Qr(t) and

Qm(t) respectively represent the data structures for the population at the initial

generation, at the end of selection, and after the recombination and mutation

operations.

Because of their simple and stochastic nature, EAs require only the evalua-

tion of the objective function but not its gradients. Such a derivative-free nature

relieved EAs from the computational burden of evaluating derivatives. This is

especially beneficial when dealing with complex objective functions where deriva-

tives are difficult to compute. Further, the randomness in EAs improves their

versatility in escaping the trap of suboptimal solution which is the major draw-

back in most local optimization techniques.
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Goldberg (1989) summarised the key features of evolutionary algorithms that

made them robust optimization methods. These are:

• EAs search with a population of sample solutions, not a single solution;

• The evolutionary variation operators (i.e. recombination and mutation)

work on the encoded solution set, not directly on the solutions;

• The evolution operator (i.e. selection) works with a fitness measure rather

than a derivative or other auxiliary knowledge; and

• The progress of the evolutionary process relies on probabilistic transition

rules, not deterministic rules, that is, evolutionary search is stochastic and

hence global.

The following section provides an exposition on simulated evolutionary pro-

cesses for evolving solutions via mapping from one evolutionary space to another.

2.4 Simulated Evolution and Evolutionary

Spaces

Atmar (1994) argued that despite the simplicity in the informational physics of

the processes governing evolutionary system, delineating which processes of the

evolution occur in what space is often misunderstood (cf. Figure 2.2). Formally,

the evolutionary cycle runs in two distinct spaces: phenotypic and genotypic

spaces (Lewontin, 1974) (Figure 2.3). The phenotype space P represents the

behavioural or physical characteristics of an individual or chromosome, i.e. the

solution in its original form; whereas the genotype space G is the encoding space

and represents the exact genetic makeup of a chromosome, i.e. the solution in its

encoded form. Figure 2.3 shows a simple simulation of evolution processes within

and across generations depicting various genotype-phenotype mapping functions.

Simulated evolutionary systems often mimic natural evolution by creating

their initial population in form of chromosomes encoded in a genotype space.

Thus, as shown in Figure 2.3, the process usually begins in a genotype space with

samples gi ∈ G. As enumerated in the following, the initial population evolve

over generations and finally ends with a solution set pi ∈ P in a phenotype space.
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Figure 2.3: Simulation of Genotype-Phenotype Mapping Functions.

i) The first mapping function f1 : g → p decodes from G to P space such that

each genotype gi is translated into phenotype pi and then evaluated. Thus,

the function shifts the evolution from the genotype to the phenotype space.

ii) The second mapping function f2 : p → p describes the selection operation.

It is the process of choosing individuals p for reproduction and it occurs

entirely in the phenotype space P .

iii) The third mapping function f3 : p → g describes the genotypic representa-

tion. It is the process of encoding the genotype prior to reproduction. It

shifts the evolution back to genotype space G.

iv) The fourth mapping function f4 : g → g represents the evolutionary variation

process. It is where variation operations such as recombination and mutation

take place on the genotypic samples g . f4 incorporates the rules of random

and directed coding alteration during the reproduction process. This process

entirely happens in the genotype space G.

Lewontin (1974) emphasised that although the distinction between evolution-

ary spaces P and G is sometimes illusory, it is imperative to clearly understand

and delineate which part of the evolutionary process takes place at which state

space.

Note that this study is limited to optimization of continuous linear/nonlinear

problems (Section 1.4); adhering to real-valued encoding eliminates the need for
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phenotype-genotype mapping. Thus, as a suitable choice in this regard, real-

valued encoding will be used throughout this study. However, for the purpose of

illustrations, the example demonstrating evolution, at a glance, in the following

section (Section 2.5.1) utilises a binary encoded EC model. In addition, Chapter

4 of this thesis analyses the dynamics of EAs under both binary and real-valued

encodings. In particular, Chapter 4 examines the convergence characteristics of

the two EC models on various set of global optimization benchmarks.

2.5 Parameterisation in Evolutionary

Computation

As will be demonstrated in the following example, EC methodologies involve a

large number of parameters upon which their overall success relies. Because the

performance of an EA heavily relies on the correct settings of its parameters,

tuning the parameters to their optimal values is by itself a complex optimization

problem. Thus, Grefenstette (1986) suggests using a meta-level GA to derive

optimal parameters for a genetic algorithm on some specified problem category.

Grefenstette’s proposal uses a user parameterised inner genetic algorithm to tune

the parameters of a main genetic algorithm.

Early works in genetic algorithms by Holland (1975) and later by De Jong

(1975) have led to the development of the most widely used standard parame-

ter sets (Table 2.2). Although these settings are mainly obtained from empirical

experiments, many other theoretical studies (Bäck, 1993; Boyabaltli and Sabun-

cuoglu, 2007; Goldberg and Deb, 1991) have reinforced the validity of such pa-

rameter settings. Thus, the space of a simple genetic algorithm comprises at least

the six basic parameters (Table 2.2) which could be categorised into two main

classes:

i. Structural Parameters: These include choice of data type (i.e. representation

scheme) and the types of genetic operators used.

ii. Numerical Parameters: These include but not limited to the population size,

probabilities of mutation and crossover, maximum number of generations,

replacement rate, etc.
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Table 2.2: Standard Parameters of a Typical Genetic Algorithm.

Parameter Name Symbol Typical values/Description/Types

Population Size N N ∈ [50, 200] : N ∈ N
Selection Scheme − Fitness proportionate, Ranking, Tournament, etc.

Crossover Probability PC [0.6, 1.0] : PC ∈ R
Mutation Probability PM [0.01, 0.05] or 1/l : PM ∈ R, l = string length

Replacement Scheme − Generational, Elitist, Overlap, etc.

Termination Criteria − Maximum Runtime, Generations, Function evalua-
tions or any heuristic convergence measure.

2.5.1 A Peek into GA – Understanding How it Works

This section presents a case study that explores the dynamics of a hypothetical

binary coded genetic algorithm. A complete evolutionary cycle consisting of ini-

tialisation and evaluation, reproduction and variation is illustrated. Specifically,

the case study demonstrates how the use of proportionate/tournament selection

methods and, the crossover and mutation operators stochastically evolve a ran-

domly created solution pool over generations.

Case Study: Ice Cream Cone Production

Problem Statement:

An ice cream manufacturer wishes to mass produce ice cream waffle cones (cor-

nets). Inside of each cornet is coated with a layer of oil, sugar and chocolate to

minimise leaks and improve taste. Assume that a cornet is required to have a

capacity of at least one scoop of ice cream, equivalent of 25 cubic units. Assume

also that an acceptable height range for cornet lies within h ∈ Z | 4 ≤ h ≤ 12

units and the base radius lies within r ∈ Z | 1 ≤ r ≤ 3 units. Let the cost of

producing a unit area of the cornet be £0.36. The manufacturer wishes to find

an optimum dimension for the cornet that would minimise the cost of producing

the waffle.

Problem modelling:

From the manufacturer’s perspective the task is essentially an optimization prob-

lem. The goal is to design a cone (of course an open-ended one) that satisfies the

following requirements:
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Let the cost of a unit area of the waffle be K = 0.36. Let the cone height and

radius be h, and r respectively, then

the volume is V = 1
3
πr2h, and

the surface area is A = πrl = πr
√
r2 + h2,

(2.1)

where l =
√
r2 + h2 is the lateral height of the cone.

Since both the volume V and surface area A of a cone are simply functions of

r and h, the task is defined in terms of the following optimization problem:

Minimise: f(r, h) = πr
√
r2 + h2,

Subject to: g(r, h) = 1
3
πr2h ≥ 25,

Bounded within: {r ∈ Z | 1 ≤ r ≤ 3},
{h ∈ Z | 4 ≤ h ≤ 12}.

(2.2)

Encoding:

For the purpose of illustration, simple binary encoding will be used. From the

given variable bounds for r and h (2.2), the radius and height of any sample

solution can be represented with binary bits of length 3 and 4 respectively. And

by concatenation, a candidate solution (chromosome) will have a string length of

7 bits.

Suppose that an ice-cream cornet A has radius r = 3 and height h = 9 (see

Figure 2.4 for dimension specifications), then, its binary encoded chromosome is:

Chromosome A : (r, h) = (3, 9) ≡ 101︸︷︷︸
3

1001︸︷︷︸
9

, or simply 1011001.

Notice that based on the adopted encoding, the random evolutionary operators

may yield solutions which violate the constraints and/or bounds of the design

requirements. Let us adopt the simple technique of penalising any infeasible

solution by adding to its fitness a value proportional to its constraint violation5.

Then, besides the representation (encoding) task, the complete evolutionary cycle

involves the following sequence of operations.

5Constraint handling is a huge area of research in its own right, and the motive in this
example is not to establish the best constraint handling strategy rather to demonstrate how a
simple GA works.
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Figure 2.4: An illustration of sample of ice-cream cornets of various dimensions.

Table 2.3: Initialisation and Evaluation of a hypothetical GA Sample Pool

Initial Population (Pool size N = 6)

Chromosome
(Binary)

Decoded Values
{r, h}

Surface Area
(A)

Volume
(g)

Fitness
(f)

100101 {2, 5} 12 21 62 = 12 + 50

110101 {3, 5} 20 47 20

010100 {1, 4} 5 4 55 = 5 + 50

100111 {2, 7} 16 29 16

110100 {3, 4} 17 38 17

111000 {3, 8} 29 75 29

Average Fitness f̄ = 33.17

Initialisation and Evaluation:

The conventional method of creating the initial population (pool) of candidate

solutions (chromosomes) is random. Thus, for the purpose of illustration, a ran-

domly generated pool of only 6 samples is utilised in this case (Figure 2.4). Table

2.3 shows the encoded samples constituting the initial pool as strings of binary

bits and their decoded decimal values. The corresponding values for the surface

areas and volumes of the resulting cornets are also evaluated based on the def-

initions in equations (2.1). Finally, their respective fitness values are evaluated

according to the optimization problem defined in (2.2). The fitness function is
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equal to the surface area whenever the volume is at least 25unit cube, else a con-

stant penalty of P = 50 is added to whatever is the current value for the surface

area.

Reproduction:

Selection operation is carried out such that fitter samples (i.e. those having min-

imum fitness values in this case) are prioritised. This section illustrates two of

the most commonly used selection approaches. First, the conventional fitness

proportionate (Roulette wheel) selection method is examined, and later, the use

of tournament selection method is demonstrated.

1. Fitness Proportionate selection: As the name implies, this selection process

selects individuals based on the proportion of their fitness with respect to

the entire pool, (Section 2.6.2). Since the optimization goal is to minimise

the objective function the selection will favour those samples carrying the

least proportion of the population’s average fitness. The result of this is

presented in Table 2.4.

2. Tournament Selection: In contrast to Roulette wheel selection method,

tournament selection (Section 2.6.2) requires specification of a tournament

size. Here, a tournament size of two (binary tournament selection) is

utilised. Thus, in two rounds of contest, two randomly chosen samples

(without replacement) compete and the best fit sample is chosen (Table

2.5). Since the optimisation objective in this case study is a minimisation

one, the sample with the least fitness value wins. In this way, every sample

in the solution pool competes in exactly two contests.

Notice from the Roulette wheel and Tournament selection methods that the

selection process works on the decoded values, i.e. the phenotype space. In

addition, selection process inherently favours fitter solutions which results in im-

provement in the average fitness of the sample pool. Of course, having the two

selection approaches returning identical results as witnessed above is only a co-

incidence. And as will be discussed further in Section 2.6.2, the Roulette wheel

method has some known limitations which are essentially avoided in the tourna-

ment methods. Subsequent to the selection process, the chosen samples constitute

the parent pool and undergo the following evolutionary variation processes.
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Table 2.4: Fitness proportionate selection: A demonstration of Roulette Wheel
fitness proportionate Selection for the Hypothetical GA.

Initial Population Selected Pool

Decoded
values {r, h}

Fitness
(f)

Fitness
proportions

Selection
count

Decoded
values {r, h}

Fitness
(f)

{2, 5} 62 1.87 0 {3, 4} 17

{3, 5} 20 0.60 1 {3, 5} 20

{1, 4} 55 1.66 0 {2, 7} 16

{2, 7} 16 0.48 2 {2, 7} 16

{3, 4} 17 0.51 2 {3, 4} 17

{3, 8} 29 0.87 1 {3, 8} 29

Average Fitness f̄ = 33.17 Average Fitness f̄ = 19.17

Table 2.5: Tournament selection

Comparing the samples’ Fitness (f)

Tourna-
ments

{62 vs 17} {20 vs 29} {55 vs 16} {16 vs 62} {17 vs 20} {29 vs 55} f̄ =

Winners 17 20 16 16 17 29 19.17

Variation: Crossover and Mutation Operators

The working principles of the most commonly used evolutionary variation oper-

ators, i.e., crossover and mutation, are illustrated in this example. In general,

variation operators work on the encoded values (binary in this case) of the sam-

ple solutions, i.e. in the genotype space. Assuming all selected samples (parents)

undergo the crossover operation (i.e., PC = 1.0) and the probability of mutation

is PM = 0.01. Then, the parent pool is shuffled to form a mating pool for the

variation processes (Table 2.6).

First, the mating pool undergoes the crossover operation – with every two

randomly chosen parent chromosomes exchanging their bits to the right of a ran-

domly chosen crossover point. Then, mutation operator is applied on the resulting

offspring at a rate equal to the probability of mutation PM. It can be observed

that the average fitness of the pool has improved from the initial pool having

33.17 (Table 2.3), to the new pool having 23.50 (Table 2.6) at the end of the first

evolutionary cycle, i.e., a generation. Although this is not absolutely necessary, in
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Table 2.6: Crossover and Mutation

Mating Pool Crossover: PC = 1.0 Mutation: PM = 0.01 New Pool

Values
{r, h}

Chromo.
(Binary)

Crossover
point

Crossover
offspring

Mutation
locus

Mutated
offspring

Values
{r, h}

Fitness
(f)

{3, 4}
{2, 7}

11010|0
10011|1

5 110101
100110

{6}
{−}

110100
100110

{3, 4}
{2, 6}

17
14

{3, 8}
{2, 7}

11|1000
10|0111

2 110111
101000

{1}
{−}

010111
101000

{1, 7}
{2, 8}

58
19

{3, 5}
{3, 4}

110|101
110|100

3 110100
110101

{−}
{2, 5}

110100
100111

{3, 4}
{2, 7}

17
16

f̄ = 23.50

most cases the average fitness of the pool is expected to improve with subsequent

generations. The fitness improvement with generations is not accidental. This

is because the samples undergoing the evolutionary cycle have already passed a

selection process and possess the right qualities to evolve better offspring. This is

why GA does better than a mere random/brute force search6. Hence, as demon-

strated in this case study, the continuing cycle of reproduction and variation

processes eventually results in newer samples having improved fitness levels.

The following section presents detailed formalisations and descriptions for the

several simulated evolutionary processes introduced thus far.

2.6 The Building Blocks in EC

To properly set up an EC model for solving global optimization problems, a

number of questions arise. First, appropriate choice of suitable data structure,

initialisation method and population sizing are of primary importance. This then

lays a suitable ground for the choice and parameterisation of the evolutionary

reproduction and variation processes. In this section, each of these aspects is

examined in turn, and their respective roles in building successful EC models (as

will be seen in later chapters) are highlighted.

6In random search there is no information transfer from the previously seen solution to
the next. However, in stochastic heuristics like EAs, knowledge gathered from previously seen
solutions is intelligently used to guide the generation of new ones.
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2.6.1 Initialisation: Representation and Population Sizing

A. Representation

A suitable representation scheme is crucial to the overall performance (efficiency

and robustness) of an EA. Holland (1975) advocated using binary representa-

tion. The motivation was to ensure that the genetic variation processes oper-

ate in a domain (i.e. space) that is distinct from that of the original problem.

This enhances the robustness of evolutionary algorithms by making them more

problem-independent. Furthermore, binary representation eases the design and

implementation of the major evolutionary operators. This section presents binary

encoding and the mapping between genotype and phenotype spaces in a typical

evolutionary computation algorithm.

Suppose an optimization problem is defined as:

maximise/minimise: y = f(x),

Subject to: x ∈ X,
(2.3)

then the fitness function f : X → Y assigns a cost value to each element in the

decision variable X by mapping it to a corresponding element in the solution

space Y ∈ R. For any variable xi ∈ R | ai ≤ xi ≤ bi, assuming the precision

requirement is p = 10−2, then the length li of the binary bits required to map the

real variable xi into a corresponding binary variable x′i is derived from:

2li−1 ≤ bi − ai
p
≤ 2li : li ∈ N. (2.4)

Now, for any multidimensional function having {xi ∈ R | i ∈ N} real variables.

If each of these variables is mapped to its corresponding binary variable {x′i ∈
B | i ∈ N}, then for a population of size N an individual binary chromosome x̃k

is obtained by concatenating all the binary variables as follows:

x̃k = x′1|x′2| · · · |x′n : k = 1, 2, . . . , N. (2.5)

Hence, the total length L of the resulting binary chromosome x̃k is equal to the

sum of the bit length li of all the n binary variables x′i (2.6),

L =
n∑
i=1

li. (2.6)
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Note that the precision requirement for the decision variables may differ from

one variable to another within a given problem. Thus, in general, for any decision

variable defined as xi ∈ R : ai ≤ xi ≤ bi, to map xi into to a binary string of

length li, the precision requirement is:

pi =
bi − ai
2li − 1

. (2.7)

With the problem encoded into binary (i.e. genotype) space, decoding the

chromosomes back to the phenotype space is a reverse process and it is necessary

for evaluating their fitness before selection. This process entails the following two

steps:

First: Decomposing the binary chromosome x̃ into its constituent binary vari-

ables x′i. This requires splitting the L bits of x̃ into chunks of li bits corre-

sponding to the x′i binary variables. Then, the corresponding real variables

xi are derived via binary to decimal transformation of the li bits of x′i, such

that:

xi =

li∑
j=1

bj2
li−j : i = 1, 2, . . . , n. (2.8)

where bj are the binary bits of x′i, li is its length and n is the total number

of these variables.

Second: Mapping the obtained real variables xi to conform to their originally

defined ranges ai ≤ xi ≤ bi, such that:

xi = ai +
bi − ai
2li − 1

x′i : ∀i = 1, 2, . . . , n. (2.9)

Occasionally, situations arise where binary representation is not only promis-

ing but also the natural choice. The knapsack problem in operations research is

a typical example. A 0-1 knapsack problem consists of a set of n items to be

packed into a knapsack of size K units. If each item has a weight wi and is of

size ki units, then the goal is to maximise the weight for a given subset I of the

items such that:

max
∑
i∈I

wi :
∑
i∈I

ki ≤ K. (2.10)
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Reeves and Rowe (2004) showed that the knapsack problem can be reformu-

lated as an integer programming problem, and as a result, a sample solution can

be represented as a binary string of length n. Consequently, with no distinc-

tion between the genotype and phenotype spaces, mapping functions are simply

eliminated.

Previously, the general view in the EC community regarding problem’s data

structure and the choice of suitable EC algorithm was to match the problem under

consideration to a suitable EC model. For example, the designs of evolutionary

strategies are centred on real valued representation which is suitable for continu-

ous problems. Similarly, the designs of genetic algorithms proposed by Goldberg

(1989) focused on discrete optimization and use binary representation as a norm.

However, many of the later researches (Blum and Roli, 2008; Chambers, 1995;

Raidl, 2005) revealed that each of these algorithms is been successfully used with

all kinds of representations for various optimization problems.

Table 2.7 compares and summarises the various representation techniques

reviewed from various domains of the evolutionary computation. It highlights the

cases when phenotype-genotype mapping functions is necessary and pinpoints a

suitable category of the genetic operators to adopt.

Various types of representations for genetic algorithms are echoed in the lit-

erature for different problem domains. For some optimization problems, the bi-

nary representation is inadequate or even unsuitable for appropriate encoding

of the problem under investigation. Greenhalgh and Marshall (2000) argue that

although Goldberg’s (Goldberg, 1989) notion of implicit parallelism in genetic

processing favours binary representation, practitioners report better performance

with non-binary representations in many real-world applications (Davis, 1989).

In fact, in some situations the use of problem dependent representations is nec-

essary. Often there exist apparent representation schemes that can best suit the

problem to be modelled. Optimization of permutation problems is a typical ex-

ample where there is a natural choice for representation. In such a case, the

representation can directly be defined over the range of all the possible permu-

tations. Similarly, for optimization in continuous (real-valued) domain, which is

the problem domain of interest in this thesis, use of floating-point representation

is an appropriate choice.
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Table 2.7: A summary of commonly used representation methods in EAs

Problem type Example problem Representation type Mapping
function

Genetic op-
erator type

Knapsack problem
(Reeves and Rowe,
2004)

Direct binary
× Generic

Discrete
(binary)

Network distribution
(Mendoza et al., 2006;
Sivanagaraju et al.,
2006)

Direct binary
× Generic

Feature selection
(Oh et al., 2004)

Direct binary × Generic

Discrete
Rotor stacking (Mc-
Kee and Reed, 1987)

q-ary encoding, q > 2 X Specialised

non-binary Network reconfigura-
tion (Queiroz and
Lyra, 2009)

NRK, minimum span-
ning tree algorithm

X Specialised

Permutation

Flowshop sequencing
(Reeves, 1995)

Direct integer, range of
permutation

× Specialised

TSP problem (Rad-
cliffe and Surry, 1994)

Allelic, using ordered
pairs

X
Specialised

Process scheduling
problem (Lin and
Yang, 1999)

Direct integer
X Specialised

Combinato-
rial

Parameterised sche-
duling strategy
(Chambers, 1995)

Binary encoding
X Generic

Continuous Continues Real encoding X Generic

non-discrete linear/nonlinear Binary encoding X Generic

problems Gray encoding X Generic

B. Population Sizing

Let the initial population P0 of size N represent a set of points in the search

space of all possible populations, then every evolutionary generation is expected

to shift the initial population P0 to a different set of points Pt in the search

space. However, deriving optimal population size for EAs still remains an area

of further research (Rowe, 2001). This is because, while larger population sizes

facilitate wider exploration of problem search space, they impair the efficiency of
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the search process due to increased evaluation of low quality samples. On the

other hand, too small population size would not permit adequate exploration of

all the promising areas of the search space and may risk premature convergence

to a suboptimal solution. Arguably, larger population sizes allow EAs to easily

discriminate between good and bad building blocks7. Thus, Goldberg et al. (1989)

argue that the parallel processing and recombination of good building blocks

permit effective solutions of large and deceptive global optimization problems.

Ultimately, in spite of the several theoretical viewpoints on optimum population

sizing, the underlying trade-off between efficiency and effectiveness remains.

In a series of empirical investigations, De Jong (1975) showed that for a stan-

dard binary encoded genetic algorithm population sizes of 50 to 100 are sufficient

for wide range of optimization problems. A theoretical study by Reeves (1993)

revealed an interesting finding on what constitute a minimum population size for

a binary encoded EA. Reeves (1993) showed that for every point in the search

space to be reachable from the initial population by a recombinative genetic al-

gorithm (i.e. a GA using only the crossover operator), there must be at least

one instance of every allele at each locus in the whole population of strings. For

binary representation, the probability that at least one allele is present at each

locus is:

P =

(
1−

(
1

2

)N−1
)l

≈ exp

(
−l

2N−1

)
, (2.11)

where N is population size and l is the chromosome or string length.

Thus, for 99.9% confidence level, the minimum population size N is:

N ≈

⌈
1 +

log
( −l

lnP

)
log 2

⌉
≈

⌈
1 +

log(999.5× l)
log 2

⌉
. (2.12)

Figure 2.5 shows the characteristic curves for the approximation of N (2.12)

for higher cardinality (q-ary) representations. Figure 2.5 reveals at least two

important findings. First, the minimum population size required when a binary

representation (i.e. when q = 2) is used, with up to a string length of 200 bits, is

not more than 20 individuals. Second, the threshold for the minimum population

7The Building Block (BB) terminology was used by Holland (1975) to represent the short,
low order (or low defining-length) schemata. Building Block Hypothesis (BBH) suggests that
GA performs adaptation efficiently by combining and processing these short, low order schemata
(BB) which have above average fitness (Goldberg, 1989).
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28 CHAPTER 2. BASIC PRINCIPLES

Figure 2.5: Minimal Population sizes N for 99.9% confidence interval of having
all allele in the initial population of GA, where q is the arity of the representation,
e.g. q = 2 for binary. Figure taken from (Reeves and Rowe, 2004).

size grows as the encoding cardinality increases. Note that the above expression

(2.12) does not prescribe an optimum value for the population size. However,

it suggests a threshold below which a population may not guarantee adequate

exploration of the problem space by a binary-coded EA. Similarly, the values

shown by the curves (Figure 2.5) are not the optimal values for the population

size, neither are they sufficient for a realistic global search. However, such findings

could justify the occasional convergence of EAs to global optimal solutions with

“extraordinarily” small population sizes. Thus, for all the experimentations in

thesis, wherein binary encoding is utilised (e.g. in Section 4.4.2), a pool size

larger than the above minimum threshold is adopted to avoid under-sampling

the search space.

2.6.2 The Selection Operator

Selection process is often seen as the driving force in evolutionary algorithms

(Blum and Roli, 2008; Hancock, 1994). Selection methods in simulated evolution

operate on the original solution (phenotype) space and, they imitate the process

of natural selection by favouring solutions that encode successful structures. Suc-

cessful solutions refer to those individuals that have higher fitness values relative

to their counterparts. Although this notion (seeking for the best out of many)

undoubtedly suites the key idea of optimization, it does seem to contradict some
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viewpoint of natural evolution8, leaving evolutionary theorist to raise questions

like:

“. . . does natural selection always favour those behavioural strategies that seek to

minimise expected loss?” (Fogel, 2008).

In practice, there are varieties of selection methods in evolutionary computing.

Choosing appropriate selection method can be difficult as it involves deciding on

crucial parameters like selection pressure, selection intensity, growth rate, takeover

time etc., which collectively dictate the mode and rate of convergence of the EC

model. Thus, selection plays an important role in the parameterisation of EC

and is critical to the overall success of an EA. The following sections examine the

principles of the various selection approaches in EC.

A. Fitness Proportionate Selection Methods

Roulette wheel selection (RWS) is the simplest and most commonly used fitness

proportionate (FPS) means of selection in evolutionary computations. RWS has

a probability distribution such that the probability of choosing an individual is

always directly proportional to its fitness. This probability intuitively corresponds

to the area of a sector of a roulette wheel; the larger the sector, the higher the

chances of selecting a given sample solution. Hence, the name of the roulette

wheel selection method. For any population P consisting of a set of {xi ∈ X | X ∈
R; |X| = N} samples, let the fitness evaluation function be f : X → Y , then the

total fitness of the population F is:

F =
N∑
i=1

f(xi), (2.13)

the fitness proportion of a solution xi corresponds to its probability p(xi):

p(xi) =
f(xi)

F
: i = 1, 2, . . . , N ; (2.14)

its cumulative probability q(xi) is:

q(xi) =
k∑
j=1

p(xj) : k = 1, 2, . . . , N ; q(xk) ∈ [0, 1]. (2.15)

8The role of selection is also part of the argument on the biological plausibility of simulated
evolution (Section 2.2).
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Selection of N samples requires spinning the wheel N -times. This corre-

sponds to N -times sampling (with replacement) from a pseudo-random sequence

rand ∼ U [0, 1]. After every spin, sample xk is selected if the random number falls

within the interval of its cumulative probability and that of its predecessor, i.e.

if q(xk−1) ≤ rand ≤ q(xk). As a result, samples with higher fitness values have

larger cumulative probabilities and hence higher chances of been selected.

Although RWS scheme enjoys a great level of simplicity, it suffers from is-

sues relating to sampling error and scaling. The lack of scaling often leads to a

sudden collapse in selection pressure (Section 2.6.3) as population average fitness

improves. The commonly used measures to tackle the lack of scaling in RWS

include windowing and (linear/sigma) scaling (Chambers, 1995; Hancock, 1994).

Advanced remedies include the use of rank-based selection method, proposed by

Baker (1985). It entails ranking sample solutions in order of their fitness values.

B. Tournament Selection Methods

Tournament selection method is inspired by the natural mating contest in which

a group of individuals compete for reproduction. It entails setting up a contest

for k < N individuals sampled independently without replacement from the main

pool. The sample with higher fitness value wins the contest and the process is re-

peated until the required number of samples is selected. Selecting the contestants

can be carried out with or without replacement. Further, the tournament size k

can be varied such that larger k leads to increased selection pressure. Hence, this

method is believed to yield improved control on the level of selection pressure and

the approach is immune to scaling problems (Chambers, 1995; Reeves and Rowe,

2004). A tournament size of k = 2 yields the so-called binary tournament selec-

tion, which is probably the most commonly used implementation of tournament

selection and is utilised in most of the EC models examined in this thesis.

Stochastic tournament selection is a variant of the strict tournament selection

whereby the winner of any contest is only selected at certain probabilistic rate

p. Thus, the rate of having the best sample being selected has now reduced

to kp instead of k times. A value of p = 0.5 turns the process into a random

selection. Note that even with p > 0.5, stochastic tournament implementations

will remain susceptible to occasional sampling errors. Other selection schemes

include truncation selection (Thierens and Goldberg, 1994), steady state GAs or

Genitor (Goldberg and Deb, 1991; Hancock, 1994), and the (λ, µ) and (λ + µ)
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methods originally inherited from evolutionary programming and evolutionary

strategies (Goldberg and Deb, 1991).

2.6.3 Selection Analytic Parameters

As highlighted above, when investigating selection schemes it is imperative to

understand the following crucial parameters (some of these parameters have their

origin from field of quantitative genetics (Thierens, 1998)) that govern the choice

of appropriate selection scheme.

i. Response to selection R(t) : This quantifies the difference in the average

fitness of population between two successive generations.

R(t) = f̄(t)− f̄(t− 1), (2.16)

where f̄(t) is the average fitness of the population at generation t.

ii. Selection Differential S(t) : This measures the difference between the average

fitness of the parent set f̄p(t) (i.e. individuals selected for reproduction) at

generation t and the average fitness of the entire population f̄(t) also at

generation t.

S(t) = f̄p(t)− f̄(t), (2.17)

where f̄(t) and f̄p(t) are the average fitness of the entire population and that

of the parent population respectively.

iii. Selection Intensity I(t) : This is a dimensionless quantity derived by tak-

ing the ratio of the selection differential S(t) with the population standard

deviation also at generation t such that:

I(t) =
S(t)

σ(t)
=
fp(t)− f(t− 1)

σ(t)
, (2.18)

where σ(t) is the population’s standard deviation at generation t.

iv. Selection Pressure Ps : Selection pressure9 is another measure that estimates

the expected number of offspring a best fit individual will have after selection.

9Selection pressure is conventionally denoted by P , but since P has already been used to
denote population in this thesis, we assign a subscript to denote selection pressure as Ps.
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Although selection intensity I(t) can be useful for such comparison purposes,

it is application is limited to generational GAs where there is a clear set of

parent population. Thus, I(t) cannot be used to analyse elitist or steady

state GAs. Selection pressure is highly related to convergence rate and can

be defined in various ways (Hancock, 1994). A straight forward definition for

Ps is in terms of the ratio of probabilities:

Ps =
P(selecting best string)

P(average string)
. (2.19)

v. Takeover time: This is a measure that estimates how long it will take the

best individual to take over the entire population. For any selection method

applied on a population of size N consisting of a single copy of the best indi-

vidual, takeover time can be determined by evaluating the expected number

of generations before getting a population vector that entirely consists of

the copies of the best individual from the initial population. The measure

furnishes some valuable insight into the complexity, growth rate and many

other characteristics of a selection method.

Since tournament size is related to selection pressure (Reeves and Rowe, 2004),

with tournament selection one could regulate the level of selection pressure, which

influences the convergence of an evolutionary process to optimal solution. Thus,

tournament selection is adopted for the EC models proposed in this thesis.

2.6.4 Variation operators: Recombination and Mutation

Following the reproduction (selection) process, the second phase of evolution

involves the variation processes. The variation processes consist of two main

operations, namely recombination (i.e. crossover) and mutation.

It is important to note that while the ultimate aim of the variation operation

is the same whether in binary or real-valued encoded space, this section mainly

introduces the concepts of crossover and mutation for binary encoded samples;

specific details for the design of crossover and mutation operators in real-valued

space will be presented later10 in Section 7.6.1 and 7.6.2.

Generally, variation operators are the main sources for introducing new indi-

viduals into a solution pool. Further, the operations in the variation phase are

10Chapter 7 addresses adaptation of variation operators in real-valued space; thus, specific
details on designing real-valued variation operators are provided there to avoid duplication.
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often completely detached from the original problem formulation (phenotype).

In other words, all the operations take place in the encoding (genotype) space.

This feature essentially made the evolutionary algorithms problem-independent

and robust in global optimization.

A. Recombination – The Crossover Operator

In its simplest form, the crossover operator generates two offspring by exchange

of genetic materials between two parent samples subject to probabilistic deci-

sions. As demonstrated earlier (Section 2.5.1), when individuals are represented

as binary strings, parent samples (e.g., Pa1 and Pa2 in (2.20)) undergo binary

crossover operation by exchanging the bits to the right of a randomly chosen locus

called crossover point to yield two new offspring (O1 and O2).

Pa1 = 101|0110, O1 = 101|1101,

Pa2 = 010|1101, O2 = 010|0110.
(2.20)

This crossover scheme (2.20) is called single point (or 1X ) crossover. It can easily

be extended to a number of variants by creating a number of random crossover

points after which the parent strings exchange their bits. Extended versions of

single point crossover are called multi-point (m-point) crossover, with m > 1.

Crossover plays two key roles in evolution. First it provides a chance for

further examination (exploitation) of the already explored hyperplane, like the

offspring O1 simply continues with the exploitation of the hyperplane 101????11.

Second, it allows exploration of new areas of the search space like the hyperplane

?1001?? in offspring O2. Hence, every evaluation of a string of length l guides the

search process by adding knowledge of 2l hyperplanes. These two complementary

roles of crossover are critical for a successful evolutionary search.

A popular alternative to m-point crossover is the so-called uniform crossover.

Uniform crossover seeks to eliminate the bias12 in m-point crossover by making

the operation completely random. The process requires representing the crossover

operator as a binary mask obtained from a typical Bernoulli distribution.

Conversely to the crossover designs above, when real-valued encoding is utilised,

11The ? fields stand for any possible allele value, e.g. 1 or 0.
12The single point crossover operator is said to suffer positional bias because it tends to favour

sub-strings of contiguous bits (Eshelman et al., 1989).
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the most commonly used crossover operators are the discrete and intermediate re-

combination operators. While the former involves direct exchange of component

between the parent samples, the latter involves linear combination (or averag-

ing) of the parent solutions to generate new ones; further details on real-valued

crossover follows in Section 8.3. Nevertheless, in line with the argument put

forward by Lin and Yang (1999) – that conventional crossover operators do not

perform well on complex optimization problems as they lack problem-specific

knowledge in their encoding – many problem dependent crossover operators have

been proposed (Jeurissen and van den Berg, 2008; Jih and Yung-Jen Hsu, 1999;

Xiao and Tan, 2008) and successfully applied on various problem domains.

In general, crossover operator is applied on a population of individuals based

on some probabilistic decisions. A survey of various theoretical analyses by Bäck

et al. (1997) has shown that crossover probabilities of PC = [0.6, 1.0] are consid-

ered optimal for most global optimization problems. Although such recommenda-

tions have proven to be quite effective on wide range of global optimization prob-

lems, several recombination operators that automatically adapt their rates (Jiang

et al., 2008a) have also been proposed, examples include a statistics-based adap-

tive non-uniform crossover (Herrera and Lozano, 2000) and punctuated crossover

(Bäck et al., 1997).

B. Mutation Operator

Besides crossover, mutation is the second variation operator that also works in

the genotype space and is capable of producing a new individual from a single

parent string. Unlike the crossover operator, mutation can effectively guide the

exploration of the search space when applied to a small population for large

number of generations. In principle, it involves a probabilistic addition (at a

mutation rate PM) of random noise to sample solutions. Operationally, mutation

involves simple bit flip operations for binary encoded strings or a random addition

of Gaussian noise to a real-valued encoded sample. Detail treatment of real-valued

mutation implementations follows in Section 8.2.

A number of empirical experimentations (Grefenstette, 1986) have shown that

a mutation probability within the range of PM = [0.01, 0.05] is sufficient for

wide range of global optimization problems. The so-called universal/standard

setting (De Jong, 1975) which recommends a PM = 1/l has also received some

wide acceptance (Bäck et al., 1997) in the genetic algorithms community. These
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settings are not without some issues though. Investigations by Salomon (1996)

show that small mutation rates are mostly suitable for problems of unimodal or

pseudo-unimodal13 type, but multimodal problems require larger mutation rates.

Also, Bäck (1993) criticised the universal rate as being too independent and

unaware of the actual problem’s fitness landscape. Of course, the above concerns

are direct calls for some form of adaptation, an issue this thesis examined at

length in Chapter 7.

Summing up, the crossover and mutation operators remain crucial sources of

variation in EC. If appropriately utilised, they can aid exploration and reachability

of search spaces in both simple problems and those having rough and complicated

landscapes, in so doing the variation operators improve the average fitness of

a search pool over generations. As emphasised by Bassett et al. (2004), it is

not the average individuals that drive the evolution forward but the exceptional

individuals occasionally created by crossover or mutation.

2.6.5 Replacement Strategies and Elitism

The field of evolutionary computation as stated in the introduction to this chap-

ter has three major sub-fields. These include genetic algorithms, evolutionary

strategies and evolutionary programming. The standard replacement strategy

in genetic algorithms recommended by Holland (1975) was the generational re-

placement scheme. This scheme mimics the natural evolution in such a way that

subsequent to a reproduction phase, the new samples (offspring population) com-

pletely replace the parent population. This strategy is called (λ, µ) replacement

scheme in the ES and EP communities; in addition to (λ, µ), the (λ+µ) strategy

selects the best samples from a combine set of parent and offspring populations

such that the original population size (N) is maintained. Nevertheless, there

seems to be no demarcation in the way the replacement schemes are used across

the different EC communities at the moment.

Although the generational replacement method is closer to the notion of natu-

ral evolution, it risks losing the best solution across generations due to occasional

disruptions in the samples caused by crossover and mutation. This issue negates

the actual optimization purpose where the ultimate goal is to seek and preserve

13Pseudo-unimodal problems are multimodal problems having a global convex topology, ex-
ample is the well known Griewank benchmark function (Whitley et al., 1996).
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the best solution found so far14. Realisation of the risk of premature lost of

high quality solutions has led to the proposals of elitism (De Jong, 1975) and its

variants (Greenhalgh and Marshall, 2000; Reeves and Rowe, 2004).

Elitism is a replacement strategy originally proposed by De Jong (1975) after

the critical analysis of the behavioural trend in simulated evolution based on

several empirical experiments. The concept aimed at preserving the candidate

solution having the best fitness value (f ∗) as population evolve over successive

generations. Suppose that a previously seen population is P (t − 1), then the

sample(s) in the set

{x(t− 1) ∈ P (t− 1) | f(x(t− 1)) = f ∗(t− 1)} (2.21)

are called the elites. The elites are directly copied to the current population P (t)

unless the current population contains similar or fitter samples in its set, i.e.,

∃ {x(t) ∈ P (t) | f(x(t)) ≥ f ∗(t− 1)} . (2.22)

Other variants of the elitist strategy quickly surface. A generalised categori-

sation of replacement schemes by Bäck et al. (1997) is:

i. Generational: Also called non-elitist simple GA (sGA) and corresponds to

the ES’s (λ, µ) strategy.

ii. Elitist: This follows the standard elitism and mildly corresponds to the ES’s

(λ+ µ) strategy.

iii. Overlapping: This generalises other variants of the elitist strategy and can

simply be represented as (λ, ko, µ) strategy where ko is an ageing parameter

1 ≤ ko ≤ ∞ signifying an individual’s life span, which is the maximum

number of generation an individual (or sample solution) can survive.

The following section presents an approach that introduces adaptation into

the concept of elitism. This proposal allows an EA to adapt the proportion of

sample solutions to be used as elites during the evolution.

14The challenges associated with the choice of replacement strategy are also in line with the
ongoing debate on how biologically plausible should simulated evolution be (Section 2.2).
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2.6.6 Adapting Elitism in EAs

As is reported in the following, the EC literature has seen several investigations

which, empirically and theoretically, report on the effects of elitism on various

types of EAs. Although many implementations of elitism still involve inheriting

a single best solution from the previous generation as originally suggested by

De Jong (1975), there have been several proposals which suggest utilising an elite

pool of any size (Chambers, 1995; Reeves and Rowe, 2004). The proportion of

the elite pool relative to the main population size is often called a generation gap

in the ES terminology and steady-state EAs, or an elite fraction in GP.

As reported by Poli et al. (2008), the EC literature has witnessed several

implementations of elitism which use a range of generation gaps (elite-fractions)

from 0% up to 20% of the total population size. In an extensive study on the

effect of elitism on GP, Poli et al. (2008) examine the effect of varying the elite-

fractions (from 0 to 50% of total pool size) on the success rate and mean best

fitness in the search pool. On a variety of test problem categories, the results

in Poli et al. (2008) show that utilising some percentage of elite-fraction (such

as 1 to 5%) generally improves performance in GP. They also concluded that,

while elitism avoids the risk of premature lost of best solution due to stochastic

sampling error (especially with small-sized pools), it also increases success rates

when large population sizes are utilised.

On multi-objective EAs, Aguirre and Tanaka (2005) studied the effect of elitist

selection by comparing the original NSGA-II (λ + µ) against its (λ, µ) version.

They observe that lack of elitism in NSGA-II (λ + µ) seems to severely affect

its overall performance as compared to the elitist (λ, µ) version. However, their

results also indicate that excessive elitism can affect the efficacy of the search

process. In particular, Aguirre and Tanaka (2005) noted that the presence of

elitism tends to increase selection pressure making elitist algorithms more prone

to the effects of genetic drift – a phenomenon that is known to affect negatively

the performance of EAs.

Similarly, an empirical study by Laumanns et al. (2001) examines the impact

of elitism relative to mutation rate. As a key finding, Laumanns et al. (2001)

reported that best overall performance can be reached with strong elitism in

combination with high mutation rates. They suggested that the high mutation

rate is essential to overcome the risk of diversity collapse following the increase

in selection pressure due to elitism. Another related study which examines the
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effect of elitism on a GA can be found in Ishibuchi et al. (2008).

Importantly, there are already some proposals that suggest dynamically ad-

justing the size of the elite pool as the evolution progresses. Lee and Moon (2009)

proposed a method that quantifies the fitness change in a non-stationary land-

scape and adapts the size of the elite population accordingly. Lee and Moon

(2009) reported performance improvement, on the onemax problem, over the

well-known random immigrants method. Similarly, Leung and Liang (2003) in-

troduced a distance threshold parameter which is used to control the size of the

elite by adjusting the population size according to the number of multiple optima

in a problem. In comparison to other EAs, they found that the GA with adaptive

elitism was effective in finding multiple optima in a multimodal landscape.

Based on the insights derived from the preceding investigations on the im-

pacts of elitism on EAs it has become clear that, on one hand, retaining only

a single elite individual (standard elitism) may limit the influence of elitism on

the population’s fitness growth, i.e. a scalability problem. On the other hand

increasing the size of the elite population could lead to rapid loss of diversity

in the evolutionary pool. This is due to the domination of the new samples by

the elites. Nevertheless, from the above reviews, performance improvement have

been reported when the size of the elite samples is dynamically adjusted during

the evolution – which is the root of the notion of adapting elitism in EAs.

As the benefits of adaptive elitism have been already demonstrated, this the-

sis utilises a variant of this strategy. In order to keep this chapter’s theme as

introductory as possible, this section only introduces the adaptive elitist model

as it underpins the replacement scheme used in all the EC models proposed later

in this thesis. Unless otherwise stated, all future references to standard EC model

in this thesis refer to the EA in Algorithm 2.2.

As is described in the following, the adaptive elitism is principally an overlap-

ping replacement method that dynamically adjusts the size of its generation gap

parameter (ω) across generations. Assuming a maximisation problem, at every

tth generation, the elite pool PElite consists of a set of sample solutions having

fitness values equal or approaching that of the best solution point x∗(t), i.e.:

PElite = {x(t) ∈ P (t) | f(x(t))→ f(x∗(t))} . (2.23)

During the initialisation stages of the evolution, see Algorithm 2.2 (line 3),

the size of the elite pool is |PElite| = NElite which is set to (ω%) of the total
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Algorithm 2.2 Standard EA with Adaptive Elitism Replacement Strategy

1: t← 0
2: N ← |P (t)|
3: NElite ← ceil(ω% of N) // note that NElite, ω ∈ Z+ and ω is user defined
4: initialise P (t)
5: fP (t)← evaluate and rank P (t)
6: f̄p(t)← average of fP (t)
7: V arfP (t)← variance of fP (t)
8: while not termination do
9: Q(t)← evolve P (t)

10: fQ(t)← evaluate and rank Q(t)
11: f̄Q(t)← average of fQ(t)
12: V arfQ(t)← variance of fQ(t)
13: if f̄Q(t) > f̄P (t) and V arfQ(t) > V arfP (t) then
14: ω ← 1

2ω // shrink the generation gap
15: NElite ← ceil(ω% of N) // evaluate the new size of elite pool
16: end if
17: PElite(t)← Top NElite of P (t)
18: P (t+ 1)← Q(t) ∪ PElite(t)
19: t← t+ 1
20: end while

population size N ; the number of elites (NElite) remains fixed if:

i. the new pool’s average fitness has not improved, i.e., f̄(t) ≤ f̄(t− 1), and;

ii. the fitness variance in the new pool has not fallen, i.e., V arf(t) ≥ V arf(t−1).

However, NElite gets continuously halved at the end of every generation if the

above two conditions are not satisfied, i.e., when there is a growth in the pop-

ulation’s average fitness and/or the fitness variance in the pool shrinks (lines

13-16).

After the initialisation stages (lines 1-4), the initial population is evaluated

and ranked based on the fitness of the candidate solutions (line 5). Lines (6-7)

compute and store the average fitness and fitness variance of the current pop-

ulation. Thereafter, the evolution process (line 9) which includes the selection,

crossover and mutation continues iteratively until some termination condition is

satisfied (lines 8-20). Notice that the elite population (PElite) constitutes the top

best (NElite) individuals in the parent pool (line 17).

Note that the choice of generation gap of (ω = 5%) was empirical. Also, since

a strict binary tournament selection is adopted, the successive halving of ω (line

14) never stops the best individual from surviving across generations.
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2.7 Summary

This chapter has overviewed the rationale behind the increasing acceptance of

stochastic optimization approaches over their traditional (numerical) counter-

parts when solving global optimization problems. Key initialisation aspects such

as data structure encoding, creation and sizing of the initial population are high-

lighted. Major parameterisation issues and evolutionary building blocks such as

the choice of selection scheme, the variation operators: crossover and mutation

and their probabilities, and replacement strategies are examined. Finally, the

chapter reviewed the elitists replacement scheme and presented its variant which

adapts the size of the elites based on the fitness variance in the search pool. Note

that although the adaptive elitism presented herein utilises new heuristics to ad-

just the size of the elite samples, its overall significance as to the theme of this

thesis is secondary.

The many insights derived from the investigations in this chapter are vital

and pave the way for deeper investigations into the core aspects of evolutionary

optimization (Chapter 4 and 5). Furthermore, the insights will eventually aid the

design and development of effective hybrid EAs in Part II of this thesis. The next

chapter focuses on the deterministic optimization methodologies with emphasis

on gradient-based algorithms for local optimization.



Chapter 3

Deterministic Optimization

Methods

The preceding chapter focused mainly on the background aspect of evolutionary

computation methods. Such algorithms are approximate global search heuristics

where success relies upon some stochastic heuristics. As a result they lack rigor-

ous theoretical convergence guarantees. While the key objective of this study is to

propose an effective approach for solving global optimization problems, global op-

timization in itself is studied across several different communities. Therefore, the

hybrid model proposed in Part II of this thesis combines algorithms with features

from evolutionary computation (EC) which are stochastic heuristic approaches,

and mathematical programming (MP) techniques which are deterministic nu-

merical methods. Whilst the EC and MP communities share the same objective,

making the fastest possible progress towards the best possible solution, the MP

approaches are often characterised with more theoretically rigorous properties.

Notably, the field of numerical global optimization predates that of evolutionary

computation, which essentially surfaces after around the 1950s to 1970s.

There are two main methods to numerical global optimization: (i) the dis-

cretisation approaches, and (ii) convex relaxation (also called convex underes-

timation) approaches. On one hand, for any given nonlinear problem (NLP)

that is at least twice differentiable convex relaxation approaches relax the NLP

by adding a suitable quadratic term. The idea is to enforce convexity over the

entire search space of interest (Chachuat and Latifi, 2003). In principle, such

approaches require that the Hessians for the combined quadratic terms and the

original NLP are at least positive semi-definite. There are various methods for

69
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ensuring convexity in such relaxed problems. One commonly used technique is

the αBB relaxation (Androulakis et al., 1995) in which the nonconvexity of the

original NLP is overcome by appropriately setting the weighting parameters (α)

of the added quadratic terms. The discretisation methods, on the other hand,

typically involve several concepts such as the branch-and-bound, interval, and

cutting-plane methodologies.

Since the focus of the overviews in this chapter is on the deterministic nu-

merical algorithms for local optimization, a deep overview on numerical global

optimization methods is beyond the scope of this thesis. For extensive surveys

of such methods the reader is referred to Floudas and Pardalos (2003); Floudas

and Gounaris (2009); Papamichail and Adjiman (2002); Pintér (1995).

Firstly, this chapter overviews in a broad scope the deterministic numerical

algorithms for local optimization (Section 3.1). It then introduces the line search

based gradient methods in Section 3.2 and reviews their methods of evaluat-

ing search directions and step sizes, and convergence rates in Sections 3.3 and

3.4 respectively. Section 3.5 presents the Newton based sequential quadratic pro-

gramming (SQP) algorithm which utilises interior point method (IPM) to solve its

quadratic programming subproblems (Section 3.6). Finally, Section 3.7 presents

an improved automatic differentiation technique that facilitates evaluation of ac-

curate derivatives for the SQP algorithm.

3.1 Local Optimization – Background

Local optimization is concerned with searching for a solution that is optimal

(either maximal or minimal) within a neighbouring set of solutions. A local

search algorithm starts from an initial solution point and then iteratively moves

to a neighbour solution. The neighbourhood relation is defined based on the

search space; since every candidate solution has more than one neighbour, the

choice of which one to move to is taken using only information about the solutions

in the neighbourhood of the current one, hence the name local search or local

optimization. The choice of the neighbour solution is essentially based on some

maximisation or minimisation criterion. Thus, when no improving configurations

are present in the neighbourhood, the search process is considered to be stuck at

a locally optimal point called the local optimum solution.

There are at least two key categories of local optimization approaches, these
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include: i) the classical mathematical programming (MP) based numerical meth-

ods; and ii) the many heuristic based deterministic approaches. Examples of the

heuristic based deterministic methods include interval search, branch and bound,

cutting plane methods etc. But as highlighted above, the focus in this thesis is

on the gradient based mathematical programming methods which although have

their own issues1 possess sound theoretical convergence characteristics.

Since this study is limited to continuous optimization problems (see Section

1.4), the objective function to be optimized f : Rn → R is defined in terms of a

vector of the design variables x of length n that is in the set of real numbers R.

Suppose that a general expression for an n-dimensional continuous optimization

problem is:

Maximise: f(x) : x ∈ Rn; n ≥ 1; (3.1)

then, gradient based optimization algorithms sequentially generate, at every iter-

ation t, a vector of new solution points xt. Eventually, xt is expected to terminate

at x∗ (i.e the optimal solution) when either no more progress can be made or when

the optimal solution has been attained with sufficient accuracy. Beginning with

an arbitrarily chosen initial solution point x0, the iterative progression from any

point xt to xt+1 depends on: (i) the nature of the gradient of the objective func-

tion f at the current solution point xt; and (ii) some additional information about

the previously visited solutions xt−1, xt−2, . . . , x0.

Typically, every new solution point xt+1 is expected to yield a better function

value than its predecessor xt. In fact, a critical distinction between the two classes

of local optimization methods is on the nature of their successive iterations. A

class of algorithms that insists on improvement in the function value at every

iteration enforces f(xt) > f(xt−1), and constitutes the so-called greedy algorithms

(Bhatti, 2000). The Newton and quasi-Newton algorithms are part of this class.

The other class that do not insist on improving the value of the objective function

at the end of every iteration usually enforces f(xt) > f(xt−j), where j > 1 is the

maximum acceptable iterations without improving the objective function value.

This is the class of non-monotone algorithms which are non-greedy in nature.

Another major categorisation of the gradient based algorithms is based on

their approach for advancing from one iteration point xt to the next xt+1. The

1Gradient based methods require direct/indirect evaluation of derivatives and, like with any
local search methods, the final solution is strongly dependent on the chosen starting solution.
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approach for taking a step is always either a line search or a trust region based.

The general expression for deriving the next iteration point xt+1 is dependent on

two key parameters; the evaluated search direction dt ∈ Rn and an estimated

value for the step length parameter αt : {αt ∈ R | 0 < αt ≤ 1} along the obtained

direction such that:

xt+1 = xt + αtdt. (3.2)

At every iteration, line search based algorithms first evaluate a search direction

dt. Then, by estimating a suitable value for the step length parameter αt, they

decide on how long to search along that direction, i.e. the step size. On the

contrary, trust region based algorithms start by defining a region around the cur-

rent solution point xt. Within the defined neighbourhood, trust region methods

assume that a model derived from a second order Taylor approximation of the ob-

jective function (see equation (3.4)) provides a good approximation of the actual

objective function. Based on the size of the defined trust region, these algorithms

then choose the search direction and the step size simultaneously.

It is important to note that for the line search based methods, if at any

iteration the evaluated step length parameter αt does not lead to improvement

in the value of the objective function, the line search simply tries to re-evaluate a

feasible one. However, in the case of the trust region methodology both the search

direction and the step length must be discarded and the size of the trust region

must be contracted and the procedure repeated. This among other reasons made

the line search based optimization algorithms computationally cheaper than their

trust region counterparts. Nevertheless, for starting points that are at significant

distance from the local optimum the trust region methods can be more reliable

(Nocedal and Wright, 2006). The sequential quadratic programming (SQP) local

search algorithm, introduced in Section 3.5, is in the category of line search

methods. Therefore, the next few sections focus on the line search based local

optimization techniques.

3.2 Line Search based methods

As highlighted earlier, the iterative progression for all line search based meth-

ods relied on the computed search direction dt and the evaluated step length αt.

However, line search methods principally differ in the mode of computing their
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search directions. Suppose that f : Rn → R is a smooth continuously differen-

tiable function. Let d ∈ Rn be a vector of search direction in the neighbourhood

of iteration point x. Then, for x∗ to be a local optimum of the function f the

necessary and sufficient conditions for optimality requires: ∇f(x∗) to be zero,

and ∇2f(x∗) ∈ Rn×n to be a symmetric positive definite matrix. The Taylor

expansion of f yields:

f(x+ d) = f(x) +∇f(x)Td+
1

2
dT∇2f(x)Td+ · · · . (3.3)

Gradient based methods assume that the objective function f is differentiable

and that it is approximately quadratic (i.e. convex) in the vicinity of the station-

ary point x. Therefore, the second-order Taylor approximation of (3.3) is:

f(x+ d) ≈ f(x) +∇f(x)Td. (3.4)

Setting the gradient of the approximation in (3.4) to zero at stationary point,

and solving for the search direction d yields:

d = − ∇f(x)

∇2f(x)T
= − [H(xk)]

−1∇f(x), (3.5)

where H(x) = ∇2f(x) is the Hessian of the function f and d is the search direction

which is required to be a direction of descent/ascent.

3.3 Search Directions and Step Sizes in gradient-

based algorithms

Any step of the gradient based algorithms involves evaluation of the search direc-

tion dt and the step length parameter αt such that the next iteration is defined as

in equation (3.2) above. The following examines the distinctions in evaluations of

the search directions and step sizes for various types of gradient based algorithms.

3.3.1 Evaluating Search Directions

To sustain progress during the optimization process, gradient based algorithms

generally utilise a search direction dt which at any given iteration t is required to
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be a direction of descent/ascent. This allows the directional derivative,

dTt ∇f(x) < 0, (3.6)

to improve the value of the objective function f along the chosen direction. From

(3.5), a general form for the search directions dt is:

dt = −B−1
t ∇f(x), (3.7)

where Bt ∈ Rn×n is a symmetric non-singular matrix. The most commonly used

types of search directions for local optimization algorithms are as follows:

i. Steepest Descent/Ascent Direction: The search direction defined as

dt = −∇f(x) is called the steepest descent/ascent direction. For all the pos-

sible directions via which the search could move from point xt to xt+1, this is

the direction along which f improves most rapidly. Therefore, steepest ascent

algorithms are line search methods that move along the steepest direction at

every iteration. Notice that in this case the Hessian matrix in equation (3.7)

is set to an identity matrix (i.e., Bt = In). Thus, the primary advantage of

these algorithms is that they require only the computation of the gradient of

the objective function; hence, they have low computational cost per iteration.

ii. Newton Direction: Another important search direction is the Newton di-

rection. Derived from the second-order Taylor expansion of f (see equation

(3.4)), the value of Bt = ∇2f(x) in equation (3.7) is the true Hessian of the

objective function. The Newton direction is a reliable direction of ascent

when the Hessian ∇2f(x) is sufficiently smooth so that the quadratic ap-

proximation of the objective function in (3.4) is sufficiently accurate. Thus,

Newton methods are the algorithms that use Newton directions at every iter-

ation with the condition that the Hessian ∇2f(x) is symmetric and positive

definite2. These methods typically have fastest convergence rate compared

to all other line search based local optimization techniques. Moreover, when

the current solution point, xt, is within the neighbourhood of the optimum

solution quite a few iterations are required to converge to the solution point

2A positive definite matrix must have a positive determinant, i.e., it is always non-singular.
Thus, a real and symmetric matrix is positive definite if all its eigenvalues are positive. It
is positive semidefinite, negative semidefinite or negative definite if all of its eigenvalues are
non-negative, non-positive or negative respectively.
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with high accuracy.

The main drawback of Newton methods is the cost of Hessian ∇2f(x) eval-

uation; the true Hessian is a matrix of second derivatives and its evaluation

can be quite cumbersome, error prone and expensive especially for higher

dimensional problems. Furthermore, whenever Bt = ∇2f(x) is not positive

definite, the Newton direction may not be defined since the inverse of Bt may

be ill-conditioned and consequently yields a search direction dt that violates

the descent/ascent property in (3.6).

iii. Quasi-Newton Direction: To circumvent some of the complexities asso-

ciated with direct computation of Newton directions, line search approaches

that use quasi-Newton directions are a commonplace. In such methods, in-

stead of evaluating the exact value of Bt (3.7), it is only set to an approxi-

mation of the true Hessian ∇2f(xt) matrix. The initial approximation of the

Hessian (Bt) is usually an identity matrix I, which is then updated iteratively

to take into account the additional information derived from subsequent it-

erations. The Hessian update methods mainly rely on the fact that delta

changes in the gradient of f from one iteration point to another provide vital

information about the nature of its second derivative along the search direc-

tion. The algorithms that rely on this principle of Hessian update are called

quasi-Newton algorithms and can achieve high rate of convergence (superlin-

ear) without the expensive explicit evaluation of the Hessian matrix.

However, the drawback of quasi-Newton methods is that their rate of con-

vergence is slower than that of Newton methods as they require running

through several iterations. Also, after certain number of steps, the Hessian

approximation often yields an ill-conditioned matrix that may cause the en-

tire search process to diverge. This is usually tackled by resetting the Hessian

update (Bt) to its initial value (Bt = I), but doing this significantly retards

optimization progress. For the majority of the popular Hessian update tech-

niques such as BFGS, DFP and SR1 (Bhatti, 2000; Powell, 1986), the initial

approximation of Bt is an identity matrix I. Thus, the search direction is

always downgraded to a steepest ascent one after every reset of the Hessian.

iv. Conjugate Gradient Direction: This category of search directions are

typically more effective than steepest ascent directions and are fairly compu-

tationally equivalent (Sherali and Ulular, 1990). The methods that use this
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search direction are called conjugate gradient methods. Note that while the

conjugate gradient methods utilise steepest direction in their first iteration,

they use conjugate directions instead of the local gradient for subsequent

iterations. Also, unlike in the Newton and quasi-Newton directions, conju-

gate direction requires no computations or storage of large Hessian matrices.

Nevertheless, these methods are only first order and therefore do not achieve

fast convergence rate as Newton and quasi-Newton methods. As argued by

Powell (1977, 1984), conjugate gradient methods may fail to converge on

non-convex problems and therefore need restart.

3.3.2 Evaluating Step Sizes

The step sizes taken at every stage of an optimization process are estimated via a

step length parameter α ∈ R | (0 < α ≤ 1). α is a positive scalar that is expected

to substantially improve the function value. It is normally the optimizer of the

merit function3 defined as:

ϕ(α) = f(xt + αtdt) : α > 0. (3.8)

Thus, the step size α is

α := arg max
α

f(xt + αtdt). (3.9)

Generally, the ideal value for the step length parameter is the global opti-

mizer of the merit function (3.8) itself. Determination of this requires several

evaluations of the objective function f and its gradient ∇f . Therefore, since the

evaluation of a local optimizer to the merit function (3.8) is in itself expensive, a

trade-off is necessary. Thus, at every iteration t, inexact line search algorithms are

used to try out a sequence of candidate values for αt. Based on some pre-defined

termination conditions, a suitable value for αt is accepted. A simple condition

that ensures αt provides a meaningful improvement in f entails:

f(xt + αtdt) > f(xt). (3.10)

3Originally used in regression, a merit function is a function that measures the agreement
between data and the fitting model for a particular choice of the parameters (Weisstein, 2011).
Parameters are adjusted based on the value of the merit function until a smallest value is
obtained, the resulting parameters are known as the best-fit parameters.
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Note that the step length α needs not to lie near the optimum of the merit function

ϕ(α) for it to effectively yield a sufficient increase in the objective function.

Several inexact line search algorithms for estimating a suitable value for the

step length parameter exist. The methods are usually named after the termi-

nation condition used. Thus, they include the method based on Armijo’s rule,

Goldstein condition and the popular Wolf conditions (Bhatti, 2000). All these

algorithms typically possess two key stages. The first stage is a backtracking

procedure that finds an interval containing the desirable step lengths, while the

second is an interpolation phase where a good value for α is computed within the

obtained interval.

A commonly used termination criterion utilises the two Wolf conditions. Based

upon this, it has been proven (Al-baali, 1985) that to every smooth continuous

function there exist a value for the step length parameter that satisfies the fol-

lowing two Wolf conditions.

First: The step length α must provide sufficient increase in f such that:

f(xt + αtdt) ≥ f(xt) + c1αt∇fTt dt, (3.11)

where c1 ∈ [0, 1] is a positive constant which is small in practice, typically

c1 = 10−4. Thus, the improvement in f should be proportional to both the

value of αt and the directional derivative ∇fTt dt.

Second: This is called the curvature condition, it ensures that the derivative

of the merit function ϕ(αt) (3.8) is greater than a constant c2 times the

derivative of ϕ(0), i.e.:

ϕ′(αt) ≥ c2ϕ
′(0), (3.12)

such that the new directional derivative satisfies:

∇f(xt + αtdt)
Tdt ≥ c2∇fTt dt, (3.13)

where c2 ∈ [c1, 1], its typical value for Newton and quasi-Newton methods

is 0.9 and 0.1 for nonlinear conjugate gradient methods. For more details

on these and other techniques for evaluating the step length parameter, see

Al-baali (1985); Bashir and Ximing (2011); Betts (2001); Fletcher (1987);

Hertog (1994).
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3.4 Convergence Analysis in gradient-based

algorithms

Convergence assessment is critical to evaluating the performance of any opti-

mization algorithm. This section elaborates the rate of convergence and local

convergence of gradient based algorithms. It compares the gradient based algo-

rithms on the basis of their convergence characteristics.

While a number of measures exist for evaluating the rate of convergence of

gradient based algorithms, a commonly used one is the Q-convergence (Q stands

for quotient) measure which is defined in terms of the quotient of successive errors.

Suppose that a sequence of solution points {xt} : x ∈ R iteratively converges to

an optimum x∗, then, the rate of convergence of gradient based algorithms is

classified as follows.

Q-linear: The convergence is Q-linear if there exist a constant r ∈ [0, 1] such

that:
||xt+1 − x∗||
||xt − x∗||

≤ r; ∀ t sufficiently large. (3.14)

Q-superlinear: An algorithm is said to converge Q-superlinearly if as iterations

t tend to infinity, the error between two successive iteration points decays.

lim
t→∞

||xt+1 − x∗||
||xt − x∗||

→ 0. (3.15)

Q-quadratic: These are algorithms which for any scalar M ∈ R : M > 0, their

rate of convergence satisfies:

||xt+1 − x∗||
||xt − x∗||2

≤M ; ∀ t sufficiently large. (3.16)

Notice that higher order rate of convergence are also possible and the trend

is such that a Q-quadratic algorithm will always converge faster than a Q-

superlinear or Q-linear algorithm. While all Newton algorithms converge Q-

quadratically, quasi-Newton methods converge Q-superlinearly and at the other

extreme, all steepest ascent algorithms have Q-linear rate of convergence.

Conversely, the local convergence of gradient based algorithms requires not

only a suitable estimate of the step length parameter, but also a carefully chosen
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Table 3.1: Comparison of the three major gradient based algorithms: The nature
of their search directions, step length parameter and rate of convergence.

Algorithms Search
direction

Hessian
requirement

Step length
parameter

Degree of
computation

Rate of
convergence

Steepest
Descent

-B−1
k ∇f(xk)

Not needed:
Bk = I

0 < α < 1 1st Order Q-linear

Conjugate
Gradient

Not needed:
Bk = I

0 < α < 1 1st Order
Q-linear, gen-
erally faster

Quasi- Approximation:
0 < α < 1 2nd Order Q-superlinear

Newton Bk ≈ ∇2f(xk)

Newton
method

Exact Hessian:
Bk = ∇2f(xk)

0 < α ≤ 1 2nd Order Q-quadratic

search direction. In order to have good convergence characteristics, the evaluated

search direction must not be orthogonal to the gradient ∇f , i.e. at least steepest

ascent steps must be taken regularly.

One undesirable behaviour associated with the general gradient based meth-

ods is that while the steepest ascent algorithms have good local convergence,

their rate of convergence is slowest (only Q-linear). Also, while the Newton al-

gorithms converge most rapidly (i.e., Q-quadratically), their local convergence is

not guaranteed when the initial search point is not in the vicinity of the optimum

solution. This is because when the search point is far away from the optimum

Newton methods tend to yield search directions that are nearly orthogonal to

the gradient of the objective function ∇f ; thus, cannot lead to any improvement

in f . Therefore, whenever the starting point is not guaranteed to be near the

optimum, a trade-off is necessary to ensure local convergence and high rate of

convergence of gradient based algorithms.

Table 3.1 summarises the key features for the above major categories of gradi-

ent based algorithms. It can be deduced, from the comparison in Table 3.1, that

the Newton based method is suitable for the hybrid optimization model proposed

in Part II of this thesis (Chapter 6). This is because the initial starting point fed

to this local algorithm is almost always in the vicinity of (sub-)optimal solution

point. This is true given that the starting point is obtained from a sufficiently

converged global optimization (EC) algorithm. Consequently, local convergence
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of the Newton based method is assured. The next section presents the Newton-

based sequential quadratic programming local search method.

3.5 The Sequential Quadratic Programming

Algorithm

The sequential quadratic programming (SQP) algorithm is a Newton based opti-

mization method that can be implemented either in the line search or trust region

framework. SQP is useful in deriving locally optimal solutions for constrained

nonlinear problems (NLP). A feature that is common to all SQP formulations is

that the algorithms are divided into an outer linearisation and an inner optimiza-

tion loop. The linearisation loop approximates the nonlinear objective function

f(x) in the original optimization problem (see equation (3.1)) with a quadratic

model; and the nonlinear constraints (if any) with their approximate linear ex-

pressions at the current solution point xt. The result of this linearisation allows

representation of the original nonlinear problem (3.1) as a sequence of quadratic

programming (QP) subproblems as in equation (3.17). The QP subproblems are

then optimized using any QP solver.

max
x∈Rn

f(x)Tx+
1

2
xTHx : H ∈ Rn×n. (3.17)

The framework of SQP is based on Newton methods which solve nonlinear

problems via a sequence of Newton steps, hence the name sequential quadratic

programming. For extensive treatment on SQP algorithm see Fletcher (1987);

Nocedal and Wright (2006).

The standard SQP design uses the active set strategy (Gill and Robinson,

2011) which is based on the null-space and range-space methods to solve its QP

subproblems. In contrast, the method adopted here is based on the earlier work

in Bashir and Ximing (2011); Ximing et al. (2008) where an interior point method

(see Section 3.6) is deployed to optimize the QP subproblems.
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3.6 Interior Point Method for solving Quadratic

Problems

Interior point methods (IPMs) have their origin from linear programming (LP).

From the late 80s IPMs become important tools in mathematical programming,

operations research and in many other areas of science. The main idea behind

IPM algorithms is to approach the optimal solution of an LP problem through

the interior of the feasible region. This is the opposite of the strategy employed

by the well known simplex algorithm (Dantzig, 1963, 1961) which moves along

the boundary of the feasible region. A lot of research has been reported on IPM

algorithm and its variants, many of which are surveyed and referenced by Mizuno

et al. (1995) and Wright (1997). Interior point methods have been successfully

applied on general convex problems, including quadratic programming problems

(Hertog, 1994; Hoppe et al., 2002; Nesterov and Nemirovskii, 1994).

Unlike the standard SQP wherein derivatives approximations are utilised, the

true performance benefits for the IPMs are best seen when accurate second deriva-

tives are provided. To curb the cost of derivative evaluation (see Section 3.7

for Automatic Differentiation methods), most IPMs exploit solvers designed for

modern computer architectures. They are shown to efficiently solve a sequence

of systems with fixed structure like the QP problem (3.17) (Gill and Robinson,

2011, 2012).

In this work, an IPM algorithm is employed to optimize the QP subproblems

obtained by linearisation of the original nonlinear problem by the main SQP

algorithm. Thus, an IPM algorithm will form the inner (optimization) loop of

the proposed SQP model.

Suppose that a general quadratic programming problem is defined as:

max
x

q(x) = cTx+
1

2
xTQx; x ∈ Rn, c ∈ Rn, Q ∈ Rn×n, (3.18)

then, the function q(x) (3.18) is convex if at least the matrix of quadratic terms

Q is symmetric positive semidefinite.

If the function to be optimized is subject to some constraints g, say

gi(x) ≥ 0 : x ∈ Rn, i = 1, 2, . . . ,m, ∇g 6= 0, (3.19)

then, IPMs use the method of Lagrange multipliers to redefine the optimization
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problem into a composite function L called Lagrange function (named after its

inventor Joseph Louis Lagrange (Arfken and Weber, 2005)). The Lagrange func-

tion combines the objective function (3.18) and all the constraints (3.19) such

that:

L(x, λ) = cTx+
1

2
xTQx+

m∑
i=1

λTgi(x), (3.20)

where λ ≥ 0 is a vector of Lagrange multipliers.

At every iteration of the SQP algorithm, the matrix of the quadratic terms,

Q, is derived from the Hessian of the original nonlinear problem. Q is then used

to construct the QP subproblem (3.18) to be solved in the inner loop of the SQP

algorithm. The maximum of (3.20) is then obtained by taking its gradient with

respect to all its variables (i.e., ∇x,λL(x, λ)). This is done without explicitly

inverting g, which is the reason why the method of Lagrange multipliers can be

quite handy (Arfken and Weber, 2005). Hence, maximising the Lagrange function

yields the maximum of the originally constrained NLP.

A point of particular interest here is that the design of the standard SQP

algorithm mainly relies on Hessian approximations; a Hessian matrix is initially

approximated by an identity matrix I and then updated iteratively via the update

formula proposed by Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Betts, 2001;

Nocedal and Wright, 2006; Powell, 1986). Conversely, the proposal in this work

is to develop a new automatic differentiation package, which utilises a vectori-

sation approach to algorithmically evaluate “exact” values for the gradients and

Hessians of any differentiable function at any given solution point xt. The cost

of evaluating the derivatives is more or less equivalent to that of evaluating the

function values. In this way the computational burden of evaluating derivatives

via the conventional symbolic or finite difference methods is alleviated. The avail-

ability of accurate Hessians is beneficial to the IPM QP solver; it also benefits

the proposed SQP algorithm (Algorithm 3.1) in the following ways:

i. The exact Hessians upgrade the convergence characteristics of the standard

SQP algorithm from that of a quasi-Newton algorithm – that takes steepest

ascent steps – to that of a Newton algorithm taking full4 Newton steps at

4Full step will mean having the value of the step length parameter α = 1. Quasi-Newton
methods barely accept α = 1 and even when they did, they still run at a superlinear rate
(Powell, 1986).
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Algorithm 3.1 The SQP local optimization algorithm

1: begin
2: t← 0;
3: xt ← x0; // x0 is the starting point returned by the EC algorithm
4: dt ← d0; // Initial search direction d0 is a vector of all ones
5: while ∇f(xt) > Tol1 and ||dt|| > Tol2 and t < MaxIter do
6: linearise (3.1) into a QP subproblem (3.18)
7: H(xt)← ∇2f(xt) // computed via Automatic Differentiation (§3.7)
8: evaluate dt by minimising QP subproblem (3.18)
9: if setting α = 1 satisfies Wolf conditions (3.11) and (3.12) then

10: set αt ← 1
11: else
12: compute αt from (3.9) that satisfies (3.11) and (3.12)
13: end if
14: xt+1 ← xt + αtdt;
15: t← t+ 1;
16: end while
17: end

every iteration. Hence, the convergence rate is enhanced from superlinear to

quadratic.

ii. Also, the frequent reset of the search direction due to ill-conditioned approx-

imate Hessians could be avoided or at least minimised5. This means that

both local convergence and quadratic rate of convergence are assured. As a

result, the proposed method would converge to the optimum in remarkably

few steps.

The framework for the proposed SQP local optimization algorithm is depicted

in Algorithm 3.1. Besides the initialisation of the SQP parameters (lines 2-4), the

while loop (line 5) contains both the linearisation (line 6) and the optimization

(line 8) steps and, exits only if one of the three stopping conditions is satisfied. In

the termination conditions (line 5), the first two tolerance parameters, Tol1 and

Tol2, check whether the delta changes in the gradient and directional derivative of

the problem have sufficiently approached zero. Typical values are 10−6 to 10−3.

The third parameter (MaxIter) is the maximum iteration limit which is also

user defined. Finally, notice that instead of using Hessian approximations (line

7), exact Hessians ∇2f(xt) derived from an automatic differentiation algorithm

5Resetting the Hessian to an identity matrix I is common in BFGS and other update pro-
cedures. If exact Hessians are available and the starting point is in the neighbourhood of the
optimum, then the problem of resetting search direction is eliminated.
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(Section 3.7) are utilised. Having evaluated the search direction (line 8) and the

step size (lines 9-13), a new solution point is derived from the current one (line

14). The process is repeated until one of the termination conditions (line 5) is

reached.

The following section presents the detail principles of the automatic differen-

tiation for exact Hessian evaluation.

3.7 Automatic Differentiation for exact

Derivatives Evaluation

Also called algorithmic differentiation, for any differentiable function, automatic

differentiation (AD) evaluates the derivatives via a sequence of basic elementary

operations involving unary/binary operators and their operands. The need for

AD arises because conventional methods like the method of divided differences are

prone to round-off errors when the differencing interval is small, and suffer from

truncation errors when the interval is large. On the other side, the computational

cost of symbolic method is high especially when the function of interest is of higher

dimensions.

Automatic differentiation works by repeated application of the chain rule

(3.21). Suppose that f : Rn → R is a composite function defined in terms of a

vector h ∈ Rm which is in turn a function of x ∈ Rn, according to chain rule the

derivative of f with respect to x is:

∇xf(h(x)) =
m∑
i=1

∂f

∂hi
∇hi(x). (3.21)

Then, AD apply chain rule on a computational representation (tree-like graphs)

of f to generate analytic values for the function and its derivatives.

Historically, the basic ideas of AD have been around for long time (Bücker

et al., 2006; Rall, 1981, 1986; Werbos, 1989, 1994). However, it was the exten-

sive work of Griewank and Walther (2008) that revived the interest in the use

of algorithmic differentiation methods. Thereafter, a number of research work

have been published6 on AD principles and its applications in mathematics and

6More about AD can be found in the AD portal (Bücker and Schiller, 2000).
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Table 3.2: A list of variables definitions for a 2-dimensional sample problem:
f(x1, x2) = (x1x2 + sinx1 + 4) (3x2

2 − 6).

Variables Vertices Values

Input

v−4 4

v−3 3

v−2 6

v−1 x1

v0 x2

Intermediate

v1 v−1v0

v2 sin v−1

v3 v1 + v2

v4 v3 + v−4

v5 v2
0

v6 v5v−3

v7 v6 − v−2

Output
v8 v4v7

v8 f

machine learning by Christianson (1992a,b, 1999) and recently in Bartholomew-

Biggs et al. (2000); Bischof et al. (2002); Forth (2006); Ghate and Giles (2007).

The two basic modes via which AD yields the values and derivatives of any

differentiable function are the forward and reverse modes. Details on these ap-

proaches can be found in Griewank and Walther (2008). However, as is described

in the following sections, the approach adopted here is based on the vectorised

forward AD developed by Bashir (2011) which utilises operator overloading to

derive the function value, gradient and Hessians in a single forward sweep.

A. Graphical representation and Algorithmic evaluation of functions

Given a two dimensional differentiable function (3.22), evaluating its value at any

given point xt = [x1, x2] entails an orderly execution of the elementary operations

that made up the function.

f(x1, x2) = (x1x2 + sinx1 + 4)(3x2
2 − 6). (3.22)

The elementary operations may be assigned to some intermediate variables
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that link the input variables to the output. Note that all the input, intermediate

and the output variables can be represented as vertices of a tree vi ∈ {va, vb, . . . }
that represent the entire function. Table 3.2 shows the trace for the evaluation

of all the variables from the input to the output side for function (3.22).

a

bvb

va

Consider the tree-like graph (Figure 3.1) for function (3.22). First, the com-

puter interprets the function as a sequence of elementary operations on the work

variables7 mapped as vertices vi such that i ≤ 0 for the input variables and i > 0

for the intermediate and output variables (Figure 3.1). The leaves of the graph

represent the input variables. The intermediate vertices stand for the interme-

diate variables and the top vertex is the output variable. According to graph

theory, the ordering require that for any vertices a and b linked with an arc from

b to a, a is the parent vertex and b is the child. Therefore, the value of the child

vertex b must be evaluated before the parent vertex a, i.e. the values of all the

children vertices must be obtained prior to evaluating that of their parent. Hence,

the overall function value can be obtained by evaluating the vertices in the graph

from leaves through the root in an orderly manner. Notice that many of the

elementary evaluations are executed in parallel, see the AD graph in Figure 3.1;

the hierarchy of the evaluations implies parallel execution, e.g., from {v2, v1, v5},
to {v3, v6} and then {v4, v7}, etc.

B. Forward mode of AD

The forward mode or forward accumulation evaluates derivatives by sweeping

across the functional graph in the same direction as that of evaluating the function

value. Beginning from the leaves (Figure 3.1), both the function value and the

directional derivative8 at every vertex are simultaneously evaluated and carried

forward to the root. Thus, every forward sweep yields the function value and its

derivative with respect to a chosen independent (i.e., input) variable.

7For the example problem (3.22), the work variables are: vi = {x1, x2, 4, 3, 6}.
8Directional derivative is the derivative with respect to any given variable augmented by the

AD tool.
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Figure 3.1: Algorithmic evaluation graph for function: f(x1, x2) =
(x1x2 + sinx1 + 4) (3x2

2 − 6).

Therefore, for any n-dimensional9 function, gradient evaluation entails n for-

ward sweeps. For problem (3.22), the function has 2 independent variables and

needs 2 forward sweeps. Notice that the forward mode is more suitable for func-

tions having several dependent variables and few independent variables, but less

suitable otherwise. In other words, forward accumulation is superior to reverse

accumulation for functions of the form:

f : R→ Rm; m� 1. (3.23)

Table 3.3 outlines the expressions for the forward derivatives of all the vertices

propagated from the input, intermediate to the output vertex. At the beginning

of every forward sweep, the derivative of one of the input vertices is seeded to 1

and all other inputs to zero. Thus, to differentiate function (3.22) with respect

to x1 the vertices are set to v̇−1 = 1 and v̇0 = 0 and vice versa. Thereafter, the

derivatives of the rest of the intermediate variables are evaluated by applying the

chain rule (3.21). Hence at the end of every sweep the exact numerical values for

the function and its gradient with respect to one of the variables are accumulated.

Notice from Table 3.3 that if the value of v̇−1 is seeded to 1 and v̇0 to 0, then,

9The dimensionality is determined by the number of independent variables, e.g.
x1, x2, . . . , xn.
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Table 3.3: A list of values and derivatives for the forward mode AD on problem:
f(x1, x2) = (x1x2 + sinx1 + 4) (3x2

2 − 6).

Variables Vertices Values Forward Derivatives

Input

v−4 4 v̇−4 = 0

v−3 3 v̇−3 = 0

v−2 6 v̇−2 = 0

v−1 x1 v̇−1 = ẋ1

v0 x2 v̇0 = ẋ2

Intermediate

v1 v−1v0 v̇1 = v−1v̇0 + v̇−1v0

v2 sin v−1 v̇2 = v̇−1 cos v−1

v3 v1 + v2 v̇3 = v̇1 + v̇2

v4 v3 + v−4 v̇4 = v̇3 + v̇−4

v5 v2
0 v̇5 = 2v̇0v0

v6 v5v−3 v̇6 = v̇5v−3 + v5v̇−3

v7 v6 − v−2 v̇7 = v̇6 − v̇−2

Output
v8 v4v7 v̇8 = v̇4v7 + v4v̇7

v8 f v̇8 = ḟ

the value of v̇8 is the derivative of the function with respect to x1. Conversely, if

v̇0 is seeded to 1 and v̇−1 to 0, then the resulting value of v̇8 is the derivative of

the function with respect to ẋ2. Thus, n-forward sweeps are required to evaluate

the complete gradient of an n-dimensional function.

C. Vectorised Forward mode of AD

The above principle explains the basic forward accumulation method of evaluating

derivatives. A new approach that uses vectorisation is used in this work. As

illustrated by the simple AD graph in Figure 3.2a, the proposed method also

defines every vertex (vi) of its AD graph as an AD object containing its own

value, gradient and Hessian fields, such that



CHAPTER 3. DETERMINISTIC OPTIMIZATION METHOD 89

(a)

(b)

Figure 3.2: An illustration of the proposed vectorised forward AD principle for
a part of the 2-dimensional function: f(x1, x2) = x1x2 + sin x1 + 4. (a): Depicts
a symbolic representation of the vectorised forward AD graph. (b): Shows the
implementation and initialisation principle of the vectorised forward AD graph.
Note: every vertex contains a value, gradient, and Hessian; ẋ = dx/dy, ẍ = d2x/dy2.
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Table 3.4: Tabulation of the proposed vectorised forward mode AD for a part of problem (3.22): f(x1, x2) =
(x1x2 + sinx1 + 4). Every input vertex vi has its value, gradient and Hessian initialised in a vector form, vi = (vi, v̇i, v̈i),
such that sweeping from the input vertices to the output vertex yields the overall function value, gradient and Hessian.

Variables Vertices
Vectorised Forward Automatic Differentiation Components

Values Gradient Hessian

Input

v−2 x1 [ẋ1 0] = [1 0]

[
ẍ1 0

0 0

]
=

[
0 0

0 0

]

v−1 x2 [0 ẋ2] = [0 1]

[
0 0

0 ẍ2

]
=

[
0 0

0 0

]

v0 4 [0 0]

[
0 0

0 0

]

Inter-

v1 = v2 × v1 x1x2 [ẋ1x2 ẋ2x1] = [x2 x1]

[
ẍ1x2 ẋ1ẋ2

ẋ2ẋ1 ẍ2x1

]
=

[
0 1

1 0

]

mediate v2 = sin v2 sinx1 [ẋ1 cosx1 0] = [cosx1 0]

[
ẍ1 cosx1 − ẋ1ẋ1 sinx1 0

0 0

]
=

[
− sinx1 0

0 0

]

v3 = v1 + v2 + v0 x1x2 + sinx1 + 4 [x2 x1] + [cosx1 0] + [0 0]

= [x2 + cosx1 x1]

[
ẍ1x2 + ẍ1 cosx1 − ẋ1ẋ1 sinx1 −ẋ1ẋ2

ẋ2ẋ1 ẍ2ẋ1

]

=

[
− sinx1 1

1 0

]

Output f = v3 x1x2 + sinx1 + 4 [x2 + cosx1 x1]

[
− sinx1 1

1 0

]
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vi = (vi, v̇i, v̈i) . (3.24)

In addition, as shown in Figure 3.2b and Table 3.4, the initial seeds for the

gradients of the vertices of the independent variables are initialised as vectors

rather than scalars, such that

v̇−2 = [1 0] and v̇−1 = [0 1].

Notice that the two vectors v̇−2 and v̇−1 now correspond to the rows of an

identity matrix In ∈ Rn×n. Similarly, the gradient of the constant term vertex

(v̇0) is also initialised as a vector of zeros

v̇0 = [0 0].

Then, the Hessians for all the vertices are initialised as n-dimensional arrays of

zeros

v̈−2 =

[
0 0

0 0

]
, v̈−1 =

[
0 0

0 0

]
, and v̈0 =

[
0 0

0 0

]
.

Therefore, in contrast to the conventional forward mode of AD which uses a

scalar-based initialisation (Figure 3.1 and Table 3.3), the illustrations in Figure

3.2 and Table 3.4 show that for any n-dimensional function, the proposed vec-

torisation permits computing the value, gradients and complete Hessians of any

multivariate function in a single forward sweep.

While ascertaining the true effectiveness of this new approach will entail a

head-to-head comparison with non-vectorised forward AD designs on mathemat-

ical programming problems, such experimentation goes beyond the scope of this

thesis, which is on global optimization using evolutionary computation. Never-

theless, at the end of this thesis, Appendix A presents some overloaded arithmetic

operators and functions (Section A.1), and using a simple case study Appendix A

also compares the process of evaluating derivatives using the vectorised forward

AD and the symbolic AD method (Section A.2).
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3.8 Summary

This chapter reviewed a spectrum of classical optimization methodologies which

are mainly deterministic in nature. In particular, it analysed the theoretical

convergence characteristics, the methods for evaluating search directions and step

sizes of the steepest ascent, Newton, quasi-Newton and the conjugate gradient

methods. This has led to the choice of the sequential quadratic programming

(SQP) algorithm. The SQP is a second order algorithm that utilises automatic

differentiation (AD) to derive its gradients and Hessians during evaluation of its

search directions.

It is vital to note that the theme of this chapter is centred on overview of the

classical optimization methods. Therefore, further experiments may be vital to

assess the full impact of the vectorised AD approach used in the SQP algorithm.

Note that in itself the SQP algorithm presented in this chapter, which is a well-

known nonlinear optimization method, is not claimed as novel (see Section 3.5).

Similarly, the automatic differentiation technique for evaluating derivatives has

been widely known to efficiently yield more accurate derivatives than both the

numeric and symbolic differentiation methods (Bischof et al., 2008; Christianson,

1999), see also the illustrative case study in Section A.2 of Appendix A. Never-

theless, this chapter improves the AD through vectorisation and then used it in

the SQP algorithm. Note that the development of the vectorised AD approach

stands as only incidental addition to this thesis. Further experimental investiga-

tions would have provided additional support; but experiments on such derivative

evaluation techniques for classical optimization methods are outside the scope of

this thesis, which is centred on global optimization using evolutionary methods.

Finally, the SQP presented here will serve as a local search method for the hy-

brid optimization system (Chapter 6) proposed later in Part II of this thesis. The

next chapter analyses the individual effects of evolutionary variation operators to

examine the general concept of convergence in the global EC algorithm.



Chapter 4

Convergence Analysis in EC

4.1 From Diversity measure to Evolvability

measure

In the field of evolutionary computation (EC) diversity refers to the degree of

heterogeneity or homogeneity between individuals in a given sample search pool;

whereas convergence refers to the phenomenon that is used to assess the potential

of a population-based search method to maintain progress by yielding new high

quality solutions over successive generations.

It is a common practice in the EC community (Corriveau et al., 2012; Louis

and Rawlins, 1993) to assess convergence by temporally measuring the instanta-

neous spatial diversity in the search pool. This is probably due to its simplicity,

low cost of evaluation and its applicability across various models having different

data structures or encoding methodologies. Spatial diversity measures the spread

of the search pool over the entire search space and within the feasible boundaries

of the search domain. Thus, by evaluating the similarity among sample solu-

tions in a search pool, a good estimate of the spread of the sample points can

be obtained. For example, in the binary, gray, or any other symbolic encoding,

the Hamming distance measure sufficiently yields a good estimate of the pool’s

diversity at any given generation. Similarly, in integer, or real-parameter encod-

ings, the Euclidean distance measure (or variants such as Mahalanobis distance1)

is often utilised.

1Mahalanobis distance is a descriptive statistic that provides a relative measure of a data
point’s distance (residual) from a common point. It is a dimensionless measure introduced by
Mahalanobis (1936).

93
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The notion of evolvability in this study refers to the ability of the sample

solutions in an evolutionary pool to generate new and higher quality solutions

across generations. This view, being tailored to optimization, is slightly more

restrictive than the conventional view of evolvability in natural evolution (Lehman

and Stanley, 2011). In natural evolution, evolvability refers to the ability of the

sample solutions to evolve new (probably more diverse) solutions irrespective of

the state of their fitness attributes.

Recall that the application domain in this thesis is the continuous (or real-

parameter) optimization problems – wherein real-valued encoding is most appro-

priate2. Therefore, the evolvability measure proposed in this chapter (Section

4.5) is first applied to analyse the convergence characteristics of both binary en-

coded and real-valued EC models. Conversely, on the subsequent analysis that

compares the proposed evolvability measure with the spatial diversity measure

(Section 4.6), only real-valued EC model is utilised. Therefore, Euclidean dis-

tance measure is applied to assess the spread (spatial diversity) in the solution

points in this case.

4.2 Classical Convergence Assessment

Methodologies

Besides stopping evolution based on some user prescribed limits on evaluations,

generations or execution time, more sophisticated convergence measures that are

mainly based on population diversity are used to automatically stop the evolu-

tion. This follows the intuition that diversity collapse directly/indirectly signifies

convergence of an evolutionary search. In other words, evolution converges when

the candidate solutions in the population become identical. In this respect, pop-

ulation diversity could relate to the genotype, phenotype or even the average

fitness of the population directly.

Whilst the convergence characteristics of all evolutionary algorithms rely on

several factors, the most important factors are the types of selection mechanism,

the variation operators (e.g. crossover and mutation) and the population size.

2With real-valued encoding, the EC models proposed in this study would require no
genotype-phenotype mapping. This is because both the evolution and solution spaces use
similar data types. By skipping mapping function the computational cost for every generation
in the evolution is minimised.
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The selection operation, being an exploitation process, favours the fitter indi-

viduals at the expense of the weaker ones. Therefore, selection is often seen

as a deriving force to convergence in EC. Thierens and Goldberg (1994) used

the normal fitness distribution method to model the convergence characteristics

of various selection methods. They estimated the true convergence behaviours

of various selection methods using ordinary differential equation models. They

argue that fitness proportionate selection (FPS) methods have the slowest conver-

gence characteristics and it further slow down as the search approaches optimal

solution.

On the other hand, variation operators also influence population convergence.

As such, it should be noted that besides the types of the variation operators, the

frequency of their application also play a major role. A new diversity measure that

estimates the average Hamming distance in the population was proposed by Louis

and Rawlins (1993). The authors noted that while mutation and its probability

of application can severely influence the convergence rate, vast majority of the

traditional crossover operators such as n-point, uniform and punctuated crossover

have little effect on EC convergence. They analytically proved that the new

diversity measure (i.e., average Hamming distance) is not affected by crossover

operators but mostly influenced by the selection mechanism. The measure was

then used to predict the average Hamming distance at convergence and thus

defined an upper bound limit on the evolution run time.

Hybridization approaches also play a vital role to improving convergence rate.

As reported by Miura and Tanaka (2000), for most nonlinear optimization prob-

lems, the time required by a genetic algorithm (GA) to converge to an optimal

solution can be reduced by incorporating some information about the gradients

of the problem’s variables. Thus, they propose hybridizing GA with a steepest

descent algorithm and argue that this can positively influence the overall con-

vergence rate. Similar proposals were made in Isaacs et al. (2007); Oh et al.

(2004).

4.2.1 Rationale

There are several motivations behind the objective of proposing new approaches

to convergence detection in EC. This is because virtually all of the above ap-

proaches to convergence detection are not without their pitfalls. For instance, in

a binary encoded EC model, the search space reduces to a Hamming landscape
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(Reeves, 2005) of bit-flip neighbours as convergence sets in; thus, using Hamming

distance allows effective analysis of the diversity profile of the search pool. How-

ever, such a similarity measure works in the genotype (encoding) space, and lacks

any knowledge of the dynamics in the solution (i.e., phenotype) space. Thus, de-

pending on the employed mapping technique, a set of closely similar (converged)

solution points in the genotype space may significantly differ (appear diverged)

when mapped to the phenotype space. In addition, concurrent application of such

similarity measures to the encoding and solution spaces is expensive; in fact, it

might even trigger more convergence false alarms.

Similarly, on real-valued EC models, using the Euclidean distance measure

gives a good account of the spatial spread of the sample solution points in the

search space. However, this measure tells nothing about the fitness distribution

of the solution points in the fitness landscape. Thus, this chapter proposes a

new approach to convergence analysis that would ensure effective convergence

detection across various global optimization landscapes and on a variety of EC

model frameworks3.

4.2.2 Convergence Analysis – A New Perspective

The collapse of population diversity signals convergence of an evolutionary search

pool. Hence, besides measures that monitor stagnation in fitness progress, tradi-

tional approaches mostly rely on diversity measures to assess convergence. This

chapter aims to address the following question:

“What aspect(s) of evolution lead to diversity collapse in EC and how would

that be monitored/exploited to achieve robust convergence detection?”

Generally, progress in evolutionary search is internally driven by the actions/

interactions of the genetic operators (i.e., the selection and variation operators

like crossover and mutation). Thus, this chapter seeks to address the above

questions by analysing the dynamics of the drivers of evolution. Therefore, the

following section introduces the traditional spatial diversity coefficient used for

convergence measurement. The subsequent section investigates the effect of evo-

lutionary operators using Price’s theorem. A new population evolvability measure

for convergence detection is then proposed.

3Experimental investigations and analyses in this chapter cover both binary- and real-coded
EC models.
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4.3 Spatial Diversity Measure

This section examines the spatial diversity model traditionally used for conver-

gence detection in EC. Recall that, depending on the employed data structure en-

coding, spatial diversity accounts for the spread (similarity/dissimilarity) among

the sample solutions in an evolutionary pool. Thus, at every generation of an evo-

lutionary search, a coefficient of diversity is evaluated using either the Hamming

distance measure on binary encoded models or the Euclidean distance measure on

real-valued encoding. Since this study utilises real-valued encoding (cf. Section

2.6.1), the following sections present the evaluation of the coefficient of diversity

using a Euclidean distance measure.

4.3.1 Evaluating the Coefficient of Diversity

At every generation t, the instantaneous diversity among the sample solutions

{xi}, in any search pool P (t) of size |P (t)| = N , is measured using a Euclidean

distance measure. The diversity is then expressed in terms of a coefficient of

diversity CDiv. However, the approach to determining a suitable reference sample

point from which the distance of every sample solution is measured varies across

this research domain. On one hand, locus of the current best sample solution has

been used as the reference point (Herrera and Lozano, 1996). On the other hand,

a centroid point (i.e., a hypothetical average sample point position), re-evaluated

at every generation is often used (Eshelman and Schaffer, 1991; McGinley et al.,

2011; Park and Ryu, 2010). The latter approach yields a rather more unbiased

estimate of the true spread of the solution points and is therefore adopted in this

study. Thus, in the following, CDiv is derived by evaluating the distance of every

sample solution from the evaluated centroid point C.

Suppose that a search pool P (t) of size N consists of a set of sample solutions

{Xi ∈ P (t) |Xi = xi1, xi2, . . . , xin}, where n is the dimensionality of the problem,

then at any given dimension j the vertex cj of a centroid sample solution is

cj =
1

N

N∑
i=1

xij. (4.1)

Therefore, for an n-dimensional problem, the position of the centroid sample C
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at any instance is

C =
1

N

N∑
i=1

[xi1, xi2, . . . , xin] = (c1, c2, . . . , cn), (4.2)

where the instance is aligned to the temporal evolution of the pool across genera-

tions t, such that as time evolves, the position of the centroid is tracked through

the search space.

Consequently, the Euclidean distance γj between all the sample points N and

the centroid across any dimension j is

γj =

√√√√ 1

N

N∑
i=1

(xij − cj)2. (4.3)

Hence, the instantaneous spatial diversity across all n dimensions for any sample

pool P (t) is expressed as a coefficient of diversity CDiv, such that

CDiv =
1

n

n∑
j=1

γj. (4.4)

Therefore, the vector of the overall temporal spatial diversity for all generations

t = 1, 2, . . . , k is

CDiv = (C1
Div, C

2
Div, . . . , C

k
Div). (4.5)

Note that the majority of the conventional and problem dependent diversity

measures suffer from either sensitivity to distribution of outlier samples, changes

in pool sizes or changes in problem dimension. However, experimental findings

on comparing various spatial diversity measures by Corriveau et al. (2012) have

justified the suitability of the above measure (cf. equation (4.4)).

4.3.2 Normalisation of the Coefficient of Diversity

Normalisation of a diversity measure is essential to effectively compare diversity

across populations and/or generations. Specifically, normalisation filters out the

effects of variations in pool sizes, or changes in problem types, from the true

diversity dynamics of a given EC model. Various methods exist for achieving this

sort of normalisation.

To normalise the above coefficient of diversity, CDiv, a running normalisation
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with the maximum coefficient of diversity Cmax
Div is utilised. This technique relies

on the intuition that since the initial pool is generally created from a random

uniform distribution, unless a more diverse pool is found over the course of evo-

lution, the initial pool is often the most diverse. Thus, the coefficient of diversity

in the first generation C1
Div comes from the most diverse population and is used

as the initial normalisation factor Cmax
Div . Subsequently, if at any generation t a

more diverse pool is found, then the newly found Ct
Div | Ct

Div = maxi (C
i
Div) is

used to update the normalised coefficient of diversity vector, denoted by C̃Div, as

in equation (4.6)

C̃Div =
CDiv

Cmax
Div

=
1

Cmax
Div

(C1
Div, C

2
Div, . . . , C

k
Div), (4.6)

where Cmax
Div = maxi(C

i
Div).

The above approach is referred to as normalisation with maximum diversity

so far (NMDF) (Corriveau et al., 2012). The technique is immune to variations

in problem dimensions or pool sizes. Other normalisation measures, such as

the landscape diagonal (LD) and coefficient of variation (McGinley et al., 2011)

are also used in the literature. The LD measure uses the maximum distance

between extreme corners of the search space to assess diversity. It was shown

that the majority of such measures are affected by changes in problem dimension

or population sizing, and are therefore prone to scalability problems.

4.4 Measuring Evolvability using Price’s

Theorem

This section analyses fitness dynamics in EC by investigating the effect of evolu-

tionary operators.

In order to examine the independent effect of EC operators while in inter-

action, Price (1972) formulated a theorem that permits decomposition of the

evolutionary process to separate the genetic effect (or contribution) of the selec-

tion operator from that of other variation operators (i.e. crossover and mutation).

Although Price’s work was mainly in the field of evolutionary genetics, Price’s

equation (4.7) provides greater insight into general selection processes. Price’s
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theorem states that:

∆Q =
Cov(z,q)

z̄
+

∑N
i=1 zi∆qi
Nz̄

, (4.7)

where ∆Q = Q2 − Q1 is the change in the measured characteristics Q which is

fitness in this case, N is the number of individuals in the parent population (i.e.,

population size), zi is the number of offspring of parent i, and z̄ =
∑

i zi/N is

the average number of the offspring produced. Also, ∆qi = q′i− qi where qi is the

fitness of parent i and q′i is the average fitness of its offspring. And finally, z and

q are vectors of zi and qi respectively.

The two terms in the Price’s theorem (4.7) represent the contribution of differ-

ent operators as the mean of the characteristic being measured. Since this study

deploys Price’s equation to analyse convergence in EC, the measured character-

istic, Q, in this case will be fitness. The first term represents the contribution

of selection operator while the second term gives aggregated contributions of the

variation operators involved. Notice that the effect due to selection is modelled

in terms of the covariance between the individuals z and their fitness q. This

conforms to the Fisher’s fundamental theory of natural selection that relates the

change in the mean fitness in a population to the population’s fitness variance. It

also agrees with the Frank’s argument (Frank, 1997), which sees the covariance

between the phenotypic values of individuals and their fitness as the cause of

differential productivity that leads to the change in phenotype.

The following lemmas elaborate on fitness decomposition in evolution using

Price’s theorem.

Lemma 1:

Suppose that the fitness qi ∈ R of each member of the parent population in (4.7)

is represented by a vector q such that:

q = [q1, q2, ..., qN ]T . (4.8)

Suppose also that the number of offspring zi ∈ Z produced by each one of the N

parent is represented by a vector z such that:

z = [z1, z2, ..., zN ]T . (4.9)
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Then, the following expansions of the two terms in (4.7) show that it is only the

first term that represents the contribution of the selection operator.

First term:

Cov(z, q)

z̄
= mean


(z1 − µz1) (q1 − µq1)
(z2 − µz2) (q2 − µq2)

...

(zN − µzN ) (qN − µqN )

 /z̄, (4.10)

where µzi is the mean of the number of offspring of parent i and µqi is the mean

fitness of the parents.

Second term:∑N
i=1 zi∆qi
Nz̄

=
z1(q′1 − q1) + z2(q′2 − q2) + · · ·+ zN(q′N − qN)

Nz̄
. (4.11)

Recall that following any typical evolutionary selection process, the resulting

offspring have the same fitness as their parents (i.e. selection process adds no

new solutions to the population), therefore, from (4.11),

∆qi = q′i − qi = 0. (4.12)

Hence, for the selection operator, the summation in the second term, (4.11),

equals to zero. Consequently, the contribution of selection operator is only in the

first term of (4.7).

�

Lemma 2:

To investigate the contribution of the variation operators, assuming any tradi-

tional m-point crossover operator is employed; crossing any two parents yields

two offspring. Thus, if the size of the parent population is even and they all

undergo the crossover operation (i.e., when crossover probability PC = 1.0), then

the number of offspring produced is always equal to the number of the parents.

Therefore, µzi = zi : ∀i in equation (4.10). Hence, the first term (4.10) of the

Price’s equation is equal to zero. This is also true for any bit-flip mutation op-

eration where a parent chromosome yields a single offspring after mutation. A

noteworthy exception is when PC < 1 or the population size N is odd, that is,

when not all chromosomes undergo the crossover operation. In such a case, from
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(4.10), ∃i : µzi 6= zi and thus:

Cov(z, q)

z̄
6= 0.

Hence, unlike the traditional notion (Bassett et al., 2005) where it is often

assumed that the contribution of the variation operators in the first term of

Price’s equation is always zero, this investigation reveals the contrary if taking

into account the special cases mentioned above; when PC < 1.

Now, expanding the second term as in (4.11) reveals that the summation is

non-zero since the fitness qi of any parent i is often different from that of its

entire offspring4, i.e., for most i, q′i 6= qi. Hence, the contribution of the variation

operators to the fitness dynamics is mainly via the second term of Price’s equation,

but they might also contribute via the first term as proven above.

�

4.4.1 Monitoring Evolvability using extended

Price’s Equation

Bassett et al. (2004) extend the second term (4.11) of Price’s equation to allow

monitoring of the individual contributions of the variation operators. This helps

to ascertain their individual contributions to the population’s fitness growth at

various stages of the evolution. The extended Price’s equation is defined as:

∆Q =
Cov(z,q)

z̄
+

k∑
j=1

∑N
i=1 zi∆qij
Nz̄

; k = 1, 2, ..., (4.13)

where k is the number of genetic operators; qij is the average value of the fitness of

all the offspring of parent i after the application of operator j; ∆qij = q′ij− qi(j−1)

is the difference between the average fitness q of the offspring of parent i measured

before and after the application of operator j.

Since this study utilises only crossover and mutation as variation operators,

the number of operators k is 2. Therefore, in contrast to the extended Price’s

equation in (4.13) which may have several terms, the following extension (4.14) to

the Price’s equation contains only three terms; a term for the selection, crossover

4Although it is possible for any or all the offspring resulting from crossover to have equal
fitness as their parent, this is rare and usually only occur when the population’s diversity
collapses. Thus it signals convergence.
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(X ) and mutation (M) respectively. Each of these terms estimates the changes

in the mean of the population’s fitness (∆q) due to one of the three genetic

operators.

∆Q = f(selection) + f(crossover) + f(mutation)

=
Cov(z,q)

z̄
+

∑N
i=1 zi∆qiX
Nz̄

+

∑N
i=1 zi∆qiM
Nz̄

. (4.14)

The next section examines evolutionary progress by visualising the individual

effect of the evolutionary processes using the extended Price’s equation.

4.4.2 Analysis of Evolvability with extended

Price’s Equation

In order to analyse the effect of the proposed extension (4.14) to the Price’s the-

orem, this section experiments with a binary-encoded EC model (cf. Algorithm

2.2) having mostly standard parameters (De Jong, 1975) (Table 4.1). Various

global optimization test problems are used; however, the results reported here5

are those obtained on simulating the solution process of:

i) 2-dimensional Schwefel function, f2 (see Table B.1 in Appendix B).

ii) 100-dimensions of Rastrigin function, f1 (see Table B.1 in Appendix B).

The above test problems are both multimodal and highly dispersed (Lunacek

and Whitley, 2006; Salomon, 1996) global optimization benchmarks. The objec-

tives for this experiment are:

i. To observe and analyse the fitness growth of the solution pool as the evolution

progresses; and

ii. To investigate changes in fitness attributed to the selection operator, and

changes due to the crossover and the mutation operators respectively.

Eventually, by observing the way in which the selection and variation oper-

ators collectively move the evolutionary search forward, this investigation would

provide new insights into fitness dynamics and convergence in EC. The experi-

ment might also yield additional insight on the role of the individual operators

5Similar results are obtained with several other global optimization benchmarks of various
dimensions (cf. Bashir (2011)), thus, omitted.
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Table 4.1: Parameter settings of the Binary Encoded EC model for convergence
analysis.

Parameter Name Symbol Values/Types

Population Size N 50 to 100

Representation − Binary encoding

Selection Scheme − Binary tournament selection (BTS)

Crossover Probability PC 1.0

Mutation Probability PM 1/L where L =string length

Replacement Scheme − The proposed Adaptive elitism (Section 2.6.6)

Adaptive overlap size ω 0.05 i.e., 5% of population size N

Initial Population − Uniform at random

Termination Criteria Max-FEs Maximum function evaluation (100×N) FEs

towards balancing the exploitation and exploration of problem search space. Ta-

ble 4.1 shows the settings for the mathematical model parameters of the EA used

in this experiment.

A. Simulation Results

Figure 4.1 shows the behaviour of the EC model and the dynamics of the evolu-

tionary search pool during the optimization process of the Schwefel6 benchmark

f2. The fitness comparison plot (Figure 4.1a) compares the fitness of the best,

worst and the average samples in the search pool. The plot for the extended

Price’s equation (Figure 4.1b) on the other hand depicts the changes in the aver-

ages of the population’s fitness due to each of the three genetic operators according

to the definitions in (4.14). In other words, the three curves (Figure 4.1b) show

the average contributions of the selection, crossover and mutation operators to

the fitness progress during the course of the evolution. All results are averages of

100 independent runs.

B. Discussion and Analysis of Results

Notice that this section has so far presented the results on the Schwefel bench-

mark, but the next set of experiments in Section 4.6 extends the investigations

to a unimodal, a Needle-in-Haystack and the Rastrigin benchmarks. Whilst all

6The Benchmark functions are described in Table B.1 in Appendix B.
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Figure 4.1: Simulation results for optimization of the 2-dimensional Schwefel
benchmark (f2) showing fitness comparison plots and the effect of genetic opera-
tors. (a): Fitness comparison plot for the best, worst and average fitness achieved
over a maximum generation limit of 100. (b): Compares the effect of genetic op-
erators on fitness growth using extended Price’s theorem (4.14). Notice from
(b) that the approximate ranges for the evolutionary operators are: Selection
≈ [+25,+350] : sign[+,+], Crossover ≈ −50,+50] : sign[+,+], and Mutation
≈ [−25,−200] : sign[+,+]. See Table 4.1 for parameter settings of all plots.

these are chosen to serve as representatives of the commonly encountered global

optimization landscapes, these investigations are in no way exhaustive of the var-

ious global optimization landscapes. Thus, it is important to note that whether

or not these observations will generalise to all other problem types is subject to

further investigations. Nonetheless, the results (Figure 4.1) obtained from these

experiments reveal the following:

1) The fitness curves in Figure 4.1a show that both the average and the best

fit individuals in the population rapidly grow with a steep gradient to their

peak values within the very early generations of the evolution. It is, however,

noticed that the fitness level of the worst fit samples remains considerably low

(Figure 4.1a) throughout the evolution. This indicates that the search pool

still maintains some amount of diversity in its fitness distribution7.

2) It is observed from Figure 4.1b that the curve for the selection operator is

7Diversity in fitness distribution is often called phenotypic diversity, it does not account for
spread of samples.
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always above zero on the fitness axis, i.e. no sign changes for the selection

operator curve (sign: [+,+]). It is therefore evident that selection works

as a biased process. It primarily guides the search towards the promising

regions of the search space. In so doing, selection ramps up the population’s

average fitness as seen in Figure 4.1a. Of course, this behaviour conforms

to the characteristics of typical tournament and other ranked -based selection

methods (Rudolph, 2000), and thus, it is as expected.

3) Notice also from the same figure (Figure 4.1b) that, although the effect of

crossover operator appears to concentrate at the early generations, a close

examination reveals that the curve for the crossover operator swings above

and below zero on the fitness axis, i.e. crossover curve changes sign: [−,+].

This substantiates the supposition that this operator has both exploration

and exploitation effects. In other words, while it improves the population’s

average fitness via exploitation, it also lowers it during exploration. Further, it

is observed that the effect of crossover lessens over generations, and eventually,

neither its exploitation nor its exploration effect seems to influence the fitness

growth as convergence sets in.

4) Contrary to the previous operators, notice that the curve for the mutation

operator (Figure 4.1b) always lie beneath zero on the fitness axis, i.e. mutation

does not change sign: [−,−]. This means that the effect of this operator is

more likely to favour exploring new areas of the search space; and as a result, it

improves population’s diversity. But in so doing, mutation tends to drastically

lower the fitness growth in the population. Moreover, as can be seen from the

mutation curve (Figure 4.1b), the effect of this operator on fitness growth is

unaffected by convergence – as it remains fairly constant over the entire run.

From the above results, a clear separation of roles among the genetic operators

is deduced. Whilst the selection operator undertakes an exploitation role, muta-

tion ensures effective exploration and the crossover operator serves as a regulator

by performing both exploration and exploitation roles.

Consequent on the above observations, it is thought that among all the three

genetic operators the characteristics of crossover operator have more influence

on convergence dynamics of the search pool. This is because while the effects of

both mutation and selection operators continue throughout the evolution, that

of the crossover operator appears to be exclusively aligned to the convergence
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dynamics and the fitness growth in the population. Moreover, as highlighted in

item (2) above, the selection operator is a mere biased process that favours highly

fit solutions. It adds no new solutions into the population and is therefore not

suitable for convergence detection.

The following section investigates how the dynamics of the crossover operator

can be used to detect convergence of an evolutionary search pool.

4.5 The Proposed Population Evolvability

measure for Convergence detection

Recall, from the proposed extended Price’s equation (4.7), that Q is only the

collective change in the average fitness due to the three genetic operators. It was

argued that (Bassett et al., 2004) observing changes in averages alone does not

convey sufficient information on the true effect of an operator. In fact, average

effects may not guarantee accurate conclusions on the convergence of the evolution

since the average individuals are not the major driving force for the evolution.

This is evident from the plot of the crossover operator in Figure 4.1b, in which

it is difficult to appreciate crossover’s effect on the fitness dynamics even during

the early generations of the evolution.

Therefore, it is essential to focus on analysing the spread in fitness (fitness

variance) in the population. This would permit exploring the true contributions

of the best, average and worst individuals mainly produced by the evolutionary

variation operators. In this regard, the spread is measured by evaluating the

change in fitness variance in the population due to a given genetic operator.

From (4.14), suppose that the change in fitness due to a genetic operator j

(crossover in this case) is:

∆Qij =

∑N
i=1 zi∆qij
Nz̄

. (4.15)

Then, since the change in fitness, ∆qij = q′ij − qij, is the random variable of

interest, the expectation and variance of the crossover term can be obtained by

respectively taking the first and second moment of (4.15) with respect to the qij
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values, such that:

E [∆qij] =

∑N
i=1 zi

∑
zi

∆qij

zi

Nz̄
=

∑N
i=1

∑
zi

∆qij

Nz̄
, (4.16)

where
∑

zi
is the sum over all the offspring of parent i. Typically, there are

two offspring for each set of parent when PC = 1.0. All other parameters are as

previously defined in Section 4.4. The variance, V ar[∆qij] is:

V ar [∆qij] = E
[
∆q2

ij

]
− [E(∆qij)]

2 , (4.17)

and the standard deviation is:

σ [∆qij] =
√
V ar [∆qij]. (4.18)

Now, a shaded area for the one standard deviation interval (±σ) is overlaid

on the previous plot of the ∆Q average changes in fitness due to the crossover

operator (Figure 4.1b) – yielding the crossover envelope shown in Figure 4.2a.

Notice that Figure 4.2a gives a better impression of the true effect of the crossover

operator on the fitness progress across generations. A similar technique is then

applied to investigate the effect of the mutation operator (Figure 4.2b).

Figures 4.2(a and b) show the ±σ (standard deviation) envelopes for both

the crossover and mutation operators. The shaded area above the curve for

the change in the average fitness due to crossover in Figure 4.2a reveal that

crossover operator does indeed contribute to the fitness growth, but at the same

time, the shaded area underneath it (which lie under zero on the fitness axis)

indicates how much the operator contributed to producing low fit individuals.

It is noticed that the crossover envelope shrinks towards zero around the point

labelled A. This happens as the curve for the change in the average fitness due to

crossover settles around zero on the fitness axis. This means that beyond point A,

crossover operator barely contribute to the fitness progress. Hence, this provides

an early signal into the cause of diversity collapse in an evolutionary pool8; and as

hypothesised earlier, this would yield a sufficiently robust convergence detection

mechanism for EC models.

8As a caveat to this, when Roulette wheel selection (RWS) mechanism is utilised, it was
found that (Bashir, 2011) monitoring the effect of the crossover operator may not suffice as a
convergence measure.
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Figure 4.2: Visualising one standard deviations (±σ) intervals for the effect of
crossover and mutation operators on optimization of the 2-dimensional Schwefel
benchmark f2. (a): Shows the average and the±σ (shaded areas) for the crossover
operator. (b): Shows the average and the ±σ (shaded areas) for the mutation
operator. Details of the parameter settings in Table 4.1.

On the other hand, an observation of Figure 4.2b reveals that the curve for

the change in the average fitness due to mutation operator lie and remain be-

neath zero on the fitness axis throughout the evolution. Also, larger portion of

the shaded area for the ±σ mutation envelope is beneath zero. The ±σ mutation

envelope (Figure 4.2b) remains virtually uniform (without shrinking) throughout

the evolution. This means that the effect of mutation on the fitness of the pop-

ulation continues for the entire evolution run. Consequently, mutation dynamics

cannot be deployed to conduct any meaningful convergence detection.

4.5.1 Convergence threshold parameter

Having used one standard deviation (σ) interval to analyse the effect of genetic

operators, the width of the ±σ envelope for the effect of an operator j (crossover

in this case) on fitness growth at every tth generation lies within the interval:

[∆Qjt − σjt, ∆Qjt + σjt] , (4.19)
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where ∆Qjt is the change in the average fitness of the population at iteration t

due to operator j and σjt is the corresponding standard deviation. Let the width

for the crossover operator be represented by σXover, then it can be determined as

follows:

σXover = (∆Qjt + σjt)− (∆Qjt − σjt) = 2σjt. (4.20)

Figure 4.3 shows the simulation results for the optimization of a 100-dimen-

sional Rastrigin function (f1) using the parameter settings shown in Table 4.1.

It is observed that the dynamical characteristics of this result closely resemble

that of the previously seen Schwefel function (f2), see Figure 4.1 and Figure 4.2.

Notice that the point labelled (A) on Figure 4.3a directly corresponds to the

point labelled (A) on Figure 4.3c when read from the x-axis (i.e., the generations

axis). It is also noticed that the more the width of the crossover envelope (σXover)

shrinks to zero (Figure 4.3c), the flatter is the gradient of the best and average

fitness curves in Figure 4.3a. This means that there is a strong correlation between

the crossover envelope and the gradient of the best and average fitness curves.

Hence, the width of the one standard deviation interval, σXover (4.20), indirectly

represents the available diversity in the population. Also, the generation at which

σXover tends to zero signifies the end of evolvability – indicating an imminent

convergence of the search pool.

Therefore, for the proposed convergence measure, a threshold value is pre-

scribed for the parameter σXover such that whenever its value falls below this

threshold, the search process can automatically terminate. Note that this thresh-

old parameter is user defined and its appropriate value is determined empirically.

Sensitivity analyses (Bashir, 2011) suggest that a value of σXover < 0.01 is suitable

for the standard EC parameter set. That is, when using crossover and mutation

probabilities of PC = 1.0 and PM = 1/L (for binary encoded EC), or PC = 1.0

and PM = 0.01 (for real-valued EC model) respectively.

4.6 Spatial Diversity measure vs. Evolvability

measure

On assessing convergence status via population evolvability, i.e., the potential of a

search pool to evolve better solutions over generations, the proposed evolvability
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Figure 4.3: Convergence detection by monitoring the ±σ (standard deviation)
interval of the contribution of crossover operator on a 100-dimensions Rastrigin
benchmark f1. (a): Shows a fitness comparison plot for the best, worst and
average fitness. (b): Compares the effect of evolutionary operators using extended
Price’s equation (4.14). Plots (c and d) show the average and the ±σ (shaded
areas) for the crossover and mutation operators respectively. The label A on plot
(c) marks the generation at which the evolution converges and it corresponds to
label A on plot (a) where fitness progress stalls. Table 4.1 has detail parameter
settings; results are averaged over 100 runs; plots are zoomed in for clarity.

measure (σXover) is hypothesised to play an important role as the previously in-

troduced traditional coefficient of diversity (Section 4.3). Therefore, the following

sections investigate the roles of the two parameters (σXover and CDiv) on analysing

the convergence profile of an EC model on a different set of test problems.
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Table 4.2: Parameter settings of the real-valued EC for convergence analysis.

Parameter Name Symbol Values/Types

Population Size N 50 to 100

Representation − Real-valued

Selection Scheme − Binary tournament selection (BTS)

Crossover Probability PC 1.0

Mutation Probability PM 0.01

Recombination Parameter αC Weighting parameter αC = U(0, 1)

Mutation Parameter µM Step size parameter µM = U(0, 1)

Replacement Scheme − Adaptive elitism (Section 2.6.6)

Adaptive overlap size ω 0.05 i.e., 5% of population size N

Initial Population − Uniform at random

Termination Criteria Max-FEs Maximum function evaluation (100×N)

4.6.1 Experiment: Comparing Spatial Diversity and

Evolvability Measure

The analysis herein is tailored towards investigating the dynamical characteristics

of both the newly proposed crossover evolvability measure σXover and the com-

monly used coefficient of spatial diversity CDiv across various fitness landscapes.

Unlike in the preceding experiment (Section 4.4.2), the EC model (cf. Algorithm

2.2) used here features real-valued encoding9. Thus, this model utilises the pa-

rameter settings shown in Table 4.2. Furthermore, a set of global optimization

benchmarks is used as case studies. This experiment aims to empirically compare

and analyse the individual roles of these complementary convergence measures.

A. Experimental Goals

The objectives for this experiment are:

i. to investigate the effectiveness of the newly proposed crossover evolvability

measure σXover in detecting convergence in real-valued EC model;

9Since the application domain in this study is on continuous optimization problems, real-
valued encoding is an appropriate choice as it eliminates the need for mapping functions between
genotype and phenotype spaces. Henceforth, all the EC models that will be proposed in this
thesis will use real-valued encoding.
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ii. to compare, using various test problem landscapes, the roles of CDiv and

σXover in convergence detection; and

iii. to investigate when and why concurrent use of these convergence measures

(CDiv and σXover) is essential for effective convergence detection in EC.

During the simulation of the optimization process in this experiment, the follow-

ing parameters are recorded at every generation t:

• the normalised spatial diversity coefficient CDiv;

• the normalised crossover evolvability measure σXover;

• the best fitness value at every generation f(xbest); and

• the average fitness of the samples in the pool at every generation f̄(x).

Using the following two distinct case studies, this experiment investigates the

relationships between the above two convergence measures (i.e., CDiv and σXover)

and the two important evolutionary phenomena: (i) fitness growth over genera-

tions, and (ii) fitness stagnation due to convergence.

Case I: Optimization of a smooth unimodal test problem

This involves simulating the solution process of a simple nonlinear problem hav-

ing a single peak and a valley. The goal is to search for the maximum value of

the function f0. Detail formulation of f0 is given in Table B.1 in Appendix B.

Case II: Optimization of a Plateau-based (Needle in Haystack) test

problem

This examines the optimization process of the 2-dimensional Easom’s global op-

timization benchmark (f3). The landscape of f3 is characterised with an entirely

flat search space having a single needle-like peak as its only optimum. Similarly,

the objective is to optimize for the global optimum solution which is at x∗ = 1.

See Table B.1 in Appendix B for details on f3.

B. Experimental Results

The simulation results for the optimization process of the test problem bench-

marks f0 and f3 are as shown in Figures 4.4 and 4.5 respectively. The figures
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reveal that both the crossover evolvability measure, σXover, and the spatial di-

versity coefficient, CDiv, have significant effect on the convergence characteristics

and fitness dynamics during the evolutionary search. In the following, f0 and f3

benchmarks are analysed in turn.

4.6.2 Analysis and Interpretation of Results

Firstly (on the f0 benchmark), by mapping the fitness progress curves in Figure

4.4b against that of the spatial diversity CDiv (Figure 4.4a), it is observed that

the instantaneous spatial diversity in the search pool has an inverse relation to

the fitness growth. That is, as the average fitness in the search pool grows over

generations (Figure 4.4b), the spatial diversity shrinks and approaches zero. This

leads to diversity collapse at later stages of the evolutionary search (Figure 4.4a).

On the other hand (still on f0), the shaded area (Figure 4.4a) depicts the

dynamics of the population evolvability measure, σXover. It reveals the instances

at which the search pool has higher tendencies to evolve better solutions and

when evolvability begins to stall. It can be noticed that, at the early generations,

the high levels of σXover correspond to a sharp rise in the gradient of the fitness

progress – indicating higher evolvability. This trend continues until the pool loses

its ability to evolve higher quality solutions, then σXover gradually shrinks and

collapses towards zeros when the population evolvability ceases.

Notice from the above that for the f0 benchmark both CDiv and σXover have

agreed in the way they assess population’s fitness growth and convergence pro-

file of the search pool. In addition, the characteristics of the two convergence

measures (CDiv and σXover) have also agreed on the previously introduced f1 and

f2 benchmarks (results omitted for brevity). These results (Figure 4.4) reveal

an interesting relation between the newly proposed evolvability measure σXover

and the population’s fitness. But the fact that the dynamical behaviour of the

newly proposed evolvability measure (σXover) is consistent on both binary and

real-valued encoded EC models (from across the experiments in Sections 4.4 to

4.6) means that the proposed measure is representation independent. Conse-

quently, it can work on different implementations of EC models – promoting its

suitability to wider problem domains.

Secondly, on the simulation results (Figure 4.5) for the Needle in Haystack

benchmark (f3), there is a subtle difference in the characteristics of the two mea-

sures (σXover and CDiv) and their relations to fitness progress and convergence.
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Figure 4.4: Analysis of convergence measures (crossover evolvability measure
σXover and spatial diversity coefficient CDiv) on the smooth unimodal benchmark
f0. (a): Compares the characteristics of σXover and CDiv over generations. (b):
Compares their relation to fitness progress and fitness stagnation. All results are
averages of 100 runs.

It is observed from Figure 4.5a that the evolvability measure is low both at the

early generations (when the spatial diversity is at its highest) and at the later

stages of the evolution (when the spatial diversity approaches zero). However,

similar to the previous results (Figure 4.4a), the dynamical characteristics of the

traditional spatial diversity measure (CDiv) has remained unchanged even on this

kind of test problem, i.e., f3. This is because CDiv only accounts for the instan-

taneous spread of the samples in the search pool but not their ability to evolve
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Figure 4.5: Analysis of convergence measures (crossover evolvability measure
σXover and spatial diversity coefficient CDiv) on the Needle in Haystack (NiH)
benchmark f3. (a): Compares the characteristics of σXover and CDiv over genera-
tions. (b): Compares their relation to fitness progress and fitness stagnation. All
results are averages of 100 runs.

or their tendency to converge.

On the other hand, the characteristics of σXover (Figure 4.5a) is found to ac-

curately describe the fitness dynamics (Figure 4.5b) and hence convergence of

the evolutionary search pool on this kind of problem, f3. To understand this,

suppose that the total evolution period (Figure 4.5b) is divided into early, middle

and last generations. Then, it is observed, from the early generations, that the

combination of a plateau-based fitness landscape in f3 and the high dispersion in

the initial solution pools significantly flattens the gradient in the fitness progress
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curves. This effect is clearly indicated by the lower levels of evolvability in Fig-

ure 4.5a during the early generations. But as the search pool gathers sufficient

information on the problem landscape, a steep gradient in the fitness curve is

observed at the middle generations (Figure 4.5b). This effect is also reflected by

the substantial amount of σXover recorded during the middle stages of the evolu-

tion (Figure 4.5a). Finally, as convergence sets in, the gradual decline in fitness

progress during the last generations is also correctly anticipated by the gradual

fall in σXover.

4.6.3 Discussion

The above observations and analyses mean that for some categories of global

optimization problems (the like of f0, f1, f2), both σXover and CDiv perform similar

roles; but on other varieties of problems (the like of f3), the proposed evolvability

measure (σXover) may yield a better account of the overall evolutionary progress

and hence its convergence characteristics.

Further, as observed from the simulation results (Figure 4.4a and Figure 4.5a),

the population evolvability σXover often remains high long after the spatial diver-

sity CDiv has fallen to zero. This means that a convergence detection mechanism

that solely relies on spatial diversity may prematurely halt the evolution at the

time a significant fitness progress is well possible. Similarly, lower levels of evolv-

ability measure are sometimes seen at the early stages of the evolution (Figure

4.5a)10. Thus, if σXover is used as the only convergence measure, the search

process may also terminate prematurely.

Therefore, it is essential to remark that combining σXover and CDiv is essential

to harness synergy between the two measures. The following section demonstrates

the combination procedure for these two measures.

4.6.4 Combining the Spatial Diversity and Population

Evolvability Measures

Thus far, the above experiments have revealed the potential strengths and weak-

nesses of each of the convergence detection methods, viz. spatial diversity (CDiv)

and population evolvability (σXover) measures. The model in (4.21) demonstrates

10Due to the plateau-based nature of the NiH fitness landscape, early fitness progress is barely
possible. This made evolvability σXover remains low during early generations.
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how these two measures can be combined to harness synergy between the two.

The set-up requires both measures to be satisfied for an evolutionary pool to

be deemed as converged. Therefore, a logical ”AND” is utilised to ensure that

the user defined thresholds (Cmin
Div and σminXover) for the spatial diversity and evolv-

ability measures have simultaneously been reached prior to declaring the pool as

converged.

Equation (4.21) describes the convergence model:

(
C̃Div(t) < Cmin

Div

)
AND

(
σXover(t) < σminXover

)
, (4.21)

where t is the current epoch in the evolutionary search. The setting for Cmin
Div

and σminXover is empirical, a value of 10−3 for both works well on the benchmark

problems used in this thesis.

In the next chapter, the EC model proposed in Section 5.4.6 utilises the above

convergence model. To illustrate how the above convergence model (4.21) would

facilitate instantaneous assessment of the convergence status of an evolutionary

search pool, Section 5.5 investigates how an EC model that utilises this conver-

gence model, for diversity control, compares to a standard EA.

4.6.5 Contribution and Predicted Impact

Convergence detection and assessment is crucial to any successful design of evo-

lutionary optimization model. The traditional approaches mainly monitor stalled

generations and use a spatial diversity measure to assess the similarity (or dis-

similarity) among samples in a search pool. The investigations in this chapter

have revealed that while such measures are sufficient on some category of prob-

lems, they may be inadequate on other varieties of global optimization problems.

This is especially the case when dealing with global optimization problems having

sparsely scattered peaks/valleys in a wide plateau landscape11. In this chapter a

new convergence measure based on extended Price’s theorem is proposed. The

measure assesses population evolvability via monitoring the effect of crossover

operator on the fitness dynamics of an evolutionary search pool.

Furthermore, sequel to the above experimental findings, a combined measure

is proposed. This combines the traditional spatial diversity measure and the

11The NiH problem (f3) is a typical example having sharp peak(s) scattered in a wide land-
scape; and it seems that many real-world problems possess such features (Das and Suganthan,
2010; Horner et al., 1993).
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newly proposed population evolvability measure to facilitate robust convergence

detection. As is presented in the following chapters (see Sections 5.4.6 and 6.3),

the new convergence measure plays the following roles in the development of the

dual-pool and hybrid EC models.

(i) serving as convergence detection mechanism, the combined system is used

to build the adaptive switching mechanism that connects the global search

algorithm with a local search method for local refinement in the hybrid

model proposed in Section 6.3; and

(ii) it also controls the operations of the diversity control mechanisms used in

the dual-pool EC model proposed in the next chapter (Chapter 5).

4.7 Summary

This chapter has introduced the general notion and significance of convergence

analysis in evolutionary framework. First, the commonly used spatial diversity

measure has been examined in detail. Then, a new convergence measure that

uses extended Price’s theorem to assess population evolvability is proposed. In

a series of experiments on various global optimization benchmarks, the analyses

of the individual characteristics of these convergence measures yield remarkable

insights into their individual strengths and weaknesses. The insights motivated

the proposal of a robust convergence assessment methodology which combines the

two measures to ensure effective convergence detection. The following chapter

builds upon these insights and extends the notion of diversity management and

control in evolutionary computation.



Chapter 5

Diversity Control in EC

Diversity control is vital for effective global optimization using evolutionary com-

putation (EC) techniques. This chapter aims to present a new architecture that

ensures effective diversity maintenance throughout the optimization cycle. In

general, this chapter classifies key diversity control policies in EC via a research

relevance tree; it then addresses evolutionary diversity from the perspective of

exploration and exploitation balance. But in particular, the chapter proposes

new approaches to diversity restoration, and diversity measurement. The inves-

tigations in this chapter seek to verify the following hypothesis:

#H: A Diversity control mehtod that uses convergence detection mechanism

enhances the exploration-exploitation balance and improve maintenance of

useful diversity even under limited population sizes.

As a caveat to this hypothesis, diversity control is achieved via the use of

restarted subpopulations with a separate pool for evolution and a pool of restarted

samples for diversity. To achieve this objective, this chapter proposes a dual

population-based diversity control technique. The chapter briefly introduces the

general concept of diversity in evolutionary perspective in Section 5.1, it then

aligns diversity to exploration and exploitation in Section 5.2. As an overview,

the chapter classifies the commonly used successful approaches for improving

diversity management across the various EC paradigms in Section 5.3. Section

5.4 presents the design and developmental aspects of this new method. On the

diversity dynamics, Section 5.5 provides new insights into the differences between

the standard EC and the proposed model. Then, Sections 5.6 and 5.7 present,

respectively, experimental evaluations as well as performance comparisons on the

CEC2013 benchmarks. The chapter concludes with a remark in Section 5.8.

120
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5.1 Diversity in Evolutionary Computation

The notion of diversity in evolutionary computation is synonymous with that in

other population-based search techniques. Diversity may be defined as the de-

gree of entropy among all the sample solution points in a given pool. Population

diversity reflects the extent to which the solution pool is heterogeneous or ho-

mogeneous. When diversity is assessed based on the spread (i.e., the genotypic

distance) of the sample points within the feasible search space, it is referred to as

spatial/genotypic diversity (Corriveau et al., 2012). Otherwise, when measured

in the phenotype space, diversity reflects the fitness distribution in the solution

space and is called phenotypic diversity. When diversity is mentioned in the EC

literature it often refers to spatial diversity. Diversity is a natural source of power

that crucially contributes to the inherent adaptive capabilities of evolutionary al-

gorithm (EAs) (Cobb and Grefenstette, 1993); diversity contributes to the wide

applicability of EAs to a wide range of global optimization problems.

5.2 Diversity in the light of Exploration and

Exploitation

Exploration and exploitation describe the underlying phenomenon that governs

the success of the nature-inspired evolutionary computation methodologies. As

in many other population-based (meta)heuristics (Blum and Roli, 2008; Reeves,

1993), the ability of EAs to solve stochastic optimization tasks is directly aligned

to the efficacy of their exploration and exploitation strategies. Because the terms

exploration and exploitation are frequently used in the EC literature, they are

mostly regarded as mere norms, this is reflected in the sporadic appearance of

their explicit definitions.

From the diverse terminologies and linguistics often used in EC, this study

views exploration from the perspective of diversification or spread of the search

over the entire search space, whereas exploitation is viewed as intensification or

steering of the search to a given neighbourhood. This view is consistent with

the definitions of exploration and exploitation reported in Blum and Roli (2008),

Jiang et al. (2008b), Thierens (1998) and in Molina et al. (2010).

It is noteworthy that although exploration and exploitation play complemen-

tary roles in achieving a robust global search mechanism, establishing a suitable
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balance between the two can be a difficult and challenging task in the design of

EAs. This might be attributed to the facts that:

(i) simultaneous optimization of both exploration and exploitation needs a care-

ful treatment, and requires a trade-off, since the two goals are sometimes-

conflicting; and

(ii) EAs are mainly applied to large scale, complex problems which are usually

characterised with poorly understood objective landscapes.

Nevertheless, Corriveau et al. (2012) argue that viewing exploration and exploita-

tion as opposing forces is rather naive because this may only be true in some

special cases (such as when optimizing a unimodal1 landscape). Thus, it would

be fair to view them as orthogonal forces, making it possible to improve both

simultaneously.

Clear manifestations of qualitative features that seek to strike a balance be-

tween exploration and exploitation are inherent in the core processes of the major-

ity of evolutionary paradigms. For instance, variation operators, such as crossover

and especially mutation, are believed to enhance exploration by ensuring good

coverage of the entire search space. The reproduction operator (i.e., selection)

mainly favours exploitation of the promising region(s) of the explored search space

(Greenhalgh and Marshall, 2000; Potter et al., 2003). And, as demonstrated by

Bashir (2011); Bashir and Neville (2012a) and Li et al. (2010), the crossover

operator has the innate tendency to simultaneously enhance both exploration

and exploitation. However, it seems that such nature inspired population-based

metaheuristics are mainly good for exploration of the search space and identi-

fication (but not exploitation) of the areas with high quality solutions (Blum

et al., 2011). This stimulates the need for new methods that can reinvigorate

the balance between exploration and exploitation. The aim has been to seek for

optimum exploitation while maintaining useful2 level of diversity throughout the

search process.

The focus here is to investigate some of the most effective related strategies

utilised for diversity control in EC theory. Thus, Section 5.3 presents a hierarchi-

cal tree-like diagram, termed research relevance trees (RRT) to provide a broader

1Unimodal: A sequence is said to be unimodal if it is a finite sequence that first in-
creases/decreases and then decreases/increases (Weisstein, 2013). A unimodal distribution
refers to a distribution having a single local maximum.

2Useful Diversity refers to the population diversity that in some way helps produce good
solutions (Lozano et al., 2008).



CHAPTER 5. DIVERSITY CONTROL IN EC 123

Random

Fundamental
Research
Domain

Possible
Research
Approaches

Diversity
Control

Initialisation
Policies

Multi-populations
Strategies

Hybridization

Quasi-random Synchronous Asynchronous
Specialised
Encoding

Specialised
Operators

Figure 5.1: A Research Relevance Tree for the Fundamental Diversity Control
Approaches used in Evolutionary Computation.

classification of the diversity control policies in evolutionary computation. Then,

each of the relevant domains in the RRT is examined in a greater detail.

5.3 Taxonomy of Diversity Control Policies

This section investigates some of the well-known, commonly used diversity control

strategies in evolutionary computation. The analysis herein is underpinned by a

taxonomy of the key diversity control policies in EC via the research relevance tree

in Figure 5.1. This theoretic research relevance tree paradigm permits separation

of the fundamental research domain into a number of possible approaches. It aids

in the design and development phases and translates into mathematical model

parameters and data structures for the dual-pool EC model (see Section 5.4.6).

The possible research approaches in Figure 5.1 could align to the following

frequently used methods:

(i) heuristic population (re-)initialisation strategies,

(ii) multipopulations models, and

(iii) hybrids and portfolios of algorithms

which are reviewed in due course.

Note, however, that the categorisation in Figure 5.1 is by no means exhaus-

tive of the multitude of approaches that could be used in diversity control. In

fact, further details on other approaches that maintain population diversity by
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dynamically controlling evolutionary parameters, such as mutation and crossover

rates can be found in Eiben et al. (1999); McGinley et al. (2011). The next

section examines the various quasi-random initialisation approaches, which com-

plement diversity control by employing various heuristics to generate an initial

search pool.

5.3.1 Heuristic Population Initialisation

As in many other population-based heuristics, the initial pool in evolutionary

algorithms is usually generated in a random manner, by means of a uniform

distribution (De Jong, 1975). For any given n-dimensional search domainD ∈ Rn,

the sample solution points x, are randomly created within the feasible boundaries

such that the initial pool is

P = {x ∈ Rn | xi ≤ xi ≤ x̄i}; i = 1, 2, . . . , n. (5.1)

where x̄i and xi are the lower and upper bounds of the ith dimension.

This random sampling (5.1) is believed to satisfactorily yield a problem inde-

pendent means of kick-starting any population-based stochastic search process.

However, from the last decade, a number of work (Maaranen et al., 2004; Rah-

namayan et al., 2007; Tometzki and Engell, 2011) have suggested that using

quasi-random heuristics for population initialisation can have a profound impact

not only on the search efficiency, but also on the overall quality of the resulting

final solution. This intuition comes from the fact that even with no a priori in-

formation on the nature of the final solution, heuristic initialisation can ease the

generation of more diverse and probably fitter samples.

In an attempt to examine the benefit of a more uniformly distributed sample

over a mere randomly generated one, Maaranen et al. (2004) use quasi-random

sequences to generate initial pool. Although the good distribution property of

their quasi-random sequence seems to degrade with increase in dimension, a prob-

lem widely known as the curse of dimensionality (Bellman, 2003; Morokoff and

Caflisch, 1994). But the authors found that the pools generated using quasi-

random sequences which try to imitate points with a perfect uniform distribution,

tend to cover the entire feasible search space more optimally. Similarly, Rahna-

mayan et al. (2007) propose a novel approach that uses opposition-based learning3

3Opposition-based learning works based on the theory of opposite numbers: For any real
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to generate the initial pool for a genetic algorithm. Rahnamayan et al. (2007)

reported acceleration in the algorithm’s overall convergence speed. Recently,

de Melo and Delbem (2012) propose a smart sampling technique for creation of

the initial pool using a classifier that maps and characterises the search space.

Elsewhere, Morrison’s investigations (Morrison, 2003) lead to the conclusions

that heuristic initialisations neither yield significant improvement in the quality of

the final solution, nor do they reduce the required number of function evaluations.

But compared to random initialisation, they can minimise stochastic effects in

the end result of the evolution by reducing the variance in the solution quality

across independent runs.

In general, pool re-initialisation techniques, also called restarted or multi-

start procedures, work by repeated application of an optimization algorithm on

a restarted search pool. Hickernell and Yuan (1997) proposed a multi-start algo-

rithm that performs global search by using a restarted quasi-random sample pool

of size N . In what they called concentration, the authors applied an inexpensive

local search to optimize each of the quasi-random sample points. After every p

iterations of the local search, q best samples are kept while the remaining N − q
are replaced with newly created quasi-random ones and the procedure is repeated.

Notice that their restarted local search is only run for a fixed predefined number

of iterations (p). Nevertheless, their experimental results on several nonlinear

benchmarks have shown that the multi-start quasi-random samples achieved bet-

ter coverage of the feasible search space which improved the performance of the

resulting algorithm on wider problem types.

Recently, Mart́ı et al. (2012) extensively surveyed such multi-start approaches.

Importantly, the authors went further to suggest categorisation of these methods

into memory-based and memoryless procedures.

Further details on heuristic initialisation can be found in Tometzki and Engell

(2011) where three different initialisation approaches are used as a pre-processing

phase. Their results (Tometzki and Engell, 2011) suggest that heuristic initiali-

sations can potentially improve convergence speed and solution quality. The next

section reviews a spectrum of multipopulation strategies for diversity control in

various EC models.

number x ∈ [a, b], the opposite of x, (Ox) is defined as: Ox = a + b − x. Rahnamayan et al.
(2007) theoretically prove that to every point P in D, there is a unique opposite point Op.



CHAPTER 5. DIVERSITY CONTROL IN EC 126

5.3.2 Multipopulation Strategies

A commonly used diversity control strategy is the multipopulation approach.

This has its inspiration from the biological notion of niching and speciation4

wherein diversity is enforced by promoting species formation within a popula-

tion. In this regard, Chen et al. (2011) classify all concepts utilising multipopula-

tions, islands, or ensembles models as forms of cooperative hybridization, which

potentially enhance the preservation of useful diversity in the search pool.

Some key variations amongst the various multipopulation strategies are in

the processes of creating subpools and in the adopted migration policies. In the

majority of these strategies, subpopulations are run concurrently and evolve by

optimizing a common objective. Thus, they can be classified as “synchronous”,

see Figure 5.1. In island models (Alba and Tomassini, 2002) for example, the

search begins with two or more subpopulations which exchange information via

periodic migrations. But the number and size of the subpopulations are mainly

predetermined by the user and are then kept unchanged throughout the evolution

(Alba and Tomassini, 2002; Branke, 1998).

Niching and crowding algorithms are multi-populations strategies that gen-

erally seek to minimise premature convergence and in particular facilitate con-

vergence to multiple, highly fit solutions across the search space. De Jong and

Spears (1992) developed a ’crowding-factor’ which defines the size of the niche

and suggests that a newly generated sample should replace samples from within

its own niche rather than any random sample in the population. Goldberg and

Richardson (1987) proposed a variant of niching called sharing ; they defined a

sharing function and used it to modify the fitness of the sample solutions across

the search pool. The idea is that the fitness values of samples existing in a cluster

are adjusted (devalued) relative to that of fairly isolated samples. Many other

variations of niching can be found in Horn and Goldberg (1998).

In deterministic crowding (Mahfoud, 1995), an offspring sample contests in

a tournament with its nearest parent sample and the highly fit sample is se-

lected to the next generation. In probabilistic crowding however, the best sample

wins the contest at a certain probabilistic rate defined by a survival likelihood

function. Ballester and Carter (2003) compared deterministic and probabilistic

4Niching, in simulated evolution, promotes formation of groups of individuals in a popu-
lation, whereas speciation restricts reproduction to within a group of related individuals that
share a common niche (Sareni and Krähenbühl, 1998).
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niching methods on a set of five multi-modal test problems. From a series of

experiments on 2-dimensional multi-modal test problems, the results in Ballester

and Carter (2003) led to the conclusions that GAs using crowding replacement

with random selection seem more robust and have good chance of converging to

alternative optima for the class of evaluated test functions. By contrast, the GA

that combines random replacement with tournament selection performs poorer.

Further empirical studies which compare various schemes – including proba-

bilistic and deterministic crowding, niching and speciation, sharing and restricted

tournament selection – on real-parameter optimization can be found in Ballester

and Carter (2004); Singh and Deb (2006). For extensive analytic study on various

niching and crowding techniques on discrete multi-modal problems, see Mengshoel

and Goldberg (2008). Other synchronous multipopulation methods dynamically

create subpopulations and adjust their numbers and sizes as the search progresses

(Branke et al., 2000; Tenne and Armfield, 2005). Such methods aim to ensure

maintenance of diversity by avoiding premature population convergence.

The other category that is not as universally exploited is the “asynchronous”

operation of subpopulations (Figure 5.1). In this case, the creation and evolution

objectives of the subpools differ. For instance, in a recent work, Park and Ryu

(2010) propose a dual-population GA (DPGA) designed to enhance diversity

control. The model consists of a main and a reservoir population. The main pool

has the fitness of its samples evaluated based on the problem’s original objective

function whereas, the reservoir pool is evaluated with an objective that exclusively

optimizes diversity. DPGA was reported (Park and Ryu, 2010) to perform best

on highly multimodal functions having densely populated peaks, but not as good

on sparse landscapes.

The micro-GA algorithm proposed by Krishnakumar (1990) is shown to pos-

sess remarkable performance characteristics on both stationary and non-stationary

problems. Although the micro-GA is not specifically titled a multi-pool approach,

its design also falls in to the class of the asynchronous multi-pool methods. The

approach runs a standard GA with a small sized pool (only 5 samples) until con-

vergence. Then a new pool of 4 samples which are randomly created replaces all

the samples in the previous pool except the best sample, i.e. the elite. Thus, sim-

ilar to the dual-pool EC algorithm proposed later in Section 5.4, the micro-GA

utilises standard parameter settings for its variation operators and uses the tour-

nament selection method. However, it does not utilise any heuristic initialisation
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to generate the new sample pool. This means that it is not improbable for the

newly generated random samples to still be in the neighbourhood of the previ-

ously converged pool. In addition, micro-GA mainly relies on a distance measure

(i.e. similarity in the genotype or phenotype samples) to assess the convergence

of its search pool, whereas the dual-pool EC model (Section 5.4.6) will utilise

both the spatial diversity and population evolvability measures.

Other related multipopulation-based EAs include the so-called multinational

evolutionary algorithm (Ursem, 1999) and forking GA (Tsutsui et al., 1997). The

following section reviews some recent hybrid methodologies deployed to enhance

diversity control.

5.3.3 Hybrids and Portfolios of Algorithms

There is a general consensus that the population-based methods are robust in

attaining global optimality via wide exploration (Blum et al., 2011; Joines and

Kay, 2003; Michalewicz, 1994). Yet, their lack of intense exploitation capabilities

limits their effectiveness in dealing with complex global optimization tasks. To

strengthen the balance in the exploration and exploitation for optimal diversity

management, various approaches which combine a number of algorithmic models

in form of hybrids or memetic algorithms5 are developed. Such approaches usually

combine EAs with various local improvement procedures made from local search

algorithms.

Joines and Kay (2003) examine the behaviour of various instantiations of

hybrid algorithms. They found that irrespective of the employed model for evo-

lutionary learning (Baldwinian, Lamarckian or their mix)6; hybrid frameworks

seem to achieve good exploration-exploitation balance as compared to their non-

hybrid counterparts. Theoretical analyses on hybrid frameworks which seek to

balance exploration-exploitation trade-off can be found in Lin and Chen (2011).

It is noteworthy that while hybrid methods consistently enhance the exploita-

tion ability of EAs, their design requires careful treatment. This is because ex-

cessive application of an intense local search algorithm risks over-exploitation –

disrupting the crucial exploration-exploitation balance.

5Algorithmic portfolios also called memetic algorithms (MA) (Moscato, 1999).
6In Baldwinian evolution the local search only alters the individual’s fitness (phenotype);

whereas Lamarckian evolution changes both the phenotype and the genetic structure of an
individual.
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From the above reviewed methodologies (Sections 5.3.1 to 5.3.3), it is noticed

that the challenges in designing an effective diversity control policy require a

multifaceted approach. Thus, in the following (Section 5.4) a dual-pool model

designed to use a dedicated pool for evolution and a restarted sample pool for

diversity is proposed. The proposed model is then evaluated on various global

optimization case studies in Section 5.6.

5.4 A Dual-Pool EC Model for effective

Diversity Control

5.4.1 Rationale

Multipopulation EC models (Section 5.3.2) have continued to receive significant

attention following the many successful investigations (Chen et al., 2011) into

such systems. However, these models have always had to cope with the challenges

surrounding the additional parameterisation involved. In general, designing mul-

tipopulation models requires a prior decision on the creation and management

strategies of the multiple pools. Thus, one needs to decide, beforehand, on the

criteria upon which the subpopulations evolve within themselves and communi-

cate with one another, i.e. the migration policies among subpools. In addition,

the minimum and maximum pool sizes, the initial number of pools, thresholds for

the minimum and maximum number of subpools (when dynamic pool creation is

utilised), etc., must be decided.

Crucially, the challenges involved in such traditional multipool approaches

often result in huge overhead due to proliferation of secondary parameters. In

fact, the parameter tuning task often becomes more problematic – and occasion-

ally intractable – since the optimum settings for such additional parameters are

problem dependent.

With the above considerations in mind, this section proposes a dual-pool EC

model that enjoys the benefits of the multipool framework combined with a heuris-

tic initialisation. Specifically, as is visualised in the theoretic research relevance

tree in Figure 5.2, the proposed approach integrates a quasi-random heuristic

initialisation, called search space partitioning (SSP), into a dual population ar-

chitecture to facilitate temporal diversity control. The dual-pool model is made

up of an evolution pool (i.e., the main pool), and a diversity pool. The evolution



CHAPTER 5. DIVERSITY CONTROL IN EC 130

Fundamental
Research
Domain

Possible
Research

Approaches

Diversity
Control

Initialisation
Policies

Multi-populations
Strategies

Quasi-random Synchronous AsynchronousRandom

SSP Heuristics Dual Pool

SSP Initialisation

Number of Partitions
Pool size
Dimensionality
Initialisation bounds
Partition threshold
...

Evolution Pool

Pool size
Pool search range
Pool creation mode
Pool life span
Migrants proportion
...

Diversity Pool

Pool size
Pool initialisation
range
Pool creation mode
Pool life span
...

Proposed/
Adopted
Research

Approaches

Mathematical
Model

Parameters
and Data
Structure

Dual Pool EC
Model

Mathematical
Model

Algorithm

Figure 5.2: Theory Research Relevance Tree: A roadmap to designing a Dual-
Pool EC model with Search Space Partitioning (SSP) heuristic initialisation.

pool primarily undergoes the evolutionary optimization process, whereas the di-

versity pool constitutes the newly restarted samples which are created on demand

to reinstate diversity into the evolution pool. Preliminary to the development of

the proposed EC model, the characteristic data sets and mathematical model

parameters for the solution approaches (SSP initialisation and the dual-pool) are

specified in Figure 5.2. Details of each of these follow in turn.

5.4.2 The Dual-Pool EC Architecture

In contrast to the conventional multipool architectures which are mainly syn-

chronous in nature, the proposal herein is aimed at designing a framework (cf.
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Figure 5.2) that combines an asynchronous dual-pool model with a heuristic

population initialisation. This enables robust diversity control by minimising

recurring communication overhead among subpools.

5.4.3 The Evolution Pool – Creation and Working

Playing the role of the main pool, the evolution pool PEvo serves as the initialisa-

tion point for the global search. Similar to any conventional random initialisation,

PEvo is created using a pseudorandom number generator based on a uniform dis-

tribution. The size of this is equal to the actual population size (N) for the

overall search. In order to ensure the feasibility of the initial samples, PEvo is

created (uniform at random) within the feasible boundaries of the search space,

such that:

PEvo ← x ∈ [x, x̄] : x ∈ Rn, (5.2)

where n is the problem dimension, x is the vector of design variables, x and x̄ are

vectors of lower and upper bounds respectively.

5.4.4 The Diversity Pool – Creation and Working

The evolution pool and the restarted samples in the diversity pool form a mul-

tipopulations strategy that runs in an asynchronous mode (Figure 5.2). Thus,

the restarted samples forming the diversity pool PDiv, are only occasionally used

to restore useful diversity into the evolution pool. Consequently, PDiv is created

only after and whenever a sufficient convergence of the evolution pool is detected.

For the details on how convergence is assessed (Bashir, 2012)7, see Section 4.3 for

a spatial diversity measure (C̃Div), and Section 4.5 for the evolvability measure

(σXover) originally proposed in Bashir and Neville (2012a).

Note that the occasional creation and injection of the newly restarted samples

from the diversity pool in this proposal clearly contrasts with the majority of

traditional multipool approaches. In such approaches, the dual (Park and Ryu,

2010) or multiple (Branke et al., 2000) pools are run concurrently throughout

the evolution8. Thus they suffer a significant hike in computational cost due

7A robust convergence detection mechanism that combines a spatial diversity measure with
a population evolvability measure proposed in Section 4.5 is adopted in this model.

8For any additional subpool of size Ni in the traditional multipool methods, evaluating the
samples in the subpool(s) at every generation t, leads to an additional Ni × t evaluations for
every evolutionary cycle.
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to continuous evaluation of the extra samples from several constituent pools.

The following section presents a mathematical model that describes the creation

process of the diversity pool, PDiv.

5.4.5 Search Space Partitioning (SSP) Heuristic

Initialisation

In order to improve diversity by enforcing uniformity in the coverage of the entire

feasible search space, a strategy that generates the diversity pool PDiv using a

quasi-random heuristic called search space partitioning (SSP) is proposed. In

principle, SSP partitions the search space into uniformly sized hypercubes and

repeatedly samples one random sample from each hypercube until the required

pool size (N) is reached.

Given any n-dimensional search space D ∈ Rn (Algorithm 5.1), let each of its

dimensions be segmented into κ equal partitions (Algorithm 5.1, line 6). Suppose

that ρ(κ) = {m1,m2, . . . ,mn} is the set of the resulting partition sizes for each

of the j = 1, . . . , n dimensions (line 7). Then, along each dimension j, the

partition sizes, mj, are assumed to be uniform. Therefore, SSP segments the

original search space D into φκ = κn equal-sized subspaces (hyper-cubes) (line

8). For each subspace φκ, let xi = [xi, x̄i] ∈ Rn be a uniformly distributed random

sample generated within the boundaries of mi. Then, SSP uses a simple uniformly

distributed pseudorandom generator to generate equal number of samples across

the entirety of the partitioned search space φκ (lines 9-10).

The following example compares the effect of SSP on a highly partitioned

search space against an un-partitioned space.

A. A Concrete Case

Given a 2-dimensional search space, such that D ∈ R2. Let the required pop-

ulation size be N = 100 samples9, then SSP heuristic generates diverse sample

solutions by partitioning the search space within the following two limiting cases:

Case I: If SSP is set to use a single partition, i.e., κ = 1 such that the partition

size for each of the n-dimensions is ρ(1) = {m1,m2, . . . ,mn}, then SSP

9SSP partitions each of the n-dimensions of the search space D ∈ Rn into κ = n
√
N segments.

e.g., for a 2-D space, if N = 100, then each of the 2-dimensions is partitioned into 2
√

100 = 10
segments.
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Algorithm 5.1 Search Space Partitioning Quasi-random Heuristic.

1: Define and set search space (D) parameters 0

2: dimensions n;
3: total population size N ;
4: bounds: D ∈ Rn =

{
xj ∈ R | xj ≤ xj ≤ xj ; j = 1, 2, . . . , n

}
;

5: Define and set partition parameters
6: set the number of partitions to κ;

7: evaluate partition sizes m(κ) :
{
mj =

xj−xj
κ | j = 1, 2, . . . , n.

}
;

8: segment D into equal sized subspaces: φκ =
{
κn =

∏n
j=1mj

}
;

9: generate a random (uniform) sample {xi = U (φκ)} from each φκ;
10: repeat (9) until all N samples are generated.

Note that segmenting every dimension of the original search space D into κ partitions yields
φκ = κn subspaces.

yields φκ = κn = 1n subspace. In this case, SSP generates all the N = 100

samples using a uniform distribution over the entire feasible search space

(Algorithm 5.1, line 4), i.e., within the subspace bounds φκ =
∏n

j=1mj

which is equal to the size of the original search space D.

Case II: If on the other hand the SSP is set to use multiple partitions with

say, κ = 10, then SSP segments the search space D into 10 partitions, and

throws into each of the φk = κn = 102 subspaces a single sample point

xi = [xi, x̄i]. The position of a sample in each subspace is also determined

by a uniform random distribution as in the previous case.

Notice from the above cases that whilst case I falls back to a conventional

pseudorandom initialisation where only a single partition is utilised, case II ran-

domly allocates every sample into a separate partition across the entire search

space. Thus, in the proposed SSP heuristic, the required minimum population

size N relates to the number of partitions κ according to the following model:

N = κn, (5.3)

where n is the dimensionality of the search space D.

It is deduced from (5.3) that the higher the number of partitions κ, the larger

the required pool sizeN to achieve maximum spread for a given dimension n. This

is because the two have an exponential relation with respect to the dimensionality
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Figure 5.3: Comparing a typical Random initialisation with the SSP quasi-
random heuristic on a 2-dimensional search space. (a): Random Initialisation.
(b): SSP heuristic Initialisation.

n. Hence, the SSP quasi-random heuristic is obviously not immune to scalability

problems in high dimensional problems, a phenomenon popularly known as curse

of dimensionality. A simple workaround is to regulate the required minimum N

by reducing the number of partitions as dimensionality grows.

Figures 5.3(a and b) compare the distribution of the samples generated using

a typical random initialisation with that of the SSP based heuristic initialisation

in a 2-dimensional search space.

Figure 5.3a depicts a typical random initialisation where the sample points

are generated independently from a uniform distribution. Thus, inevitably, some

portions of the search space are often over-sampled, leaving other portions under-

sampled. This therefore results in formation of clusters, scattered across the

search space. This effect is visible in Figure 5.3a, such as in partition {2 < x <

3 and 0 < y < 1} which has no sample points. There are approximately 20

partitions in Figure 5.3a which do not have any sample point. This leaves several

other partitions with a cluster of more than one sample points. Notice that this

corresponds to the SSP defined in Case I above where ρ(κ) = ρ(1), which is equal

to the original search space D.

In contrast, Figure 5.3b shows when the SSP heuristic segments the search

space into κ = 10 partitions (i.e. ρ(κ) = ρ(10)), SSP distributes its samples in a

rather more uniformly distributed manner, avoiding unnecessary cluster forma-

tions. Note that this is achieved at barely any additional computational cost.



CHAPTER 5. DIVERSITY CONTROL IN EC 135

The formation of clusters in initial search pools may have undesirable conse-

quences. In essence, any population-based algorithm like EA could leverage the

availability of clusters in its initial pool if and only if they are formed based on

some prior knowledge on the nature of the problem landscape. Although having

such prior information could benefit the efficiency of these stochastic method-

ologies, it is often not available. Therefore, blind formation of clusters with no

prior information often impedes the overall search efficiency by misleading the

evolutionary variation processes during the crucial initialisation stages. Hence,

SSP avoids unwanted clustering by enforcing some uniformity in the initial dis-

tribution of the sample pool. This allows the EA to freely kick start its search

without the need for any prior knowledge about the problem landscape.

The preceding overview on heuristic initialisations (Section 5.3.1) revealed

that such approaches are commonplace in the EC literature. However, this pro-

posal for randomly sampling within a uniformly partitioned search space is a novel

approach that could minimise the cost of quasi-random heuristic initialisations.

5.4.6 The Proposed Dual-Pool EC Model

Having designed the mathematical models for the evolution pool and the SSP-

based restarted samples in the diversity pool, this section presents the proposed

model for the dual-pool EC algorithm as outlined in Algorithm 5.2. This model

closely resembles the EA (Algorithm 2.2) previously examined in Chapter 2. A

key distinguishing feature is in the initialisation stage (line 2) where a separate

evolution pool PEvo is utilised. This is then later combined (line 11) with the

restarted samples in PDiv (created using the SSP heuristic initialisation, see line

8) whenever convergence is detected (line 5). The evolutionary cycle ends (line 3)

when a termination condition – such as accuracy threshold or maximum evalua-

tion limit – is reached. Consequently, this model’s search process proceeds such

that, whenever PEvo converges, new samples from the diversity pool, PDiv, are

used to restore sufficient diversity into the search process.

To facilitate further understanding of the underlying processes behind the

proposed dual-pool EC model, the flow diagram (Figure 5.4) demonstrates the

dynamic merging process of the separate pools during the course of evolution.

Figure 5.4 reveals that most of the evolutionary cycles are run solely with the

samples from the evolution pool (PEvo), the newly restarted samples in the diver-

sity pool (PDiv) are only introduced when sufficient convergence is detected. Thus,
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Algorithm 5.2 The Dual-Pool EC Algorithm

1: initialisation
N ← Pool size; n← problem dimension;
t← 0;

2: initialise the evolution pool
PEvo(t)← {Xi} : X ∈

[
xj , xj

]
, i = 1, .., N, j = 1, .., n;

3: while not termination do
4: run EC model and estimate convergence at every iteration

PEvo(t), C̃Div(t), σXover(t)← invoke EC (PEvo(t));
5: check for convergence of PEvo(t)

if
(
C̃Div(t) < CminDiv

)
and

(
σXover(t) < σminXover

)
6: PREvo(t)← rank f (PEvo(t));
7: get the top k% best solutions (elite) in PEvo

PEEvo(t)← k%
(
PREvo(t)

)
;

8: (re-)initialise the diversity pool (PDiv) using SSP heuristics (Algorithm 5.1)
PDiv ← {Xi} : X ∈

[
xj , xj

]
, i = 1, .., N, j = 1, .., n;

9: evaluate and rank PDiv by distance from the elite
PRDiv ← rank

∣∣∣∣Xi
Div −XE

Evo

∣∣∣∣ : i = 1, ..., N ;
10: get the farthest samples in PRDiv

PDiv ← (1− k)
(
PRDiv

)
;

11: merge evolution and diversity pools to form new PEvo
PEvo(t)←

{
PEEvo(t) ∪ PDiv

}
;

12: end if
13: PEvo(t+ 1)← PEvo(t)
14: t← t+ 1;
15: end while

t0 t1 tn tn+1

Evolution Pool

Diversity Pool

tn+3 tn+k tn+k+1

Evolution Pool

Diversity Pool

+ +

Evolution Pool

Figure 5.4: The Dual Pool EC model dynamically showing the merger of the
distinct evolution pool (PEvo) with the SSP created diversity pool (PDiv) over
generations t. The periodic merging process is adaptively controlled via a robust
convergence detection strategy.

the model allows continuous optimization via a temporal exploration-exploitation

cycle. This enhanced diversity control mechanism helps avoid premature con-

vergence. Ultimately, the optimization system runs continuously until a user

specified limit on function evaluations is reached.
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Recall that the commonly used approaches to multi-population models (see

Section 5.3.2) require concurrent and continuous runs of the multiple pools. How-

ever, the proposal herein suggests a new framework which enables injecting fresh

samples from the diversity pool into the evolution pool. The interaction between

these pools is controlled through a robust convergence measure. This is a vi-

tal feature that avoids the unnecessary communications overhead suffered by the

traditional multipool and multi-start approaches.

5.5 Visualising Diversity in EC Models

Prior to the experimental evaluations, this section examines with the aid of a vi-

sualisation how spatial diversity fares under both the standard EC model and the

newly proposed dual-pool EC architecture. From the perspective of evolutionary

optimization, the availability of diverse samples at any instance in a search pool

serves as a driving force for continuous evolution. Diversity allows the evolution-

ary operators to generate newer and possibly higher quality solutions. However,

since EAs naturally tend to eventually converge to a region having high quality

solutions in the search space, they inevitably loose the crucial diversity in their

sample pool. Of course, it is noteworthy that the convergence rate depends partly

on the settings for the mutation and crossover probabilities, and to a large extent

on the selection pressure10 employed.

5.5.1 Diversity Visualisation with a Standard EC Model

An illustration of typical temporal dynamics of the spatial diversity (C̃Div) in

an evolutionary pool of a standard EC algorithm (Algorithm 2.2) is as shown

in Figure 5.5c. The result comes from an EA model, applied on the Schwefel

benchmark (Section 5.6.1), having a randomly initialised real-valued sample pool

of size N = 100. The model uses BGA11 mutation and intermediate crossover

operators applied at the rates of PM = 0.01 and PC = 1.0 respectively. A strict

binary tournament selection without replacement is utilised.

10Selection pressure describes the convergence rate and it is often defined as the ratio of the
probability of selecting the currently best sample solution to that of an average sample solution.
See Section 2.6.3 for further details.

11The adopted mutation strategy is based on the Breeder GA (BGA) mutation algorithm
(Mühlenbein and Schlierkamp-Voosen, 1993). It is an advanced version of Gaussian mutation.
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It is observed that the initially diverse samples in Figure 5.5a gradually con-

verge towards a limited area of the search space over generations (Figure 5.5b). To

some extent, the spatial diversity, C̃Div, falls sublinearly with increasing function

evaluations (Figure 5.5c). Although this phenomenon could have been avoided

by increasing the probability of mutation, applying high rates of mutation slow

down the evolutionary progress and could turn the search into a random one.

On the other hand, an EA with a converged pool (such as the one in Figure

5.5b) has lower chances of yielding any significantly different and higher quality

solutions. This is because the converged pool handicapped the effect of the evolu-

tionary variation operators. Consequently, it is a difficult and uncertain trade-off

to set up a good balance in exploration and exploitation.

5.5.2 Diversity Visualisation with a Dual-Pool EC Model

In comparison to the diversity dynamics of the standard EC (Figure 5.5), Figure

5.6 depicts the dynamics for the proposed dual-pool EC model (Algorithm 5.2)

on the same benchmark problem. The parameterisations of the dual-pool EC are

as specified in Table 5.1. Notice that a smaller pool size, N = 50, is employed. In

particular, Figure 5.6d depicts the dynamics of C̃Div, while Figure 5.6(a-c) show

the temporal interplay of the evolution and diversity pools in this model.

It was found that similar to the standard EC model, the dual-pool EC enjoys

an exploratory initialisation with the samples in its evolution pool PEvo scouting

the entire feasible search space (Figure 5.6a). Then, the evolution pool gradually

converges to a high quality region (see the cluster in Figure 5.6b) to exploit the

already learned global information of the search. The diversity dynamics in Figure

5.6d reveals that unlike with the standard EC model, the rate of convergence in

this model relates more linearly with the number of function evaluations. Also,

the degree to which the samples converge is considerably higher (see Figure 5.6b

and the value of C̃Div at the point labelled B in Figure 5.6d). As compared

to a rather weak exploitation previously seen in the standard EC model (Figure

5.5c), Figure 5.6d indicates the ability of the dual-pool EC model to allow deep

exploitation of the promising areas of the search space. Whilst the two algorithms

share the same underlying parameterisation, the deep exploitation witnessed here

could be a result of using relatively smaller sized pools (see Table 5.1). This was

possible since the new framework is able to maintain sufficient diversity even with

small sample sizes.
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Figure 5.5: An illustration of a typical spatial diversity (C̃Div)
dynamics for the standard EC model. (a): Depicts an instan-
taneous 2-D view of the distribution of initial sample pool
scattered all over the search space. (b): Shows the distribu-
tion of the sample pool after several function evaluations at
later stage of the evolution with the samples virtually con-
verged (c): Shows the dynamics of C̃Div with the regions of
high level of diversity (label A) and low level of diversity
(label B) marking the exploration and exploitation stages,
respectively. The vertical axis in plot (c) is normalised.
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Figure 5.6: An illustration of the typical spatial diversity
(C̃Div) dynamics for the Dual-Pool EC model. (a): Depicts an
instantaneous of the distribution of initial sample pool over
the search space. (b): Shows the distribution of the sample
pool during the exploitation stage with the samples virtually
converged. (c): Shows that merger with the Diversity Pool
restores better coverage of the search space. (d): Shows the
dynamics C̃Div with the labels (A), (B) and (C) marking a
high C̃Div for exploration by the initial evolution pool, the
lowest C̃Div during exploitation, and a restored high level of
C̃Div after merger with the diversity pool, respectively.
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After PEvo merges with the new samples form PDiv (Figure 5.6c), the newly

introduced diverse samples restore a full-scale spatial diversity into the previously

converged evolution pool. Note that while the new samples in PDiv draw the evo-

lutionary search towards exploring other unexplored regions of the search space,

the previously learned information is carried forward in the elite samples PE
Evo

inherited from the previous evolution pool (Algorithm 5.2, line 7). Hence, this se-

quence of exploration-exploitation phases encourages continuous global searching

– by preserving diversity – even when a small sized pool is utilised.

5.6 Evaluation of the Dual-Pool EC on

Multimodal Benchmarks

This section analyses and evaluates the performance of the proposed dual-pool

EC model on a set of multimodal global optimization benchmarks. The aim

is to analyse the effect of effective diversity control on optimization of highly

multimodal problems under limited population size and computational budget.

Detail parameterisations for the dual-pool EC model are presented in Table 5.1.

Besides the specifications for the standard evolutionary parameters, Table 5.1

specifies the types of the evolutionary operators, their rates and step sizes. It

also specifies the creation mode for the dual populations.

5.6.1 Benchmark Test Cases – Features and Significance

The proposed dual-pool strategy is benchmarked on a set of global optimization

test problems. The experiments empirically compare the performance of the dual-

pool EC model with that of a standard EC model. The comparison is on the basis

of the required function evaluations to attain a close approximation (within 10−3

accuracy level) of the true optimal solution.

The test problems considered are categorised into two major classes. The first

class is a set of three traditional global optimization benchmarks consisting of: (i)

Rastrigin (f1); (ii) Schwefel (f2); and (iii) Easom (f3), test problems (see Table

B.1 in Appendix B for their detailed formulations).

• The Rastrigin and Schwefel functions have many local optimum solutions

surrounding the global optimum, and hence they are highly multimodal.
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Table 5.1: Parameter Settings for the Dual-Pool EC Model

Parameter Name Symbol Description/Values/Types

Population Size N 20 to 50

Initial Population − SSP Heuristic initialisation

Encoding − Real-valued

Selection Scheme − Binary Tournament

Evolution Pool size PEvo N , i.e. the main population size

Diversity Pool size PDiv (1− k)×N , i.e., k% smaller than N

Evolution Pool Elite PEEvo
Only k = 5% of the evolution pool are merged
with PDiv after PEvo converges

Operator typea
C Crossover: Intermediate recombination

M Mutation: BGA mutation operator

Crossover Probability PC 1.0

Mutation Probability PM 0.01

Recombination parameter α Weighting parameter α = U(0, 1);

Mutation Parameter µ Step size parameter µ = U(0, 1);

Replacement Scheme − Generational–Elitist

Termination Criteria
Eabs Absolute Error Eabs < 10−3, or

Max-FE Max. Function Evaluations (10, 000)
aThe Intermediate recombination operator is an extended line recombination often used with

real-valued representation. The BGA mutation is a variant of Gaussian mutation.

Notice, however, that Rastrigin function is symmetric and has a global

convex topology12, whereas the Schwefel function does not.

• The Easom function is characterised with a sharp peak situated in a wide

plateau landscape. This function is quite challenging to deterministic or gra-

dient based models because it yields no promising direction of descent/ascent.

It is also popularly known as the Needle-in-Haystack (NiH) benchmark.

The second class also constitutes three test problems, namely: (i) Rastrigin2;

(ii) Sphere2; and (iii) Hybrid, benchmarks. These are essentially modified ver-

sions of the traditional benchmarks. The key motivation for the development of

the modified benchmarks was to deal with the “flawed” properties associated with

12Multimodal functions having a convex global orientation are said to have global convex
topology. Such functions although multimodal, appear to be GA-easy due to the unique nature
of their landscapes. They are also classed as low dispersion problems, see Lunacek and Whitley
(2006).
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the traditional benchmarks; such properties include separability, global convexity,

symmetry, i.e. having global optimum situated at the centre of search domain and

so on. As demonstrated by Liang et al. (2005), such flaws can be mitigated by

simple modifications involving shifting, rotation, stretching/compression of the

conventional benchmarks. In addition, more test problems, built from composi-

tions of several instances of a given benchmark (called a basis function) or a mix

of basis functions (also called hybrid composite functions) were also suggested.

The modifications on the traditional test problems yield improved benchmarks

which are believed to have most of the attributes of the real-world problems. The

modified benchmarks were recently adopted in the various IEEE CEC compe-

titions on real-parameter and dynamic optimization problems. Details on their

development can be found in Li et al. (2008); Liang et al. (2005); Salomon (1996).

In particular, the Rastrigin2 benchmark used in these experiments is a shifted and

rotated version of the traditional Rastrigin function. The Sphere2 benchmark is

a composition of 10 Sphere basis functions. The Hybrid benchmark is a compos-

ite of various basis functions. It consists of two basis functions from each of the

Sphere, Ackley, Griewank, Rastrigin and Weierstrass benchmarks. See Table B.1

in Appendix B for detailed expressions of each of these basis functions.

5.6.2 Results: Analysis and Interpretation

The proposed dual-pool EC model is compared with a standard EC algorithm on

a set of global optimization benchmarks (detailed in Section 5.6.1). The results

of the evaluations of the sensitivity of these algorithms across six different pool

sizes (20 to 1000) are as presented in Figure 5.7; the reported results (detailed

in Table C.1, Appendix C) are averaged outcomes of 100 independent runs for

statistical significance. For all the test problem types, the bar plots in Figure

5.7 show the average number of function evaluations required to reach the true

optimal solutions within an absolute error of Eabs = 10−3.

The horizontal dashed-lines at the top of the plots in Figure 5.7 mark the

limit of 105 function evaluations. This limit defines the maximum computational

budget available for the algorithms to converge to within 10−3 accuracy level of the

optimum solution. Consequently, an algorithm is considered to have converged

to the true optimal solution of a given problem if and only if its bar graph has

not hit the mark for the maximum function evaluation limit of 105.
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Figure 5.7: Performance Comparison of the Dual-Pool EC with the Standard EC Algorithm on six global optimization
benchmarks across various pool sizes. The vertical axes show the computational cost (function evaluations) in log scale. At
the top of bar pairs, + symbol indicates a statistically significant difference; − symbol indicates an insignificant difference.
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function evaluations. The horizontal dashed lines mark the maximum evaluation limit.Results are averages of 100 runs.
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Notice that the two algorithms are assessed on both robustness and efficiency ;

robustness is judged based on how often an algorithm converges to the true op-

timal solution within the budgeted evaluations; efficiency is rated based on the

number of function evaluations needed to converge to the optimal solution. Thus,

the efficiency is indicated by the height of the bar graphs (the lower the better).

Notably, while both the algorithms have found the true solution on many of the

test problems considered, see Figure 5.7(a to d) for example, the standard EC

algorithm has failed to converge on several test cases on the Sphere2 and Hybrid

benchmarks (Figure 5.7(e and f)).

Furthermore, the error bars on the bar graphs (Figure 5.7) represent the

standard errors in the mean number of function evaluations. At the top of the bar

pairs in Figure 5.7, the pairs having statistically significant difference and those

that have statistically insignificant difference are labelled + and −, respectively.

The following section describes the two significance tests used.

5.6.3 Statistical Significance Testing and Analysis

To assess the statistical significance of the obtained results, both the parametric

(paired t-test) and the nonparametric (Wilcoxon Rank sum13) tests (Hollander

and Wolfe, 1999), were utilised. The two algorithms are statistically compared

at α = 0.01 significance level for the various benchmarks.

A key distinguishing feature between the two statistical tests is in the as-

sumptions made about the nature of the distribution of the populations and the

measured parameter. For the parametric t-test, the null-hypothesis H0 assumes

that the results for the two algorithms are random samples from independent nor-

mal distributions with equal means and, the alternative hypothesis H1 assumes

that the means are not equal. But for the parametric test, the null-hypothesis

H0 assumes the random samples are from independent identically distributed

continuous distributions with equal medians, and the alternative hypothesis H1

assumes the medians are not equal. Parametric tests can be used when nor-

mality conditions are satisfied. However, the significance of nonparametric tests

in analysing experimental results obtained through multiple independent runs of

EAs for multiple problem analysis was discussed at length by Garćıa et al. (2009).

Importantly, nonparametric tests require no normality restrictions.

13Wilcoxon rank sum test is a pair-wise non-parametric statistical test designed to detect
significant differences between two algorithms.
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Table 5.2: Statistical Tests: Parametric (t-test)/nonparametric (wilcoxon) test
for the results in Table C.1 comparing the Dual-Pool and Standard EC models.

Pool Statistical Tests on Benchmark Problems: t-test/Wilcoxon0

size Rastrigin Schwefel Easom Rastrigin2 Sphere2 Hybrid

20 −/+ −/+ +/+ +/+ +/− +/−
50 −/+ −/+ −/+ −/+ +/+ +/+

100 +/+ −/− +/+ +/+ +/+ +/+

200 +/+ −/− +/+ +/+ +/+ +/+

500 +/+ +/+ +/+ −/− +/+ +/+

1000 +/+ +/+ +/+ −/− +/+ −/−
Note: The + symbol indicates a statistically significant difference; − symbol indicates

an insignificant difference between the performances of the two algorithms. The highlighted

results show that the parametric and nonparametric tests have only disagreed on 8 out of 36
test cases. Thus, while the nonparametric test is generally appropriate across the varying pool
sizes, the parametric test may not be suitable on small to medium pool sizes.

In this work, comparison of the two statistical tests (detailed in Table 5.2)

reveals two important findings.

1) For the experiments conducted with populations of 20 and 50 samples, the

t-test and Wilcoxon rank sum test differ on 8 out of the 12 test cases. This

interesting finding reveals that when a small pool size (≤ 50) is used, there

is more than 66% chance of having the t-test fail. This could be due to the

fact that parametric tests, such as t-test, require normality assumption which

does not always hold for small sample sizes.

2) However, for the rest of the experiments where search pools of more than 50

samples are utilised, the t-test and Wilcoxon rank sum test have demonstrated

remarkable agreement (Table 5.2). This implies that for larger pool sizes

(> 50) the distribution of the sample pool seems to satisfy the normality

assumption.

The above findings signify that whenever evaluation of EAs involve using small

to medium pool sizes, a nonparametric test must be used to ensure robust sig-

nificance analysis. Else, for large pool sizes (> 50), a parametric test suffices.

Therefore, since our experiments span small to large pool sizes, the statistical

significance results reported in Figure 5.7 are only those based on the nonpara-

metric Wilcoxon test.
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5.6.4 Analysis of Simulation Results

From the above description of the benchmark test cases in Section 5.6.1, the

simulation results in Figure 5.7 are discussed in two main sections. Firstly, this

section analyses the results from the first category of the test problems – the

traditional benchmarks (Rastrigin, Schwefel, and Easom) – shown in Figure 5.7(a

to c). It is observed from Figure 5.7(a to c) that both the dual-pool and standard

EC algorithms have reached the required accuracy within the available (105)

function evaluations.

Besides the general plots for the evaluation results in Figure 5.7, a set of

performance summary plots on these evaluation results is shown in Figure 5.8.

Figure 5.8a summarises the computational cost of each algorithm across all the

test problems. Figure 5.8b summarises the cost incurred by each algorithm when

run with a pool of 20 to 1000 samples. The significance of Figure 5.8b is to

provide additional insight into the overall sensitivities of the individual algorithms

to varying pool sizes.

The summary plot in Figure 5.8a shows that for both models, the compu-

tational cost on the three traditional benchmarks is approximately around the

first 104 function evaluations; whereas on the modified benchmarks both models

needed approximately 105 function evaluations. This finding reveals that both

models were able to discriminate the different complexities of the two categories

of benchmarks.

Notice, however, that the proposed dual-pool EC algorithm needed more eval-

uations on some of the test cases on the traditional benchmarks (see, for example,

Figure 5.7(a and c) and the label (A) on Figure 5.8a for the Easom benchmark).

This is not unexpected because on low complexity problems such as the traditional

benchmarks, the dual-population framework used in the proposed method may

not always translate to efficiency improvements. In fact, the central design goal

is to enhance robustness on wide range of global optimization problems. Thus,

while the proposed method is expected to ensure convergence to optimal solution

on low to high complexity problems, some efficiency lag is likely on less complex

problems. Nevertheless, when summarised over all the pool sizes, the computa-

tional cost summary plot (Figure 5.8b) revealed that the dual-pool model seems

to always converge to the optimum solution with fewer function evaluations. This

generally shows improved efficiency over the standard EC model.

On the other hand, the simulation results (Figure 5.7) and the summary plot
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(Figure 5.8b) show that the proposed algorithm performs best with pool sizes of

50 to 100. As expected, this shows the ability of the proposed framework to find

its way to the required optimal solution using only small to medium sized pools.

Another noteworthy observation is that the variability in the performance

characteristics of the two algorithms, across all the benchmark problems, shrinks

as the pool size increases from 20 to 1000. This is indicated by the diminishing

size of the standard error bars in Figure 5.7. Whilst this fall in variability is a

vital outcome, the larger pool sizes have also led to an increase in the number of

function evaluations required to converge to the specified accuracy. This effect is

observed from Figure 5.8b, which shows that the two algorithms converge with

fewer function evaluations when a pool size of 50 to 100 is utilised.

Overall, for the traditional benchmarks (Figure 5.7(a to c)), the convergence

summary graph (see the Rastrigin to Easom bar plots in Figure 5.8a) reveals

that while both algorithms have found the required optimal solution, they also

compete head-to-head on the basis of convergence efficiency.

Secondly, the plots in Figure 5.7(d to f) compare the two algorithms on the

modified benchmarks, namely Rastrigin2, Sphere2 and Hybrid. Although these

modified benchmarks require a considerably higher amount of function evalua-

tions, it was found that (Figure 5.7(d to f) and Figure 5.8a) the dual-pool model
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has always converged to the optimum solution faster and mostly with a statisti-

cally significant difference as compared to the standard EC model. In fact, out of

the 100 repeated runs, the standard EC model has consistently missed the opti-

mal solution when run with pool sizes of 50 and 1000 on the Sphere2 benchmark

(Figure 5.7e), and pool sizes of 50, 100, 500 and 1000 on the Hybrid benchmark

(Figure 5.7f). While this is noticeable from the bar graphs of the standard EC

algorithm reaching the function evaluations limit on both Figure 5.7(e and f), it

is best seen from the complete results in Table C.1 of Appendix C.

Further, while the bar plots in Figure 5.8a reveal that the performance of

both the two algorithms is clearly affected by the increased complexity of the test

problems, i.e., from the simplest of the traditional benchmarks (Rastrigin) to the

most difficult Hybrid composition benchmark; Figure 5.8b shows that the dual-

pool EC significantly minimises the overall computational cost when run with

small to medium pool sizes of 50 to 100. Importantly, even on the larger pool

sizes (200 to 1000), the proposed model still maintains lower function evaluations

as compared to the standard EC model. This finding is rather surprising given

that the proposed dual-pool EC model is designed to enhance performance on

small to medium pool sizes; it was not expected to compete as efficiently when a

large pool size is utilised.

5.6.5 Discussion

The earlier review on diversity control policies (Section 5.3) revealed that use of

multipopulation-based evolutionary algorithms is not entirely novel. However,

the proposed criterion upon which a pool of newly restarted samples dynamically

interacts with a dedicated evolution pool suggests a new framework. The ap-

proach allows harnessing the benefits of an asynchronous multipool architecture

(Figure 5.2) while avoiding its intractable inter-population communications diffi-

culties. Conventional approaches in the literature mostly involve concurrent and

continuous runs of the multiple pools. Such approaches often result in a severe

increase in function evaluations, which increased their overall computational cost.

Equally, from the preceding overview on various proposals on heuristic ini-

tialisations (Section 5.3.1), it might seem that such techniques may not have any

impact on diversity control. However, from a number of investigations (Morri-

son, 2003; Tometzki and Engell, 2011) conclusions have been drawn that these

strategies can significantly improve the statistical significance of the final results
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by minimising stochastic effects (i.e., variability) in the overall behaviour of the

resulting EC model. In fact, the observed improvements in diversity control ex-

hibited by the dual-pool EC model (Figure 5.6d) could partly be credited to the

proposed SSP heuristic initialisation (Section 5.4.5). The SSP seeks to minimise

stochastic variability in the final solution by encouraging optimum uniformity in

the distribution of the randomly created sample solution points (cf. Figure 5.3).

The earlier section on diversity control (Section 5.3) has made it clear that

diversity management and control in EC is a challenging task. It seems that ad-

herence to any solo strategy risks destabilising the fragile exploration-exploitation

balance. Looking back at the challenges of each of the previously reviewed strate-

gies in Section 5.3, it is thought that a multifaceted approach to designing a

diversity control policy is vital for developing a successful EC model.

In particular, the above findings may support the following two remarks.

Firstly, simulation results (Figure 5.8) have shown that the dual-pool EC al-

gorithm converges to the optimal solutions on both categories of benchmarks

with only small to medium pool sizes. This justifies its ability to maintain and

restore useful diversity into its search pool, which suggests that it is robust. This

robust performance also validates the efficacy of its diversity dynamics previously

observed in Figure 5.6d. Secondly, since working with small sized populations of-

ten translates to reduced computational cost, the ability of the proposed model to

sustain evolutionary search with small to medium sized pools signals its potentials

in improving convergence efficiency.

5.7 Comparison with the TPC-GA algorithm

from CEC2013 Competition

This section evaluates the performance of the proposed dual-pool EC model on

the benchmarks used for the CEC2013 competition on real-parameter optimiza-

tion. Several global optimization algorithms have participated in this competition

(Liang et al., 2013; Loshchilov et al., 2013), but for the comparison here, the fol-

lowing EA which features diversity controlled mechanisms is of interest:

• TPC-GA algorithm (Elsayed et al., 2013) – a diversity controlled EA fea-

turing a three-parent crossover, a diversity operator with archiving and

multi-population diversity control techniques.



CHAPTER 5. DIVERSITY CONTROL IN EC 150

5.7.1 CEC2013 Benchmarks and Evaluation Criteria

There are a total of 28 (F1 to F28) benchmarks for the CEC2013 competition

on real-parameter optimization (Liang et al., 2013). The first five have local

orientation, the next fifteen are multimodal functions while the remaining eight

are composition functions. The specifications for the benchmark functions (Liang

et al., 2013) also provided their exact optimal solutions. Therefore, the evaluation

criteria require optimizing all the benchmarks (F1 to F28) for n ∈ {10, 30, 50}
dimensions in 51 repeated runs. Then for each run, 11 optimization error values

ferror = (fi(x)− f ∗i (x)) (5.4)

are recorded after (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)×MaxFES func-

tion evaluations, where ferror is the error between the current best solution (fi(x))

and the true optimal solution (f ∗i (x)), MaxFES = 10, 000 × n is the maximum

limit on function evaluations and n is the problem’s dimension. For each prob-

lem a summary statistics for the mean values of ferror are reported over 51 runs.

Further details on the problem specifications can be found in Liang et al. (2013).

5.7.2 Results and Discussion

The detail design and parameter settings for the TPC-GA algorithm including

the evaluation results are provided in Elsayed et al. (2013); Loshchilov et al.

(2013). For the dual-pool EC algorithm, the parameter settings are as previously

presented in Table 5.1, except that a pool size of 100 is used for the 10 dimensions

and 200 for the 30 and 50 dimensions of these benchmarks.

To compare the dual-pool EC (DP-EC) and the TPC-GA algorithms, Table

5.3 presents the resulting average optimization errors (ferrors) achieved by each

of these algorithms on the F1 to F28 benchmarks – over the optimization period

of MaxFES = 10000 × n function evaluations. Note that all the benchmarks in

this CEC2013 competition are formulated as minimisation problems, thus, the

optimization goal here is to minimise ferror. Best results are highlighted in bold

except where there is no significant difference or there is tie. For all the 28

test problems, the last row in Table 5.3 summarises the overall score and the

percentage score of each of the two algorithms for the 10, 30 and 50 dimensions.

Firstly, for the unimodal benchmarks (F1 to F5), it is observed from the high-

lighted (bold face) values in Table 5.3 that the TPC-GA algorithm exhibits its
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Table 5.3: Comparing the average optimization errors of the Dual-pool EC (DP-
EC) algorithm and the TPC-GA algorithm on various categories of the CEC2013
Benchmarks for Real-parameter Optimization. Optimization period is 10000× n
evaluations. Results are averages of 51 repeated runs. Best results are highligted
in bold except for ties.

Problem type Func.

Average Optimization Errors (ferrors)

Dimensions n = 10 Dimensions n = 30 Dimensions n = 50

DP-EC TPC-GA DP-EC TPC-GA DP-EC TPC-GA

Unimodal

F1 0.00e+0 0.00e+0 7.83e-6 0.00e+0 8.52e-5 0.00e+0

F2 6.35e-5 0.00e+0 3.19e-3 2.44e+5 1.63e-3 4.76e+5

F3 1.92e-2 0.00e+0 2.92e-1 3.80e+7 6.18e-1 1.06e+8

F4 1.91e-5 0.00e+0 2.41e-5 1.38e+1 6.96e-5 3.33e+0

F5 1.49e-7 0.00e+0 3.73e-5 0.00e+0 1.24e-4 0.00e+0

Multimodal

F6 1.42e+0 0.00e+0 2.95e+1 2.43e+1 5.22e+1 4.72e+1

F7 3.03e-1 4.24e-2 2.38e+1 2.91e+1 3.85e+1 4.17e+1

F8 2.03e+1 2.04e+1 2.09e+1 2.10e+1 2.11e+1 2.12e+1

F9 1.26e+0 3.39e+0 1.78e+1 3.61e+1 3.53e+1 7.30e+1

F10 9.76e-3 3.87e-2 3.78e-2 8.68e-2 1.03e-1 1.05e-1

F11 2.22e-1 2.73e-1 8.33e+0 2.39e+1 1.54e+1 5.57e+1

F12 5.34e-1 6.03e+0 2.41e+1 4.14e+1 4.31e+1 9.62e+1

F13 3.62e+0 9.87e+0 8.94e+1 8.41e+1 1.82e+2 1.92e+2

F14 1.45e+2 2.45e+1 7.26e+2 9.25e+2 1.14e+3 2.55e+3

F15 3.00e+2 7.34e+2 2.74e+3 3.97e+3 6.02e+3 9.40e+3

F16 8.75e+0 1.25e+0 8.82e+0 2.50e+0 1.02e+2 3.38e+0

F17 1.03e+1 1.12e+1 1.63e+1 5.44e+1 2.26e+1 1.15e+2

F18 1.04e+1 1.80e+1 1.71e+1 6.96e+1 2.58e+1 1.68e+2

F19 1.01e+2 5.01e-1 1.05e+2 3.28e+0 1.13e+2 8.92e+0

F20 1.03e+2 3.17e+0 9.95e+0 1.37e+1 1.08e+1 2.34e+1

Composition

F21 5.00e+2 2.90e+2 4.88e+2 2.92e+2 9.03e+2 7.93e+2

F22 2.46e+2 9.07e+1 8.36e+2 1.27e+3 1.86e+3 3.51e+3

F23 4.48e+2 8.40e+2 3.50e+3 4.33e+3 8.50e+3 9.93e+3

F24 1.88e+2 2.13e+2 2.47e+2 2.74e+2 2.83e+2 3.77e+2

F25 1.92e+2 2.17e+2 2.63e+2 2.98e+2 4.85e+2 3.86e+2

F26 1.39e+2 1.96e+2 3.00e+2 3.25e+2 3.00e+2 4.22e+2

F27 3.29e+2 4.24e+2 8.46e+2 1.03e+3 1.67e+3 2.03e+3

F28 2.68e+2 2.92e+2 3.62e+2 3.00e+2 1.06e+3 4.59e+2

Total score (%Score): 14(50.0%) 12(42.9%) 19(67.9%) 8(28.6%) 19(67.9%) 8(28.6%)
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best optimization performance on the lower dimensions (10 dimensions) of these

benchmarks. This suggests that TPC-GA successfully exploits the global convex

structure in these unimodal problems. Notice however that this performance is

barely carried onto the higher (30 and 50) dimensions of these unimodal bench-

marks. In fact, for the F2, F3 and F4 benchmarks, the TPC-GA’s performance

deteriorates with increasing dimensionality. Relatively, the proposed algorithm

(DP-EC) have lower performance on the 10 dimensions of these unimodal bench-

marks. However, the DP-EC appears to maintain its convergence characteristics

even when the problem sizes (for the unimodal benchmarks) increase to 30 and

50 dimensions.

Secondly, on the multimodal benchmarks (F6 to F20), relative to the pro-

posed DP-EC algorithm, the TPC-GA algorithm performed consistently better

on the F6, F16 and F19 over the varying problem dimensions. However, with the

exception of F8 where the performance differences are insignificant, the DP-EC

algorithm have the overall lead on these multimodal benchmarks. Crucially, the

success of DP-EC largely comes from its ability to maintain good performance

on larger problem sizes (30 and 50 dimensions).

Finally, as observed from the composition benchmarks (F21 to F28), there

is significant performance breakdown for both algorithms. This reflects the high

level of difficulty posed by these category of benchmarks. It is noticed that

the performances of the TPC-GA and DP-EC algorithms seem uniform over the

varying problem dimension in this category. This suggests that none of them

seem to effectively exploit the lower dimensional versions of these composition

benchmarks. Nevertheless, the proposed DP-EC yields better results, overall.

The summary of the above results (see the last row of Table 5.3) suggests that

the TPC-GA algorithm enjoys good exploitation capabilities which seems to have

led to its higher success rate on lower dimensional unimodal problems (F1 to F5).

This is reflected by its percentage score of 42.9% on the 10 dimensional bench-

marks in general. On the other hand, whilst the dual-pool EC algorithm (DP-EC)

is not as exploitative, its diversity maintenance scheme seems more effective as

exhibited by its higher success rate (67.9% score) on large sized problems.
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5.8 Contribution and Remarks

This chapter has introduced an approach that aims to control diversity in evolu-

tionary computation (EC) algorithms. The proposed model attempts to amelio-

rate the challenges associated with balancing exploration and exploitation trade-

off by jointly using a restarted dual-pool strategy with a novel heuristic initiali-

sation policy. The insights obtained from the investigations in this chapter have

paved the way for the development of the proposed dual-pool EC architecture.

The search space partitioning (SSP) paradigm presented in this chapter was a

direct consequence of the need to minimise sporadic sampling of search spaces by

random initialisation. The proposed SSP was designed to address such problems

which lead to over- or under-sampling of potentially crucial portions of the search

space when random initialisation is utilised. The SSP was then used to restart the

samples in the diversity pool which together with the evolution pool form a dual

approach to diversity restoration. The newly proposed model utilises an adaptive

control mechanism to profile the instantaneous diversity in a search pool. The

mechanism relies on diversity measurement to trigger re-diversification whenever

sufficient convergence is detected. The diversity measurement couples spatial

diversity measure with population evolvability measure.

The effectiveness of the proposed model in mitigating premature loss of popu-

lation diversity has been empirically examined under various categories of global

optimization benchmarks (Sections 5.6 and 5.7). Experimental investigations

have revealed that with enhanced diversity control, complex and rugged global

optimization landscapes could be explored with limited population sizes (50 to

200 samples). This feature, which corroborates the key objective in this chapter,

is vital for minimising the cost of solving computationally expensive problems.

In the second part of this thesis (Part II), the evolutionary algorithms in-

vestigated thus far14 will be put into a hybridization framework. This entails

combining an evolutionary algorithm with a local search method. The intuition

is that applying hybridization could improve the exploitation capabilities and the

overall convergence efficiency of the EC model proposed in this chapter.

14The algorithms include the standard EC (Algorithm 2.2) and the newly proposed dual-pool
EC model (Algorithm 5.2).
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Chapter 6

Hybridizing Evolutionary

Computation

This chapter proposes a new hybrid algorithm for solving small to large-scale

continuous global optimization problems. It comprises of an evolutionary com-

putation (EC) algorithm, previously introduced in Chapter 2, and a sequential

quadratic programming (SQP) algorithm (Chapter 3). The algorithms are com-

bined in a collaborative manner with a validation procedure. The proposed hy-

brid design aim is to ensure that the two algorithms complement each other by

effectively exploring and exploiting the problem search space.

Therefore, the goal in this chapter is to verify the following hypotheses:

#H1: A hybrid of global and local search methodologies whose switching is

controlled through a robust convergence detection mechanism should speed-

up convergence to the optimal solution.

#H2: The global and local algorithms can serve as a means to validate each

other’s result.

This chapter presents the rationale for the development of effective optimiza-

tion methods using a hybrid approach, it also highlights the current trends in

hybridizing evolutionary algorithms. The chapter introduces a taxonomy of EC-

based hybrid frameworks which are recently applied to a variety of global op-

timization problems (Section 6.2). Then, the chapter proposes a task switch-

ing method which combines the EC algorithm with a SQP algorithm in Section

6.3.This chapter concludes with two sets of experiments. The first (Section 6.4)

analyses the performance characteristics of the proposed hybrid algorithm against

155
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other standard evolutionary algorithms (EAs). The second (Section 6.5) evalu-

ates the overall performance of the proposed method by comparing it with other

state-of-the-art hybrid EAs.

6.1 Rationale

In the last few decades, it has become well understood that population based

search methods like the evolutionary algorithms (EAs) (Goldberg, 1989; Krasno-

gor and Smith, 2005) are effective in exploring search spaces even when faced with

problems having high-dimensionality, non-convexity, and multimodality. This is

because as early as during their initialisation stage, these population-based heuris-

tics set out to capture a global perspective of the search space. Eventually over

the course of the evolution, they try to focus on the most promising regions of

the search space. However, EAs are generally not efficient in converging to the

best solutions in these high quality regions (Blum et al., 2011; Raidl, 2003). Con-

versely, local search methods (such as gradient-based algorithms) are generally

more effective in exploiting specific regions of the search space, i.e., they can

easily converge to better solutions in the vicinity of any given initial solution.

Furthermore, it has become evident that many real-world large scale optimiza-

tion problems elude acceptable solutions via simple exact methods or even the

heuristic approaches when applied independently (Pelikan, 2010). In recent years,

there is growing interest in concepts that combine various algorithmic ideas from

different branches of artificial intelligence and operations research. The com-

bination of such algorithms is what is referred to as hybrid algorithms, hybrid

metaheuristics (Blum and Roli, 2008), or memetic algorithms (MA) (Krasnogor,

2002; Radcliffe and Surry, 1994) in another linguistic. A primary motivation for

hybridizing algorithms was to come up with robust systems that combine the

benefits of the individual algorithms while discarding their inherent weaknesses.

Despite their popularity, the vast literature on hybridization frameworks re-

quires more detailed categorisation regarding: the nature of the problem domain,

the constituent algorithms, the coupling schema and the intended area of appli-

cation. Therefore, prior to the design and development of any hybrid system,

it is imperative to address the following concerns in order to ascertain whether

a hybrid system is needed, and if so, which kind of hybridization approach is

suitable for the problem under consideration; the issues are:
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i. A clear understanding of the type of problem at hand and based on the

optimization goal, deciding to use only a heuristic, an exact or a hybrid of

such algorithms. Typically, for simple convex problems of lower dimensions,

local algorithms like the gradient based methods suffice. Also, when solution

quality and computational time are not critical, then stochastic heuristics

like the evolutionary algorithms are usually sufficient for many of the low to

medium sized non-convex problems. Thus, in most cases, only when very

good solutions (unobtainable by an exact or heuristic method in a feasible

time frame) are needed, use of hybrid algorithms is advised.

ii. Determining what algorithms to combine and which type of combination of

these algorithms might work well for the class of problem at hand and why.

iii. Ascertaining what role enhancing the capabilities of the individual algorithms

can play to the success of the hybrid system.

iv. Determining how to effectively fine tune the hybridized system to optimality.

Unfortunately, not all of the above questions have direct or simple answers. In

fact, a fundamental goal in the previous chapters (Part I of this thesis) has been

to select and optimize the constituent algorithms for the hybrid system. There-

fore, the objective in this chapter is to investigate current hybrid methodologies

and propose a new approach to combining an evolutionary computation (EC)

algorithm with the sequential quadratic programming (SQP) local search algo-

rithm in a collaborative framework. The overall aim is to yield an efficient and

robust algorithm suitable for medium to large scale global optimization problems

in continuous domain.

6.2 Background

It is probably not possible to exhaustively enumerate the various types of hybrid

algorithms in the EC literature (Blum and Roli, 2008) as the notion of hybridiza-

tion in itself lacks a precise definition. It seems that there is no specific framework

that clearly defines what should constitute the so-called hybrid algorithms. Al-

though this may sound like a drawback, it is actually thought of as the reason

behind the breakthroughs achieved with such systems thus far. As argued by
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Blum et al. (2011), lack of precise boundary in the area of hybrid algorithms is

what made the research field very rich and versatile.

Generally, designing successful hybrid frameworks requires making judicious

decisions on a huge number of important considerations. The classification in

Figure 6.1 aims to provide concise yet comprehensive insights into the many

crucial aspects in designing hybrid evolutionary computation systems. Out of

the eight major aspects in this classification (Figure 6.1), the first four could

be considered as the primary considerations for building hybrid systems. They

involve selecting the type of algorithms that compose the hybrid system, the

switching/control method, the execution mode and the extent or degree to which

these algorithms are coupled.

The remaining four aspects (Figure 6.1) which involve inheritance mode, use

of domain knowledge and parameter control (adaptive and non-adaptive) may

be considered secondary. However, these features could play vital role on how

an evolutionary-based hybrid system fares on rugged and complex global opti-

mization landscapes. The inheritance mode dictates how the learned information

acquired through a local refinement algorithm get inculcated into the EA. Thus,

for the Baldwinian inheritance model, the locally refined solution only alters the

individual’s fitness (phenotype). However, the Lamarckian evolution changes

both the phenotype and the genetic structure of an individual. Similarly, the in-

corporation of domain specific knowledge is often useful when a problem domain

is well-defined. This may involve, for example, using problem dependent repre-

sentation which may consequently require application of specialise evolutionary

operators for reproduction. Last but not the least is parameter control; this in-

volves issuing fixed specifications for the (hyper-)parameters, or using some form

of adaptation (dynamic refinement) on some (or all) of the crucial parameters.

Adaptation may lie within the evolutionary model itself (such as adapting op-

erator step sizes and/or rates), and/or on the overall hybridization framework

(such as dynamic adjustments to the rate and intensity of applying the local

refinement).

While the above taxonomy may not provide an exhaustive list of all poten-

tially crucial design considerations on building hybrids, it generally covered all

major aspects of the evolutionary hybridization paradigm. Further related con-

siderations can be found in a notable work by Raidl (2006). In this perspective,

it is thought that a three-point view of classifying hybrid approaches entails the
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Figure 6.1: Crucial Considerations for Building Hybrid Models

following:

i. Hybrid metaheuristics: Though this could be seen as a superset of the forth-

coming hybridization classes, it particularly refers to the combination of two

or more heuristic algorithms. Thus, it involves combining various nature in-

spired algorithms like EAs and/or non-nature inspired algorithms like tabu
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search, iterated local search etc. The motivation is to maximise the coverage

of the search space for optimal exploration of the promising regions. Under

this class, a common way of hybridizing EAs is through:

(a) the use of problem specific representation (Queiroz and Lyra, 2009);

(b) the use of additional genetic operators (Lin and Yang, 1999); and

(c) incorporation of domain specific knowledge or features of classical algo-

rithms (Oh et al., 2004).

ii. Memetic Algorithms: May be seen as a subset of the above class, but they

uniquely consist of combination of heuristic algorithms like EAs with local

search methods like gradient based algorithms (Chen et al., 2011; Lin and

Chen, 2011; Radcliffe and Surry, 1994). The main focus of this class is to

facilitate rapid convergence to the optimum solution (i.e., exploitation of the

promising regions) as soon as they are explored.

iii. Algorithms portfolio: This is based on the intuition that executing many short

runs of one or more algorithms over a prescribed solution period can provide

improvements in terms of overall performance. Gomes and Selman (1997)

formulated the computational cost of a portfolio as a random variable hav-

ing a probability distribution and evaluated its mean and standard deviation.

They argue that a skilful schedule of multiple copies of a single algorithm can

outperform a hybrid built from different algorithms. Recently, Streeter and

Smith (2009) argued that a portfolio essentially comprises both scheduling

and machine learning aspects and divided the scheduling aspect into either

a restart or task-switching schedules. Other important advances in this di-

rection include the proposal of a multimethod search algorithm (popularly

known as AMALGAM) by Vrugt and Robinson (2007), a recent application

of this method to noisy environment can be found in Bosman et al. (2013).

It is noteworthy that each of the above classes has its merits and demerits.

The first class favours exploration of problem space at the expense of exploiting

high quality regions. Although the second class tried to alleviate this problem,

a naive design of a memetic algorithm that is overly focused on exploitation

may risk premature convergence to sub-optimal solutions. Finally, the additional

parameter in the third class (i.e., the scheduling aspect) is largely handled in a

trial and error procedure.
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Table 6.1: A chronological survey of some recent hybrid algorithms (across various
applications domain) aligned to the taxonomy depicted in Figure 6.1.

No. Reference Global
algorithm

Local algorithm Switching
category

Key design
goal

Validation/
Application

1 Radcliffe
and Surry
(1994)

GA Hill climber Integrative Efficiency TSP problems

2 Honggang
and Jian-
chao (1997)

GA Feasible path
method

Collaborative Accuracy Numerical
problems

3 Tao (2004) GA Back
propagation

Integrative Efficiency Fuzzy control

4 Oh et al.
(2004)

GA Search
algorithm for
feature selection

Integrative Efficiency Feature
selection

5 Tenne and
Armfield
(2005)

GA Derivative-free
optimizer

Integrative Accuracy Numerical
Problems

6 Isaacs et al.
(2007)

GA Simplex
algorithm

Collaborative Accuracy Numerical
Problems

7 Qing et al.
(2008)

GA Tabu search Collaborative Accuracy Fuzzy
scheduling
problem

8 Kaur and
Murugap-
pan (2008)

GA Nearest neigh-
bour search

Collaborative Accuracy/
Efficiency

TSP problems

9 Hernandez-
Diaz et al.
(2008)

NSGA II Steepest descent Collaborative Accuracy/
Efficiency

Multiobjective
optimization

10 Queiroz
and Lyra
(2009)

Adaptive
GA

Branch-exchange
procedure

Integrative Accuracy Power
distribution
network

11 Guo et al.
(2010)

GA Interval search Collaborative Accuracy/
Efficiency

Interval
optimization

12 Pelikan
(2010)

Bayesian
optimization
algorithm

Deterministic
hill climber

Integrative Accuracy NK landscape
problems

The survey in Table 6.1 summarises some of the recent hybrid evolutionary-

based optimization algorithms from various perspectives. From the primary con-

siderations in building hybrids delineated by the taxonomy in Figure 6.1, Table
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6.1 covers aspects ranging from the nature/type and class of the combined al-

gorithms, the adopted control/switching mode, the validation method employed

and the intended application area. Note that the summary given here is only an

attempt to highlight the large number of hybrid algorithms, reported over the

last decade, in the field of evolutionary-based global optimization. Thus, Table

6.1 attempts to capture varieties of local search algorithms combined with EAs to

enhance either the efficiency or accuracy of an optimization method for various

application areas or problem domain.

6.3 The Proposed Task-Switching Hybrid

EC Model

In order to investigate the efficacy of combining a global explorer (see the EC

model in Algorithm 2.2) with a local exploiter (see the SQP local search algorithm

in Algorithm 3.1) for global optimization, this section introduces a hybrid model

that combines its constituent algorithms in a collaborative manner. Whilst an

improved EC model such as the newly introduced dual pool model (see chapter

5) could be employed for this purpose, the rationale behind using a canonical EC

model (Algorithm 2.2) in this chapter is to examine the impact of the proposed

hybrid framework in isolation. Thus, the analysis herein aims to rule out the

effect of any specialised features in the EC model.

Notice from the proposed hybrid framework shown in Algorithm 6.1 that the

combined algorithms run in a sequential task-switching mode. The two algorithms

retain their individual functionalities such that they complement each other by

operating independently on the problem via data/information exchange.

Initially (cf. Algorithm 6.1), as a population based method, the EC algorithm

is invoked with a randomly created initial population P0(t) of size N from which

the best solution (xEC) found by the EC algorithm is derived (lines 3-4). Thus,

this puts the EC algorithm in a position to provide the driving force for wide

exploration of the search space. When the high quality regions are found and

the EC algorithm has sufficiently converged1 to these areas, the search switches

to the SQP algorithm which is fed with xEC as its initial solution (line 5). This

switching to the local algorithm triggers exploitation of the highest quality region

1The population evolvability measure proposed in Chapter 4 is utilised for the convergence
detection.
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Algorithm 6.1 The proposed hybrid EC/SQP algorithm
1: begin
2: initialise t← 0;
3: initialise search pool P0(t): size = N ;
4: while not converged // see convergence measure in Section 4.6.4
5: Do Global Search: xEC ← invoke EC(P0(t)); // (§2.6.6, Algorithm 2.2)
6: end while
7: Do Local Search: xSQP ← invoke SQP(xEC); // (§3.5, Algorithm 3.1)
8: re-initialise search pool P1(t): size = N − 2;
9: validate solution: x∗ ← invoke EC(P1(t) ∪ xSQP ∪ x̄SQP );a

10: end

aNote: x̄SQP is a mutated copy of the obtained global solution xEC .

previously explored by the EC algorithm.

In addition, since there is often a slight tendency for the final solution returned

by the local search algorithm to be a sub-optimal one2, a validation routine is

utilised to kick-start an additional round of a global search by the EC algorithm

(lines 6-7). While in the validation routine, the initial population is also randomly

created and is then seeded with a copy of the solution (xSQP ) returned by the

local algorithm and its mutated version x̄SQP . Thus, if the required population

size is N , then, N−2 individuals are created randomly for the validation (line 6).

Eventually, the search stops and returns x∗ as the optimal solution at the end of

the validation process (lines 7). Notice that the validation routine involves only

a re-run of the global EC algorithm, i.e., the local optimization – via the SQP

algorithm – is not repeated.

6.4 Experiments with Standard EAs on Global

Benchmarks

The proposed hybrid algorithm is evaluated by applying it on a set of numerical

optimization benchmarks. See Table 6.2 for the parameter settings in these ex-

periments. Of course, prior to evaluating any global optimization algorithm, it

is important to seek a suite of test problems that would ensure effective evalua-

tion. Thus, a suitable global optimization test suite should satisfy some crucial

qualities which include the following properties:

2This could happen when the EA has not properly explored the global optimum region and
the local algorithm is therefore not supplied with a good starting solution.
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Table 6.2: Parameter settings of the proposed hybrid algorithm

Algorithms Parameters Symbols Values/settings0

Global (EC)

Representation − Real-valued encoding

Population size N 100

Selection method − Binary tournament selection

(Algorithm 2.2) Crossover: type, rate X , PC Intermediate crossover, PC = 1.0

Mutation: type, rate M, PM BGA mutation, PM = 0.01

Replacement scheme − Adaptive elitist strategy (§2.6.6)

Generation gap ω ω = 5% of the population size N

Switching
Max. generations MaxGen when: counter t ≥ MaxGen

criteria Stalled generations − when: convergence occurs (§4.5)

Local (SQP)

Search direction type d Newton directions (§3.3.1)

Search direction
evaluation

− Exact Hessians using
Automatic differentiation
H(f(x)k) = ∇2f(x) (§3.7)

(Algoirthm 3.1) Step size α 0 < α ≤ 1 using Wolf conditions
(see §3.3.2)

Stopping criteria − when: gradient vanishes:
||∇f(t)|| − ||∇f(t− 1)|| ≤ 0.001
or directional derivatives stalled:
||dk(t)|| − ||dk(t− 1)|| ≤ 0.001

Notation: f = fitness, t = generation or iteration counter.

• Nonlinearity;

• Scalability;

• Non-separability;

• Multimodality/non-convexity;

• Asymmetry; and

• Dispersion.

While the meanings of most of the above features can be directly derived from

their names, with regards to the dispersion metric, a function having no convex-

like global topology is considered highly dispersed. As demonstrated by Lunacek

and Whitley (2006), high dispersion functions pose more difficultly to global

optimization algorithms than ordinary multimodal functions having convex-like



CHAPTER 6. HYBRIDIZING EC FOR GLOBAL OPTIMIZATION 165

global structure. Detailed review and analysis of the above features for global

test problems can be found in Whitley et al. (1996).

To evaluate the performance of the proposed hybrid algorithm (cf. Algorithm

6.1), series of tests have been carried out on the Rastrigin (f1), Schwefel (f2) and

Ackley (f7) benchmark functions3 for global optimization. Although these test

functions are all multimodal and have the majority of the qualities listed above,

if their complexity is sorted based on levels of dispersion, the Ackley function is

the least and the Schwefel function is the most difficult.

Two different sets of experiments were carried out. The first experiment in-

vestigates how the proposed hybrid algorithm behaves under increasing problem

size. But the second aims to evaluate the performance of the hybrid algorithm

(EC/SQP) by comparing it with a standard evolutionary computation (EC) al-

gorithm and the well known covariance matrix adaptation algorithm (CMA-ES)

on the three benchmark problems presented above. For the EC algorithm, elitism

(Radcliffe and Surry, 1994) is utilised with other parameters as depicted in Table

6.2. Similarly, for the CMA-ES algorithm, the default parameters are used (see

Hansen and Kern (2004) for details). For all experiments, a maximum of 30, 000

function evaluations is allowed. All tests are run 100 times and averaged results

are reported for statistical significance.

6.4.1 Experiment 1: Scalability Test

With the aim of evaluating the robustness of the proposed EC/SQP algorithm

under increasing problem size, these experiments seek to optimize the global

optimization benchmark problems described above with their problem sizes set

to 2, 10 and 100 dimensions. The results of this experiment as shown in Figure 6.2

compare the fitness characteristics of the proposed hybrid model on (a) Ackley,

(b) Rastrigin and (c) Schwefel functions respectively.

6.4.2 Experiment 2: Performance Comparison Test

This is a fitness comparison test where the proposed EC/SQP algorithm is com-

pared to a standard EC algorithm and the CMA-ES algorithm, see Figure 6.3.

Also, the goal is to optimize the above three benchmark test functions with each

of the three algorithms allowed to run for 30, 000 function evaluations.

3Detail expressions for the Benchmark functions are provided in Table B.1 in Appendix B.
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The results for experiments 1 and 2 are respectively shown in Figures 6.2 and

6.3 and the following sections analyse the outcomes of these investigations.

6.4.3 Analysis of Results: Experiment 1

A careful examination of Figure 6.2 reveals that for virtually all the varying sizes

of the three test problems, up to 90% of the maximum attainable fitness level (i.e.,

the optimal solution) was reached within the first 5, 000 functions evaluations.

This is indicative of the speed at which the EC/SQP algorithm approaches the

optimal solution – in other words, its convergence efficiency. Notice, however,

that with the exception of the Ackley function in Figure 6.2(a), an increase in

problem size increases the required function evaluations to reach the optimum

solution. This shows that to some extent, larger problem sizes might inhibit the

performance of the proposed algorithm. But this is consistent with the fact that

an increase in problem size widens the search space (curse of dimensionality)

making it harder to explore and narrow down to the region of the optimum

solution. Yet, the observed performance decrease is rather minor considering the

10 times increase in the problem size.

A possible explanation of the discrepancy shown in Figure 6.2(a) by the Ackley

function (f7) might be related to the fact that it is a pseudo-convex function with

several local optima induced via its cosine component (see Table B.1 in Appendix

B). These local optimum valleys become shallow and smooth as its dimension-

ality increases. Thus higher dimensions of Ackley functions are smoother and

seem easier to optimize. A similar behaviour exhibited by Griewangk benchmark

function was reported by Whitley et al. (1996).

Overall, these test results have shown that the proposed hybrid EC/SQP

algorithm appears to maintain good and fairly stable convergence efficiency across

small to large scale problems. Hence, this outcome supports the suppositions

made while introducing this chapter, that hybrid methods are robust to varying

problem sizes, categories and/or levels of complexities.

6.4.4 Analysis of Results: Experiment 2

The results of this experiment are shown in Figure 6.3. For the three test problems

under consideration, a critical analysis of the performance of each of the three

algorithms requires cautious treatment. This is necessary because although all the
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Figure 6.2: Hybrid EC/SQP hybrid algorithm evaluated under increasing problem
sizes (2, 10, 100) of: (a) Ackley, (b) Rastrigin and (c) Schwefel benchmarks. The
error bars are the standard errors of the mean; all results are averages of 100
independent runs. The plots (best viewed in colour) show that the performance
of the EC/SQP algorithm is fairly stable and immune to varying problem sizes.
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three test problems are nonlinear, multidimensional, and multimodal in nature;

they are quite different in complexity when viewed on the basis of their dispersion.

Thus, a possible categorisation of the plots in Figure 6.3 is to place the Rastrigin

function (middle row) as a moderately dispersed problem, while the Ackley (top

row) and Schwefel (bottom row) test functions are respectively the least and

most dispersed problems. Consequently, they stand at the opposite extremes of

complexity.

Beginning with the Rastrigin function (Figure 6.3(c and d)), the observed

remarkable performance of all the three algorithms on this test problem may be

attributed to its moderate level of dispersion. This could be why it seems to be an

easy problem for the three different global optimization approaches. Nonetheless,

it is noticed that (see the switch point indicating the instance at which the hybrid

algorithm switches from global EC to the local SQP algorithm) the proposed

EC/SQP algorithm appears to perform best followed by the CMA-ES and then

the standard EC algorithm.

With regard to the Ackley function (Figure 6.3(a and b)), it might be noticed

that while the CMA-ES and the hybrid EC/SQP algorithms clearly outperform

the standard EC algorithm, the excellent efficiency exhibited by the CMA-ES

algorithm (Figure 6.3(a)) seem to deteriorate following the 10 times increase in

the problem size (Figure 6.3(b)). This, however, is not the case with the EC/SQP

algorithm. Hence, it could be hypothesised that the hybrid nature of the EC/SQP

algorithm might be the reason behind its immunity to the growth in the problem

size.

Note that for all the test cases considered in this experiment (Figure 6.3), the

standard EC algorithm always lags behind the other two algorithms except on

the Schwefel function (Figure 6.3(e and f)). Surprisingly, this is where the CMA-

ES algorithm exhibited its poor performance. This rather difficult to interpret

result might have several possible explanations. It could be due to the fact that

Schwefel function has the highest level of dispersion among all the three test

cases. Therefore, it is a flat multimodal function that lacks any unimodal global

topology. It remains unclear though, why high dispersion problems like Schwefel

function seem to be easy for the standard EC algorithm. But a possible reason

for the sudden decline in the performance of the CMA-ES algorithm may be

due to its excessive evaluation of infeasible solutions during the early stages of

the search process. It is therefore thought that CMA-ES algorithm relies on
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Figure 6.3: Comparing fitness plots for Hybrid EC/SQP, standard EC and CMA
algorithms. Test Problems (row-wise): Top: Ackely, Middle: Rastrigin, Bot-
tom: Schwefel. Problem sizes (column-wise): Left: 10-Dimensions, Right: 100-
Dimensions. The error bars are the standard errors of the mean; all results are
averages of 100 runs. These plots show that for virtually all the test problems,
the proposed EC/SQP algorithm is always as good if not better than any of the
other two algorithms. Experiments are run for 30, 000 function evaluations.
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exploiting global convexity to be successful. Hence, its remarkable performance

on the low dispersion Ackley function (Figure 6.3(a and b)) deteriorates when

faced with high dispersion problems like Schwefel.

These results corroborate the findings of previous studies in this field. An

investigation on the CMA-ES algorithm by Lunacek and Whitley (2006) revealed

that the adaptive step-size heuristic, called cumulation, does not function as

intended when the best regions of the search space are too spread out (such as in

high dispersion problems like the Schwefel function). Nonetheless, it was reported

elsewhere (Hansen and Kern, 2004), that although CMA-ES algorithm may need

more than 105 function evaluations for such high dispersion problems (which is

way outside the budgeted limit of 30, 000 evaluations in these experiments), but

it certainly will at some point converge to the true optimal solution if sufficient

evaluations are granted.

Noteworthy, from virtually all the plots in Figure 6.3, the moment at which

the EC/SQP algorithm switches from the global algorithm (EC) to the local al-

gorithm (SQP) might easily be noticed; this dynamic switch-over is controlled

by detecting the instantaneous convergence status of the search pool of the EC

algorithm. Thus, exact switching times would vary across problem types and/or

across different dimensions of the same problem. For the various benchmarks cat-

egories in Figure 6.3, the switch-over points provide evidence for the appreciable

contribution of the local algorithm towards the overall speedup in the convergence

efficiency of the hybrid EC/SQP algorithm.

In overall, for the three different test problems, the proposed EC/SQP algo-

rithm always performs comparably or better than the standard EC and CMA-ES

algorithms. Although some of the differences between the tested approaches (see

Figure 6.3) may appear marginal, they are significant to within 99% confidence

limit for both the 10 and 100 dimensions of Ackley (Figure 6.3(a and b)) and

Schwefel (Figure 6.3(e and f)) test functions. Nevertheless, the test (Wilcoxon

ranksum nonparametric test) showed that the samples from the 100 independent

runs on the Rastrigin function (Figure 6.3(c and d)) are not sufficient to reject

the null hypothesis. Thus, the performance difference on the Rastrigin function

is not statistically significant.

Finally, these findings support the hypotheses put forward while introducing

this chapter (Section 6); the findings provide additional evidence on the fact that
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a skilful design of a hybrid system that combines the strengths of population-

based and local search methods can boost the convergence efficiency of a global

optimization system. In fact, the results presented herein demonstrate how the

proposed approach can effectively complement the traditional techniques for solv-

ing global optimization problems of varying complexities.

6.5 Experiments with Hybrid EAs on CEC2013

Benchmarks

This section evaluates the performance of the proposed hybrid EC/SQP algorithm

by comparing it with two hybrid algorithms from the CEC2013 competition on

real-parameter optimization. Several global optimization algorithms have partic-

ipated in this competition (Liang et al., 2013; Loshchilov et al., 2013), but the

comparison here is focused on those algorithms with hybrid configurations. Thus,

the performance of the EC/SQP hybrid algorithm is compared against that of:

i. iCMAES-ILS algorithm (Tianjun and Stützle, 2013) – a hybrid algorithm

that couples the IPOP-CMAES algorithm with a new iterated local search

(ILS), and

ii. DRMA-LSCh-CMA algorithm (Lacroix et al., 2013) – a dynamically updated

region-based memetic algorithm with local search chaining and CMA-ES.

Importantly, although the choice of the above two algorithms, from the 21 re-

ported participants in the CEC2013 competition, is based on the reason that

they are both hybrid approaches, these algorithms are also among the top three

highest ranked algorithms in the CEC2013 competition (Loshchilov et al., 2013).

6.5.1 CEC2013 Benchmarks and Evaluation Criteria

As earlier reported in Section 5.7.1, there are a total of 28 benchmarks for the

CEC2013 competition on real-parameter optimization (Liang et al., 2013). Al-

though the competition is on real-parameter optimization, the problem specifi-

cations in Liang et al. (2013) highlight that some of these benchmarks feature

discontinuities which means they are not smooth (differentiable) over the entire

feasible search space. As a result, since the gradient-based SQP algorithm in

the proposed hybrid model requires smooth functions, only the first twelve (F1
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to F12) test problems are examined in this investigation. In other words, the

benchmarks considered here comprised of F1 to F5 (having local orientation),

and F6 to F12 (having multimodal landscape).

The evaluation criteria in this competition (Liang et al., 2013) require op-

timizing all the benchmarks (F1 to F12) for n ∈ {10, 30, 50} dimensions in 51

repeated runs. Then for each run, 11 optimization error values

ferror = (fi(x)− f ∗i (x)) (6.1)

are recorded after (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)×MaxFES func-

tion evaluations, where ferror is the error between the current best solution (fi(x))

and the true optimal solution (f ∗i (x)), MaxFES = 10, 000 × n is the maximum

limit on function evaluations and n is the problem’s dimension. Then for each

problem, a summary statistics consisting of the best, worst, mean, median and

standard deviation values of ferror are reported for the 51 runs. Finally, it is

important to note that for this CEC2013 competition all benchmarks are formu-

lated as minimisation problems. Therefore, the evaluation results presented in

this section are of minimisation type.

6.5.2 Results and Discussion

The detail design and parameter settings for the iCMAES-ILS algorithm can be

found in Tianjun and Stützle (2013), those for the DRMA-LSCh-CMA algorithm

are in Lacroix et al. (2013). The evaluation results for each of these algorithms

are obtained from their respective papers and are also reported in Loshchilov

et al. (2013). Finally, the parameter settings for the proposed hybrid EC/SQP

algorithm are as previously presented in Table 6.2. Note however that for the 30

and 50 dimensional problems, the population size used by the hybrid EC/SQP

algorithm has been increased from 100 to 500 samples.

Table 6.3 presents a statistical summary of the optimization error (ferror) for

the hybrid EC/SQP algorithm at the end of the evaluation period (MaxFES),

which as mentioned earlier is 10000×n, where n is the problem dimension. Table

6.3 shows the results for the 10, 30 and 50 dimensions of the F1 to F12 benchmarks

over 51 independent repeated runs.
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Table 6.3: Optimization results for the hybrid EC/SQP Algorithm on the
CEC2013 Unimodal and Multimodal Benchmarks at 10000×n maximum function
evaluations. All results are averages of 51 repeated runs.

Problem size Func. Best Worst Median Mean Std.

F1 0.0000e+0 1.4395e-7 0.0000e+0 2.8225e-9 2.0157e-8

F2 4.5487e-6 4.1783e-4 4.2794e-5 6.3470e-5 7.0287e-5

F3 4.6434e-5 1.2701e-1 7.9846e-3 1.9120e-2 2.6999e-2

F4 4.5048e-6 5.8180e-5 1.5866e-5 1.9103e-5 1.1282e-5

F5 0.0000e+0 2.2405e-6 1.0780e-8 1.4894e-7 4.1788e-7

10- F6 1.2391e-5 9.8148e+0 5.0724e-2 1.4218e+0 3.3861e+0

Dimensions F7 7.8167e-2 9.6432e-1 2.5153e-1 3.0260e-1 1.9602e-1

F8 2.0112e+1 2.0371e+1 2.0283e+1 2.0271e+1 6.1175e-2

F9 5.7980e-2 3.7454e+0 1.0542e+0 1.2566e+0 8.3061e-1

F10 4.1817e-2 3.2970e-1 1.6230e-1 1.4640e-1 7.2910e-2

F11 0.0000e+0 6.7650e+0 2.9849e+0 3.3344e+0 1.5687e+0

F12 9.9496e-1 1.6914e+1 7.9597e+0 8.0136e+0 3.5412e+0

F1 0.0000e+0 9.1976e-5 8.6142e-7 7.8337e-6 1.6391e-5

F2 8.0435e-4 1.1049e-2 2.5310e-3 3.1852e-3 2.1794e-3

F3 1.4022e-2 1.8427e+0 1.0844e-1 2.9239e-1 4.2194e-1

F4 4.1418e-6 6.8820e-5 2.0067e-5 2.4071e-5 1.4857e-5

F5 4.9736e-8 3.4464e-4 3.9258e-6 3.7338e-5 7.7237e-5

30- F6 6.9838e-2 7.5985e+1 1.4556e+1 2.9513e+1 2.5570e+1

Dimensions F7 3.8864e+0 1.0074e+2 1.7884e+1 2.3820e+1 1.7852e+1

F8 2.0779e+1 2.0984e+1 2.0916e+1 2.0906e+1 4.5752e-2

F9 8.9192e+0 2.3747e+1 1.7727e+1 1.7803e+1 2.9258e+0

F10 1.5534e-1 9.3358e-1 3.8196e-1 4.1589e-1 1.9262e-1

F11 1.0945e+1 4.9565e+1 2.3879e+1 2.4978e+1 8.0383e+0

F12 5.9698e+0 1.6715e+2 6.6662e+1 7.2236e+1 4.2764e+1

F1 8.2309e-8 1.2086e-3 2.5963e-5 8.5225e-5 1.8714e-4

F2 7.5256e-4 3.6622e-3 1.6055e-3 1.6308e-3 5.8123e-4

F3 7.1014e-2 1.8405e+0 5.3814e-1 6.1811e-1 3.9879e-1

F4 3.3906e-5 1.3605e-4 7.0071e-5 6.9617e-5 2.3169e-5

F5 7.1704e-7 4.2792e-4 6.9361e-5 1.2422e-4 1.2622e-4

50- F6 1.6568e+1 8.8500e+1 4.3447e+1 5.2211e+1 2.3227e+1

Dimensions F7 1.1631e+1 6.6814e+1 3.8425e+1 3.8524e+1 1.2176e+1

F8 2.0984e+1 2.1163e+1 2.1108e+1 2.1103e+1 3.7513e-2

Continued on next page
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Table 6.3 – continued from previous page

Problem size Func. Best Worst Median Mean Std.

F9 2.9070e+1 4.2504e+1 3.5153e+1 3.5339e+1 3.5025e+0

F10 1.0137e-1 8.4018e-1 3.2519e-1 3.7221e-1 1.6873e-1

F11 2.8201e+1 8.2830e+1 5.4664e+1 5.5605e+1 1.1764e+1

F12 2.9849e+1 3.4540e+2 1.5720e+2 1.5517e+2 8.4459e+1

Similar optimization results for the iCMAES-ILS algorithm are in Tianjun and

Stützle (2013), and those for the DRMA-LSCh-CMA algorithm can be found in

Lacroix et al. (2013). For comparison purposes, the evaluation results for the

three hybrid algorithms are categorised into two:

• unimodal benchmarks (F1 to F5), and

• multimodal benchmarks (F6 to F12).

These are then graphically presented in Figures 6.4 and 6.5 respectively for the

10, 30 and 50 dimensions of each of these benchmarks. Notice that to facilitate

visualisation and comparison all plots in these figures are semilog plots with the

vertical axes (optimization error (ferror)) in log scale. Again, the optimization

goal here is to minimise ferror. Also, as these results are averages of 51 repeated

runs, the Kruskal-Wallis nonparametric test (Hollander and Wolfe, 1999) is ap-

plied in a multiple comparison procedure to verify statistical significance. It is

found that at α = 0.01 the differences between the performance characteristics of

the three compared algorithms in Figures 6.4 and 6.5 are statistically significant.

Firstly, it is observed from the unimodal benchmarks (F1 to F5) in Figure 6.4

that the DRMA-LSCh-CMA and iCMAES-ILS algorithms generally outperform

the EC/SQP algorithm. Both of these algorithms tend to make fast progress to

the optimum solution during early stages of the evolution (see especially the 10

dimensions of F1 to F5 on the left column). However, the standard EC algorithm

used in the EC/SQP hybrid model seems to make steady but mild progress until

convergence. Nevertheless, significant progress is always observed as soon as

the hybrid switching mechanism kicks off (switching from the EC to the SQP

algorithm). While for the 10 dimensional problems (left column) the switching

effect was only able to put the EC/SQP algorithm ahead on the F1 benchmark,

it played more effective role on the 30 and 50 dimensions of the F3, F4 and F5
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Figure 6.4: Comparison of the optimization errors of the EC/SQP algorithm
with that of two contestants of the CEC2013 competition (iCMAES-ILS and
DRMA-LSCh-CMA algorithms) on Unimodal Benchmarks (F1 to F5). Results
are averages of 51 runs; all plots are semilog with the vertical axes in log-scale.

benchmarks. The slow initial progress by the EC/SQP algorithm might have

resulted from the large pools used on the 30 and 50 dimensional problems. But

this was essential to minimise the risk of converging to sub-optimal point.
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Figure 6.5: Comparison of the optimization errors of the EC/SQP algorithm with
that of the iCMAES-ILS and DRMA-LSCh-CMA algorithms on the CEC2013
Multimodal Benchmarks (F6 to F12). Results are averages of 51 repeated runs.

Importantly, the above performance characteristics exhibited by the EC/SQP

reveal that the switching from the population-based EC algorithm to the point-

based SQP algorithm could crucially influence its overall optimization progress.
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Overall, the two participants of the CEC2013 competition (DRMA-LSCh-CMA

and the iCMAES-ILS) took the lead in this test, see especially their performances

on the 30 and 50 dimensions of the F1 and F2 benchmarks.

Secondly, the evaluation results on the multimodal benchmarks (F6 to F12)

in Figure 6.5 reveal some significant retardation in the convergence characteris-

tics of all the three compared algorithms (see the flatter curves in Figure 6.5 as

compared to those in Figrue 6.4). As reported in the benchmark specifications

for this competition (Liang et al., 2013), the difficulty levels of these benchmark

problems cannot be overemphasised; besides increasing levels of multimodality,

these benchmarks are shifted, rotated and asymmetric with vast number of local

optimum solutions.

The plots in Figure 6.5 show that the EC/SQP algorithm closely trailed the

other two algorithms in a number of cases (see the 10 dimensions of F9, F11

and F12; as well as 50 dimensions of F6 and F7 for example). However, it is

only on four cases (10 dimensions of F6, F8; as well as 30 and 50 dimensions

of F8) that the proposed EC/SQP clearly takes the lead in this test. In fact, as

observed from Figure 6.5, the iCMAES-ILS algorithm performs best overall. This,

however, does not come as a surprise since both the iCMAES-ILS and DRMA-

LSCh-CMA algorithms are among the top three highest ranked contestants in the

CEC2013 competition (Loshchilov et al., 2013). Importantly, both the iCMAES-

ILS and DRMA-LSCh-CMA algorithms hybridize the CMA-ES algorithm, which

is known to be quite effective (invariant against translation, rotation and scaling

(Hansen, 2006)) on complex rotated landscapes; this could be the reason why

their performances would be difficult to compete with on these benchmarks.

Ultimately, although the proposed EC/SQP algorithm does compete with

these current (known) best performing hybrid algorithms, it unfortunately did

not perform better on either of the two benchmark categories. Nevertheless, as

each of these algorithms has a hybrid makeup, these findings could further justify

the increasing interest in hybrid approaches in the EC domain; such algorithms

tend to be more robust across different problem types and sizes.

6.6 Contribution

The attempt made in this chapter to realise the proposed hybrid optimization

algorithm was possible following an intuitive amalgamation of the global (EC) and
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the gradient based (SQP) algorithms, which are previously presented in Part I.

The design goal was focused such that, tuning the combined parameters of the two

algorithms while in collaboration enhanced the requisite balance in exploration

and exploitation necessary for robust optimization. This would not have been

possible without:

• the collaborative task-switching hybrid framework which dynamically shifts

control from the EC to the SQP algorithm based on the robust convergence

detection method, and

• the newly introduced validation routine (Section 6.3) which further sub-

stantiates the quality of the solution returned by the local algorithm.

6.7 Summary

This chapter has presented a broad review of various techniques of hybridizing

evolutionary algorithms. In particular, following a taxonomy of the crucial con-

siderations in building hybrid frameworks, a multidisciplinary survey of their ap-

plications in the recent years was presented. A novel hybridization approach that

combines an evolutionary algorithm with a local search method in a collabora-

tive manner was proposed. In a series of empirical experiments, the performance

of the proposed hybrid algorithm was compared to that of the standard evolu-

tionary algorithm and another with origin in evolutionary strategies. Additional

experiments which compare the proposed EC/SQP algorithm with the two known

best-performing hybrid EAs (on the CEC2013 benchmarks) are also presented.

The results showed that the proposed hybrid EC/SQP algorithm achieved good

optimization performance on these benchmarks – even though the other two hy-

brid EAs took the overall lead in these contests.

Importantly, the experimental results presented in this chapter have further

identified the potentials of evolutionary-based hybrid frameworks in the field of

stochastic global optimization. In other words, hybrid EAs could improve con-

vergence efficiency without compromising robustness across various categories of

global optimization landscapes. In the next chapter, the proposed hybrid frame-

work will be enhanced to facilitate continuous optimization – making it possible

to investigate its applicability on non-stationary optimization problems.



Chapter 7

Enabling Continuous

Optimization for Global and

Dynamic Environments

Having analysed the potentials of the task-switching hybrid framework proposed

in the previous chapter (Sections 6.4 - 6.5), this chapter has three main objec-

tives. First, this chapter enhances the initial hybrid framework (Algorithm 6.1)

by replacing the canonical EC model (Algorithm 2.2) with the newly proposed

dual-pool EC algorithm (Algorithm 5.2). The goal is to form an improved hybrid

system which combines the dual-pool EC model with the improved Sequential

Quadratic Programming (SQP) local search algorithm (Algorithm 3.1). Secondly,

this chapter applies the newly proposed hybrid framework to global optimization

problems in non-stationary environments – a set of dynamic optimization bench-

marks is utilised. Finally, Sections 7.6 and 7.7 present and evaluate the impact

of closed-loop parameter adaptation methods on the hybrid model.

7.1 The Dual Pool Hybrid EC/SQP Algorithm

A new hybrid framework built around the dual-pool EC model and the SQP algo-

rithm (hybrid EC/SQP Algorithm (HESA)) is delineated in Algorithm 7.1. The

new framework extends the previous hybrid model (Algorithm 6.1) by enabling

continuous temporal collaboration between the global and local algorithms. The

closed-loop structure of the flow diagram in Figure 7.1 illustrates how the new

system is suitable for continuous optimization.
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Algorithm 7.1 The Dual-Pool Hybrid Evolutionary Computation Algorithm – HESA

1: t← 0;
2: N ← Pool size (user defined);

3: PEvo(t)← {Xi} : Xi,j ∈
[
xj, xj

]
, i = 1, ..., N, j = 1, ..., n

4: while not termination do

5: PEvo(t), σXover(t), C̃Div(t)← invoke EC (PEvo(t));

6: if
(
C̃Div(t) < Cmin

Div

)
and (σXover(t) < σminXover)

7: PR
Evo(t)← rank f (PEvo(t));

8: PE
Evo(t)← k%

(
PR
Evo(t)

)
;

9: xSQP ← invoke SQP(XE
Evo); where XE

Evo ∈ PE
Evo

10: XE
Evo ← xSQP ;

11: PDiv ← {Xi} : X ∈
[
xj, xj

]
, i = 1, ..., N, j = 1, ..., n;

12: PR
Div ← rank

∣∣∣∣X i
Div −XE

Evo

∣∣∣∣ : i = 1, ..., N ;

13: PDiv ← (100− k)%
(
PR
Div

)
;

14: PEvo(t)←
{
PE
Evo(t) ∪ PDiv

}
;

15: end if

16: PEvo(t+ 1)← PEvo(t)
17: t← t+ 1;
18: end while

//* initialise Evolution Pool PEvo *//

//* Keep evolving PEvo until maximum iteration

limit is reached *//

//* run EC model and estimate convergence at

every iteration, see Algorithm 2.2 *//

//* check for convergence of PEvo(t), see §4.5 *//

//* evaluate and rank PEvo(t) by fitness *//

//* get the top k% as elites *//

//* run SQP algorithm with the best solution

XE
Evo ∈ PE

Evo to get the local optimum xSQP ,
(Algorithm 3.1)*//

//* initialise Diversity Pool PDiv *//

//* evaluate and rank PDiv by distance from elite

//* get the farthest samples in PR
Div *//

//* merge PE
Evo and PDiv to form the new evolution

pool PEvo *//
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Figure 7.1: A framework for continuous optimization using the Hybrid Dual-pool
EC/SQP Algorithm (HESA). While this framework stimulates continuous opti-
mization cycle, the stopping criterion requires a user specified limit on function
evaluations or iterations.

Importantly, the dual-pool EC model (Algorithm 5.2) remains generally pre-

served, but is augmented by the important addition of local refinement by the

SQP algorithm (see Algorithm 7.1, line 9). Local refinement is dynamically ap-

plied to the best solution point returned by the dual-pool EC model whenever



CHAPTER 7. ENABLING CONTINUOUS OPTIMIZATION 182

convergence is detected (line 6). The criterion upon which the switching between

the two – different1 but complementary – algorithmic paradigms is built is based

on the robust convergence detection method earlier proposed in Section 4.5. The

local optimization stage aims to improve the exploitation capabilities of the dual-

pool EC model. Thus, the proposed HESA model ensures that the hybridized

system benefits from synergy.

The flow diagram in Figure 7.1 visually outlines the dynamics of the proposed

dual-pool HESA model. Figure 7.1 reveals that the search always begins with

the global algorithm (dual-pool EC model); the convergence validation is aligned

to two minimum thresholds: (i) the coefficient of spatial diversity (C̃Div), and (ii)

the population evolvability measure (σXover), see Algorithm 7.1 (line 6).

The local algorithm (SQP) then processes a single solution point returned by

the global algorithm. The single point was derived from the search pool of the

global algorithm of size N , and it is the optimal solution (x∗) returned by the

global algorithm.

The optimization process cycles through global and local searches until the

available function evaluations are exhausted or the process is terminated by the

user; this continuous cycle (Figure 7.1) enables continuous optimization in the

context of global and dynamic environments.

To investigate the new hybrid framework, the rest of this chapter focuses on

evaluation of the performance of the proposed HESA model on dynamic opti-

mization problems. Section 7.2 introduces the dynamic optimization problems

and highlights their significance in global optimization framework. Section 7.3

reviews four main approaches upon which the state-of-the-art models for dy-

namic optimization are designed. Then, Section 7.4 presents the dynamic rota-

tion peaks (DRP) benchmark, which is then used – as a case study – to evaluate

the performance of the proposed HESA model in Section 7.5. Finally, Section 7.9

summarises the contributions and concludes the chapter with remarks for further

investigations. The following section introduces the aspects of optimization in

non-stationary environments.

1The hybridized algorithms differ in two important perspectives: the EC is global
(population-based) and stochastic, whereas the SQP is local (individual-based) and determin-
istic.
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7.2 The Rationale for Dynamic Optimization

Beyond the traditional goal of seeking to converge to a given global optimum

solution in the stationary optimization setup, dynamic optimization requires con-

tinuous tracking of the optimal solution. This is necessary because in such envi-

ronment, the locus and/or fitness of the global optimal point at a given time step

t may slightly or significantly vary from that in the previous time step (t − n);

in other words, the geographic position of the solution points in the state space

changes over time (t). Therefore, in such environment, an optimization problem

could be regarded as having an additional design parameter, i.e., the instanta-

neous time t, such that the objective function is formulated as:

maximise: y = f(x, t), (7.1)

where x ∈ Rn is an n-dimensional vector of the problem’s design variables.

In practice, many real-world applications tend to exhibit some dynamic be-

haviour (subject to large amount of uncertainties); it is common for optimization

model parameters to vary continuously during the optimization process. Thus,

the demand for dynamic optimization algorithms in the field of sciences, engineer-

ing, financial management and prediction, mathematical modelling, industrial

design and applications etc. has steadily increased in the recent years.

Typically, many control problems are subject to inherent dynamic behaviours.

This could be as a result of system degeneration, gradual or abrupt changes in

user specified control variables2. Such dynamic phenomena often lead to criti-

cal changes in the original model. Dynamism is also encountered in industrial

productions and constructions where, changing customer demand, varying envi-

ronmental conditions or a slight degradation in raw materials’ quality can signif-

icantly change the optimization goal. Similar cases occur in scheduling problems

where the optimization goal changes following an unexpected machine breakdown

or due to spontaneous addition/finishing of jobs.

Early researches in EC were focused on utilising these algorithms to solve

complex (including, medium to large scale) multimodal but stationary global

2The state of control systems may, in addition, experience dynamic changes due to tem-
perature or pressure changes overtime, or as a result of changes in physical parameters like
component wear.
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optimization problems. It was after the realisation of their adaptive capabili-

ties (De Jong, 1975), that EC algorithms have become widely accepted (Beyer

and Sendhoff, 2007; Branke, 2001; de França and Von Zuben, 2009) as reliable

candidates for searching and tracking of global optima in dynamically changing

environments. Evolutionary algorithms (EAs), such as genetic algorithms (GAs),

inherently have a high likelihood of withstanding changes in the objective func-

tion so long as their search pool remains diverse (i.e., fairly evenly distributed

over the search space). Thus, with a diverse search pool, EAs would naturally

adapt and refocus the search towards the neighbourhood currently favoured by

the objective function.

However, as highlighted in the diversity dynamics of the standard EC model

(see Section 5.5.1), EAs inevitably lose the diversity in their search pool over gen-

erations. This diversity collapse forces the search pool to converge to a currently

explored promising region thereby paralysing the adaptive capabilities of these

algorithms. Hence, the standard EAs generally fail to explore new areas of the

search space when an eventual change in the problem’s optimal solution occurs.

Therefore, following the brief overview in Section 7.3, Section 7.4 investigates

the performance characteristics of the proposed HESA model (Algorithm 7.1)

on dynamically changing environment. The HESA model’s collaborative frame-

work will – at every time-step of the dynamically changing search space – control

and maintain sufficient diversity in the search pool. The system uses a robust

convergence detection mechanism to adaptively switch between its constituent

algorithms.

7.3 Overview of key Dynamic Optimization

Approaches

Although a number of early works on adaptive and dynamic optimization ap-

proaches date back to 1960s (Fogel et al., 1966; Goldberg and Smith, 1987), it is

only in the last couple of decades that much progress have been made. In fact, the

recent years have seen an increasing interest in optimization approaches suitable

for dynamically changing problems (Nguyen et al., 2012). Hence, the perfor-

mance of evolutionary algorithms on dynamic problems has been improved; the

improvement strategies include:
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i. convergence avoidance strategies;

ii. memory based approaches;

iii. multi-populations strategies; and

iv. robust optimization policies.

The following sections present a chronological review of some landmark inves-

tigations in dynamic optimization literature using EAs.

7.3.1 Convergence Avoidance strategies

These strategies typically include dynamically changing the mutation and/or

crossover rates. The methods aim to preserve diversity in an evolutionary search

pool by completely avoiding population convergence during the entire optimiza-

tion period.

An early study on dynamic problems by Cobb (1990) has led to deployment

of a mechanism based on triggered hypermutation to detect and adaptively in-

crease the mutation rate whenever a change is detected. Enjoying the benefit of

hypermutation, this technique has a strong tendency to revitalise the diversity

necessary to aid further exploration of the new landscape. However, this original

model of triggered hypermutation was designed to detect dynamism only when

there is a change in the fitness of the best solution found so far. Thus, as demon-

strated by Grefenstette (1992), there are a great many scenarios at which the

technique fails to detect dynamic changes; and with no triggered hypermutation,

the evolution eventually converges to a suboptimal region.

Consequently, Grefenstette (1992) proposed a remedy by augmenting a genetic

algorithm with a partial hypermutation step. The method replaces a percentage

(called replacement rate) of the population with randomly generated individu-

als in every generation. While the addition of the replacement rate parameter

adds to the challenges in parameter tuning, a sensitivity test was shown to sup-

port replacing 30% of the total pool size. However, the investigations in Grefen-

stette (1992) remained silent on what individuals should be replaced for optimum

performance. This method was later named as random immigrants (Cobb and

Grefenstette, 1993). The random immigrants was shown to outperform (based

on tracking ability) the standard GA, a triggered hypermutation GA (Cobb and

Grefenstette, 1993), and memory based GA (Trojanowski and Michalewicz, 1999).
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Further theoretical analysis on the use of mutation only EA to adapt and search

a time-dependent environment can be found in Ronnewinkel et al. (2001).

It is important to note that the successive introduction of the random immi-

grants may significantly slow down the optimization efficiency. This is because

it essentially adds uninformed diversity into the search pool at every generation.

Another challenge lies in establishing optimum size and frequency of introducing

the random immigrants. This may further complicate parameter tuning since it

is, in general, problem dependent.

7.3.2 Memory-Based strategies

Memory-based strategies preserve and revert to a previously seen state when the

problem state space cycles in a periodic manner. Thus, they are particularly

useful for dynamic environments that exhibit periodicity. The memory structure

can be either implicit or explicit. Implicit memory strategies utilise redundant

representation (Goldberg and Smith, 1987) to tag the visited high quality states,

but explicit memory methods use buffer (Branke, 1999) to store their previous

states.

Goldberg and Smith (1987) investigated the capabilities of genetic algorithms

to harness redundant information stored via the use of genetic diploidy with

dominance. Goldberg and Smith (1987) believe that at least for some classes of

dynamic problems having two state response surfaces3, genetic algorithms with

the diploidy strategy can effectively handle certain forms of dynamic changes.

Although in this proposal information is only implicitly stored and retrieved, it

turns out to be one of the early breakthroughs in the design of memory-based

EAs. It is evident from their investigations (Goldberg and Smith, 1987) that

diploidy and/or multiploidy representations can be quite effective on dynamic

environments exhibiting periodicity among few states, but the suitability of these

strategies to problems without periodicity or those with more than a few re-

occurring states is debatable.

Elsewhere, Branke (1999) proposed using a buffer to serve as an explicit mem-

ory for direct storage and retrieval of previously seen good solutions. Evaluation

results on an “oscillating peaks” benchmark have shown improved performance

over the standard EC model, albeit this is limited to a small set of problems

3A two state response surface model is an optimization problem that switches between two
optimal states.



CHAPTER 7. ENABLING CONTINUOUS OPTIMIZATION 187

where the optimum repeatedly returns to previously visited locations. Note that

the proposal in Branke (1999) has not explicitly suggested an optimum size for

the memory and how long the stored information should be retained.

A recent investigation by Barlow and Smith (2008) yields some new insight

into the use of memory to enhance EA performance on dynamic scheduling prob-

lems. They found that for such problems having both a dynamic fitness land-

scape and time-dependent constraints that shift the feasible region of the search

space, a memory should be designed to store some indirect representation of

jobs in terms of their properties to allow mapping to similar solutions in future

scheduling states. Based on their evaluation results, Barlow and Smith (2008)

concluded that at least for dynamic job shop scheduling problems, this classifier-

based memory-enhanced EA is more effective than approaches which aim squarely

at maintaining population diversity.

Notably, the ability of memory-based approaches to recall previously seen

states means that they could be effective on specific class of dynamic problems.

However, in addition to the challenges in seeking optimum memory size, updates

and replacement strategies, their application could be highly limited since most

dynamic problems are non-periodic – exhibiting random and chaotic behaviours.

Therefore, the diversity-based methods could have wider applicability provided

that they improve robustness without compromising efficiency.

7.3.3 Multi-population strategies

In this case, the main population is divided into sub-pools which are set to search

and closely track the high quality sub-regions as they dynamically drift and/or

alter their fitness levels over generations. As these are introduced in Section 5.3.2,

this section would only emphasise on the multi-population strategy proposed by

Branke et al. (2000). Branke et al. (2000) proposes a multi-pool strategy that

exclusively searches the sub-regions of its search space by using one of several sub-

populations called self-organising scouts (SOS). The method could be seen as an

opposite of the shifting balance GA (Oppacher and Wineberg, 1999). This is be-

cause while the main (parent) population continuously searches for new promising

regions (peaks), the child populations concentrate on exploiting the previously

detected promising areas. Empirical experiments have shown that SOS outper-

forms the standard EC under both changes in the frequency of change (dynamism)

and increasing severity of change. It also performs better than the conventional
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memory-based dynamic optimization methods which perform poorly when the

change severity increases.

Note that multi-population based approaches enhance the exploration capa-

bilities of EAs. This is because they stimulate a speedy exploration of different

regions of the search space through niching. They also improve diversity mainte-

nance since even when sub-populations individually converge; they still preserve

diversity across them. However, as earlier discussed in Section 5.3.2, managing

more than one population requires introduction of additional parameters, and

majority of such methods are prone to communication challenges among the sub-

populations; but these are the main limitations addressed by the newly proposed

dual-pool EC model (Algorithm 5.2).

7.3.4 Robust optimization policies

These approaches favour searching for not only the solutions with high fitness

levels, but also those that can survive minor environmental changes with little

degradation, see Branke (1998); Paenke et al. (2006). The aim is to minimise

frequent changes to an optimized system, which could be costly. Thus, in antici-

pation of slight variations in the search domain or the optimization goal, robust

optimization policies enforce prioritising robust solutions over their highly fit but

fragile counterparts. Note, however, that this approaches lack the capability to

evolve and adapt to a newly formed landscape that follows a dynamic change.

In other words, robust optimization policies do not adapt, they instead search for

secure solutions that may survive minor changes, see Branke (1998); Tsutsui and

Ghosh (1997) for more on such approaches.

7.4 Evaluation of the Dual-Pool HESA model

on Dynamic Optimization Benchmarks

Firstly, this section presents a detailed description of the dynamic rotation peak

(DRP) benchmark. Then, the test problem is utilised as a case study to evaluate

the performance of the proposed dual-pool HESA model (Section 7.1) on a wide

range of dynamic changes.



CHAPTER 7. ENABLING CONTINUOUS OPTIMIZATION 189

100

80

60

40

20

0

Dynamic Rotation Peak Benchmark
z-

ax
is

-5

0y-axis
5

5

5

-5

50

40

30

20

10

0x-axis

Figure 7.2: A 3-D view of a 2-dimensional Dynamic rotation peaks (DRP) bench-
mark function. In this illustration the DRP benchmark (7.2) has m = 10 peaks,
each of height h ∈ [10, 100], and width w ∈ [1, 10] units.

7.4.1 The Dynamic Rotation Peak (DRP) Benchmark

The case study to be used for evaluating the proposed dual-pool HESA model on

dynamic optimization problems is the IEEE CEC4 2009 dynamic rotation peaks

(DRP) benchmark. Note that the benchmark information provided in this sec-

tion is an excerpt from the complete benchmark specification in Li et al. (2008).

As illustrated in the 3-D plot of a 2-dimensional DRP benchmark in Figure 7.2,

the DRP benchmark is a global, asymmetric and highly multimodal problem; it

features various degrees of dynamism ranging from small, large, random, chaotic,

recurrent and recurrent noisy step changes. The test problem was originally pro-

posed by Branke (1999) but was later improved by Li et al. (2008) and then

recognised as a state-of-the-art platform for evaluating dynamic optimization al-

gorithms. It was then used in the IEEE CEC 2009 competition on dynamic

optimization; see Brest et al. (2009); de França and Von Zuben (2009); Korošec

and Šilc (2009); Li and Yang (2009); Yu and Suganthan (2009).

4IEEE Congress on Evolutionary Computation, 2009.
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Table 7.1: Properties of the Dynamic Rotation Peaks Benchmark (cf. Figure 7.2)

Property Symbol Values/Ranges

Dimensionality n variable

Complexity − global, scalable, asymmetric, rotated

Search Domain D D : xi ∈ [−5.0, 5.0], i ∈ Rn

Number of Local Optima (Peaks) m 10 (adjustable)

Local Optima Height range H Hj ∈ [10, 100] : j ∈ Rm

Local Optima Width range W Wj ∈ [1, 10] : j ∈ Rm

Global Optimum x∗(t) max(f(x, φ, t)) : Hi(t) = maxmi=1H

Problem Definition:

Let φ = ( ~H, ~W, ~X), the DRP benchmark seeks to maximise the function f(x, φ, t),

which is defined as

f(x, φ, t) =
m

max
i=1

 ~Hi(t)

1 + ~Wi(t)

√∑n
j=1

(xj− ~Xi
j(t))

2

n

 , (7.2)

where ~H, ~W, and ~X are vectors of peak height, width and position respectively;

the size of each of these vectors is equal to the number of peaks m. These parame-

ters change dynamically according to the dynamic rotation algorithm proposed by

Salomon (1996). Details of the remaining parameters of this benchmark function

are summarised in Table 7.1.

7.4.2 Evaluation of Dual-Pool HESA on DRP Benchmark

Table 7.2 summarises the parameter settings for the proposed HESA model and

unless otherwise stated, these settings will be adopted throughout the dynamic

optimization experiments. Tables 7.3 to 7.5 show the details of the parameters

investigated during these experiments. The proposed model is evaluated on the

rotation peaks benchmarks under six (T1 to T6) different types of dynamic changes

(see Table 7.3).

The relative performance measures described in Table 7.5 signify the following:

• Offline Performance (roffline): This is the ratio of the best solution found
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Table 7.2: Dual-pool HESA model Parameter settings for Dynamic Optimization
Experiment

Parameter Name Symbol Values/Types

Population Sizes N [10, 50, 100, 500, 1000]

Encoding – Real-valued

Selection Scheme – Binary Tournament

Crossover Probability PC 1.0

Mutation Probability PM 0.01

Replacement Scheme – Generational–Elitist

Initial Population – SSP quasi-random heuristic, §5.4.5

Termination Criteria Max-FEs Maximum Evaluations (104 × n)

xbest to the true optimal solution x∗ at the end of a prescribed time period.

It indicates the tracking performance of the evaluated model.

• Online Performance (ronline): This reports the relative value of the best so-

lution found xbest to the true optimal solution x∗ at every epoch or sampling

period. It assesses the tracking performance of the model through contin-

ual monitoring of its exploitation of the search space during the course of

the optimization. See De Jong (1975); Grefenstette (1986, 1992) for further

details on these measures.

Accuracy is measured from the relative performance analysis, i.e. the char-

acteristics of the roffline/ronline curves. Robustness is assessed from the absolute

error (Elast) analysis and also the relative performance analysis. And finally, effi-

ciency assessment is based on the characteristics of the convergence curves derived

from the median performances on the six different types of dynamic changes.

Having introduced detailed test problem parameters in Table 7.1 and detail

description for the experimental evaluation parameters in Tables 7.3 to 7.5, the

following sections present and analyse the results obtained during the optimiza-

tion of the DRP benchmark.

7.5 Results – Analysis and Interpretation

The objectives of these experiments are: (i) to conduct parameter sensitivity test

on the proposed HESA model, and (ii) to evaluate its performance with emphasis
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Table 7.3: Evaluation Parameters for the DRP Benchmark

Parameter Symbol Values/Description

Dimension n 10

Dynamic change instances T

T1: Small step

T2: Large step

T3: Random step

or types T4: Chaotic step

T5: Recurrent step

T6: Recurrent Noisy step

Number of Changes/type num-change 60

Function Evaluations/change FEs/change 10, 000× n
Max. Function Evaluations Max-FEs 10, 000× n× num-change

Current Best Solution xbest(t)

The position of the highest peak at
generation t; i.e., xbest(t) = xi(t) :
Hi(t) = maxm(Hi)

Sampling Frequency sf
The rate at which xbest(t) is recorded:
sf = 100× FEs

Sampling Period s
The period after which xbest(t) is
recorded: s = FEs/change/sf

Termination Criteria Max-FEs Maximum Function Evaluations

on accuracy, robustness and convergence efficiency. Table D.1 in Appendix D

summarises the complete results obtained during these experiments. These results

are averages of 20 independent runs for the HESA algorithm on the T1 to T6

dynamic change types (Table 7.3).

7.5.1 Pool size Sensitivity Analysis

This section investigates the influence of varying the parameter N (pool size)

on the offline and online performances (roffline/ronline) of the proposed dual-pool

HESA model. To facilitate results analysis, the plots in Figure 7.3(a and b)

graphically demonstrate the offline/online performances of the proposed HESA

model showing its sensitivity to pool size variations of 10 to 1000 samples. As

expected, the plots in Figure 7.3(a and b) show that the average offline per-

formances (Figure 7.3a) across all the six dynamic change types always exceed

the corresponding online performances (Figure 7.3b). This is because the HESA
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Table 7.4: Absolute Error (Elast) Analysis – analysed over 20 independent runs

Parameter Name Symbol Description

Number of Runs runs Independent repetitions: runs = 20

Absolute Error Value Elast

This records the absolute error between the
current best solution xbest and the true op-
timal solution x∗ at the end of every change
instance t = FEs/change (see Table 7.3).
|f(xbest(t))− f(x∗(t))|

Average of best Elast Avg-min-Elast
This parameter records the average of the
minimum values of Elast for all runs.∑runs

i=1 minnum-change
j=1 Elast(i,j)/runs

Average of mean Elast Avg-mean-Elast
This parameter records the average of
the means of Elast for all runs.∑runs

i=1

∑num-change
j=1

(
Elast

(i,j)

runs×num-change

)

Average of worst Elast Avg-max-Elast
This parameter records the average of the
maximum values of Elast for all runs.∑runs

i=1 maxnum-change
j=1 Elast(i,j)/runs

STD of Elast STD-Elast
This measures the spread (std. devia-
tion) of Elast for all runs. It is defined as:√∑runs

i=1

∑num-change
j=1

(
Elast

(i,j)
−Avg-mean-Elast

)2
runs×num-change−1

model is an elitist algorithm that monotonically improves on its previously found

best solution. Thus, at the end of any given run, the final solution5 is always the

best found so far.

On one hand, it is important to note from Figure 7.3(a and b) that highest

performances for both the offline and online measures are obtained when a pool

size of 50 is utilised; this is followed by a pool size of 100. On the other hand,

these plots show that the larger sample sizes (greater than 100 to 1000) improve

neither offline nor online performance. This is an interesting finding since the idea

of utilising large pool sizes is generally thought to be a viable diversity control

policy; although this outcome is rather unexpected, these 3-D plots validate that

over all the T1 to T6 dynamic changes, both the offline and online performances

deteriorate when a large pool size is utilised. Hence, it could be deduced from

these sensitivity results that larger sample sizes tend to severely retard fitness

5Note that the best solution found at the end every run is used to measure the algorithm’s
offline performance.
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Table 7.5: Relative Performance (r(t)) Analysis. Results are expressed as per-
centages of the true optimal solution x∗

Parameter Name Symbol Description

Relative performance r(t) rt(t)

The ratio of the fitness values of xbest to x∗

at a given generation t. It is defined as:
f(xbest(t))/f(x∗(t))

r(t) per sampling period s rs(t)
This records r(t) at the end of every sampling
period for a given change (at FEs=s).

r(t) per change rlast(t)
This records r(t) at the end of every generation
t for a given change.

Cumulative r(t) per change rcum
This is the running average for r(t) at every
sampling period s for a given change.
rlast/ (1 +

∑s
s=1(1− rs)/s)

Offline performance roffline
This is the mean of rlast for all changes in
a given run.∑num-change

j=1 rlastj /num-change

Online performance ronline
This is the mean of rcum for all changes in
a given run.∑num-change

j=1 rcumj /num-change

progress during the evolutionary search. As validated here, the acceleration in

fitness progress enjoyed by small to medium sized pools (50 to 100 samples) is

vital for successful optimization in dynamically changing environments.

Importantly, these findings support a recent theoretical analysis that provided

new insights into the effect of using large sample sizes in EAs by Chen et al. (2012).

Their analysis (Chen et al., 2012) suggests that using large sample sizes, on at

least some classes of global optimization problems, does not guarantee optimal

performance.

7.5.2 Relative Performances and Convergence Efficiency

The above sensitivity analysis reveals that the HESA algorithm consistently yields

better performance with N = 50 samples. Thus, this section assesses the relative

performances (Table 7.5) of the HESA algorithm on the DRP benchmark when

a pool of 50 samples is utilised (see Figure 7.4). Notice from Figure 7.4 that

the dynamic change type T1 (small step) appears to be the easiest, whereas T6

(recurrent noisy) seems to be most difficult for the HESA model. In fact, both
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Figure 7.3: Sensitivity of the proposed HESA model under varying pool sizes and
across the six different dynamic change types: (a) Shows the offline performance
(roffline), and (b) Shows the online performance (ronline). All results are averages
of 20 independent runs.

the offline and online performances degrade as the dynamic change types get

harder, i.e. from T1 to T6. Notice however, that with the exception of T6, the

HESA model seems to maintain at least 90/80% of offline/online performances

across the entire range of dynamic change types. This generally shows a tracking

consistency of at least 80% for T1 to T5 dynamic changes types.
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Relative Performance Analysis: roffline vs. ronline
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Figure 7.4: The offline and online performances (roffline/ronline) of the Dual-pool
HESA model averaged over 20 independent runs. A pool of size 50 is utilised.
The error bars show the standard errors of the mean.
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Figure 7.5: Convergence graph showing the median offline performance charac-
teristics of the HESA model on the six different dynamic change types over 20
independent runs.

To understand the convergence characteristics of the proposed HESA model

on the DRP benchmark, Figure 7.5 compares the medians of the offline perfor-

mances for the six different dynamic changes (T1 to T6). This figure demonstrates
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Figure 7.6: Absolute Error Analysis for the Dual-pool HESA model on T1 to T6

dynamic change types of the DRP benchmark. (a): Compares the mean Elast

under varying pool sizes. (b): Shows the mean Elast with standard error bars for
the spread of the mean absolute error when a pool size N = 50 is used.

the ability of the HESA model in tracking a changing environment over a sim-

ulation period of 60 dynamically changing landscapes. Notice from Figure 7.5

that, for the change types T1 to T4, the HESA model was able to maintain best

solutions as close as possible to their respective true optimum solutions through-

out the simulation period. Significant fluctuations are however witnessed in the

convergence characteristics on T6. This outcome suggests that the HESA model

may need additional function evaluations on top of the available computational

budget of 10, 000× n (see Table 7.3) to sufficiently track the changing optimum

under the T6 dynamic change type.

7.5.3 Absolute Error Analysis

This section investigates the absolute error (Elast) statistic (Table 7.4) of the

proposed HESA model. A complete summary for the resulting absolute error in

these experiments is presented in Table D.2 in Appendix D.

To gain better insight into the absolute error characteristics of the HESA

model, the complete results is visualised in Figure 7.6. In particular, Figure 7.6a

compares the mean absolute error (Elast) obtained for the six different dynamic

change types of the DRP benchmark. In fact, Figure 7.6a also depicts the sensi-

tivity of the HESA model to varying pool sizes; notice that a log scale is utilised
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on the pool size axis of this figure. Importantly, it is observed from Figure 7.6a

that over all the six different dynamic change types, the least absolute error is

witnessed when the HESA model is run with a pool size of 50 samples. In fact the

absolute error appears to worsen both when a too small pool size (e.g. 10) and

when a too large pool size (e.g. 1000) is utilised. Nevertheless, the characteristic

shapes of the absolute error curves, over T1 to T4 dynamic change types, show

that the sensitivity of the HESA model to varying pool sizes on such dynamic

changes is rather mild (see the four curves at the bottom part of Figure 7.6a).

For clarity, Figure 7.6b illustrates the resulting absolute error for the sample

size of N = 50. It provides a closer look into the spread of the mean Elast across

the six different dynamic change types. It could be concluded from this figure

that from at least the T1 to T5 dynamic change types, the amount of absolute

error sustained by the HESA model is no more than ±20.

7.6 Parameter Adaptation for the hybrid EA

The optimum setting for a set of evolutionary algorithm’s parameters does not

only vary from problem to problem, but also across the stages of the evolution

itself (Bäck, 1993; Eiben et al., 1999; Harik and Lobo, 1999; Spears, 1995). This

phenomenon applies not only to the conventional EC frameworks, but also to the

hybrids and memetic methodologies (Chen et al., 2011; Queiroz and Lyra, 2009).

Thus, in the EC community, there is a general consensus on the need to involve

a systematic adaptation of the crucial evolution parameters, such as mutation

and recombination step sizes (Hansen et al., 1995; Herrera and Lozano, 2000)

and/or probabilities (Dai et al., 2010; Hong et al., 2002; Niehaus and Banzhaf,

2001; Queiroz and Lyra, 2009; Yang, 2003), selection pressure (McGinley et al.,

2011), etc. The objective has been to potentially improve exploration of promising

regions of the search space, and most importantly, to minimise reliance on manual

parameter tuning which affects the overall solution quality.

Figure 7.7 demonstrates the commonly used approaches to parameter adap-

tation in EC. Like in most stochastic search methods, parameter setting in EC

fundamentally accounts for: what parameters are changed, how they are changed

and the extent of the change. Thus, parameter setting can generally be divided

into parameter tuning, and parameter adaptation (cf. Figure 7.7). Parameter

tuning involves manual setting of the evolutionary parameters prior to running
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the evolutionary search. The alternative approach involves controlling parameters

dynamically during the optimization. This mode of tuning can be sub-divided

into deterministic, adaptive and self-adaptive parameter control. In deterministic

parameter control, the adaptation is generally aligned to some deterministic rules,

such as a temporal schedule; thus, a parameter is adjusted without any feedback

from the search output. In the adaptive parameter control however, some form

of feedback from the search is used to dictate the extent to which a parameter

is modified. Finally, self-adaptation6 entails incorporating the parameters into

the encoding of the solution points with the hope that improved parameters are

evolved over generations.

The objective of parameter control has been to minimise user influence. Thus,

the hypothesis guiding the following proposals is:

#H: Adaptation of EC parameters via heuristic incorporation of useful infor-

mation from the current state of the evolutionary search process should

provide robust (stable) performance with less user input.

As a caveat to this, the useful information in #H excludes features that simply

return the mere temporal state of the search; it specifically refers to crucial fea-

tures that reflect the instantaneous state of the evolutionary search pool (such

as pool’s diversity and population evolvability). The following sections propose

adaptation models for both the mutation and recombination operators.

7.6.1 Adapting the Mutation operator

Recall that the proposed HESA model (Section 7.1) utilises real-valued encoding,

and it adopts a mutation strategy that is based on the Breeder GA (BGA) muta-

tion algorithm. The BGA (Mühlenbein and Schlierkamp-Voosen, 1993) mutation

operator is an advanced version of the well-known Gaussian mutation method

which mutates a sample solution by adding some Gaussian random noise. Thus,

from a search pool of size N , any sample solution xk : k ∈ [1, N ] has a chance to

mutate any of its n-dimensional variables xik : i ∈ [1, n]. A sample mutates with

a probability PM by taking a custom step size, σik, such that

x̂ik = xik + σik, (7.3)

6Self adaptation often requires some form of tailored/problem dependent encoding. Since
this study aims to propose a generalised model for evolutionary optimization in continuous
domain, self-adaptation is beyond the scope of this thesis.
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Figure 7.7: Parameterisation Methodologies in Evolutionary Computation

where σik is the mutation step size which is defined as

σik = ζi · ri · ai. (7.4)

The parameter ζi is the mutation directivity; it defines the sign such that ζi = ±1

(uniform at random). ri is the mutation range, chosen as 10% of the width of the

variable’s bound7, such that

ri = 0.1(xiu − xil).

Then, ai is the mutation step size parameter. To facilitate mutation with smooth

(short) step sizes, Mühlenbein and Schlierkamp-Voosen (1993) suggest deriving

the step size parameter, ai, from a uniform distribution that favours values around

7The mutation range ri = 10% was suggested by Mühlenbein and Schlierkamp-Voosen (1993)
to ensure that the resulting mutated variable remains within the feasible search space. The mo-
tivation was to minimise the likelihood of generating infeasible solutions (i.e., solutions outside
the feasible domain) – thus avoiding the need for repair.
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its lower-tail, such that

ai = 2−µ
M
i τ . (7.5)

In (7.5), τ ∈ [2, 16] is the step size precision parameter. For the EC models in

this study, τ = 16 is adopted to allow for higher precision, which means that

smoother steps can be taken for better refinements of high quality solutions. µMi

is the effective precision parameter, µMi ∼ U(0, 1).

Having chosen a constant value for the mutation precision parameter τ , the

effective precision can mainly be adapted by varying µMi from 0 to 1 depending

on the instantaneous state of the search pool and/or the temporal progress of

the evolutionary search. Although, in the original model for the BGA operator,

the effective precision parameter µMi is chosen purely at random, the following

section presents the proposed adaptation strategy in this thesis.

A. The Proposed closed-loop Adaptive Mutation

This section proposes a closed-loop based strategy8 for the proposed hybrid EC

model. As depicted in Figure 7.8, the strategy allows heuristic determination

of an appropriate mutation step size by using the instantaneous state of the

spatial diversity C̃Div and evolvability σXover of the search pool9; this output

information (current diversity state of search pool) is then fed back to the input

(mutation controller unit) at every generation. Subsequently, the control unit of

the closed-loop system determines the appropriate mutation size; it achieves that

by regulating the boundaries of the distribution within which the mutation step

size is randomly sampled from.

Recall from the original BGA mutation (7.5) that ai = 2−µ
M
i τ with µMi ∼

U(0, 1). In this proposal, the controller splits the boundary [0, 1] within which

the effective mutation step size parameter µMi is generated in accordance to the

following rule:

µMi =

{
[0.5, 1] if C̃Div > 0.25 and σXover > 0.25,

[0, 0.5] otherwise.
(7.6)

The intuition here is that, since the values of the diversity and evolvability

8The closed-loop model here is a sort of observer-controller model (cf. Figure 7.8); it monitors
the output (pool’s diversity) and feed it back to the input (mutation controller) to guide setting
an appropriate mutation step size.

9The spatial diversity and evolvability measures are detailed in Sections 4.2 and 4.4.



CHAPTER 7. ENABLING CONTINUOUS OPTIMIZATION 202

Pre-mutation
Pool - Qr(t)

Post-mutation
Pool - Qm(t)

Mutation
Step-size
μi
M Pool Diversity

f(CDiv, σXover)

Adaptive Mutation Process

Mutation
Controller

Mutation
Operator

Figure 7.8: A closed-loop adaptive mutation operator. Qr(t) is the search pool
after recombination and Qm(t) is the search pool after mutation; the mutation
step-size µMi is determined by the adaptive mutation controller based on the in-
stantaneous diversity C̃Div and evolvability σXover of the search pool at generation
t. This adaptive mutation block (shaded in grey) replaces the mutation block in
the standard EC model of Figure 2.2 in Chapter 2.

measures (C̃Div, σXover) are normalised and range from [0, 1] (Section 4.5), we

consider any value larger than 0.25 to mean that a search pool has a sufficient

diversity (i.e., at least 25%)10; in this case the mutation controller samples the step

size parameter from its upper-tail, i.e., µMi ∈ [0.5, 1]. Otherwise, it is sampled

from the lower-tail µMi ∈ [0, 0.5].

The above definition for µMi has the following implications:

i. It stimulates further exploration of the search space by allowing individuals

to mutate with larger step sizes when the current spatial diversity and evolv-

ability in the search pool are high, i.e., when both C̃Div and σXover are higher

than 25%; and

ii. It allows the mutation operator to yield smoother refinements of the already

found high quality solutions when the search pool sufficiently draws to the

highest quality region found so far.

Thus, beyond introducing occasional disruption into the evolutionary search

process, with this adaptive model (7.6) the mutation operator ensures that:

(i) whenever the HESA model is in its exploratory-phase, the mutation operator

aids further exploration; and

10The 25% baseline for the pool’s diversity and evolvability is decided following empirical
experimentations.



CHAPTER 7. ENABLING CONTINUOUS OPTIMIZATION 203

(ii) when it is in its exploitative-phase, the operator facilitates smoother refine-

ments by constricting the sub-region of the randomly generated mutation

step sizes.

Moreover, it is worth noting that in spite of this controlled adaptation mecha-

nism, the overall mutation operation remains largely stochastic since µMi (7.6) is

still sampled from a uniform random distribution. Crucially, from the perspective

of simulated evolution (Atmar, 1994; Fogel et al., 1966), retaining randomness in

the mutation operation is generally considered more plausible to the biological

principle of mutation itself.

7.6.2 Adapting the Recombination operator

In a typical evolutionary paradigm, the role of the recombination (crossover)

operator is to facilitate transfer via exchange of high quality traits from parent

individuals to their offspring in a process that mimics a form of inheritance. The

focus in this section is on the recombination operator for real-valued encoding.

Thus, this section firstly presents the intermediate recombination operator and

then proposes its adaptive version for the hybrid EC model.

A. Intermediate Recombination Operator

This operator is mainly applicable to real-valued encoding and it is an extension

of the simple line recombination operator which generates offspring only along

the straight line connecting the parent. With intermediate recombination, a new

offspring variable x̂i is generated via linear combination – a sort of averaging

process – of the corresponding variables of the parent individuals. Hence, the

resulting offspring variable may lie within or outside the hypercube defined by

the parent.

For any two parent individuals X and Y in a problem of dimensionality n,

X = (x1, x2, . . . , xn)

Y = (y1, y2, . . . , yn) ,
(7.7)

the offspring variables X̂ and Ŷ produced with the intermediate recombination

operator are:

x̂i = αCi xi + (1− αCi )yi

ŷi = (1− αCi )xi + αCi yi
, (7.8)
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where αCi is the linear recombination parameter which has a unique value for each

variable. In essence, αCi weights the contribution of each parent to the generated

offspring. Note that if a single value for αCi is utilised for all the variables, the

intermediate operator reverts to a simple line recombination operator.

For most intermediate recombination designs (Mühlenbein and Schlierkamp-

Voosen, 1993), the value of αCi is either:

(i) set to 0.5 to enforce an unbiased averaging of the contributions from the

parent to their offspring, such that every parent contributes 50% share; or

(ii) is randomly generated using a uniform distribution within the interval [0, 1].

The latter is the most commonly used approach as it allows a stochastic process

to guide the recombination operation which would eventually decide the fate of

the evolutionary search.

To allow for the generation of offspring in an area within and outside (in-

terpolation and extrapolation) the hypercube defined by the vertices of the two

parents (cf. Figure 7.9), αCi is often randomly chosen from a slightly larger interval

(Mühlenbein and Schlierkamp-Voosen, 1993), such that

αCi ∈ [−αC, 1 + αC] (7.9)

where αC defines the degree to which the parent hypercube gets extrapolated for

generation of new offspring individuals. Typically, αC is chosen from an interval

αC ∈ [0.25, 0.75] (Mühlenbein and Schlierkamp-Voosen, 1993).

As argued by Mühlenbein and Schlierkamp-Voosen (1993), intermediate re-

combination generates most of its offspring only within, but not around, the

boundaries of the hypercube defined by the parent. As a result, the specified

area for the generation of possible offspring inevitably shrinks over generations11.

Empirical investigation in Mühlenbein and Schlierkamp-Voosen (1993) suggests,

statistically, that an αC ∈ [0.25, 0.75] is required to counteract the shrinking prob-

lem. It however remains difficult to pre-specify an optimum value for αC. This

is because a suitable value is largely problem dependent and may vary across

different stages of the optimization.

11The collapse in the offspring hypercube often leads to premature convergence of the search
pool.
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Figure 7.9: A 3-dimensional illustration of Offspring Hypercube for Recombina-
tion operator. This shows two parents (� squares) with their possible offspring
(◦ circles) produced within the hypercube formed by the two parents. Notice
that the generation of the offspring via this recombination process is analogous
to interpolation between the two parent samples.

B. The Proposed Adaptive Intermediate Recombination Operator

To dynamically adjust the size of the hypercube within which an offspring is gen-

erated following a recombination of two parent individuals, this section proposes

adapting the recombination parameter (αC) in (7.9). Similar to the above adap-

tive mutation operator (Section 7.6.1), αC is adjusted with the aid of a closed-loop

system that monitors the current state of the spatial diversity C̃Div in the search

pool. However, this model adapts the recombination weighting parameter (αC)

based on an exponential function (7.10). The model ensures that while αC grows

exponentially with decreasing spatial diversity C̃Div in the search pool, it remains

bounded within the following interval:

αC =


e−0.8 when C̃Div ≥ 0.8

e−0.2 when C̃Div ≤ 0.2

e−CDiv else.

(7.10)

This will mean that depending on the current diversity (C̃Div) in the search pool,

this proposal partitions the interval (7.9) for the recombination parameter αC into
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three:

• Firstly, during high diversity situations (i.e., with C̃Div of at least 80%),

αC is fixed at e−0.8 ≈ 0.45; this narrows the sampling interval (7.9) to

αCi ∈ [−0.45, 1.45], which is the smallest.

• Secondly, for limited diversity (i.e. C̃Div of at most 20%), αC is also fixed,

but now at e−0.2 ≈ 0.82; this widens the sampling interval (7.9) to αC ∈
[−0.82, 1.82], which is the largest.

• Finally, during moderate diversity levels (i.e, 0.2 < C̃Div < 0.8), αC is set

to dynamically vary with the exponential function, such that αC = e−C̃Div ;

this sets the sampling interval to αCi ∼ U(−e−C̃Div , 1 + e−CDiv), which is

moderate and dynamic.

Note that, similar to the above adaptive mutation model, pool’s diversity C̃Div of

at least 80% is considered high, lower than 20% is considered low and anything in

between is moderate. These ranges are decided through repeated empirical exper-

iments, and they are used to guide the partitioning process of the recombination

parameter interval in (7.9).

For clarity and to demonstrate the dynamics governing the proposed adaptive

model (7.10), Figure 7.10 shows the feasible space where an offspring is gener-

ated within and/or outside the hypercube (top) of the two parent individuals

via interpolation and/or extrapolation in an adaptive manner. Notice that the

characteristic curve (bottom) of the adapted range follows the adaptive function

described by (7.10). Therefore, the space within which the two parents generate

their offspring (i.e., the offspring hypercube) is bounded and grows exponentially

with decreasing diversity. Figure 7.10 reveals the following for the proposed adap-

tive model.

i. When the level of diversity in the search pool is high (i.e. at least 80%),

then, αCi ∈ [−0.45, 1.45]. This means that the parent individuals undergoing

recombination generate offspring, with high probability, within their neigh-

bourhood (niche) and with low probability away from their niche. Inspired

by the biological process of niching12 (Darwen and Yao, 1996; Goldberg and

12Individuals within a niche (group) are similar to each other, while individuals from different
groups share little or no similarities. Niching encourages maintenance of population diversity,
and thus better exploration of search spaces.
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Figure 7.10: Adaptive Recombination Operator: Offspring Feasible space and
Adaptation characteristics curve for the proposed Recombination operator.

Deb, 1991), this phenomenon could stimulate formation of dynamic clusters

around the basins of attraction in the fitness landscape. The rationale behind

this niching effect is to enhance the ability of the search pool to gather infor-

mation about the search domain by quickly exploiting their neighbourhoods

during the early stages of the evolutionary search (i.e. when the diversity

is high). This therefore aims to improve robust exploration of complex and

rugged problems possessing high levels of nonlinearities and multimodalities.

The idea conforms to preservation of multimodal diversity via the use of some

form of dynamic clustering as suggested in Kubaĺık et al. (2005).

Furthermore, recombination with low levels of αC, when there is already

high diversity in the pool, could minimise the chances of producing infeasible

offspring which lie outside the search domain boundaries.
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ii. As the evolutionary search progresses, it is natural for the diversity to even-

tually shrink. To tackle this, the proposed adaptive model dynamically in-

creases the size of the offspring hypercube. This is achieved by exponen-

tially enlarging the recombination weighting parameter interval, such that

αCi ∈ [−e−C̃Div , 1 + e−C̃Div ] as the diversity falls (see the adaptive range curve

at the bottom of Figure 7.10). This ultimately helps to offset any chances of

premature loss of diversity in the search pool by triggering further recombi-

nation among the previously formed niches/clusters. This model is expected

to eventually guide the search towards the high quality regions of the search

space for further exploitation.

7.7 Comparison of the Adaptive and

Non-Adaptive HESA Algorithm

This section investigates the effect of the adaptation introduced into the mutation

and recombination operators of the dual pool HESA model (Algorithm 7.1). The

effectiveness of the proposed adaptation strategies is analysed by comparing its

performance against that of the previously evaluated non-adaptive HESA algo-

rithm on the DRP benchmarks. Recall that the prior sensitivity analyses (Section

7.4) on the non-adaptive HESA model reveal that the algorithm attained its best

performance when a pool size of 50 samples is utilised. Similar investigations (not

shown here for brevity) on the newly proposed adaptive HESA algorithm have

led to the same conclusion. Therefore, the analyses presented herein are limited

to the cases having pool size of 50 samples.

7.7.1 Experimental Goals

Recall that, in addition to potential performance improvement, the adaptation

introduced into the original HESA model principally aims to relieve the user

of the burden associated with manual parameter tuning, which is often a time

consuming trial and error task. Therefore, this section verifies the hypothesis

made in Section 7.6 by comparing the adaptive and non-adaptive HESA models

with respect to their:

• Relative accuracy – using the offline and online performance measures;
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• Robustness – via the absolute errors analysis; and

• Efficiency – using convergence characteristics.

A. Accuracy Comparison

The complete evaluation results for the adaptive HESA model are summarised

in Table E.1 Appendix E. From the results obtained during the evaluation of

the non-adaptive HESA model in Section 7.5, Figure 7.11(a and b) compares the

online and offline performances of the two versions of the HESA model.

An obvious similarity with regard to the dynamics of the two models under

various instances of the dynamic change types can be seen in the characteristic

shapes of the relative performance curves in Figure 7.11(a and b). While the

improvements in relative accuracies (offline and online) achieved by the adaptive

HESA model remain rather mild, Figure 7.11(a and b) reveal that the character-

istics curves of the adaptive model appear flatter. This means that, regardless of

the nature of the dynamic changes, the use of adaptive parameterisation assures

consistent and high performance with less user input.

B. Robustness Comparison

This section compares the absolute errors sustained by the non-adaptive/adaptive

HESA models as shown in Figure 7.12. Notice the sizeable amount of standard

errors suffered by the non-adaptive HESA model especially on the T6 dynamic

change instance of the DRP benchmark, which further illustrates the high degree

of complexity and change severity in this instance of the DRP benchmark. Im-

portantly, while the reductions in the absolute errors sustained by the adaptive

HESA algorithm across most of the dynamic change types remain mild, these im-

provements (i.e., reduced levels of absolute error) are significant on the dynamic

change types having higher levels of change severity, see T6 for example. Such

types of dynamic changes generally pose greater tracking difficulties to manually

parameterised models.

C. Efficiency Comparison

The two models are compared based on their convergence characteristics on the T1

to T6 dynamic change types; Figure 7.13 shows the comparison results. The con-

vergence characteristics curves in this figure reveal that for the dynamic change
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Figure 7.11: Comparison of the relative performances of the adaptive and non-
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Figure 7.12: Comparing the Absolute Errors of the Adaptive and Non-adaptive
HESA models on the DRP benchmark. Experimental results are averages of 20
independent runs and the error bars shows standard errors of the means.

types exhibiting milder change severity and randomness such as T1 and T2, the

two models compete head-to-head, both yielding exceptionally good convergence

efficiencies. On the other hand, when the dynamic change severity and ran-

domness increase, i.e. for T3 to T6, the non-adaptive HESA model exhibits a

much weaker convergence speed. This means that the convergence efficiency
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Figure 7.13: Comparing the convergence characteristics of the Adaptive and Non-
adaptive HESA models based on the medians of their relative performances on
the DRP benchmark for T1 to T6 dynamic change types.

of the non-adaptive HESA is significantly affected by the increased complexity

of the dynamic problem. In contrast, the adaptive HESA model turns out with

fairly smoother characteristics – indicating a robust change detection and efficient

tracking capability. It is noteworthy that the above three features (accuracy, ro-

bustness and convergence efficiency) are required attributes for ensuring optimal

performance in dynamically changing environment.

7.7.2 Analysis and Interpretation of Adaptation effect

The above findings reveal that the adaptive HESA model demonstrates improved

robustness and accuracy over its non-adaptive counterpart. However, in some

specific test cases, the non-adaptive HESA model seems to perform best. For in-

stance, the Figures 7.11(a and b) show that under the small step dynamic change

type (T1), the non-adaptive model yields slightly better offline/online perfor-

mances. This discrepancy could be due to the fact that the dynamic change

associated with T1 is relatively mild both in severity and randomness. Thus,

compared to other dynamic change types (T2 to T6), it seems easier for the man-

ually parameterised model to achieve a near optimum performance on T1. On the

other hand, the adaptive HESA model would require some extra effort to learn

and gather sufficient knowledge about the complexity of the problem’s landscape
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before coming up with a suitable parameter set for that particular test problem.

Thus, although the adaptive model is more consistent with regards to unifor-

mity in its levels of accuracy and robustness, it could be slightly slower on less

complex dynamic problems. A similar behaviour is observed from the conver-

gence characteristics curve in Figure 7.13 for the T1 dynamic change type (where

the adaptive algorithm slightly trails its non-adaptive counterpart).

Importantly, it could be said that there is a high tendency for the non-adaptive

HESA model to overfit a specific problem instance (see Figure 7.11 where the non-

adaptive HESA yields fairly good offline/online performances on T1 but poor on

T6). This is an obvious consequence of relying on user pre-defined parameter

settings, which risks poor generalisation ability. This effect could result in signif-

icant performance deterioration even on similar problem instances. Conversely,

it is observed from Figure 7.11 to Figure 7.13 that the adaptive HESA model

features higher sense of generalisation over its non-adaptive version (exhibiting

fairly uniform performance across all the six dynamic change types).

It could be inferred from the above findings that the adaptive HESA model

yields a more robust and stable performance. This suggests that it is more suitable

for optimization of wider range of highly multimodal and dynamic problems. The

findings also support the earlier hypothesis (Section 7.6) that an adept parameter

adaptation technique that utilises the current state of pool’s diversity as feedback

can generally improve the performance of a hybrid evolutionary algorithm.

Finally, since the results of this experiment agreed with the well-known facts

about the benefits of adaptive parameter control in the EC literature (Eiben

et al., 1999), the objective set out earlier in Section 7.6 has been satisfied. Of

course further comparative experiments with other adaptation strategies (such as

the commonly used fitness-based adaptation) could yield additional information

on the impact of the proposed method, but such investigations are considered as

future work since they are outside the goal set out in this proposal, which has

already been met.
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7.8 Theory Research Relevance Tree for the

Proposed HESA Model

The framework that guides the design and development of the proposed evolu-

tionary computation model is as depicted by the theoretic research relevance tree

(TRRT) in Figure 7.14. Highlighting where the proposed method stands in the

wealth of EC literature, the TRRT (Figure 7.14) delineates the fundamental re-

search domains, various sub-approaches, and the proposed techniques with their

respective data structures – which led to the design of the mathematical model

for the proposed adaptive HESA algorithm. In particular, it describes the link-

ages between the series of investigations, designs and implementations involving:

(i) the new convergence analysis techniques (Chapter 4), (ii) various diversity

control strategies (Chapter 5), (iii) hybridization methodologies (Chapters 6 to

7), and finally (iv) the adaptation model proposed above (Section 7.6).

While the approaches, components and models outlined in this TRRT (Fig-

ure 7.14) are by no means exhaustive of the many considerations for designing

EC models, this TRRT paradigm has thus far made possible the design of the

various mathematical models proposed in this thesis. Importantly, it lays a solid

framework for further research and more theoretical investigations into the design

of effective evolutionary-based models for general global optimization purposes.

7.9 Contribution and Remarks

The key contributions in this chapter are:

Firstly, a novel framework for continuous optimization (Figure 7.1) that hy-

bridizes a dual-pool EC model with an improved SQP local search algorithm –

forming the newly proposed dual-pool HESA algorithm (Algorithm 7.1). Ex-

periments were designed to evaluate the performance of the proposed dual pool

HESA model under dynamically changing environment; various performance met-

rics such as relative performance measures, absolute errors and convergence effi-

ciency measures (median performances), were utilised. Through this, the chapter

presented a rigorous analysis of the behaviour of the HESA model on the dynamic

optimization benchmarks. The sensitivity analyses presented in this Section 7.5.1

have provided vital insights into the effect of large sample sizes in evolutionary

optimization. Importantly, these are new insights from the perspective of solving



CHAPTER 7. ENABLING CONTINUOUS OPTIMIZATION 215

dynamic optimization problems with hybrid EAs.

The second contribution is in the integration of the instantaneous population

diversity and evolvability measures to facilitate parameter adaptation. This re-

sults in the proposed closed-loop based adaptive models for the mutation and

recombination operators in continuous domain. Importantly, experiments show

that in contrast to its non-adaptive version,

(i) the proposed adaptive HESA model has minimal need for manual param-

eterisation; thus, it avoids the risk of falling into a vicious cycle of re-

parameterisation across various problem types; and

(ii) the closed-loop based adaptation strategy demonstrated significant improve-

ments in robustness with regards to change detection, tracking and conver-

gence efficiency on the complex dynamic optimization test problems; but it

mainly maintains acceptable levels of efficiency on the less complex ones.

Therefore, in response to the hypothesis in Section 7.6 and the research question

Q5 in Section 1.3.2, for the examined benchmark problems, the proposed adap-

tation method has greater impact on robust and stable performance than it has

on the overall search efficiency.

Furthermore, as is presented later in a comparison test with several other

state-of-the-art dynamic optimization algorithms (Section 8.4.2), the proposed

HESA model demonstrated competitive performance on the various dynamic

optimization test cases. Thus, the comparison results in Section 8.4.2 further

validate the significance of the performance improvements in this model.



Chapter 8

Investigating Extended Hybrid

Evolutionary Algorithms

Having analysed the effect of adaptation on the proposed hybrid evolutionary

model (HESA) in Chapter 7, this final research chapter aims to investigate the

effect of extending the proposed hybrid model. In particular, the role of incor-

porating a derivative-free algorithm into the HESA model will be examined. Of

course, the preceding investigations in this thesis have so far demonstrated the

seamless cooperation of the global evolutionary computation (EC) (Algorithm

7.1) and local sequential quadratic programming (SQP) (Algorithm 3.1) algo-

rithms on solving both stationary and dynamic optimization problems. However,

it is vital to reiterate the existence of a fundamental difference in the modus

operandi of the two algorithms. While both algorithms (EC and SQP) run suc-

cessfully on optimization problems which are precisely defined with a smooth

mathematical model, the SQP algorithm does not work in the absence of such

mathematical model.

Thus, the motivation here is to extend the proposed hybrid model to solve

optimization problems without necessarily evaluating their derivatives. The goals

are twofold:

(i) to minimise the cost of evaluating derivatives for differentiable problems

with expensive cost functions; and

(ii) to accommodate such problems that lack precise mathematical representa-

tions (i.e., black-box problems).

In Section 8.1 this chapter introduces a new derivative-free optimization method

216
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that is based on a stochastic coordinate ascent (SCA) algorithm. The proposed

derivative-free method then complements the local search component of the pre-

viously proposed adaptive HESA model; this forms a new extended hybrid model

(ext-HESA) that comprises the three different algorithms (EC, SQP and SCA)

(Section 8.3). Following the evaluation of the ext-HESA in Section 8.4, Section

8.5 proposes a generalised framework for extended hybrid EAs. The chapter con-

cludes with a summary of the key contributions and a remark in Sections 8.6 and

8.7 respectively.

8.1 The stochastic Coordinate Ascent (SCA)

Derivative-Free Algorithm

As a derivative-free optimization approach, the coordinate ascent (CA) algorithm

is an inexpensive classical multidimensional optimization method; it has its ori-

gins in the field of numerical programming, see Brent (1973); Schwefel (1993) for

historical details1. Fundamentally, the CA algorithm works by decomposing an

n-dimensional optimization problem into n one-dimensional sub-problems. Then,

the algorithm – which was shown to have linear time complexity (Loshchilov et al.,

2011) – cycles through the different coordinate directions during the search. At

every iteration, the resulting one-dimensional optimization sub-problem is solved

using any suitable one-dimensional optimization algorithm such as a line search.

Before we delve into the detail proposal in this section, it is imperative to

reiterate the following two points. Firstly, this proposal is not a departure from

the scope of this thesis (Section 1.4), which is focused on optimizing continu-

ous (non-)linear problems that are at least twice differentiable. In fact, one of

the key objectives of this chapter is to enable local optimization of such prob-

lems but without necessarily evaluating their derivatives. Therefore, although

the traditional coordinate ascent algorithm is known to have convergence prob-

lems with non-smooth (discontinuous) problems (Bezdek et al., 1987; Loshchilov

et al., 2011)2, this is not a matter of concern for the method proposed in this

section. Secondly, while this method is traditionally known as coordinate descent

1CA is also called coordinate strategy in the EC community (Schwefel, 1993).
2Coordinate ascent/descent algorithm is said to have convergence problems with non-smooth

functions, hence the proposal of its variants including the so-called adaptive coordinate descent
algorithm, see Acar and Rais-Rohani (2009).
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algorithm (for minimisation), the proposal here is named coordinate ascent be-

cause the theme in this thesis is centred on optimization from the perspective of

maximisation. Otherwise, this proposal applies to both min and max.

Given a general optimization problem (9.1) in continuous domain:

maximise: y = f(x) : x ∈ Rn, (8.1)

where f(x) is a linear/nonlinear function of n-dimensional variables, the proposed

stochastic coordinate ascent (SCA) algorithm is as outlined in Algorithm 8.1.

Unlike the traditional CA method, the SCA algorithm locally optimises (8.1) by

randomly3 searching a set of coordinates around the current solution point xk

in every iteration. As can be seen from Algorithm 8.1 (lines 1-6), SCA operates

only within a defined neighbourhood (D) of the initial search point xt. The

initial neighbourhood size, defined by δiR | i = [1, n], is set to 1% of the width

of the problem’s search domain across all n dimensions (line 5). Note that the

1% initial radius is empirically decided so as to constrain the SCA algorithm to

focus around a limited area of the starting point xt. This restricted form of local

search also minimises the risk of creating infeasible solutions (i.e. points outside

the feasible bounds) by the SCA algorithm. During the optimization process, the

size of this neighbourhood (D) is expected to continuously shrink over iterations

(line 12). Therefore, as a stopping criterion, a minimum threshold for the size of

the search domain δmin is empirically set to 10−8 (lines 6-7).

Having set its initial parameters, the main SCA algorithm (Algorithm 8.1)

iterates through the steps in lines (7-14) until the stopping condition is satisfied.

In line 8, the SCA Algorithm invokes the GenerateAndEvaluateSearchPoints sub-

function (Algorithm 8.2) with the current search point xt, the neighbourhood

radius δR, and the problem dimension n as parameters. As will be described

shortly, this sub-function generates and evaluates the fitness of a new set of

(fixed-size) search points XD, f(XD) within the neighbourhood (D) of the current

point xt. Now, if the fitness of the best sample in the set XD is greater than that

of xt, then the best sample becomes the next solution point xt+1 (lines 9-10).

Otherwise the radius of the neighbourhood is halved (lines 11-12).

3Random here means selection of a set of dimensions in the state space in a stochastic
manner.
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Algorithm 8.1 Stochastic Coordinate Ascent Algorithm (SCA)

1: Problem’s dimension n;0

2: Problem’s search bounds [x̄i, xi] : i = 1 to n;
3: Starting point xt;
4: Search neighbourhood D;
5: Search neighbourhood radius δiR ← 0.01× (x̄i − xi) : i = 1 to n;
6: Minimum neighbourhood radius δmin ← 10−8;
7: repeat until termination condition: δR < δmin
8: [XD, f(XD)]← GenerateAndEvaluateSearchPoints(xt, δR, n);
9: if max(f(XD)) > f(xt) then // when a better solution is found

10: xt+1 ← xjD | f(xjD) = max(f(XD)); // replace xt with its best neighbour
11: else // if xt is better than all its neighbours
12: δiR ←

1
2δ
i
R,∀i = 1 : n; // shrink the neighbourhood radius

13: end
14: end (repeat)
15: return (xt, f(xt))

Note that maximisation problem is assumed.

The above procedure (lines 7-14) is repeated until the size of the neighbour-

hood falls below the user defined threshold δmin (line 7). Finally, the SCA algo-

rithm returns a pair (xt, f(xt)) (i.e., a solution point with its fitness value) which

is the locally optimum solution in the region of the initial starting point (line 15).

Note that the iterative shrinking of the search neighbourhood ensures that the

SCA algorithm always eventually terminates.

8.2 Samples Generation for the SCA Algorithm

As mentioned above, the sub-function (GenerateAndEvaluateSearchPoints) in-

voked by Algorithm 8.1 (line 8) is responsible for generation and evaluation of

the appropriate search points in the neighbourhood D. The listing for this sub-

function is outlined in Algorithm 8.2. The illustration in Figure 8.1 graphically

describes the process of generating the sample search points. The neighbourhood

of the current search point xt is sampled in a circular (or spherical) manner; and

the number of the sample points depends on the dimensionality n of the search

domain (see Algorithm 8.2, lines 3 and 7). From Figure 8.1, note that the set

of the sample points (XD) in the neighbourhood of xt consists of two points for

a 1-dimensional problem, four points for a 2-dimensional problem and six points

for an n-dimensional problem given that n > 2. Accordingly, the cardinality of
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Algorithm 8.2 Neighbourhood Samples Generation Function
1: GenerateAndEvaluateSearchPoints(xt, δR, n)
2: if (problem dimension n ≤ 3) then
3: XD ←

{[
xit − δiR, xit + δiR

]
, ∀i = 1 : n

}
; // generate 2n samples at δR from xt

4: f(XD)← evaluate the fitness of samples in XD;
5: else
6: k ← rand(n, 3); // chose any 3 out of the n-dimensions;
7: XD ←

{[
xit − δiR, xit + δiR

]
, ∀i = 1 : k

}
; // generate 2k samples at δR from xt

8: f(XD)← evaluate the fitness of samples in XD;
9: end

10: return XD, f(XD)

the set of the sample points, XD, is in general given by

|XD| =

{
2n, ∀n ≤ 3,

6, otherwise.
(8.2)

It is noteworthy that for higher dimensions (n > 3) the proposed SCA algo-

rithm essentially conducts a block coordinate ascent search (Richtárik and Takáč,

2012), that is, the algorithm searches the multi-dimensional neighbourhood by

successively optimizing any three randomly chosen dimensions at every iteration

– hence the naming convention stochastic coordinate ascent.

8.3 The Proposed Extended HESA model

This section integrates the proposed SCA derivative-free algorithm into the local

optimization stage4 of the hybrid model. The flow diagram in Figure 8.2 describes

the newly proposed hybridization framework. The overall hybrid model now

comprises a global (EC) model coupled in a task-switching manner to a set of

local (SCA and SQP) algorithms.

Notice from Figure 8.2 that this proposal resembles the hybrid framework

earlier described in Section 7.1; however, it precedes the SQP algorithm with

the newly proposed derivative-free SCA algorithm. The motivation behind this

proposal stems from the following key points5.

i. Computational complexity: Recall that the proposed SQP is a 2nd order

4Local optimization stage of the adaptive HESA model previously analysed in Chapter 7.
5The motivation also follows some additional insights gained during the series of experimen-

tations – especially through the Evolution in Action (EiA) tool introduced in Section 1.7.
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n = 2 n > 2

xt

xt xt

δR

δRδR

Notation:
n = Dimensionality
xt = Starting Point
δR = Neighbourhood size

Figure 8.1: The search neighbourhood for the SCA algorithm for an n-dimensional
search domain. The current search point xt represented by a black (red in colour)
circle is at the centre of the linear (for n = 1), circular (for n = 2) or a spherical
(for n > 2) search domain. Situated at a neighbourhood radius δR, the new
search points represented by grey circles (green in colour) are 2, 4 or 6 depending
on the dimensionality of the search domain.

algorithm and although it has a Quadratic rate of convergence (see Section

3.4), the SCA algorithm which is linear remains computationally cheaper.

ii. Pre-processing: Recall also that, to assure robust convergence, it is essential

to initialise the SQP in the vicinity of the optimum solution point. Therefore,

preceding it by the SCA algorithm helps to pre-process the solution x∗ (Figure

8.2) returned by the global EC algorithm; this then prepares it for a more

intense derivative-guided local optimization by the SQP algorithm.

Thus, with the SCA and SQP algorithms collaborating as local optimizers, this

extended framework is expected to boost the overall efficiency and effectiveness

of the local optimization stage of the newly proposed hybrid framework.

8.4 Evaluation and Analysis of the Proposed

Extended HESA Algorithm

This section evaluates the proposed ext-HESA model (Section 8.3) on the dy-

namic optimization benchmark suite introduced in Section 7.4. The experiments
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Figure 8.2: A hybrid model for effective and continuous optimization. Titled ext-
HESA, this combines a global EC algorithm with a set of derivative-free (SCA)
and exact-derivative (SQP) local optimization algorithms. Stopping requires user
limit on function evaluations. The convergence check for the global EC algorithm
is as detailed in Section 4.5.
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evaluate two different perspectives. Firstly, the performance of the ext-HESA

model is compared against that of the original HESA model previously evaluated

in Section 7.7. Secondly, both algorithms are compared to the best performing

algorithms in a dynamic optimization competition.

8.4.1 Comparison of the HESA and ext-HESA models

This section utilises similar evaluation criteria and parameterisations that are

introduced in Section 7.7. The experiments compare the performance of the

newly proposed ext-HESA model with that of the original HESA with respect to:

i) accuracy levels – using relative performances;

ii) robustness – using absolute errors; and

iii) tracking efficiency – using convergence graphs for median performances.

For subsequent analysis, the comparison results of the relative performances

are as shown in Figure 8.3. Recall from Section 7.4 that the relative perfor-

mances describe the overall optimization convergence accuracies of the compared

algorithms. Both plots in Figure 8.3(a and b) show that, in comparison to the

HESA algorithm, the ext-HESA model has significantly improve the offline (Fig-

ure 8.3a) and the online (Figure 8.3b) performances. Specifically, the offline

performance (roffline) of the new algorithm now remains within 95-100% accu-

racy levels; whereas the online performance (ronline), which actually describes the

real-time optimization accuracy, swings within 90-100% across all the six different

dynamic change types (T1 to T6)6.

On both plots in Figure 8.3, the characteristic curves for the ext-HESA across

T3 (random) to T6 (recurrent-noisy) dynamic change types reveal noticeable im-

provements. This is important since the dynamic change types T3 to T6 exhibit

higher levels of change severity and randomness – making them more challenging

to dynamic optimization methods. It is sufficient to say that the incorporation

of the SCA derivative-free local optimization algorithm into the HESA model

(Figure 8.2) has upgraded its global and dynamic optimization abilities to within

a minimum of 90% accuracy levels.

6A complete description of these performance measures and the six dynamic change types
(T1 to T6) has been provided in Section 7.4, Table 7.3.



CHAPTER 8. INVESTIGATING EXTENDED HYBRID EAS 224

Dynamic Change Types

O
ff

lin
e 

P
er

fo
rm

an
ce

 -
 r
of
fli
ne

 (
%

)
Comparing Offline Performances (roffline)

T1 T2 T3 T4 T5 T6

60

70

80

90

100

ext-HESA Algorithm
HESA Algorithm 

(a)

Dynamic Change Types

O
nl

in
e 

P
er

fo
rm

an
ce

 -
 r
on
li
ne

 (
%

)

Comparing Online Performances (ronline)

T1 T2 T3 T4 T5 T6

60

70

80

90

100

ext-HESA Algorithm
HESA Algorithm 

(b)

Figure 8.3: Comparison of the relative performances of the ext-HESA and HESA
Algorithms. Results are averages of 20 independent runs. (a): Compares the
Offline performances (roffline). (b): Compares the Online performances (ronline).
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Figure 8.4: Comparing the Absolute Errors of the ext-HESA and HESA Algo-
rithms on the DRP benchmark. Experimental results are averages of 20 indepen-
dent runs and the error bars shows standard errors of the means.

On the other hand, Figure 8.4 shows that the reduction in absolute errors

(earlier detailed in Table 7.4) suffered by the ext-HESA algorithm is quite mild.

This is not hugely surprising since the introduction of the SCA local optimiza-

tion algorithm into the HESA model is mainly expected to improve its overall



CHAPTER 8. INVESTIGATING EXTENDED HYBRID EAS 225

×

x100,000 Function Evaluations
0 10 20 30 40 50 60M

ed
ia

n 
of

 r
el

at
iv

e 
pe

rf
or

m
an

ce
 -

 r
(%

)

rT1

rT2

rT3

rT4

rT5

rT6

Comparing Convergence Characteristics

ext-HESA Algorithm
HESA Algorithm 

Figure 8.5: Comparing the convergence characteristics of the ext-HESA and
HESA Algorithms based on the medians of their relative performances on the
DRP benchmark for T1 to T6 dynamic change types.

search efficiency. Besides, both the ext-HESA and HESA models enjoy the same

benefit of having adaptive evolutionary operators (see Section 7.6 for details on

the adaptation principle) – which is the main aspect that minimises convergence

errors. Nevertheless, compared to HESA model, the ext-HESA model witnessed

some improvement in this regard. This is especially true on challenging dynamic

problems like T3 to T6 (Figure 8.4). Ultimately, the observed improvement in

accuracy (Figure 8.3) and the mild reduction in absolute error (Figure 8.4) cor-

roborate the improved tracking (convergence) efficiency (see Figure 8.5) exhibited

by the ext-HESA model as compared to its exact-derivative counterpart.

8.4.2 Comparing the HESA models with Dynamic

Optimization Competition Algorithms

The dynamic optimization competition in the 2009th congress on evolutionary

computation (CEC2009) features a variety of global optimization algorithms de-

signed to cope with non-stationary optimization landscapes. This section com-

pares the performances of the proposed HESA algorithms7 with that of the five

7The performance comparison involves both the ext-HESA and HESA models.
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Table 8.1: Comparison of the Congress on Evolutionary Computation (CEC2009)
Dynamic Optimization Competition Algorithms with the HESA algorithms on
the DRP benchmarks.

No.Acronym Algorithm Details Reference Total score
(max = 600)

Percentage
score (%)

1 CEC:DASA Differential Ant-Stigmergy
Algorithm

Korošec and
Šilc (2009)

567 94.5

2 ext-HESA Extended adaptive HESA

Algorithm

see Section 8.3 561 93.5 0

3 CEC:jDE Self-Adaptive Differential
Evolution

Brest et al.
(2009)

552 92.0

4 CEC:CPSO Clustering Particle Swarm
Optimizer

Li and Yang
(2009)

545 90.8

5 HESA Adaptive HESA Algorithm see Section 7.1 507 84.5

6 CEC:EP Evolutionary Programming
with Ensemble of Explicit
Memories

Yu and Sugan-
than (2009)

498 83.0

7 CEC:DAI Dynamic Artificial Immune
Algorithm

de França and
Von Zuben
(2009)

458 76.3

Note: The HESA algorithms did not participated in the CEC2009 competition. The algo-
rithms are sorted in order of their performances with the total score of the wining algorithm
highlighted in Bold. The maximum total score (600) is obtained by summing the scores of each
algorithm across the six instances (T1-T6) of the DRP benchmark. The two hybrid evolution-

ary models (HESA) proposed, designed and evaluated in this thesis are highlighted in grey

backgrounds and use gradient information.

best performing algorithms on the dynamic rotation peaks (DRP) benchmark8.

Again, note that the detail description of the DRP benchmark and the evaluation

criteria are given in Section 7.4.

Table 8.1 details the participating algorithms for the CEC2009 dynamic opti-

mization competition. Note that the comparison results in this table are obtained

from the overall online performances for the six different dynamic change types

(T1 to T6) on the DRP benchmark (F1) function. As referenced in Table 8.1, the

results for each of these algorithms are published in their respective accompany-

ing articles in the proceedings of the CEC2009 conference. For clarity and ease

8Note that the DRP benchmark is labelled F1 in the CEC2009 competition. Other bench-
marks evaluated during this competition (not considered here) include various hybrid compo-
sition functions.
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of analysis, the comparison results for the seven algorithms listed in Table 8.1 are

graphically illustrated in Figures 8.6 and 8.7.

It is vital to note that while the proposed HESA models utilise gradient infor-

mation, all the other contesting algorithms in the CEC2009 competition also have

their unique design characteristics which make them able to cope with the multi-

modal changing landscapes. In fact, the criteria guiding this dynamic optimiza-

tion competition (Li et al., 2008) require that no algorithm should be informed

when a change has occurred, but it does not preclude using any heuristics (such

as hybridization, ensemble, adaptation, clustering or gradient information where

applicable) that could enhance the performance of the constituent algorithms.

As can be noticed from Table 8.1, the contesting algorithms come from various

stochastic evolutionary computation domains and feature a variety of heuristics.

Therefore, this comparison test is fair to all the participating algorithms.

Generally, the results in Figure 8.6a reveal the remarkable performances ex-

hibited by the seven evolutionary-based global optimization algorithms on the

various dynamic landscapes. It is observed that (Figure 8.6a) all the competing

algorithms exceed a minimum online performance score of 65%. In particular, the

least performing algorithm (CEC:DAI), see Figure 8.6b, has an overall percentage

score of 76.3% (Table 8.1) and reports a minimum online performance of 67.4%

on the T6 dynamic change type (see Figure 8.6a). A careful examination of Figure

8.6a reveals that amongst all the seven algorithms, the CEC:DAI algorithm which

uses artificial immune system heuristics, exclusively suffers a piecewise monotonic

performance degradation across the T1 to T6 dynamic change types. Neverthe-

less, this is not entirely unexpected since it was established earlier (Section 7.5)

that complexity increases from T1 to T6. In fact, the observed trend in Figure

8.6a further justifies that T1 is the least challenging test case to the majority of

the competing algorithms, whereas T6 poses a high degree of change severity and

randomness – making it one of the most challenging problems in this regard.

From the side of the best performing algorithms, Figure 8.6b shows that the

Ant colony-based CEC:DASA algorithm9 comes first with an overall percentage

9CSA:DASA is an advanced Ant-colony method that uses differential ant stigmergy tech-
nique to refine solutions over generations. Stigmergy is a derived Greek word which refers to the
“Stimulation of workers by the performance they have achieved” (Bonabeau, 1999). It is based
on the intuition that an agent’s actions leave signs in the environment, which it and other agents
can sense to determine their next-line of actions. The technique seems to have shown great
promise in avoiding premature convergence; this could provide a justification for the observed
effectiveness of the CSA:DASA algorithm in solving the DRP dynamic benchmark.
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Figure 8.6: Comparison of HESA models with the IEEE CEC2009 Dynamic Op-
timization Algorithms on Rotation Peaks Benchmark: (a): Compares individual
online performances of the seven algorithms for the six different types of dynamic
change types T1-T6. (b) Summarises the cumulative online score across the T1-T6

dynamic changes. The higher the cumulative score the better – total maximum
possible score is 600%.
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Figure 8.7: Exclusive performance comparison of the two HESA models with
the CEC:DSA Algorithm on the T1 to T6 dynamic change types of the DRP
benchmark.

score of 94.5% (see Table 8.1). As shown in Figure 8.6a (best viewed from Fig-

ure 8.7), this algorithm faces its most challenging dynamism on T2 (large step

change). This means that the large scale dynamic variations in the fitness land-

scape caused by T2 result in significant levels of change severity on the DRP

benchmark. Hence, Figures 8.6a and 8.7 show that the CEC:DASA algorithm

suffers its worst performance with 91.3% score on T2 and a best performance of

98.8% on T1 (small step change).

Of particular interest here is the performance of the newly proposed ext-HESA

model (Figure 8.2). The result in Figure 8.6b shows that the proposed algorithm

takes the second-place after closely trailing the CEC:DASA algorithm with an

overall percentage score of 93.5% (Table 8.1). While it could be said that these

two best performing algorithms compete head-to-head on the DRP benchmark,

it is vital to note that they generally respond differently to the different instances

(T1 to T6) of the DRP benchmark (Figure 8.7).

Unlike the CEC:DASA algorithm, Figure 8.7 shows that the ext-HESA model

suffers its worst performance (87.7%) on T3 (random step change); but it also

achieves its best performance (97.7%) on the T1 dynamic change type. Also,
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Figure 8.6b (or Table 8.1) shows that the original HESA model outperforms only

two of the CEC2009 competition algorithms on this benchmark.

Finally, Figure 8.7 exclusively compares the CEC:DASA algorithm with the

ext-HESA and HESA models proposed in this thesis. Notice that, for the two

best performing algorithms in this evaluation (ext-HESA and the CEC:DASA),

the performance characteristics in Figure 8.7 revealed some subtle differences

between the two models. The characteristic curves of the two algorithms (Figure

8.7) remain intertwined across the T1 to T6 dynamic change types. This means

that where one of them fails, the other picks up. Hence, it could be said that, on

this benchmark, none of the two algorithms outperforms the other in all respects

(see no free lunch and benchmarks (Duéñez Guzmán and Vose, 2013; Ho and

Pepyne, 2002)). But, importantly, the vital insights drawn from these findings

could guide the selection of appropriate model for optimization of any given non-

stationary environment.

8.5 A Generalised Extended Hybrid Framework

Thus far, the performance analyses of the various hybrid models introduced in this

thesis have highlighted the need for a flexible framework that combines the global

EC algorithm with the two (exact-derivative (SQP) and derivative-free (SCA))

local search algorithms. As such, this section proposes a generalised framework

(Figure 8.8) that features three different execution paths of hybrid models. This

proposal aims to allow optimizing moderate and complex problems with or with-

out directly evaluating their derivatives; and importantly, to permit solving such

complex optimization tasks which may lack explicit functional representations.

Therefore, given any optimization task (in continuous domain) the controller

in Figure 8.8 selects an appropriate execution path (path 1, 2, or 3) depending

on the following scenarios:

i. availability of precise mathematical representation;

ii. differentiability of the mathematical model; and

iii. computational complexity of the optimization task.

For the first scenario, if the optimization task lacks precise mathematical
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Figure 8.8: A Generalised Framework for Extended Hybrid Algorithm with three
execution paths for the local refinement of the global algorithm’s solution. De-
pending on the problem at hand, the controller dynamically chooses a suitable
execution path.

representation10, then, the controller takes the second execution path. This second

path conducts a global search to acquire a global picture of the problem domain

using an evolutionary algorithm; it then refines the resulting solution with a

10Lack of precise mathematical model is typical in poorly understood problems or such re-
quiring some heuristic or even human evaluator like in interactive evolutionary computation,
see Inoue and Takagi (2008); Kowaliw et al. (2012); Mizutani et al. (1995); Takagi (2001).
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derivative-free SCA local search algorithm. As introduced earlier (Section 8.1),

the SCA algorithm is a variant of the coordinate descent algorithm which has

linear time complexity, and like the EC, it is derivative-free.

For the second scenario, if the problem to be optimized has a smooth (at

least twice differentiable) functional representation, then the controller chooses

the first execution path. Similarly, this path starts with a global search using

the EC algorithm, but then refines the resulting solution with a gradient-guided

SQP algorithm. The SQP algorithm (Section 3.5) is a 2nd order local search

method that ensures quadratic convergence rate if initialised in the vicinity of

the optimum solution point.

For the last scenario, the controller goes for the third execution path if and only

if the optimization task has a precise mathematical representation, the mathe-

matical model is differentiable, and the cost of function and derivative evaluations

is not prohibitively expensive. While such problems are not necessarily the norm

in all fields, they actually are commonplace in nowadays complex engineering

applications (see Chai et al. (2013); Giannakoglou et al. (2006) on computational

fluid dynamics problems for example).

At this point it is natural to ask whether there is any trade-off in choosing

one execution path (Figure 8.8) over the others. Unfortunately, the answer is yes.

When an optimization task has an explicit mathematical model and is smooth,

then there is certainly an efficiency trade-off between the first and the third

execution paths. To understand this trade-off, it is sufficient to reflect on the

outcomes of the various experiments presented in this thesis:

The investigations in Chapters 6 to 7 are manifestations of the effectiveness

of the first execution path depicted by Figure 8.8. The results in those chapters

show that, for smooth (differentiable) problems, a hybrid of the global EC and the

local SQP algorithm provides sufficiently good optimum solutions (outperforming

the standard EC algorithm). This holds for global optimization tasks in both

stationary (Section 6.4) and dynamic (Sections 7.4 and 7.7) environments. On

the other hand, after comparing the first execution path with the third execution

path (i.e., the HESA vs. ext-HESA) on the DRP benchmark in Section 8.4, the

results (Figure 8.7) show a clear difference in their performance characteristics.

The analysis in Section 8.4 revealed that the third execution path is the most

preferred and should be used whenever possible. This is because the combination

of the SCA and SQP algorithms in the third execution path forms an extended
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1: if no mathematical model then // User provides this information
2: go to path 2;
3: else
4: if model not differentiable then
5: go to path 2;
6: else if derivative cost acceptable then // User may set the value for δcost
7: go to path 3;
8: else
9: go to path 1;

10: end
11: end

Figure 8.9: Controller rules for the Generalised Extended Hybrid Framework.
See Figure 8.8 for the algorithmic makeup of execution paths 1, 2, and 3. Note
that each path begins with the global EC algorithm.

local search framework that enhances both convergence efficiency and robustness.

From a first look at the composition of this proposal (Figure 8.8), the su-

periority of the third execution path over the others may seem counter-intuitive.

This is because, in theory, the incorporation of the SCA algorithm adds to the

complexity of the overall hybrid system. However, the performance improve-

ment is not entirely unexpected because the SCA algorithm further refines the

best solution returned by the EC algorithm, thereby easing the task left for the

gradient-guided SQP algorithm. The SQP is then in a better position to converge

to a better optimum solution in much fewer iterations.

Finally, the control settings in Figure 8.9 suggests a setting for the controller

used in Figure 8.8. Note that based on this proposal, the generalised extended

hybrid framework would require the user to explicitly supply the information

about the availability of a mathematical model for the problem at hand (line 1).

In addition, the user would be allowed to recommend a threshold for the cost (in

execution time) of the derivative evaluations (δcost). This parameter – derivative

cost ratio (8.3) – signifies the percentage with which the cost of evaluating the

derivatives outweighs that of function evaluation. Therefore,

δcost =
cost of function evaluation

cost of derivative evaluation
| δcost ∈ [0, 1]. (8.3)

Notice from (8.3) that for low cost differentiable functions, δcost → 1, otherwise

δcost → 0. Therefore, if no such information is available to the user, the controller

could default to a pre-defined threshold of, say δcost = 0.75; and based on this
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(Algorithm 8.9, line 7), the controller may automatically choose either the first

or the third execution path.

8.6 Contributions

Thus far, the various proposals and subsequent investigations in this chapter have

provided some vital new insights in the following ways:

i. The chapter proposed a stochastic coordinate ascent (SCA) derivative-free

algorithm (Algorithm 8.1) for low cost local searching. The SCA algorithm is

a novel stochastic block coordinate search method that solves local optimiza-

tion tasks with/without explicit mathematical model for the problem. By

focusing the search to a limited local area, SCA assures local convergence. In

other words, the method gradually shrinks its search area to maximise focus

on the search neighbourhood of interest.

ii. This chapter also proposed a new hybrid architecture for effective optimiza-

tion (ext-HESA). The newly proposed model (Figure 8.2) combines the ear-

lier proposed HESA model with the SCA algorithm. Performance compar-

isons reveal that the proposed model is only second to the best algorithm

(CEC:DASA) in the CEC2009 dynamic optimization competition. Impor-

tantly, from the experimental results on various instances of the DRP bench-

mark, it was established that neither the ext-HESA nor the CEC:DASA is

better than its counterpart in all respects.

iii. Finally, this chapter developed a novel extended hybrid framework that fea-

tures three separate execution paths. The proposed hybrid system is suitable

for optimizing differentiable and non-differentiable problems in continuous

domain regardless of the availability of problem representation. Importantly,

this generalised framework (Figure 8.8) is reusable as it can easily be tailored

to several other optimization domains. For instance, it can be applied to

discrete problems by simply replacing the constituent algorithms with their

discrete counterparts.
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8.7 Conclusion

This chapter proposed a derivative-free local optimization method called stochas-

tic coordinate ascent algorithm. In a series of empirical experiments, the chapter

highlighted the effectiveness of extended hybrid systems which combine global

and local search methods. From empirical evaluations on various dynamic op-

timization case studies, it was found that extending the hybrid framework of a

global EC and local SQP algorithm (HESA) with a computationally cheap al-

gorithm has a profound impact on the overall search efficiency and robustness.

The chapter therefore suggested a generalised framework that hybridizes multi-

ple optimization paradigms. While the specific design aspects of this framework

are still in their infancy and open to further refinements, it is believed that the

suggested controller settings would facilitate dynamic selection of appropriate

execution path depending on the nature and complexity of the problem at hand.

The following chapter concludes this thesis with a presentation of future inves-

tigations on the underlying evolutionary optimization principles; it also proposes

a number of future research avenues and highlights some expected application

areas for the various optimization models examined thus far.



Chapter 9

Conclusion

To conclude this study of evolutionary optimization from hybrid perspective, this

chapter summarises the contents across the two parts of this thesis. In response

to the research questions behind this study, this chapter discusses the new in-

sights and contributions gained thus far and their implication in this domain.

The chapter then highlights the limitations in the scope, theory and experimen-

tations of this study. Finally, it proposes a series of recommendations for further

research from both theoretical and design perspectives. But first, for clarity, the

following section recaps the motivation that prompted the several investigations

and proposals in this research.

9.1 Development of Ideas

As a framework that is composed of collections of various heuristics, an extensive

understanding of hybrid optimization systems requires a thorough investigation

into their constituent algorithms. The motivation and concept evolution behind

these is discussed in the following:

Genetic algorithm: Out of the plethora of stochastic global search methods,

many of which are evolutionary-based heuristics, genetic algorithm (GA) is chosen

in this study. This was motivated partly by the suitability and applicability of

GAs to various domains1, and partly by their ease of implementation, robustness,

and relatively fair computational complexity.

Sequential quadratic programming: Beside the stochastic methods, there are

1GAs are well-understood adaptable heuristics that can be easily tailored to solve global
optimization tasks of either continuous or discrete/combinatorial types.
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several numerical programming methods that could provide local refinement to

a hybrid framework. However, the realisation that efficient convergence2 is at-

tainable for some specific categories of Newton-based methods has motivated the

adoption of the sequential quadratic programming (SQP) algorithm in this study.

As described in Chapter 3, with a few enhancements, the SQP algorithm can

sufficiently provide the local refinement required by a hybrid framework. In fact,

the proposal for the vectorised automatic differentiation method in Section 3.7

was an attempt to provide the SQP with accurate derivatives, at low-cost, to

reassure its local convergence.

Collaborative hybrids with task-switching: Whilst the general concept of hy-

bridization is quite vast, it also lacks precise formal definition. A survey of the

recent hybrid frameworks revealed that some hybrid approaches that aim to guar-

antee robust convergence do it at the expense of search efficiency (Integrative Hy-

brids); and on the other hand, other approaches tend to favour search efficiency

over robust convergence guarantees (Collaborative Hybrids). This immediately

led to the investigations in Chapter 6 which showed that a trade-off between

these crucial performance requirements is not entirely inevitable. The proposal

of the collaborative (task-switching) hybrid model in this study (Section 6.3)

was motivated by the need to ensure improved search efficiency while preserving

global convergence of the resulting system. Of course such collaborative frame-

works need sound switching criteria; and this is where the extensive investigation

(Chapter 4) on convergence detection mechanisms comes in.

Hybrid framework, extended & flexible hybrids: It was also noticed that to

further minimise computational cost, such as in the conventional evolutionary

optimization methods, hybrid models also need to be adaptable and should ac-

commodate (dis)similar problems in respect to the available resources. This led to

the extension of the initial hybrid framework (Chapter 6) to a flexible, extended

hybrid system as described in Chapters 7 to 8 of this thesis.

9.2 Summary

It is common in evolutionary optimization literature to combine approaches from

both stochastic and deterministic methods for global optimization. But hybrids of

evolutionary algorithms (EAs) with gradient-based approaches are often deemed

2Example, the 2nd order rate of convergence exhibited by the SQP algorihtm (Section 3.4)
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to suffer computational mismatch; this is due to the need for derivative evalua-

tions in the majority of gradient-guided methodologies which is not a requirement

in the EAs. As summarised below, each of the two related research areas (Part

I and Part II) comprised in this thesis has uncovered some exciting research av-

enues in this regard.

Part I: The central focus of the first part of this thesis has been to understand

optimization methodologies from both the stochastic and deterministic perspec-

tives. The aim has been to search for opportunities from the wealth of challenges

surrounding these domains.

From stochastic optimization side, Part I highlighted the challenges and op-

portunities for improving essential evolutionary optimization phenomena, includ-

ing the crucial aspects of parameterisation (Chapter 2), convergence analysis

(Chapter 4) and diversity control (Chapter 5). On the other hand, from the

deterministic optimization side, Part I showed that a cost effective provision of

accurate derivatives to certain classes of gradient-based algorithms (e.g. SQP)

solidifies their roles as suitable candidates for hybridization with EAs (Chapter 3).

Part II: The second part of this thesis has mainly focussed on analysing evolu-

tionary optimization from a hybridization perspective.

Chapter 6 has surveyed the current state of hybridization with EAs by provid-

ing a taxonomy of the hybrid framework. It then proposed a basic collaborative

(task-switching) hybrid of global (EC) and local (SQP) algorithms (HESA) that

boosts overall search efficiency without compromising global convergence guar-

antees. To facilitate optimization in both stationary and non-stationary environ-

ments, the hybrid algorithm has been extended into a framework for continuous

optimization (Chapter 7). While the outcome of evaluations of this HESA model

on a set of dynamic rotation peaks benchmarks yielded promising results, it

was found to suffer significant tracking difficulties in severe dynamic conditions.

Therefore, further investigation on the effect of adaptation on EAs in Chapter 7

has led to the proposal of a closed-loop adaptive parameterisation for the muta-

tion and recombination operators. This hybrid model was then developed into

a flexible model that hybridized the global (EC) algorithm with a diverse set of

local refinement methods (Chapter 8). With an extended applicability, the new

framework is suitable to both differentiable and non-differentiable problems.
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Overall, Part II revealed that parameter adaptation is essential even on hybrid

evolutionary systems. But most importantly, Part II showed that collaborative

hybrids that coupled global and local algorithms via a robust convergence detec-

tion method need not to trade convergence guarantees for search efficiency.

9.3 What insights are learned from this thesis?

This section revisits the key questions asked by this study by delineating what

have been learned from the findings and contributions in this research. It also

discusses their implications where applicable.

Understanding evolutionary spaces and parameterisation

In Chapter 2, the survey and investigations on the fundamentals of evolutionary

computation have yielded a number of new insights.

Firstly, Chapter 2 has analysed the differences between the two simulated evo-

lutionary spaces – genotype and phenotype – via a simple visualisation (Figure

2.3). This has helped illustrate the processes in which evolutionary operators

map sample solutions from one evolutionary space to another. But importantly,

the insight has helped to elaborate on the debate of biological plausibility of the

present simulated evolution processes. While further research on simulated evo-

lution will undoubtedly enhance the current understandings of the natural evolu-

tionary phenomena, it is thought that the incorporation of any aspect of natural

evolution into simulated evolution should be for the benefit of optimization. The

aim of simulated evolution should remain on devising effective optimization sys-

tems that benefit from the adaptive capabilities inherent in natural systems –

but not necessarily mimicking the biological evolution itself. Nevertheless, since

it is difficult to predict which aspect of biological evolution may be beneficial for

optimization a priori, this issue would continue to remain an ongoing debate for

the foreseeable future.

A new role for the evolutionary variation operators

Variation operators in EC are mainly seen as drivers of evolution. By design, such

operators sought new information about the problem landscape by evolving new

(and diverse) samples across the search space. In addition to this, Chapter 4 has

revealed new insights into their impact on understanding convergence dynamics
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in EC. By utilising the Price’s theorem as described in equations (4.7), (4.13) and

(4.14), Chapter 4 demonstrated how the contributions of every evolutionary op-

erator (e.g. selection, crossover, mutation, inversion, etc.) to the fitness growth

can be monitored in real-time. Most importantly, the dynamical effect of the

crossover operator was found to reflect, directly, the instantaneous convergence

status of the evolutionary search pool.

Empirical investigations in Chapter 4 revealed that, unlike with the mutation

operator, the effect of crossover operator fades out as convergence sets in; this

insight was essential to devising the new convergence detection method that re-

lies on the concept of evolvability measure. The strategy permits monitoring the

cause of convergence (crossover as a driver of evolution) rather than trying to

detect it after it had already happened. Thus, the proposed method took a step

ahead of the conventional convergence detection methods which mainly rely on

spatial diversity or similarity measures.

Diversity control – challenges and opportunities

The investigations in Chapter 5 have revealed how failure of diversity control may

hinder evolvability in a search pool. In the EC literature, lack of diversity main-

tenance is often linked to premature convergence, which leads to stagnation of

the evolutionary search on sub-optimal solution. Thus, Chapter 5 has suggested

a new diversity control strategy which harnesses:

i) the information derived from the taxonomy of diversity control policies in

the literature (Section 5.3);

ii) the insight derived from visualising diversity dynamics (Section 5.5); and

iii) the insights from the analysis of population evolvability in Chapter 4.

The new method separates the search pool into a dedicated evolution pool and an

occasionally created diversity pool. In order to reinforce diversity, newly generated

diverse samples (created via search space partitioning heuristic initialisation) are

dynamically merged with the evolution pool based on the convergence status of

the evolution pool. By sustaining useful levels of diversity, the proposed method

facilitates responding to optimization tasks in uncertain and non-stationary en-

vironments as analysed in Chapters 7 to 8.
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Could a hybrid framework balance the exploration-exploitation trade-off?

This is perhaps the most fundamental question that this thesis attempts to ad-

dress. It is well known that hybrids of evolutionary algorithms benefit from syn-

ergy resulting from coupling a global (stochastic) algorithm with a local (stochas-

tic or deterministic) one. Chapter 6 of this thesis examined hybrid systems from

various perspectives and delineated a series of design considerations for successful

hybrids. Generally, this study found hybrid architectures to be either integrative

– having a local algorithm sandwiched into a global one to enable it serve as a

sub-function; or collaborative – with the global and local algorithms operating

independently in a task-switching manner.

It was found that majority of hybrid models that have integrative architecture

enjoy robust convergence characteristics. This is because integrative architectures

apply local refinement to almost all sample solutions at every iteration; this allows

intense exploration of the search space, but it impedes overall search efficiency.

On the other hand, the collaborative architectures apply local refinement to only

a selected solution(s) and only at some defined stages of the evolution. Such ar-

chitectures favour search efficiency but risk poor convergence guarantees. Thus,

there is a huge challenge in balancing search efficiency and robust convergence

guarantees when either of such methodologies is used. Therefore, a topical ques-

tion here is – why use the hybrid systems? The fact is while the stochastic methods

mostly allow effective global exploration (robust searching), it is the determinis-

tic methodologies that permit good local exploitation (efficient searching); thus,

hybridization is probably the best way to achieve both – without trading one for

the other.

Therefore, to alleviate the huge computational cost inherent in integrative hy-

brid architectures, Chapter 6 proposed a novel collaborative hybrid system that

combines the EC and SQP algorithms through a robust convergence detection

mechanism. Importantly, this proposal differs from the traditional collabora-

tive hybrid methodologies wherein the local refinement is generally applied at

pre-defined stages (based on iterations or function evaluations) of the evolution.

Herein, our proposed method explores the global search space with the EC and

then applies the SQP to the best solution returned by the EC algorithm only

when sufficient convergence is detected. As compared to a standard EC model

and the standard CMA-ES algorithm on various global optimization benchmarks,
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this proposal has shown promise in minimising the number of function evalua-

tions required to converge to the optimal solution (Section 6.4). Although on

the CEC2013 benchmarks (Section 6.5) the proposed hybrid framework did not

outperform any of the two (known) best-performing hybrid EAs in the recent

literature, the comparison results reveal that the proposed hybrid framework has

good convergence characteristics.

Hence, while the integrative hybrids may always have to trade search efficiency

for robust convergence, it could be said that, with good convergence detection

mechanism, collaborative hybrids can simultaneously improve both exploration

and exploitation.

What performance features of hybrid EC benefit from parameter adaptation?

The majority of adaptive mechanisms applied to optimization methods are set

to relieve users from the burden of parameter tuning; this is because effective

parameter tuning needs sound understanding of the problem domain besides the

metaheuristic itself. But in addition, adaptive systems are also thought to im-

prove overall search performance. To examine this on hybrid EAs, Chapter 7

proposed a closed-loop adaptive mechanism that controls the step sizes of evo-

lutionary variation operators. The proposed method dynamically adjusts the

mutation and recombination step sizes based on the current state of diversity

in the search pool, i.e., by continuously monitoring the output side of the evo-

lutionary process. This closed-loop architecture (Section 7.6.1) differs from the

conventional methods that mostly control evolutionary parameters based on some

pre-defined temporal information.

Empirical comparison with its non-adaptive version in Section 7.7 showed that

the proposed adaptive mechanism facilitates robust convergence characteristics

by minimising convergence errors. However, the adaptation was found (Section

7.7) to have little impact on the overall search efficiency – this is especially on

less complex problems. This could be due to the fact that such adaptive systems

learn – in real-time – the nature of the problem landscape, and therefore incur

some computational cost to generate suitable parameters. Nevertheless, from the

outcomes of the empirical investigations in Section 7.7, it could be said that by

minimising stochastic variability in the EC dynamics, adaptive parameterisation

has a positive impact on the overall performance of hybrid EC models.
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Note that, when the key optimization goal is the search efficiency, then, re-

alising the true benefits of such adaptive mechanisms is to some extent problem

dependent. This is because while such mechanisms remain highly beneficial on

highly complex and noisy problems, on simple problems, their cost (risk of re-

duced efficiency) may outweigh the benefits (i.e. convergence guarantees).

Extended hybrid systems

Although the last couple of decades have seen a growing interest in hybrid evolu-

tionary models that combine two or more optimization algorithms, the goal has

mainly been limited to improving optimization performance. Therefore, Chapter

8 of this thesis proposed an extended hybrid system (Section 8.5) which is de-

signed to handle a variety of optimization problems by dynamically establishing

the most effective hybrid model from its constituent algorithms.

To achieve this, Chapter 8 proposed in the first place a new derivative-free

stochastic coordinate ascent (SCA) algorithm (Section 8.1) that facilitates local

optimization without explicit evaluation of derivatives. The SCA matches the

EC model since they are both derivative-free. This means that an EC-SCA hy-

brid can optimize problems with or without a well-defined mathematical model –

for example, such hybrid model can directly be used on interactive evolutionary

computation tasks. Then, in a series of experiments, Section 8.4 demonstrated

how an extended hybrid system consisting of EC, SCA and SQP algorithms out-

performs several other optimization frameworks on a set of dynamic optimization

benchmarks. Finally, this study demonstrated how the various algorithms can

be combined in a flexible extended-hybrid framework (Section 8.5); this novel

proposal improves optimization performance, and most importantly extends ap-

plicability to other problem domains.

9.4 Limitations of this study

As mentioned in the Introduction to this thesis (Section 1.4), this study has a

number of limitations, and this section attempts to recast them into three main

groups. Note that some of these issues would also be discussed as recommended

future studies in the subsequent section.
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Scope: In its scope, this study is limited to only optimization problems in con-

tinuous domain, that is, such problems having real-valued representation. While

there are many engineering problems – especially in industrial control applica-

tions – that are continuous in nature, there are equally many discrete optimization

problems (e.g. in industrial scheduling) which require similar attention from the

hybridization perspective. It is noteworthy that, while most of the theoretical

principles of the evolutionary optimization presented in Part I apply to both dis-

crete and continuous domains, the design considerations (such as the selected

data structures, and chosen operators) and experimentations herein have mainly

focused on problems in continuous domain. In addition, the gradient-based local

optimization method (SQP) introduced in Chapter 3 is also a numerical method

that is exclusively tailored to continuous optimization domain. Nevertheless, the

derivative-free SCA algorithm proposed in Chapter 8 can be applied to both do-

mains; and importantly, the various hybrid architectures proposed in this thesis

(Sections 6.3, 7.1 and 8.5), are adaptable to various optimization domains.

Experimentations: The strategy adopted in this study was largely experi-

mental; and the empirical investigations have generally utilised test cases (i.e.,

benchmarks) that have explicit mathematical models. Of course this is necessary

to satisfy the SQP algorithm, that is, as a gradient-based 2nd order method, the

SQP not only requires the presence of a functional model, but also the model has

to be smooth and twice differentiable.

Case Studies: This study has utilised several global optimization benchmarks

from across the stationary to dynamic optimization domains. But additional

insights could be gained by extending the investigations to other forms of prob-

lems, for instance, the real-world case studies from the fields of engineering to

bio-techniques. For a typical engineering case study, see our referred previous

work (Ximing et al., 2010) in Section 1.7.

9.5 Future Research Directions

Beside the abovementioned contributions, there are several other aspects of this

study that have the potential of been advanced in some interesting ways. Thus,

this section suggests and discusses some future research questions in this regard.
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EC Theory

Diversity vs. Evolvability – what more could be learned? Traditionally, diversity

measures are used to assess evolutionary convergence, but this study suggested an

evolvability measure (Section 4.4) and uses it (Section 4.5), empirically, to infer

convergence of evolutionary pool. On predicting the convergence dynamics of the

search pool, the evolvability measure seems to provide more upfront information

than the conventional diversity measures. Therefore, it is vitally important to

further assess how the population evolvability theoretically relates to diversity

and hence convergence. It is thought that applying information theoretic metrics

(Abu-Mostafa, 1986; Pincus, 1991; Shannon, 1948), like the entropy and mutual

information, to analyse the information content in each of these measures (i.e.,

Diversity and Evolvability) would provide new insights into their relationships

with regard to convergence. Moreover, such analysis would certainly yield addi-

tional information by providing more theoretical justifications about the observed

advantage of combining the evolvability and diversity measures in this work.

Could hybrid frameworks benefit multi-objective and discrete problems? Firstly,

multi-objective optimization (MO) methods are specifically used for solving opti-

mization problems with multiple conflicting objectives. However, the challenges

surrounding single objective optimization (e.g. slow convergence, lack of efficient

termination criteria, etc.) are also present in the multi-objective frameworks

(Sindhya et al., 2013). In fact, the hybrid solutions proposed in this thesis could

equally scale in multi-objective optimization. Therefore, as the literature is be-

ginning to see growing interest in this direction (Ahn et al., 2010; Denysiuk et al.,

2013; Sindhya et al., 2013; Tang and Wang, 2013; Zhou et al., 2008), extending the

proposed flexible hybrid framework to MO could facilitate further understanding

of the hybrid multi-objective frameworks in general. Notice that the proposed

flexible hybrid framework (Sections 8.3 and 8.5) would mainly require replac-

ing the standard EC model with a state-of-the-art MO model like the NSGA-II

(Deb et al., 2002) to build a hybrid multi-objective solver. Thus, it would be

interesting to investigate how the new hybrid framework would fare on various

multi-objective test-beds. Even though multi-objective optimization is in itself

a vast field, the reusability of the proposed hybrid framework will certainly ease

conducting such investigation.

Secondly, in a similar manner, the newly proposed hybrid framework can be
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extended with additional execution paths consisting of hybrids of global and local

discrete optimization algorithms. Importantly, such extension could maintain the

same architectural construction of the proposal in Chapter 8 but utilise a set of

discrete optimization algorithms instead. This can also be evaluated on several

scheduling problems, for example job scheduling.

How does self-adaptation compare to closed-loop adaptive mechanism? It is be-

lieved that evolution in itself is guided by three main processes, namely: (self-)

adaptation, cooperation and competition. In this study, Chapter 7 has demon-

strated the role of adaptation in hybrid EAs with emphasis on adapting the

step sizes of the evolutionary variation operators. Experiments have shown that

the proposed closed-loop adaptation successfully minimises convergence errors in

the hybrid EC model; however, the results have also shown that such adaptive

method yields no significant improvement on the overall search efficiency. There-

fore, it would be vital to investigate how other adaptation methodologies (e.g.

self-adaptation) perform on such hybrid architectures.

Implementing self-adaptation would require restructuring the data structure

of the sample solutions; this would allow parameters like operator probabilities

and step sizes to be evolved during the optimization. Thus, with self-adaptation,

both operator step size and rate (probability) of application can be adapted at

once. However, self-adaptation may not necessarily guarantee efficiency improve-

ments, and as argued by Glickman and Sycara (2000), self-adapting mutation

rates risks premature convergence. The objective here is to investigate whether

self-adapting the step sizes of both mutation and recombination operators can

provide additional information into the general behaviour of adaptive mecha-

nisms on hybrid models.

EC Design Considerations

Parallelisation: With the advent of efficient graphic processing units (GPUs),

and cheap multi-core and distributed computing facilities, it is pertinent to re-

structure the design of some of the models proposed in this thesis to benefit

from these resources. In particular, with the exception of the selection process,

the population-based EC model is in general amenable to parallelisation. In ad-

dition, the vectorised Automatic differentiation method presented in Chapter 3
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simultaneously evaluates the function values, gradient and Hessian using a compu-

tational graph. The design of the computational graphs, as illustrated in Chapter

3, could allow evaluation of several graph vertices concurrently. Of course there

would be some dependencies that must be resolved especially around the roots of

the computational graphs (some of these dependencies are autonomously resolved

by the compiler). Nevertheless, including parallelisation frameworks (such as the

OpenMP shared memory multiprocessing platform (Foster, 1995)) is expected

to boost the computational efficiency of the individual algorithms and also the

overall hybrid architecture.

Dynamic precision control: Because the evolutionary optimization models em-

ployed for global searching in this thesis are population-based in nature, at every

generation during the search, every sample solution has its fitness evaluated and

stored. This could become an issue – especially when large sized pools are needed

– since the precision (granularity) with which every sample solution is represented

and evaluated contributes hugely to the overall computational cost. One possible

way to tackle this problem is through varying precision during the course of evo-

lution. In fact, low level of precision can suitably be used during the early stages

of evolution without much information loss.

Neville (1997) and Neville et al. (2000) showed that by using quantised weights

in a Sigma-pi neural network (site-values, Sm = {−64, . . . , 64}) stored in 8-bit

binary code and quantised activations a = {−128, . . . , 128} stored in 9-bit binary

code, it is possible to map real-valued functions to an accuracy of 1%. While the

quantisation is important, a more crucial finding is that pre-calculation of large

blocks of the computations in a mathematical algorithm are only possible if the

parameters are quantised. The impact of this has been empirically demonstrated

by Ferguson (1995) on hardware implementation of real-valued hyper-net, but

the insight has not as yet been extended to the domains of massively parallel

processing (MPP), or hybrid systems – and may lead to fruitful research.

It is therefore thought that a dynamic granularity control that, during early

generations, evaluates sample solutions with a limited precision, and gradually

increases the precision as optimization nears its end is likely to impact the overall

computational efficiency of hybrid evolutionary-based optimization systems.



Appendix A

Vectorised Automatic
Differentiation Technique

This appendix elaborates on the automatic differentiation (AD) approach pre-
sented in Chapter 3. First, Section A.1 presents the process of overloading some
arithmetic operators and functions. Then using a simple example Section A.2
demonstrates how AD evaluates the value, first and second derivatives of a given
function in a single run.

A.1 Overloaded Operators & functions for AD

Objects

Having constructed the AD objects with their property fields initialised, it is pos-
sible to execute all arithmetic operations on them so long as the built-in operators
and functions (i.e., the standard real arithmetic operators and other mathemat-
ical functions) are properly overloaded to handle objects of their type. This is
done by overloading the following default arithmetic operators and mathematical
functions in Matlab.

• Arithmetic operators – both the binary and unary versions

• Logarithmic and exponential operators

• Trigonometric functions

• Norm (ABS), etc.

The following sections demonstrate the modelling process of operator over-
loading for a small set of operators and functions. Note that for all the arith-
metic operators, basic chain rule of differentiation (3.21) is applied, but for any
arbitrary differentiable functions such as trigonometric, logarithmic, exponential
etc., a more general formulation (A.1) is used.

F (X) = (f(x), ∇f(x), Hf(x)) ≡ (f(x), ẋf ′(x), ẍf ′′(x)) . (A.1)

248
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A. Binary Addition/Subtraction

Suppose that the function of interest is a 2-dimensional function f , such that

f(x1, x2) = x1 ± x2. (A.2)

Then, the following simple graph with root vertices corresponding to each of
the two independent (input) variables and a top vertex corresponding to the
dependent (output) variable represents the evaluation process graphically.

+

f

v-1

v1

v0 x2x1

Let the vertices be: v−1, v0 and v1, then, applying equation (A.1) yields

v−1 =

(
x1,

dx1

dx1

,
d2x1

dx2
1

)
= (x1, ẋ1, ẍ1) ,

and

v0 =

(
x2,

dx2

dx2

,
d2x2

dx2
2

)
= (x2, ẋ2, ẍ2) .

Since the proposed implementation seeks to vectorise the definition for each of
these vertices1, their gradient and Hessian fields are initialised based on the
dimensionality (n) of the function under consideration, such that

ẋ1 =
[
∂x1
∂x1

∂x1
∂x2

]
=
[
ẋ1 0

]
, (A.3)

and

ẍ1 =

[
∂x1

∂x1∂x1

∂x1
∂x1∂x2

∂x1
∂x2∂x1

∂x1
∂x2∂x2

]
=

[
ẍ1 0
0 0

]
. (A.4)

Similarly,
ẋ2 =

[
∂x2
∂x1

∂x2
∂x2

]
=
[
0 ẋ2

]
, (A.5)

and

ẍ2 =

[
∂x2

∂x1∂x1

∂x2
∂x1∂x2

∂x2
∂x2∂x1

∂x2
∂x2∂x2

]
=

[
0 0
0 ẍ2

]
. (A.6)

1This is the way to ensure evaluation of the complete derivatives in a single sweep of the
forward accumulation.
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Therefore, the input vertices (v−1 and v0) are redefined as:

v−1 =

(
x1,
[
ẋ1 0

]
,

[
ẍ1 0
0 0

])
(A.7)

v0 =

(
x2,
[
0 ẋ2

]
,

[
0 0
0 ẍ2

])
. (A.8)

Then, the output vertex v1 is:

v1 = (v−1 ± v0)

=

((
x1,
[
ẋ1 0

]
,

[
ẍ1 0
0 0

])
±
(
x2,
[
0 ẋ2

]
,

[
0 0
0 ẍ2

]))
=

(
x1 ± x2,

[
ẋ1 ±ẋ2

]
,

[
ẍ1 0
0 ±ẍ2

])
=
(
f,∇f,∇2f

)
.

Notice that an addition/subtraction operation on the two AD objects (v−1 and
v0) yields not only the value, but also the derivative and Hessian of the function
f (A.2) as components of the output AD object v1. Such single sweep execution
demonstrates the power of the vectorised forward accumulation of derivatives.
The same rule applies for multiplication and division operators.

B. The Sine Function

Now consider the following trigonometric function (sine):

f(x) = sinx. (A.9)

f

v1

v0 x1

sin

The root vertex v0 and the top vertex v1 as shown in the graph are defined as:

v0 = (x, ẋ, ẍ) .
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Therefore, the AD variables are then defined as:

v1 = sin v0

= (sinx, ẋ cosx, ẍ cosx− ẋẋ sinx)

=
(
f, ∇f, ∇2f

)
.

All other operators and functions are overloaded based on the above principles.
In the following, a concrete example is presented to further highlight the key
aspects which differentiate the vectorised forward mode AD technique from the
traditional symbolic method of differentiation.

A.2 Symbolic vs. vectorised Forward-mode AD

In order to examine the difference in computational approach between the sym-
bolic differentiation method and the forward mode AD technique, let the 2-
dimensional function (A.10) be used as a case study. In this example, the value
and derivatives (1st and 2nd) of this function are evaluated at x = (π, π/2),
first via the traditional symbolic method, and then the vectorised forward AD
approach described above.

f(x1, x2) = (x1x2 + sinx1 + 4) . (A.10)

A. Symbolic Differentiation

This entails direct substitution of the solution point xk = (x1, x2) = (π, π/2) after
evaluating the formula for the value and the derivatives using the chain rule.

Value: For the problem under consideration (A.10),

f(x1, x2)

∣∣∣∣
xk

= (π.π/2 + sin π + 4) =
π2 + 8

2
.

Gradient: The gradient is evaluated in two stages: first, the formula is derived
by applying chain rule (3.21) on the partial derivatives of function (A.10). Second,
the solution point is substituted into the obtained formula to get the gradient

f ′(x1, x2) =
[
∂f(x1,x2)

∂x1

∂f(x1,x2)
∂x2

]
=
[
x2 + cosx1 x1

]
.

Therefore,

f ′(x1, x2)

∣∣∣∣
xk

=
[
π
2

+ cos π π
]

=
[
π−2

2
π
]
.
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Hessian: Similary, the Hessian expression is obtained by differentiating the gra-
dient expression as follows:

f ′′(x1, x2) =

[
∂2f(x1,x2)
∂x1∂x1

∂2f(x1,x2)
∂x1∂x2

∂2f(x1,x2)
∂x2∂x1

∂2f(x1,x2)
∂x2∂x2

]
=

[
− sinx1 1

1 0

]
,

therefore,

f ′′(x1, x2)

∣∣∣∣
xk

=

[
− sinπ 1

1 0

]
=

[
0 1
1 0

]
.

Notice that the above symbolic approach requires the computer to explicitly
evaluate and store the formula before substituting the values and solving via
the basic real arithmetic. In the following, a vectorised forward mode AD is
presented.

B. Vectorised Forward mode AD

First, the problem variables (both dependent and independent) are initialised as
AD objects. Then, the differentiation arithmetic described above is used to con-
currently evaluate the function value and derivatives algorithmically. It is inter-
esting to note that this is done by only evaluating problem (A.10) with the newly
defined AD variables using overloaded operators. The problem (x1x2 + sinx1 + 4)
is decomposed into the following three input variables (vertices):

v−2 = x1; v−1 = x2; v0 = 4.

Then, the vertices are initialised as AD objects based on the solution point xk =
(x1, x2) = (π, π/2), as follows:

v−2 =

(
π,
[
1 0

]
,

[
0 0
0 0

])
; v−1 =

(
π

2
,
[
0 1

]
,

[
0 0
0 0

])
; v0 =

(
4,
[
0 0

]
,

[
0 0
0 0

])
.

Hence, problem (A.10) is now

v1 = v−2v−1 + sin v−1 + v0. (A.11)

Therefore, the value and derivatives of problem (A.10) are then obtained by
evaluating equation (A.11) based on the differentiation arithmetic (i.e. the AD
approach).

v1 =

(
π,
[
1 0

]
,

[
0 0
0 0

])(
π

2
,
[
0 1

]
,

[
0 0
0 0

])
+

(
sinπ,

[
cosπ 0

]
,

[
− sinπ 0

0 0

])
+

(
4,
[
0 0

]
,

[
0 0
0 0

])
.
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On further simplifications:

v1 =

(
π2

2
,
[
π
2 π

]
,

[
0 1
1 0

])
+

(
0,
[
−1 0

]
,

[
0 0
0 0

])
+

(
4,
[
0 0

]
,

[
0 0
0 0

])
=

(
π2 + 8

2
,
[
π2−2

2 π
]
,

[
0 1
1 0

])
=
(
f(xk), f

′(xk), f
′′(xk)

)
,

which is similar to the solution obtained via the traditional symbolic method
above. Now, from the v1, which is an AD object, one can extract the function
value, derivative and Hessian as follows:

Function Value = v1.funcValue = π2+8
2

,

Function Derivative = v1.funcDerivative =
[
π2−2

2
π
]
, and

Function Hessian = v1.funcHessian =

[
0 1
1 0

]
.

The elegance of this approach is in its suitability for algorithmic computation
in computer. Notice that the final solution yields the exact results for the function
value, gradient and the Hessian. A key advantage of the vectorised forward AD
method is twofold; it is both accurate and computationally inexpensive.



Appendix B

Benchmark Test Case Studies

Table B.1 outlines the formulations, domain specifications and the respective
universal tags for the global optimization benchmarks used across the various
chapters of this thesis.

Table B.1: Global Benchmark (Basic) Functions

Name Benchmark Function Range

Unimodal f0(x) = x1e−(x21+x22) [−2.0, 2.0]

Rastrigin f1(x) = 10 · n+
∑n

i=1

(
x2
i − 10 · cos(2πxi)

)
; n = 100. [−5.12, 5.12]

Schwefel f2(x) =
∑n

i=1 xi sin
(√
|xi|
)

; n = 2. [−5.0, 5.0]

Easom f3(x) = cos(x1) cos(x2)e−(x1−π)2−(x2−π)2 [−100, 100]

Sphere f4(x) =
∑n

i=1 x
2
i ; n = 2. [−100, 100]

Weierstrass f5(x) =
∑n

i=1

(∑kmax
k=0

[
ak cos (2πbk(xi + 0.5))

])
−n
∑kmax

k=0

[
ak cos(πbk)

]
;

[−0.5, 0.5]

a = 0.5, b = 3, kmax = 20, n = 2.

Griewank f6(x) = 1
400

∑n
i=1(xi)

2 −
∏n
i=1 cos

(
xi√
i

)
+ 1; n = 2. [−100, 100]

Ackley f7(x) = −20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos (2πxi)

)
+ 20 + e; n = 2.

[−32, 32]
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Appendix C

Result Summary

This presents the complete data recorded during the evaluation process of the
Dual-pool EC model proposed in Chapter 5. Table C.1 shows the results of
comparing the proposed method against the standard EC algorithm.
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Table C.1: Computational cost in terms of function evaluations required by the Dual-pool and Standard EC algorithms to
converge to a 0.1% accuracy level of the global optimal solution for the six different global optimization benchmarks. The
table shows sensitivities of the two algorithms to varying population sizes. All results are averages of 100 independent runs.

Traditional Benchmark Test Problems Modified Benchmark Test Problems0

Pool Rastrigin Schwefel Easom Rastrigin2 Sphere2 Hybrid

size DP-EC Std-EC DP-EC Std-EC DP-EC Std-EC DP-EC Std-EC DP-EC Std-EC DP-EC Std-EC

20 1.86e3 930.8 5.54e3 4.43e4 1.93e4 1.03e4 1.41e3 6.17e3 8.35e4 9.71e4 8.74e4 9.82e4

50 2.07e3 1.07e3 6.29e3 2.29e4 7.44e3 3.27e3 1.55e3 5.83e3 3.42e4 1.00e5 3.72e4 1.00e5

100 1.54e3 1.81e3 6.17e3 6.80e3 6.24e3 3.50e3 2.60e3 1.37e4 2.84e4 9.99e4 3.77e4 1.00e5

200 2.47e3 2.98e3 4.23e3 3.85e3 1.15e4 6.27e3 4.48e3 1.25e4 4.11e4 9.95e4 7.63e4 9.99e4

500 5.59e3 6.45e3 9.46e3 8.27e3 2.69e4 1.24e4 9.69e3 1.08e4 5.13e4 9.88e4 9.42e4 1.00e5

1000 9.84e3 1.10e4 1.75e4 1.51e4 4.69e4 2.28e4 1.78e4 1.70e4 6.36e4 1.00e5 9.87e4 1.00e5

Avg.Cost 3.90e3 4.04e3 8.20e3 1.69e4 1.97e4 9.76e3 6.26e3 1.10e4 5.04e4 9.92e4 7.19e4 9.97e4

Notation: DP-EC = Dual-Pool EC algorithm, Std-EC = Standard EC algorithm, Avg. Cost = Average computational cost in terms of number
of function evaluations. The bold face items indicate where an algorithm outperforms its counterpart.



Appendix D

Evaluation Results for the
Dual-Pool HESA Model

For the series of experiments on the proposed Dual-pool HESA model presented in
Chapter 7, Table D.1 summarises the complete results obtained for its sensitivity
analysis to various pool sises on the different categories of the dynamic changes
(T1 to T6)1; and Table D.2 presents the results for its absolute error characteristics.
All results are averages of 20 independent runs.

Table D.1: The offline/online performances (roffline/ronline) of the Dual-pool
HESA model under varying pool sizes on the six different types of dynamic
changes.

Pool Dynamic Change Types

Sizes T1 T2 T3 T4 T5 T6

10 91.62/83.18 86.64/76.12 80.91/68.90 87.01/76.58 68.38/51.13 56.81/41.80

50 99.03/96.61 93.27/88.35 88.17/80.33 94.81/89.38 92.80/84.36 75.22/64.41

100 97.95/94.10 93.17/87.75 84.32/75.06 94.44/88.40 90.50/81.68 73.52/62.18

500 95.32/85.83 91.33/81.36 85.77/74.24 93.17/82.55 69.26/55.71 70.50/57.11

1, 000 92.53/78.17 90.05/76.14 85.76/71.77 92.01/76.53 61.09/46.27 65.54/51.00

1Detail descriptions of these dynamic change instances are presented in Table 7.3
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Table D.2: A statistical summary for the absolute error (Elast) encountered by
the proposed dual-pool HESA model on optimization of the DRP benchmark
under varying pool sizes.

Pool Absolute Error Dynamic Change Types

Sizes (Elast) T1 T2 T3 T4 T5 T6

10

Avg-min-Elast 0.0120 0.0061 0.0620 0.2335 0.8036 0.2719

Avg-mean-Elast 7.8879 13.0510 16.5196 11.8310 31.0520 42.3618

Avg-max-Elast 37.4360 50.7171 50.6946 39.6850 81.1790 83.2214

STD-Elast 8.9177 13.4596 13.4672 9.6085 22.5450 26.3111

50

Avg-min-Elast 0.0337 0.0210 0.0326 0.0482 0.0309 0.0750

Avg-mean-Elast 0.9036 6.5608 9.9631 4.7523 7.0669 24.2732

Avg-max-Elast 12.4980 51.5504 43.8459 21.9050 53.6830 80.8333

STD-Elast 2.7542 13.1885 13.0315 5.4800 12.5480 25.9476

100

Avg-min-Elast 0.0433 0.0274 0.0311 0.0506 0.1193 0.1205

Avg-mean-Elast 1.9120 6.6407 13.2891 5.0897 9.3363 25.9950

Avg-max-Elast 17.9332 49.4291 46.6039 23.1570 66.8970 81.1830

STD-Elast 4.3733 12.9583 15.1710 5.7158 15.0220 26.0980

500

Avg-min-Elast 0.0578 0.0286 0.0329 0.0563 0.1605 0.1364

Avg-mean-Elast 4.2796 8.5184 12.3931 6.2519 30.2780 28.9670

Avg-max-Elast 27.6999 55.1952 50.9741 26.3250 87.4160 83.7140

STD-Elast 7.3423 14.4185 14.7446 6.4412 27.6550 26.0290

1, 000

Avg-min-Elast 0.1701 0.1041 0.1058 0.2082 0.4045 0.2344

Avg-mean-Elast 6.9518 11.2681 11.9527 7.3166 38.2860 33.8700

Avg-max-Elast 41.0491 58.9324 47.5836 41.7290 88.6320 86.1640

STD-Elast 10.1599 16.2181 14.2473 7.8581 30.3780 27.9540



Appendix E

Evaluation Results for the Adaptive HESA Model

This appendix presents (Table E.1) a complete summary of the evaluation results for the Adaptive HESA Algorithm intro-
duced and evaluated in Section 7.6.

Table E.1: A statistical summary for the evaluation results for the Adaptive HESA model on the DRP benchmarks. Results
include Relative performances and Absolute errors. All results are averages of 20 independent runs.

Evaluation Parameters
Dynamic Change Types

T1 T2 T3 T4 T5 T6

Relative
Offline ± std. error 98.72± 0.0015 96.14± 0.0027 90.44± 0.0011 96.03± 0.0011 95.00± 0.0016 90.03± 0.0033

Performances Online ± std. error 90.94± 0.0031 87.59± 0.0039 79.54± 0.0016 86.23± 0.0016 84.44± 0.0023 78.08± 0.0048

Absolute

Avg-min-Elast 0.1610 0.1025 0.0976 0.2040 0.4657 0.4993

Avg-mean-Elast 1.1626 3.7883 8.1382 3.6357 4.9212 9.7917

Error Avg-max-Elast 11.0640 39.6530 44.2541 18.2540 36.0650 64.1480

STD-Elast 2.2756 8.6548 11.9966 4.3681 7.5803 14.7220
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