1,613 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Optimisation of racing car suspensions featuring inerters

    Get PDF
    Racing car suspensions are a critical system in the overall performance of the vehicle. They must be able to accurately control ride dynamics as well as influencing the handling characteristics of the vehicle and providing stability under the action of external forces. This work is a research study on the design and optimisation of high performance vehicle suspensions using inerters. The starting point is a theoretical investigation of the dynamics of a system fitted with an ideal inerter. This sets the foundation for developing a more complex and novel vehicle suspension model incorporating real inerters. The accuracy and predictability of this model has been assessed and validated against experimental data from 4- post rig testing. In order to maximise overall vehicle performance, a race car suspension must meet a large number of conflicting objectives. Hence, suspension design and optimisation is a complex task where a compromised solution among a set of objectives needs to be adopted. The first task in this process is to define a set of performance based objective functions. The approach taken was to relate the ride dynamic behaviour of the suspension to the overall performance of the race car. The second task of the optimisation process is to develop an efficient and robust optimisation methodology. To address this, a multi-stage optimisation algorithm has been developed. The algorithm is based on two stages, a hybrid surrogate model based multiobjective evolutionary algorithm to obtain a set of non-dominated optimal suspension solutions and a transient lap-time simulation tool to incorporate external factors to the decision process and provide a final optimal solution. A transient lap-time simulation tool has been developed. The minimum time manoeuvring problem has been defined as an Optimal Control problem. A novel solution method based on a multi-level algorithm and a closed-loop driver steering control has been proposed to find the optimal lap time. The results obtained suggest that performance gains can be obtained by incorporating inerters into the suspension system. The work suggests that the use of inerters provides the car with an optimised aerodynamic platform and the overall stability of the vehicle is improved

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    Multi-Objective Software Effort Estimation: A Replication Study

    Get PDF
    Replication studies increase our confidence in previous results when the findings are similar each time, and help mature our knowledge by addressing both internal and external validity aspects. However, these studies are still rare in certain software engineering fields. In this paper, we replicate and extend a previous study, which denotes the current state-of-the-art for multi-objective software effort estimation, namely CoGEE. We investigate the original research questions with an independent implementation and the inclusion of a more robust baseline (LP4EE), carried out by the first author, who was not involved in the original study. Through this replication, we strengthen both the internal and external validity of the original study. We also answer two new research questions investigating the effectiveness of CoGEE by using four additional evolutionary algorithms (i.e., IBEA, MOCell, NSGA-III, SPEA2) and a well-known Java framework for evolutionary computation, namely JMetal (rather than the previously used R software), which allows us to strengthen the external validity of the original study. The results of our replication confirm that: (1) CoGEE outperforms both baseline and state-of-the-art benchmarks statistically significantly (p < 0:001); (2) CoGEE’s multi-objective nature makes it able to reach such a good performance; (3) CoGEE’s estimation errors lie within claimed industrial human-expert-based thresholds. Moreover, our new results show that the effectiveness of CoGEE is generally not limited to nor dependent on the choice of the multi-objective algorithm. Using CoGEE with either NSGA-II, NSGA-III, or MOCell produces human competitive results in less than a minute. The Java version of CoGEE has decreased the running time by over 99.8% with respect to its R counterpart. We have made publicly available the Java code of CoGEE to ease its adoption, as well as, the data used in this study in order to allow for future replication and extension of our work

    A new Taxonomy of Continuous Global Optimization Algorithms

    Full text link
    Surrogate-based optimization, nature-inspired metaheuristics, and hybrid combinations have become state of the art in algorithm design for solving real-world optimization problems. Still, it is difficult for practitioners to get an overview that explains their advantages in comparison to a large number of available methods in the scope of optimization. Available taxonomies lack the embedding of current approaches in the larger context of this broad field. This article presents a taxonomy of the field, which explores and matches algorithm strategies by extracting similarities and differences in their search strategies. A particular focus lies on algorithms using surrogates, nature-inspired designs, and those created by design optimization. The extracted features of components or operators allow us to create a set of classification indicators to distinguish between a small number of classes. The features allow a deeper understanding of components of the search strategies and further indicate the close connections between the different algorithm designs. We present intuitive analogies to explain the basic principles of the search algorithms, particularly useful for novices in this research field. Furthermore, this taxonomy allows recommendations for the applicability of the corresponding algorithms.Comment: 35 pages total, 28 written pages, 4 figures, 2019 Reworked Versio

    Evolutionary Algorithms

    Full text link
    Evolutionary algorithms (EAs) are population-based metaheuristics, originally inspired by aspects of natural evolution. Modern varieties incorporate a broad mixture of search mechanisms, and tend to blend inspiration from nature with pragmatic engineering concerns; however, all EAs essentially operate by maintaining a population of potential solutions and in some way artificially 'evolving' that population over time. Particularly well-known categories of EAs include genetic algorithms (GAs), Genetic Programming (GP), and Evolution Strategies (ES). EAs have proven very successful in practical applications, particularly those requiring solutions to combinatorial problems. EAs are highly flexible and can be configured to address any optimization task, without the requirements for reformulation and/or simplification that would be needed for other techniques. However, this flexibility goes hand in hand with a cost: the tailoring of an EA's configuration and parameters, so as to provide robust performance for a given class of tasks, is often a complex and time-consuming process. This tailoring process is one of the many ongoing research areas associated with EAs.Comment: To appear in R. Marti, P. Pardalos, and M. Resende, eds., Handbook of Heuristics, Springe
    corecore