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Abstract 

Biomimetic and Advanced Control Structure Design with Real Time 

Optimization 

Temitayo Bankole 

While numerous works exist in the area of control structure design from a holistic plantwide 

approach, this can be computationally intractable as process plants are typically characterized by 

a large number of variables which renders traditionally deployed process systems algorithms 

prohibitive. As parallelization and distributed computing become increasingly important and 

feasible, a method for structural analysis of plants which estimates connectivity strengths among 

various sub-processes making algorithms (including control structure design algorithms) amenable 

for distributed systems is proposed. In this thesis, analogy is drawn to the neuroscience literature 

where connectivity of neuronal population is established using data from magnetic resonance 

imaging. By using an input-state-output deterministic model for process systems and 

parameterizing this model to reflect connectivity and coupling, a Bayesian scheme is developed to 

estimate connectivity while incorporating priors. This connectivity is employed to subdivide an 

overall process into distinct islands for the purpose of control structure design. Consequently, for 

each island, a biomimetic multiagent approach stemming from the imitation of the central nervous 

system is deployed to coordinate and aggregate control structure design from each island for the 

overall process. This multiagent approach exploits coordination and communication found in 

nature to glean computational superiority. Additionally, this thesis addresses the controlled 

variable selection of a cyber physical system for optimal economic operation. Finally, a real time 

optimization and scheduling of advanced energy power plants with CO2 capture is developed and 

implemented.  
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Chapter 1 

1 Introduction 

1.1 Motivation and Background 

According to the highlights of the world energy outlook, energy demand is projected to increase 

by 37% by 2040 (EIA, 2013). As demand continues to grow, the need for clean energy is 

increasingly becoming important. Constrained by ever tightening environmental regulations and 

demand for increased plant availability, high efficiency and profitability remains a crucial 

requirement for power plants. Therefore, operations of energy plants need to be profitable, agile 

and flexible while maintaining maximum efficiency. This necessitates advanced optimal strategy 

for operations. A crucial part of process operations is the control structure design of process plant 

i.e. the selection of the optimal controlled variables (CVs). In this research, mathematical tools are 

leveraged for solving aforementioned challenging problems associated with the optimal CV 

selection using biologically inspired techniques. In addition, this work also focuses on 

optimization and scheduling of set points of pertinent controlled variables for an energy plant. This 

is necessary as changes in disturbances necessitate changes in set points of CVs therefore periodic 

optimization must be performed in the face of stochastic predictions of disturbances to calculate 

and pass these set points to the controller (supervisory control layer). Together, these constitute a 

necessary and important part of the optimal requirements of energy plants in the near future. 

A chemical process plant is operated with an objective that is desired to be optimized. To achieve 

the optimal operation, a number of variables needs to be measured, manipulated and controlled. 

Traditionally, previous works in open literature have  based the selection of controlled variables 

on heuristics lacking a methodical approach (Fisher et al., 1985). The earliest works include that 

of (Murthy Konda et al., 2005) where an integrated framework of heuristics and simulation are 

provided as a means for plantwide control. This was an improvement on the works of (Luyben et 

al., 1997) where a nine step heuristic based method was outlined for complex processes consisting 

of various process units. (Morari et al., 1980) developed mathematical measures within the 

framework of multilevel optimization theory for decomposition and partitioning of processes for 

the purpose of control. These included studies of the effect of controlled variable selection on plant 
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operation. Other works in literature have also addressed controlled variable selection in one form 

or the other (Narraway et al., 1991, Arbel et al., 1996, Rijnsdorp, 1991, Zheng et al., 1999) 

Recently, a systematic approach to optimal CV selection by considering an economic loss function 

has been proposed (Skogestad, 2004). However, the CVs selected by considering only economic 

criterion may need to poor controllability1. To circumvent this issues, some measures of 

controllability and control performance were included in the CV selection process by Jones et al. 

(2014). Jones et al. (2014) proposed a three-stage procedure (a priori, optimization, posteriori) for 

selection of primary CVs for processes that operates with a hierarchical control structure like 

shown in Fig. 1.1. At the upper layer, a real time optimizer (RTO) that typically use a steady-state 

model, periodically (typically minutes or hours) updates the setpoint for the primary CVs, which 

in turn, updates the setpoints of the secondary CVs.  

During the a priori analysis, manipulated variables (MVs) and disturbance variables (DVs) are 

identified and a list of the candidate CVs for the primary control layer is generated, but a significant 

number of candidate variables that do not have acceptable gain for servo control and disturbance 

rejection is eliminated. The remaining CVs are further analyzed at the second stage. This is the 

most important step, where first, the process and operational constraints that are active under the 

desired design and off-design conditions are identified. These active constraints are selected as 

primary CVs. A number of additional CVs are also selected depending on the additional degrees 

of freedom. In the final stage, a posteriori analysis is performed for the CV sets selected at the 2nd 

stage. This step is necessary since a linear process model is used in the 2nd stage. Therefore, the 

economic and control performances of the CV sets from the second stage are evaluated under off-

design conditions by using a nonlinear process model.  

                                                 
1 By controllability, we mean ease of control and not necessarily being controllable as defined in classical control 

theory for linear time invariant systems. 
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Figure 1.1 Feedback policy with optimization and control layer with controlled variables 𝒄𝒔 as a 

combination of measured output variables 𝒚𝒑,𝒚𝒔. Inputs, disturbances and noise denoted as  𝒅,𝝎. 

The most time-consuming step is the second step due to the combinatorial nature of the 

optimization problem. Even after prescreening of the candidate CVs, there can be large number of 

CV sets that needs to be evaluated during the 2nd stage. This combinatorial optimization problem 

can easily explode with the increase in the number of potential CVs that can be often correlated 

with the plant size/complexity. For a small plant where one has to choose 10 CVs from 80 for 

example, the combinatorial demand is (
80
10
) = 1.6 × 1012. Typically, branch and bound (BB) 

optimization methods have been used for solving the optimization problem in the 2nd stage (Cao 

and Kariwala, 2008, Kariwala and Cao, 2009, Jones et al., 2014). More recently convex 

optimization (Yelchuru et al., 2010) has been proposed for controlled variable selection with 

constraints. However, solving the optimization problem where trillions of combinations need to 

be evaluated can be computationally prohibitive and therefore is not suitable if re-selection of the 

CV sets needs to be done often. It can be noted that re-selection of the CV sets is desired when any 

of the following things change with respect to the nominal operation- operational objective, update 
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in the list of CVs, MVs or DVs or their bounds, or the underlying process models. If one or more 

new equipment item(s) is/are added or removed or the configuration of the process units are 

changed, then not only the list of CVs, MVs or DVs or their bounds needs to be changed, but the 

underlying process model also needs to be updated. Example of one such process is the cyber-

physical processes where the cyber-component of the process can be readily modified, replaced or 

the process configuration can be readily changed. Operational objective of the newly configured 

process is likely to change as well. It can also be noted that in chemical plants, change in the 

operational objective is also common. A plant can operate to maximize profit or maximize 

production or maximize yield or minimize utility consumption, for example. Thus it is desired that 

the CV selection process be executed faster than the current state-of-the-art. For this reason, a 

number of features in biological systems would be adapted for use. 

Self-organization, distributed intelligence, adaptability, intelligent monitoring, and decision 

capabilities are some of the characteristics of the biological world that can be effectively utilized 

in the optimal control structure design of plants. An example of a distinguishing feature of 

biological systems is information sharing and cooperation. The proposition in this research is that 

the computational demand of CV selection can be reduced drastically if a process is considered as 

different sections rather than holistically. Thus the CV selection can be performed independently 

on each section and the results can be aggregated thus mimicking cooperation, divide and conquer 

found in biological systems. Additionally, another strategy presented in this work is to employ 

metaheuristic biologically inspired optimization techniques as opposed to branch and bound. It is 

proven that these two strategies would improve the computational time thus energy plants can 

afford to deploy CV selection more often than is currently realizable in the industry.  

In addition to selecting CVs, optimality of plant operations depend on CV set points as they are 

results of an optimization performed at a nominal point, thus these set points become sub-optimal 

once disturbances change from nominal operating points. Therefore this optimization must be 

periodically performed to obtain new set points as the process navigates from one operating point 

to another, this necessitates the mathematical framework of real time optimization in chapter 5. 

Consequently, this thesis presents the theoretical development and practical implementation of 

biologically inspired techniques for optimal control structure design of advanced energy plants. 

The aim of this is to improve flexibility, optimality and efficiency of advanced energy plants now 
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and in the near future. In addition to this, real time optimization in the presence of stochastic 

disturbances for the purpose of maximizing economic profit while maintaining environmental 

emission standards is presented. This portion however employs conventional rather than 

biomimetic approach for its development.  

1.2 Biomimetic Approach to Control Structure Design 

This research is part of an overall biomimetic approach to control structure and controller design 

for an advanced energy plant as shown in Fig. 1.2. A self-organizing, biomimetic control structure 

selection process dynamically adapts the controlled variables for maximizing the plant profit 

without violating constraints. The controller design process then accepts these sets of controlled 

variables and designs centralized/decentralized controllers that exploit the rule of pursuit present 

in ant colonies. To reject the modeled and unmodeled disturbances, an intelligent system monitors 

the process and adapts the control actions by infusing cognition and decision capabilities.  

 Self-Organizing, Biomimetic Control Structure Selection 

The overall scheme in Fig 1.2 is as follows: objectives and disturbances are passed into the system, 

in order to meet this objective, self-optimizing CVs must be selected. The term self-optimizing 

implies that operating the process plant while keeping the CVs constant at predetermined set points 

will result in an acceptable loss (Skogestad, 2004). Loss is defined as the difference in the objective 

function values between the optimal cases as compared with when CVs are kept at the constant 

setpoint provided by the RTO at the upper layer. This is infeasible to solve in real time or in every 

couple of minutes if all the candidate variables are considered. Here, to reduce the size of the 

problem and still achieve self-optimizing control, the function of the cortical areas of human brain 

is imitated. Thus process data is then used to establish the partitioning/decomposition of the system 

into various sections/islands. This is seen in Fig. 1.2 as regions 1 through 5 (R1-R5).  

To perform this decomposition, it is required to determine the specific pattern and intensity of 

connections in response to the stimulation. Therefore units with strong couplings and connectivity 

would be considered together during portioning and otherwise. To this end, first a process model 

referred to as the Dynamic Causal Model (DCM) is utilized to establish this connectivity strength. 

In neuroscience, the brain is considered to be a deterministic input-state-output process and an 

analogous connectivity estimation approach is used to understand the self-organization of the 
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cortical areas of the brain. The inputs in DCM are conventional stimulus functions that are 

analogous to manipulated variables in process control.  

Upon decomposition, each section/island would have its CVs established. These CVs (measurable 

and observable) are then aggregated together and passed to the supervisory control layer (beyond 

the scope of this thesis) where controller design is performed. During process operation, intelligent 

monitoring of the process is performed to establish when the process departs into abnormal 

conditions (Al-Sinbol, 2013). As the process operation moves from one operating point to another, 

or when objective function changes, it may be necessary to repeat the process for the purpose of 

reorganizing the decomposition and consequently CV selection to meet the new demands of the 

process. This selection procedure requires solution of a mixed integer nonlinear programming 

(MINLP) problem through the multi-agent optimization framework that mimics the CNS 

It should be noted however, that change in CV for a plant during operation is rather futuristic and 

philosophical for now as most plants can only afford this during start up after a period of shut 

down. When energy plants are completely automatic, this may very well be applicable. Therefore 

the utility of the propositions and methodologies developed in this work would find application in 

a near or completely autonomous plant 

 

Figure 1.2. Overview of biomimetic control approach to integrated energy plant 
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 Multi-agent Optimization Framework  

The control structure design problems for biomimetic control of power plants are expected to be 

nonconvex.  The possibility of obtaining local minima or maxima is very high in such problems.  

Some of the biomimetic optimization techniques such as genetic algorithms, ant colony 

optimization (and simulated annealing) show higher probability of obtaining global solutions.  

However, these techniques can be computationally intensive.  For each island, one MINLP 

problem (for control structure selection) and several NLP problems (one for each controller present 

in an island) need to be solved. This can result in computational intractability for large scale 

systems. For the bilaterian animals, the CNS coordinates the activities of the entire body in real-

time in an optimal manner. To achieve the similar functionalities as the CNS, a multi-agent 

optimization framework will be developed in this thesis. The multi-agent optimization framework 

provides a way of combining various algorithms in one platform and exploits the strengths that 

each one of them possesses.  Such an approach avoids the problem of getting stuck in local optima 

as well as reduces the computational burden.   In process systems engineering, agent-based systems 

are proposed for conceptual design (Chonghun et al., 1995), supply chain management (Julka et 

al., 2002, Mele et al., 2007), and controller design (Tetiker et al., 2008, Tatara et al., 2005).   

However, for multi-agent optimization of process systems engineering problems, very few articles 

have appeared and most of them are restricted to small scale problems (Siirola et al., 2003).  In 

this work, the multi-agent optimization framework was implemented for a large-scale, real-world 

problem.  The flow of data and control structure will be similar to Siirola et al (Siirola et al., 2003).   

However, the agents will be designed differently for solving large scale optimization problems. 

There will be three autonomous agents consisting of transient programs that run independently on 

various machines.  The three agents include the efficient simulated annealing agent (ESA), 

efficient genetic algorithm agent (EGA), efficient ant colony agent (EAC). Since it is expected that 

the number of agents will be more than the machines available to run them on, the central executive 

routine will schedule the agent runs based on the waiting time and probability function assigned 

to each agent depending on previous successes.  For example, GA agents can find global optimum 

with lesser computational effort than the other agents for certain classes of problems; so the central 

agent might give higher probability of success to the EGA agent for these types of problems. This 

scheduling algorithm is based on efficient sampling techniques developed by Diwekar’s group 

over the last decade (Diwekar and Ulas, 2007).  
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The agent provides search regions to the common memory space, to be explored by the optimizers 

based on previous clustering agent’s work.  The optimizing agents use different algorithms to solve 

the same problem.  These agents will be running on different machines.   However, every 

optimization agent will perform small number of iterations than typically required for reaching 

optimal solution.  This increases the frequency at which those agents can communicate and 

collaborate with the other agents in the system by requiring them to post their solutions and then 

reinitialize more frequently.  The ESA, EGA, and EAC agents are based on new efficient heuristic 

based algorithms called Efficient Simulated Annealing, Efficient Genetic Algorithm, and Efficient 

Ant Colony algorithm.  The first two algorithms (ESA and EGA) have been developed by 

considering the k-dimensional uniformity of a quasi-random number generator based on 

Hammersley Sequence Sampling (Kalagnanam and Diwekar, 1997) developed in Dr. Diwekar’s 

group.  The multi-agent optimization framework proposed above to handle both MINLP and NLP 

problems is a unique framework that is developed for the first time for control of power systems. 

1.3 Computation Tools 

MATLAB®, a computing environment developed by MathWorks®, is one of the main 

engineering software used in this project for modeling and optimization. Another major software 

used for the completion of this project is DYNSIM. The Dynsim - Matlab engine Link is an 

interface for including Matlab -based models and controllers in a DYNSIM dynamic simulation 

model using the OPC data access protocol. The engine link is capable of handling several scenarios 

including, solution unavailability, solution impossibility, and data communication loss. The link 

was developed by Schneider Electric for West Virginia University.  

1.4 Thesis Organization 

Chapter 1 presents the background and motivation. Chapter 2 focuses on the first biologically 

inspired algorithm which is a decomposition algorithm stemming from the analogy of the human 

cortical brain. In this chapter, a process plant is viewed as a coordinated system of different 

sections/islands with connectivity existing amongst them. This is done through a dynamic causal 

model (DCM). This connectivity is thought to be modelled after neuronal connections found in 

the human brain. Borrowing from the self-organization of the human brain in neuroscience, this 

task aims at developing the framework for distributed intelligence and computing for energy 
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plants. Connectivity information between different processes of the energy plant are garnered 

through probabilistic network methods. This result can be used to aggregate strongly connected 

islands together for the purpose of deploying algorithms such as the control structure design.  

Chapter 3 exploits the results of Chapter 2 for the purpose of control structure design. In particular, 

the use of a coordinated multiagent platform is discussed which employs exploitation and 

exploration to achieve faster convergence on optimization problems as opposed to conventional 

methods. The strength of coupling between various controlled variables will be evaluated by using 

the DCM so that different islands with strongly coupled controlled variables can be identified. 

Each island will form an independent sub-problem. This will be followed by a development of a 

multi-agent optimization (MAOP) for each island to select the controlled variable using the results 

from the DCM. This multi-agent system will solve a mixed integer nonlinear programming 

(MINLP) problem by mimicking the distributed intelligence of the central nervous system (CNS). 

The information obtained therein about input-state-output interrelations available from the DCM 

and the MAOP can then be passed on to control configuration design.  

In Chapter 4, the methods of chapter three are extended to a cyber physical system with virtual 

components, the biomimetic CV selection is deployed to a fuel cell gas turbine hybrid system. This 

system poses unique characteristics which render multiagent coordination attractive to employ.  

In Chapter 5, a real time optimization algorithm is proposed based on economic optimality. 

Production and carbon capture are scheduled based on stochastic predictions of future electricity 

demands and electricity prices while meeting environmental regulations. 

In Chapter 6, recommendations and future research directions are provided. 

1.5 Research Output 

The contributions of this research includes: 

1. Algorithmic development of connectivity estimation with a second order nonlinear model 

2. Decomposition and partitioning algorithm of process plants based on structural 

connectivity 

3. Partition based CV selection predicated on inferred structural connectivity 

4. Use of multiagent metaheuristic algorithms for CV selection 

5. Real time optimization of an energy plant with CO2 capture 

6. Lyapunov stability of the mathematical formulation of RTO of energy plant with CO2 

capture 
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Chapter 2 

2 Development of Algorithms for Biomimetic, Self-Organizing 

Control Structure Design 

2.1 Introduction  

Many process systems engineering tools at the heart of optimization and control require the 

solution of large scale problems which demand significant computational expense (El-Beltagy et 

al., 1999). Recent advances in development of theoretical tools in control and optimization 

together with the state of the art computational power and available software have further opened 

up immense possibilities. In spite of the increased performance and efficiency of computing speed 

and power, it is still infeasible to solve large-scale process optimization problems especially when 

the application is intended for online deployment or fast computation of the solution is desired. 

Examples of such large-scale optimization problems include, but are not limited to: various 

dynamic optimization problems that are solved for obtaining optimal control trajectory, 

reconciling dynamic data, or for obtaining optimal estimates of time-varying parameters, online 

adaptation of process models etc. If the underlying problem is combinatorial in nature, then the 

optimization problem can be computationally prohibitive even for moderate-sized plants.  An 

example of such a large-scale combinatorial problem is the controlled variable (CV) selection 

problem (Jones et al, 2014). It should be noted that while CV selection is done heuristically or by 

off-line evaluations that are rarely revisited, the CV sets can be sub-optimal if the control objective 

of the process changes or the process model or operating constraints change considerably. One 

example of such processes is a cyber-physical system where the control objective can considerably 

change over a period of time or components can be readily added/modified/removed changing the 

underlying process model and operating constraints. Thus fast (not necessarily online) selection of 

updated optimal CV sets will be highly desired. It can be noted that the search for optimal CV sets 

involves systematic evaluation of an objective function for large number of candidate sets. For 

highly nonlinear plants, solution of the underlying optimization problem for each candidate set is 

difficult and computationally demanding. One approach to solving such large scale optimization 

problems is to use a ‘divide and conquer’ approach where a large process can be decomposed into 

smaller sub-processes. Such decomposition can be accomplished using inferred structural 
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connectivity information among various sub-processes. Then, only strongly connected sub-

processes can be considered together for computation. Therefore, a methodology that can identify 

and detect dynamic changes in the connectivity among various sub-processes is desired. 

Analysis of connectivity of chemical processes have long been researched in the open literature 

mainly from the perspective of fault detection and diagnosis. In those works, typically, a system is 

represented by using directed input and output arcs or signed digraphs (SDGs). These directed arcs 

represent causality. From these diagraphs, subsets of strongly connected components and maximal 

strongly connected component can be deduced. Strongly connected components in these sense are 

a combination of nodes that can be reached from every other node within the subset while a maximal 

strongly connected subset is a strongly connected subset with no input arcs (Iri et al., 1979). In 

(Emmerich  et al., 2001) process plants have been modelled as structured graphs, a type of directed 

graphs. Unit operations are represented by vertices while edges represent streams from the outlet of 

a unit operation to the inlet of another. Causality is modelled in these graphs by using inlet and 

outlet connectors. An excellent review of various works in this area can be found in 

(Venkatasubramanian et al., 2003). The DGs and SDGs have been widely utilized from the 

perspective of fault propagation where steady state or incipient changes in the process variables are 

utilized for obtaining the connectivity information rather than considering a state-space model. 

Therefore, dynamic change in the connectivity due to dynamics of inputs cannot be inferred from 

the DGs and SDGs. Another drawback of the DG or SDG- based approaches are that a binary 

information (a value of ‘1’ if two nodes should be connected, ‘0’ otherwise) is obtained about the 

connectivity, but a quantitative measure of the relative strength in connectivity between various 

nodes is not available. A quantitative measure of the connectivity strength can be helpful in 

determining how to decompose processes.  

Connectivity estimation is also important for the purpose of control structure selection. Input-output 

interaction can be quantified using participation matrices (PM)(Conley and Salgado, 2000), Hankel 

Interaction Index Array (HIIA) (Wittenmark and Salgado, 2002) and the Σ2 measure (Birk and 

Medvedev, 2003). An estimation of interaction parameters for high order Vector ARX (VARX) has 

also been proposed (Carvalho Bittencourt, 2016) . These interaction parameters allow control 

pairing with superior performance compared to the relative gain array (RGA). A number of these 

methods have been compared in terms of computational complexity for control structure selection 
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(Bankole et al., 2018a). Similarly, methods for interaction analysis using weighted graphs for 

control structure selection have been reported (Arranz and Birk, 2012). 

In light of identifying connectivity in the field of neuroscience, two prominent methods used for 

estimating connectivity include Granger causality (or G-causality) and transfer entropy 

approaches. These approaches enjoy wide use in literature and typically employ autoregressive 

models. It has been reported that the Granger causality based approaches might perform poorly in 

comparison to other methods including partial correlations, mutual information, coherence, 

generalized synchrony and Bayesian networks as the measurement noise can reverse the estimation 

of causality direction (Smith et al., 2011). Extension of the Granger causality to nonlinear process 

systems where the nonlinearity can stem forth due to interaction between the input and state 

variables as well as due to interaction among the state variables is not straight forward. The use of 

transfer entropy for measuring process connectivity for fault diagnosis including process 

connectivity has been reported (Landman and Jämsä-Jounela, 2016). These two methods are 

typically applied when the variables are assumed to be Gaussian (Barnett et al., 2009). Other 

approaches include model-driven approaches generally known as structural equation modeling 

where specific model structures can be employed (Kline, 2015). The model-based approaches have 

been widely used in the area of economics, social sciences, and neuroscience, to name a few. For 

example, in the area of neuroscience, a modified direct transfer function model has been proposed 

where a multivariate auto-regressive model is converted to frequency domain and a partial 

coherence metric multiplied by the direct transfer function is used in quantifying connectivity 

(Korzeniewska et al., 2003). Excellent reviews of various methods for determining structural 

connectivity can be found in (Friston, 2011) for neuroscience and (Yang et al., 2014) for process 

plants.  

Since the objective of the current work is to decompose the process model based on structural 

connectivity information, the connectivity measures are constrained by the physical connectivity 

of the process equipment items and the mass and heat exchange between them. Thus, a structural 

equation modeling approach is required. Due to the very nature of the typical chemical process 

systems and specific to the desired outcome of the current work, the candidate model should be 

nonlinear and should capture the nonlinearity due to interactions between states and inputs as well 

as interactions among state variables. Furthermore, it is desired that the stochastic parameters that 

quantify the structural connectivity be estimated for a non-Gaussian system. To the best of our 
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knowledge, there is no work in the current literature on quantifying structural connectivity of non-

Gaussian chemical process systems characterized by bilinear models incorporating interactions 

between state and input variables as well as interactions between state variables.  

For obtaining quantitative measure of connectivity strength and its dynamics, a dynamic model 

representing the process is desired where the model parameters would represent connectivity. 

Typical approach to candidate model selection for an intended application starts off with the 

qualitative measure of the system description, where the key features describing the system is 

identified. This step is usually referred to as the structural identification (Kay et al., 2000, Bradley 

and Stolle, 1996). In this thesis, a second order nonlinear model is considered as a candidate model. 

Its integration and use for connectivity estimation are original works of the author. The particular 

form of second order model considered in this work (Bankole and Bhattacharyya, 2018) is an 

extension of bilinear models found in the literature. In this model, the bilinear terms represent 

interactions between states and inputs as well as interactions among state variables. This is crucial 

in chemical engineering systems where exogenous inputs such as feed flowrates, temperature, and 

compositions have strong effects on states such as concentrations and temperatures. Bilinear 

models have been used in the field of neuroscience for the modelling of interactions amongst 

neuronal populations at a cortical and subcortical level (Friston et al., 2003). Using magnetic 

resonance imaging, evoked brain responses are used to characterize plausible models by making 

inferences about the coupling of several brain regions and the modulation of these couplings by 

experimentally designed inputs. By treating the brain as a deterministic input-state-output system, 

effective connectivity is parameterized as a function of couplings amongst unobserved neuronal 

states. However, the inferences are contingent upon assumptions about model structure. This is 

inevitable as concrete information about the architecture of the neuronal connectivity is unknown 

and can at best be surmised. Nevertheless, the utility of the dynamic causal model is grounded on 

its use as an exploratory means for model selection amongst several models (Will et al., 2004).  

Once the candidate model is determined, model parameters must be estimated using one of several 

methods such as the minimum square error method (Ljung, 1987), maximum a posteriori method 

(Nelles, 2013), etc. A number of authors has used gradient-based methods for maximization of the 

likelihood function conditioned on the defined statistics of the observed data (Fnaiech and Ljung, 

1987, GAB and Subba Rao, 1984, Verdult, 2002, Verdult et al., 2002). Schön et al. (Schön et al., 

2011) provides a rigorous approach for system identification for a general class of discrete time 
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nonlinear systems with unknown parameters.  Here, an expectation maximization algorithm is also 

used in this work. This algorithm seeks to maximize the likelihood of parameters conditioned on 

observed data and predefined priors while also maximizing the unknown statistics of the model 

error.  

 The proposed method developed in this work can perform satisfactorily in presence of 

noisy data of known variance. The approach is applied to two case studies. One case study pertains 

to a small sized system for which the exact model is available and therefore the connectivity 

information is known and therefore serves as a validation of the approach. Another case study 

pertains to a process of considerable size for which the exact model is not known but connectivity 

information can be inferred from process heuristics and therefore serves to validate the approach 

for high-dimensional system. The utility of the algorithm developed in this work is to decompose 

a process into smaller sub-processes such that the optimization/computational problems that are 

desired to be solved online or reasonably fast can be solved independently and/or in parallel for 

these sub-processes.  

2.2 Dynamic Causal Model 

To obtain the connectivity information in a process, it is sought to model output response with a 

parametric model whose parameters provide insight into the different classifications of the 

connectedness of the variables of interest. Candidate models for obtaining connectivity 

information should be such that they: (1) can be used for obtaining structural connectivity 

information, both inherent as well as those induced by internal changes and external disturbances, 

(2) can be developed using available simulation data, and (3) are reasonably simple so that they 

can be solved in real-time applications. Bilinear Dynamic Causal Models (DCM) are potential 

candidates that can satisfy these requirements. These models have been reported to have the 

capability to capture causal effects of stimulus-free contextual inputs as well as stimulus-bound 

perturbations on the connectivity among the cortical/sub-cortical areas in the brain (Friston et al., 

2003) .  

In neuronal networks, the DCM is employed to observe unilateral and bilateral connectivity 

between different regions of the brain to infer structural changes modified by experimentally 

designed inputs. These models are estimated using a probabilistic approach where inferences about 

connectivity are evidenced by the posteriors. In process systems, the physical connectivity of the 
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process is usually known, thus as opposed to obtaining different model evidences to infer structural 

coupling, the objective here is to obtain quantitative information about the strength of connections 

between different process unit operations and exploit these connection for the decomposition 

purpose. Dynamic changes in the strengths of connection are evidenced by the estimated 

parameters of the employed model. 

In using the DCM for the analysis of the functional integration of system’s dynamics, various 

regions (here representing unit operations) and the variables of interest must be identified. These 

comprise a set of 𝑖 = 1,… ,𝑁 unit operations within the system. A typical process consisting of 

different process regions is shown in Fig. 2.1.  Each region or node is denoted by Ri.  These regions 

would typically represent one or more equipment items or a subset of variables. Two types of 

connectivity exist between these regions- latent connectivity and induced connectivity.  Latent 

connectivity denotes the intrinsic connectivity that exists among these regions. In Fig. 2.1, these 

are represented by black solid arrows representing the direction of influence or causality. These 

could be bidirectional or unidirectional, thus while the black arrow from 𝑅1to 𝑅2 represents a 

bilateral forward and backward latent connectivity, the latent connectivity from 𝑅4 to 𝑅3 denotes 

unidirectional backward connectivity. In this notation, the numbering system of the regions is 

assumed to increase as one traverses the process downstream. Therefore a region 𝑅𝑖 could 

represent a reactor while 𝑅𝑖+1 represents a separator downstream the reactor. Thus backward 

connectivity could typically correspond to a recycle loop between two nodes. It is noteworthy that 

self-connectivity is omitted in the diagrammatic representation but is encoded in the latent 

connectivity matrix as discussed in Subsection 2.2.1. Induced connectivity (red dotted arrows) 

denotes connectivity that are modulated by the input, this type of connectivity can be seen from 

region 𝑅2 to region 𝑅3 where both a forward and a backward induced connectivity are activated 

by inputs.  Contrarily, only a backward induced connectivity exists from 𝑅2 to 𝑅1. In addition, 

there exists extrinsic effect of inputs (blue dash dotted arrow) as can be observed in region 𝑅1, 𝑅2 

and 𝑅3. These effects denote the local effects of inputs on the process nodes. 
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 Model Description 

Consider a general nonlinear system described by a set of differential and algebraic equations as 

given below: 

Here, 𝑥, 𝑢, 𝑦, 휃  represents state space vector, inputs, measurements and parameters respectively. 

The dimensionality of the variables is given by 𝑥 ∈ ℝ𝑁𝑥, 𝑢 ∈ ℝ𝑁𝑢  , 𝑦 ∈ ℝ𝑁𝑦 .  Let (𝑥, 𝑦, 𝑢) =

(0,0,0) denote steady state. It is assumed that the output signal is corrupted with additive 

measurement noise 𝜔 while 𝑣 denotes noise in the model (i.e. unmodeled, unknown, and/or 

inaccurate physics). 

Approximating the general nonlinear model in Eq. (2.1) with a second order nonlinear model 

(truncated Taylor series expansion) given as: 

 �̇� ≈ 𝐴𝑥 + ∑𝑢𝑗B
j𝑥 + 𝐶𝑢 + diag(𝑥)𝐻𝑥 (2.3) 

Where: 
𝐴 =  

𝜕𝐹

𝜕𝑥
|
𝑠𝑠

 (2.4) 

 �̇� = 𝐹(𝑥, 𝑢, 휃) + 𝑣 (2.1) 

 𝑦 = 𝑔(𝑥) + 𝜔 (2.2) 

𝑢1 𝑅1 

𝑅4 

𝑅3 𝑅2 

𝑢2 

𝑢3 

Figure 2.1 Connectivity patterns represented by the DCM where each region denotes one or 

more unit operations. Connectivity between regions can be latent (black arrows) and/or induced 

(red dotted arrows) while external inputs are treated as stimulus-bound inputs (blue dash dotted) 
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Bj = 

𝜕2𝐹

𝜕𝑥𝜕𝑢𝑗
|
𝑠𝑠

 (2.5) 

 
𝐶 =  

𝜕𝐹

𝜕𝑢
|
𝑠𝑠

 (2.6) 

 
𝐻 =

𝜕2𝐹

𝜕𝑥2
|
𝑠𝑠

 (2.7) 

Here, diag(𝑥) is a diagonal matrix where leading diagonal elements form the state space vector 𝑥 

such that the sequence of entries on an arbitrary row 𝑖 of this matrix can be written as {𝑥𝑗𝛿𝑖𝑗}𝑗=0
𝑁𝑥
 , 

where 𝛿 is the Kronecker delta, i.e. 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗, 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗. The matrices {𝐴, 𝐵, 𝐶, 𝐻} can 

be obtained from the nonlinear model given in Eq. (2.1) with appropriate differentials of 𝐹(𝑥, 𝑢, 휃) 

evaluated at steady state (‘ss’) with respect to state, state and input, and input variables, 

respectively. Beyond mathematical significance, these matrices also give insight into the 

connectivity of the system. The Jacobian matrix 𝐴 represents first order coupling among state 

variables. Elements of A represent hidden couplings of state variables devoid of exogenous inputs. 

In other words, these elements represent a fundamental structure of the system under consideration.  

In neuroscience, an analogy exists between the Jacobian matrix and the latent connectivity between 

neurons, which is an intrinsic coupling unmodulated by experimentally designed inputs. The 

eigenvalues of the matrix 𝐴 designate the neuronal time constants of the brain regions and are 

assumed to be the same for all regions. For process systems, however, they represent the argument 

of the matrix exponential for the zero input case of a continuous time linear state space model. 

Similarly the matrices 𝐵𝑗 signify couplings due to the effect of the 𝑗𝑡ℎ input (𝑢𝑗). These embody 

the interaction between state space variables subject to the influence of inputs. A distinct 𝐵𝑗 matrix 

exists for each input and these are referred to as the induced connectivity matrices. The matrix 𝐶 

characterizes the effect of external inputs on the state variables. Lastly, the matrix H represents the 

Hessian matrix with respect to state variables. The last term in Eq. (2.3) encodes nonlinear latent 

connectivity between state variables that cannot be captured by the latent connectivity matrix A. It 

should be noted that the inclusion of the last term in Eq. (2.3) distinguishes this model from typical 

bilinear DCM (see Lemma 1). These matrices altogether provide information about the structural 

connectivity of a system. 
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Lemma 1 

The second order nonlinear latent connectivity between state variables is given by  diag(𝑥)𝐻𝑥, i.e. 

the last term in Eq. (2.3). 

Proof 

Given Eq. (2.7),  

                                                                   ℎ𝑖𝑘 =
𝜕2𝐹

𝜕𝑥𝑖𝜕𝑥𝑘
 

Denote the column vector: diag(𝑥)𝐻𝑥 = 𝑑 

Then: 

𝑑𝑗 =∑(𝑥𝑖𝛿𝑖𝑗 (∑ℎ𝑖𝑘𝑥𝑘
𝑘

))

𝑖

 

𝑑𝑗 =∑ℎ𝑗𝑘𝑥𝑗𝑥𝑘 

𝑘

 

which is clearly the second order nonlinear latent connectivity between the state variables. 

2.3 Parameter Estimation with Bayesian Inferencing. 

Given the equations of nonlinearity in state as in Eq. (2.1), it is desired to integrate these to express 

the outputs directly as a function of inputs and the parameters to be estimated. This has been 

communicated earlier by (Bankole and Bhattacharyya, 2016) for a special case where the output 

is a linear combination of inputs. However for the generic nonlinear measurement response model 

given in Eq. (2.2), model integration proceeds as follows. 

 Model Integration 

Given the equations of nonlinearity in state as in Eq. (2.1), it is desired to integrate these to express 

the outputs directly as a function of inputs and the parameters to be estimated. This has been 

communicated earlier by (Bankole and Bhattacharyya, 2016) for a special case where the output 

is a linear combination of inputs. However for the generic nonlinear measurement response model 

given in Eq. (2.2), model integration proceeds as follows. 
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Considering Taylor series expansion of the function 𝐹(𝑥, 𝑢, 휃) around a nominal steady state point 

and collecting terms, Eq. (2.3) can be written as: 

 

�̇�(𝑡) = (�̅� +∑𝑢𝑗�̅�𝑗
𝑗

+ diag(𝑋)�̅�)𝑋 (2.8) 

 𝑋 = [
1
𝑥
] (2.9) 

   

 
�̅� = [

0 0

𝐹(𝑥0, 0, 휃)
𝜕𝐹(𝑥0, 0, 휃)

𝜕𝑥

] (2.10) 

 �̅� = [
0 0
0 𝐴

] (2.11) 

 

�̅�𝑗 = [

0 0
𝜕𝐹(𝑥0, 0, 휃)

𝜕𝑢𝑗

𝜕2𝐹(𝑥0, 0, 휃)

𝜕𝑥𝜕𝑢𝑗

] (2.12) 

 
�̅�𝑗 = [

0 0
𝑐𝑜𝑙𝑗{𝐶} 𝐵𝑗

] (2.13) 

 

�̅� = [
0 0

0
𝜕2𝐹(𝑥0, 0, 휃)

𝜕𝑥2
] (2.14) 

 �̅� = [
0 0
0 𝐻

] (2.15) 

 

The matrix �̅� is a concatenated form of the matrix 𝐴. The matrix �̅�𝑗 corresponds to the 𝑗th input 

and includes both the induced connectivity matrix 𝐵𝑗  and the 𝑗th column of the matrix 𝐶. 𝑐𝑜𝑙𝑗{𝐶} 

represents the jth column of the  𝐶 matrix. 

Having Eq. (2.8) written in the linear form with �̅�, �̅�𝑗  and  �̅� defined as in Eqs. (2.10), (2.12) and 

(2.14) and augmenting the state space vector as in Eq. (2.9), the resulting set of ordinary differential 

equations (ODEs) can be solved by the customary solution of the first order ODE using the matrix 

exponential. Assuming that the inputs 𝑢(𝑡) and state space vector 𝑥 are relatively constant for a 

small time interval Δ𝑡, then the argument of the matrix exponential can be treated as a constant 
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over the time interval Δ𝑡 therefore this allows a quasi-analytical integration of the ODE given by 

Eq. (2.8) from 0 → Δ𝑡 to yield: 

 

𝑋(Δ𝑡) ≈ exp(Δ𝑡 (�̅� +∑�̅�𝑗𝑢𝑗(0)

𝑗

+ diag(𝑋(0))�̅�)) ⋅ 𝑋(0) (2.16) 

Performing the above iteratively and generalizing for any time 𝑡 = 𝑇(𝛥𝑡) , Eq. (2.16) becomes: 

𝑋(𝑡) = 𝑋(𝑇𝛥𝑡) ≈∏ exp(𝛥𝑡 (�̅� +∑�̅�𝑗𝑢𝑗(𝑘𝛥𝑡)

𝑗

+ diag(𝑋(𝑘𝛥𝑡))�̅�))

𝑘=0

𝑇−1

⋅ 𝑋(0) (2.17) 

 

Therefore the output responses can be obtained as: 

𝑌(𝑡) ≈ 𝑔

(

 
 
∏exp(𝛥𝑡 (�̅� +∑�̅�𝑗𝑢𝑗(𝑘𝛥𝑡)

𝑗

+ diag(𝑋(𝑘Δ𝑡))�̅�))

𝑇−1

𝑘=0

⋅ 𝑋(0)

)

 
 
= ℎ(𝑢, 휃) (2.18) 

 Bayesian Inferencing 

Bayesian estimation or inference is widely used for system identification and parameter estimation. 

In this framework, priors are defined with a probability distribution to obtain estimates of the 

unknown parameters as posterior distribution. One typical approach to expressing these priors is 

through the Gaussian distribution. Thus upon incorporating the priors with the likelihood, it is 

sought to find the first and second moments of the Gaussian densities of the parameters. The 

maximum a posteriori (MAP) in the Bayesian framework is considered here. 

Consider the estimation of a random parameter vector 휃. From Bayes’ rule, the posterior density 

function (pdf) of the parameter vector 휃 given the output response y, 𝜋(휃|𝑦)is given by: 

 
𝜋(휃|𝑦) =

𝑙(𝑦|휃)p(휃)

𝑚(𝑦)
 (2.19) 

Where 
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𝑚(𝑦) = ∫𝑙(𝑦|휃)p(휃)𝑑휃

Θ

 (2.20) 

The first term 𝑙(𝑦|휃) in Eq. (2.19) is the likelihood of the parameter vector 휃, while the second 

term 𝑝(휃) is the prior probability of the parameter vector. Both of these influence the posterior and 

the relative influence of each depends on the mode, variance and skewness of their probability 

density functions. The posterior distribution is also seen as the ratio of the joint distribution (of the 

output response and the parameter vector) and the marginal distribution of the output vector.  

It is desired to obtain optimal estimate of the parameters of the model in Eq. (2.1) and its 

hyperparameters jointly using the dynamic data with additive measurement noise 𝜔~ 𝒩(0, 𝐶𝑌). 

Various methods have been proposed to solve this type of problem including the principal 

component analysis of the total least squares (Golub and Van Loan, 1980) and subtraction of the 

noise statistics in the magnitude spectral domain (Boll, 1979). In sequential approaches, filtering 

techniques  such as the extended Kalman filter or the unscented Kalman filter  are used (Wan and 

Van Der Merwe, 2000).  Since the parameters space is stochastic for the given problem, the process 

is nonlinear, and the process and measurement noises are not necessarily Gaussian, a Bayesian 

approach is used here. The Bayesian approach also facilitates to cast the user belief in form of 

priors. Since it is sought to optimally estimate the parameters pertaining to the connectivity 

matrices that are constrained by the physical configuration of the process, the priors help to realize 

the physically plausible connectivity parameters. If the user knowledge is available for certain 

parameters, then those parameters are treated as informed priors. They are assigned a smaller 

variance while the variance of the uninformed priors are set at a higher value. 

In the following equations, the model prediction is given as ℎ(𝑢, 휃), the measured output is given 

as 𝑦 while the estimate of the underlying signal, i.e. raw output without noise is denoted by �̂�. The 

residual between the model prediction ℎ(𝑢, 휃) and the estimate of 𝑦 is denoted by 𝜖 as shown by 

Eq. (2.21) with a Gaussian distribution given by  𝜖 ~ 𝒩(0, 𝐶𝜖).   

 𝑦 = ℎ(𝑢, 휃) + 𝜖 (2.21) 

As the measured output y is only available, the underlying signal �̂� and the corresponding 

parameters 휃 must be estimated conditioned on the measured output. The joint probability 

distribution of the state and the parameters given by 𝑝(�̂�, 휃|𝑦) can be estimated using Bayes’ law 

as given below: 
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𝑝(�̂�, 휃|𝑦) =

𝑝(𝑦|�̂�, 휃)𝑝(�̂�|휃)𝑝(휃)

𝑝(𝑦)
 (2.22) 

Taking logarithm of both sides yields: 

 ln(𝑝(�̂�, 휃|𝑦)) =  ln(𝑝(𝑦|�̂�, 휃)) + ln(𝑝(�̂�|휃)) + ln(𝑝(휃)) − ln(𝑝(𝑦)) 

 

(2.23) 

Given the above, the underlying signal �̂� and the parameters 휃 that maximize the joint probability 

𝑝(�̂�, 휃|𝑦) are found such that: 

 �̂�∗, 휃∗ = max
�̂�,𝜃

𝑝(�̂�, 휃|𝑦) (2.24) 

To begin, priors are assumed on the parameters given by 휃~𝒩(휂𝜃, 𝐶𝜃) where 휂𝜃 denotes the prior 

mean. Thus the formulation results in a maximum a posteriori estimate of the parameter vector 

and a maximum likelihood estimate of the underlying output signal in the absence of priors for the 

output signal. The difference between the maximum likelihood and the maximum a posteriori is 

the presence of priors in the latter. One approach for obtaining optimal estimates of our unknown 

parameters and the underlying signal is to directly maximize the joint estimation while seeking to 

obtain the output vector and the parameter estimates in one step, several authors have reported 

convergence problems with this approach (Nelson and Stear, 1976). In this framework, the signal 

is estimated given the conditional estimates of the parameters as discussed in subsection 2.3.3 

while estimation of the parameters proceeds recursively through a two-step expectation 

maximization scheme as discussed in Section 2.3.4. 

 Signal Estimation 

Suppose the set of all estimate �̂� is given as 𝒴, then the maximum likelihood estimate of a 

signal  𝑦 is given as  �̂�∗ where: 

 �̂�∗ ∈ {�̂� ∈ 𝒴: 𝑝(�̂�|𝑦; 휃̂) ≥ 𝑝(�̃�|𝑦; 휃̂) ∀ �̃� ∈ 𝒴} (2.25) 

The maximum likelihood estimate of �̂�∗ can be obtained by setting the derivative of the log 

likelihood with respect to state vector to zero as follows: 

 𝜕ln (𝑝(�̂�∗|𝑦; 휃̂))

𝜕�̂�
= 0 (2.26) 
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 �̂�∗ = (𝐶𝑌
−1 + 𝐶𝜖

−1)−1 (𝐶𝑌
−1𝑦 + 𝐶𝜖

−1ℎ(𝑢, 휃̂)) (2.27) 

As can be seen from Eq. (2.27), the expected values of the underlying signal is a weighted estimate 

of the raw observation and the model prediction weighted by the inverse of the covariance 

matrices. In addition, as is usually encountered with industrial data, some of the measurements of 

𝑦 may be missing and these are replaced with E(�̂�) where E(⋅) denotes expectation. 

 Expectation Maximization 

The expectation maximization algorithm (EM) is a generic, iterative algorithm for jointly 

estimating parameters and hyperparameters of a model (Dempster et al., 1977, Dempster et al., 

1981). Originally introduced by Hartley (Hartley, 1958) as an iterative method to obtain maximum 

likelihood estimates of parameters in the presence of missing data, it was then used in (Orchard 

and Woodbury, 1972) where theoretical foundation of the underlying idea was provided. It was 

generalized by (Dempster et al., 1977) where the general results about the behavior of the 

algorithm as well as a variety of applications were provided. Recently, a formulation of the EM by 

(Neal and Hinton, 1998) relates the iterative procedure in the EM as a coordinate descent on the 

free energy of the system. 

2.3.4.1 Expectation: Parameter mean and covariance estimation 

Upon finding the maximum likelihood estimate of the underlying signal (noise free outputs) from 

Eq. (2.27), the parameters and hyperparameters of the error covariance matrix are estimated. The 

hyperparameters are used to parameterize the covariance matrix as shown in Eq. (2.28) At the jth 

iteration, let the conditional expectation of the parameters be denoted by 휂𝜃|�̂�
𝑗

. The unknown error 

covariance 𝐶𝜖 is parameterized as follows: 

 𝐶𝜖 =∑𝜆𝑘𝑉𝑘
𝑘

 (2.28) 

The constants 𝜆𝑘 are known as hyperparameters as they scale the contribution of the basis matrices 

𝑉𝑘 to the error covariance matrix. The matrix 𝑉𝑘 are sparse matrix with the kth element in the 

leading diagonal equal to one and all other elements set to zero. With this parameterization, one 

can obtain the diagonal covariance matrix underlying the variances. The representation above can 

also be seen as the basis sets being equal to the first partial derivative of the error covariance matrix 
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with respect to the hyperparameters wherein 𝑉𝑘 = 𝜕C𝜖 𝜕𝜆𝑘⁄ . The parameters 휃 are estimated by 

performing a gradient ascent on the joint log likelihood function ln(𝑝(�̂�, 휃|𝑦)) to obtain the 

following recursive identification. 

 
휂𝜃|�̂�
𝑗+1

= 휂𝜃|�̂�
𝑗

− (
𝜕2ln(𝑝(�̂�, 휃|𝑦))

𝜕휃2
)

−1
𝜕ln(𝑝(�̂�, 휃|𝑦))

𝜕휃
 (2.29) 

By performing a local linear Taylor series approximation at a current estimate of 휃, such that  

 
�̂� − ℎ(𝑢, 휂𝜃|�̂�) ≈

𝜕ℎ(𝑢, 휂𝜃|�̂�)

𝜕휃
Δ휃 + 𝜖 (2.30) 

This results in the framework: 

 
𝐽 =

𝜕ℎ(𝑢, 휂𝜃|�̂�)

𝜕휃
 (2.31) 

 

�̅� =  [
�̂� − ℎ (𝑢, 휂𝜃|�̂�

𝑗
)

휂𝜃 −  휂𝜃|�̂�
𝑗

] (2.32) 

 𝐽 ̅ =  [
𝐽
1
] (2.33) 

 
𝐶𝜀 = [

∑𝜆𝑘𝑉𝑘 0
0 𝐶𝜃

]  (2.34) 

 C𝜃|�̂� = (𝐽�̅�𝐶𝜖
−1𝐽)̅−1 (2.35) 

 Δ휂𝜃|�̂� = C𝜃|�̂�(𝐽
�̅�𝐶𝜖

−1�̅�) (2.36) 

 휂𝜃|�̂�
𝑗+1

= 휂𝜃|�̂�
𝑗

+   Δ휂𝜃|�̂� (2.37) 

 

Eq. (2.31-2.37) reduces to a Gauss-Newton method of nonlinear parameter estimation in the 

absence of priors, if however the priors are flat and the function is linear, the scheme represents 

the minimum variance classical Gauss Markov estimator which finds the parameters that minimize 

the variance or Mahanalobis distance of the data to the model (Friston, 2002).  



26 

 

2.3.4.2 Maximization: Covariance component estimation 

Once the parameters are obtained, the hyperparameters employed in the component of the error 

covariance matrix must be identified. This follows from a maximum likelihood approach which 

maximizes the likelihood of the conditional estimate of the data obtained from the E step on the 

current estimate of the hyperparameters. Denoted by 𝑝(𝑦|𝜆), this is obtained by integrating out the 

dependence of the likelihood on unknown parameters 휃 using the conditional distribution 𝑞(휃) 

(Friston et al., 2003).  Again, the jth iteration of the hyperparameter 𝜆 is denoted by 휂𝜆|�̂�
𝑗

  

 
ln(𝑝(�̂�|𝜆)) = ln∫𝑞(휃)

𝑝(�̂�, 휃|𝜆)

𝑞(휃)
𝑑휃    (2.38) 

Using Jensens inequality, the above expression is replaced with a tractable function �̅� given as a 

lower bound such that: 

 
ln∫𝑞(휃)

𝑝(�̂�, 휃|𝜆)

𝑞(휃)
𝑑휃 ≥ �̅� =∫𝑞(휃)ln

𝑝(𝑦, 휃|𝜆)

𝑞(휃)
𝑑휃 (2.39) 

As above, estimation of the hyperparameters proceed from a gradient ascent on the log function �̅� 

to give the following recursive estimation (Friston et al., 2002, Harville, 1977): 

 
휂𝜆|�̂�
𝑗+1

= 휂𝜆|�̂�
𝑗
− 𝛼 (

𝜕2�̅�

𝜕𝜆
)

−1

(
𝜕�̅�

𝜕𝜆
) (2.40) 

 
(
𝜕�̅�

𝜕𝜆
)
𝑖

=
1

2
trace{𝑀𝑉𝑗} −

1

2
�̅�𝑇𝑀𝑇𝑉𝑖𝑀�̅�

𝑇 (2.41) 

 
(
𝜕2𝐹

𝜕𝛽2
)
𝑖𝑗

=
1

2
trace{𝑀𝑉𝑖𝑀𝑉𝑗} (2.42) 

where M is defined as 𝐶𝜀
−1 − 𝐶𝜀

−1C𝜃|𝑦
−1  𝐽�̅�C̅𝜀

−1. Here 𝛼 is chosen such that 0.5 ≤ 𝛼 < 1 to ensure 

numerical stability.  

The results of the expectation maximization algorithm are numerical entries into the A, B, C and 

H matrix of the second order nonlinear model corresponding to the observed data and any priors 

enforced into the scheme. The algorithm is terminated based on first order optimality of 𝐽(휃 ) or 

residual between consecutive estimates of 𝑦 and/or 휃. While 𝑎𝑖𝑗 represents the latent connectivity 

from 𝑥𝑗 to 𝑥𝑖, 𝑎𝑖𝑖 represents latent connectivity of 𝑥𝑖 with itself, therefore connectivity strength is 
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inferred by comparing off diagonal elements to diagonal elements. This is applicable to elements 

of matrices 𝐵 and 𝐻 as given by Table 2.1 below: 

Table 2.1 Classification of strength for latent and induced connectivity 

Condition 
Latent 

connectivity(linear) 

Latent 

connectivity(nonlinear) 
Induced connectivity 

|𝑎𝑖𝑗 𝑎𝑖𝑖⁄ | ≥ 휁 Strong N/A N/A 

|𝑎𝑖𝑗 𝑎𝑖𝑖⁄ | < 휁 Weak N/A N/A 

|ℎ𝑖𝑗 ℎ𝑖𝑖⁄ | ≥ 휁 N/A Strong N/A 

|ℎ𝑖𝑗 ℎ𝑖𝑖⁄ | < 휁 N/A Weak  N/A 

|𝑏𝑖𝑗 𝑏𝑖𝑖⁄ | ≥ 휁 N/A N/A Strong 

|𝑏𝑖𝑗 𝑏𝑖𝑖⁄ | < 휁 N/A N/A Weak  

The connectivity threshold parameter 휁 is set by the user for determining connectivity strength. 

2.4 Results & Discussions 

 Toy Example 

This toy example is for the purpose of illustration and comparison with existing literature methods 

to validate the competitiveness of our proposed approach with respect to computational complexity 

and accuracy. Other examples illustrate the use of the algorithms for connectivity as earlier 

described. Consider the discrete time model below 

 𝑥(𝑡 + 1) = 𝑎𝑥(𝑡) + 𝑏(𝑢(𝑡) ⋅ 𝑥(𝑡)) + 𝑐𝑢(𝑡) + 𝑑𝑥(𝑡)2 + 𝑣(𝑡) 

𝑦(𝑡) = 𝑥(𝑡) + 𝜔(𝑡) 
(2.43) 

 

The true parameters are given as: 𝑎 = 2.5, 𝑏 = −3.25 𝑐 = 0.1, 𝑑 = 2.5 with 𝑣 = 𝜔 =

𝒩(5.0 × 10−7). The simulation involves a random signal 𝑢(𝑡). The model equation was simulated 

for a 100 points and estimation of parameters was performed using the algorithm presented in this 

chapter and (Schön et al., 2011) with 10 particles and 100 particles. The results are presented in 

Fig. 2.2 and Table 2.2.  
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Figure 2.2 Comparison of parameter estimation computation time. 

All algorithms are run on an Intel® Xeon® CPU E-5-1620 v2 with 32GB RAM. While our method 

converges in 15 iterations in 104s, the algorithm in (Schön et al., 2011) converges in 500 iterations 

for 10 and 100 particles with runtime of  15hrs and 12hrs respectively. This computational expense 

is due to the use of particle filtering and smoothing. The computational time is an order of 

magnitude higher than the algorithm presented here. Our algorithm avoids this additional layer of 

complexity with superior results for the system defined in Eq. (2.43). This is shown in Table 2.2.  

Table 2.2 True and estimated parameter values for different algorithms 

Parameter True This thesis Schön et al (10 particles) Schön et al (100 particles) 

𝑎 2.5 2.495001 1.760220 3.068775 

𝑏 −3.25 -3.131596 -6.720955 -3.286073 

𝑐 0.1 0.158269 0.066202 -0.009576 

𝑑 2.5 2.491762 2.815121 2.781233 
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 Van De Vusse Reactor with Separator 

The Van de Vusse reactor problem is a benchmark problem for nonlinear control case studies in 

the open literature (Chen et al., 1995, Vojtesek and Dostal, 2010). The reactor is a stirred tank 

reactor with a cooling jacket which maintains the reactor temperature by removing excess heat 

produced due to the chemical reactions. The reactor is continuously fed with an input stream with 

temperature 𝑇𝑖𝑛 containing the reactant cyclopentadiene with a concentration 𝐶𝐹 . In the liquid 

phase of the reactor, the reactions consist of a main reaction involving the conversion of 

cyclopentadiene (species ‘P’) to the product cyclopentenol (species ‘Q’). The main reactant 

cyclopentadiene also reacts in an unwanted parallel reaction to produce a byproduct 

dicyclopentadiene (species ‘S’). Additionally, the product cyclopentenol also reacts in an 

unwanted reaction to form cyclopentanediol (species ‘R’). This reaction scheme is referred to as 

the Van de Vusse reaction scheme and is described by the set of equations below: 

 

 

 

 

In addition to the reactor that is typically used in the open literature, a separator is added in this 

case study as shown in Fig. 2.3.  

 

Figure 2.3 Reactor Separator set up for the Van De Vusse reactor 

 

𝐶𝑃, 𝐶𝑄 

𝐶𝑃𝑟 

𝐶𝑄𝑟 
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Unreacted cyclopentadiene (species ‘P’) from the separator is recycled back to the reactor. The 

separator does not represent any real equipment item, but is introduced so that the developed 

algorithm can be tested in presence of recycle streams that affects the connectivity of the system, 

for a process of which the ‘true’ connectivity matrices are known. In this system, the elements of 

the connectivity matrices here infer the forward and backward connections between the state space 

variables of the reactor-separator system. Parameters shown in Table 2.3 have been taken from 

(Bequette, 2003). 

 �̇�𝑃 = 𝐹𝑉(𝐶𝑃𝑓 − 𝐶𝑃) − 𝑘1𝐶𝑃 − 𝑘3𝐶𝑃
2 + 𝑅𝑉(𝐶𝑃𝑟 − 𝐶𝑃) (2.44) 

 �̇�𝑄 = −𝐹𝑉𝐶𝑄 + 𝑘1𝐶𝑃 − 𝑘2𝐶𝑄 + 𝑅𝑉(𝐶𝑄𝑟 − 𝐶𝑄) (2.45) 

 
�̇�𝑃𝑟 =

𝑉𝑟𝑥
𝑉𝑠𝑒𝑝

(𝐹𝑉 + 𝑅𝑉)(𝐶𝑃 − 𝐶𝑃𝑟) (2.46) 

 
�̇�𝑄𝑟 =

𝑉𝑟𝑥
𝑉𝑠𝑒𝑝

(𝐹𝑉 + 𝑅𝑉)(𝐶𝑄 − 𝐶𝑄𝑟) (2.47) 

 

C denotes concentration while the subscripts denote the species, the additional subscript ‘r’ and ‘f’ 

denote recycle and feed streams, respectively. 𝑉𝑟𝑥 and  𝑉𝑠𝑒𝑝  are the reactor and separator volumes, 

respectively. Data used for the algorithm as described are generated by simulating the nonlinear 

model and subsequently measurements are obtained for the four output variables 𝐶𝑃, 𝐶𝑄 , 𝐶𝑃𝑟 , 𝐶𝑄𝑟.   

For this particular example, ‘true’ values of the parameters in the connectivity matrices for the 

second order nonlinear model can be obtained from the full nonlinear model by following the 

method described in Section 2.3.1. Following equations are obtained: 

 �̇� = 𝐴𝑥 + ∑𝑢𝑗𝐵
𝑗𝑥 + diag(𝑥)𝐻𝑥   (2.48) 

 𝑥 =  [𝐶𝑃 𝐶𝑄 𝐶𝑃𝑟 𝐶𝑄𝑟]𝑇 , (2.49) 

 𝑢 = [𝐹𝑉 𝑅𝑉 ]
𝑇 (2.50) 

 

Informed priors are assigned a smaller variance with a value of 0.1 while the variance of the 

uninformed priors are set at 10.0.  
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Table 2.3 Parameters used for the Van de Vusse reactor separator 

Variable Definition Variable Definition 

RV Recycle flow rate to reactor 

volume ratio 
C𝑃 Concentration of species P 

𝑉𝑟𝑥
Vsep

 
Ratio of reactor volume to 

separator volume 
CPr Concentration of species P 

in recycle stream 

𝑘1 Reaction 1 rate constant CQ Concentration of species Q 

𝑘2  Reaction 2 rate constant CQr Concentration of species Q 

in recycle stream 

𝑘3 Reaction 3 rate constant FV Feed flow rate to reactor 

volume ratio 

 

For identification purposes, the nonlinear model is simulated with additive Gaussian noise. White 

noise was added to the raw data obtained from the simulation of the equation depicting the true 

dynamics of the system.  

 

     

Figure 2.4 Concentration profile of P (left), Q (right) for a signal to noise ratio of 24 
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Figure 2.5 Euclidean distance between noisy signal and signal estimate (left), Euclidean distance 

between true parameter vector and estimates (right), signal to noise ratio of 24. 

Here, the A, C, H matrices consist of 16, 8, 16 elements, respectively while each of the B matrices 

consist of 16 elements totaling 72 elements. Fig. 2.4 shows that the estimates of the profiles of 

concentration of species match the true data very well even in the presence of noise. For brevity, 

the concentration profiles of unreacted cyclopentadiene (𝐶𝑃𝑟) and recycled cyclopentenol (𝐶𝑄𝑟) 

are omitted.   

Fig. 2.5 shows that the Euclidean distance between the observed data and the underlying state as 

well as the 2-norm difference between the true parameters and the estimated parameters are seen 

to decrease with iterations. However for a lower level of noise in the data with a signal to noise 

ratio of 30 (not shown), eight (8) iterations are needed for the algorithm to converge.  

Lastly, with the connectivity threshold parameter 휁 = 0.8 set, the strength of coupling between 

species in the reactor and separator are evaluated. It is observed that strong latent connectivity 

exists between the reactor and the separator due to species 𝐶𝑃 and 𝐶𝑃𝑟 . Also strong induced 

connectivity exists between the reactor and separator between the species 𝐶𝑃 and 𝐶𝑃𝑟 both due to 

the feed flow rate 𝐹𝑣 and the recycle flowrate 𝑅𝑣, these are based upon the numerical estimates of 

matrices B1(due to 𝐹𝑉) and B2 (due to 𝑅𝑉) , respectively. However in comparison to the true 

structural connectivity, weak latent connectivity is inferred from the reactor to separator between 

species 𝐶𝑄 and 𝐶𝑄𝑟and weak induced connectivity is inferred from the reactor to separator between 

species 𝐶𝑄 and 𝐶𝑄𝑟 due to changes in the feed flow rate.  
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Table 2.4 Latent and Induced connectivity 

 Latent connectivity  Induced connectivity 

    𝐹𝑉 𝑅𝑉 

Species Parameter  Estimate True  Parameter Estimate True Estimate True 

𝐶𝑃, 𝐶𝑃𝑟 |𝑎31 𝑎33⁄ | 1.05 1.00  |𝑏31 𝑏33⁄ | 1.27 1.00 0.92 1.00 

𝐶𝑄 , 𝐶𝑄𝑟 |𝑎42 𝑎44⁄ | 0.97 1.00  |𝑏42 𝑏44⁄ | 0.86 1.00 1.24 1.00 

 Acid Gas Removal Unit 

The integrated gasification and combined cycle (IGCC) unit (Bhattacharyya et al., 2010) is 

evaluated. This system presents a good study for examining the dynamic causal model due to 

strong mass/heat interactions and high nonlinearities. The gasifier produces syngas, mainly 

hydrogen and carbon monoxide, which is sent to a series of water gas shift reactors (modeled as 

adiabatic plug flow reactors in series) with inter-stage cooling.  The shifted syngas is then sent to 

the acid gas removal unit where acid gases (CO2 and H2S) are absorbed from the dirty syngas 

leaving mainly hydrogen in the clean syngas. The cleaned syngas is then sent to the gas turbine for 

power production. The dynamic causal mode is implemented on the acid gas removal (AGR) unit. 

A detailed analysis of the process can be found in (Bhattacharyya et al., 2010).  

 

Figure 2.6 Process flow configuration of the acid gas removal unit (modified from 

(Bhattacharyya et al., 2010)) 



34 

 

The acid gas removal unit model used here is available in DYNSIM® (http://software.schneider-

electric.com/) and is divided into three sections, each section being run in a separate DYNSIM 

engine and each DYNSIM engine is run on a different processor enabling distributed computing.  

The development of the dynamic causal model for the AGR unit proceeds as follows: first, all the 

unit operations (excluding utilities) in the process flowsheet in each engine are identified. 

Secondly, pertinent variables used for the characterization of the system are identified. In the AGR 

unit, these include the vapor and liquid composition of the streams in terms of the major species 

of the system i.e. hydrogen (H2), carbon dioxide (CO2) and hydrogen sulfide (H2S) as well as 

temperature (T) of these streams. For each unit operation, flow rates of all incoming flow streams 

are designated as extrinsic inputs while other variables such as species concentration and 

temperatures are denoted as induced variables only if the streams corresponding to those variables 

emanate from another unit operation. It should however be noted that temperature is not considered 

as a candidate variable for induced connectivity between unit operations with a heat exchanger 

between them but rather as an extrinsic input. For illustration, Table 2.2 summarizes the 

classification of inputs as extrinsic and induced as well as their sources for all unit operations in 

the CO2 absorber flowsheet only. Due to the restriction imposed on the connectivity matrix by the 

physical configuration of the process setup, a number of priors are enforced into the scheme. This 

prevents the realization of physically implausible connectivity parameters. As an illustration, 

unconnected unit operations have all latent, induced and extrinsic connectivity elements set to 

zero. 

The model was run from steady state with perturbation in the incoming CO2-laden syngas flowrate 

and with 20% deviation from steady state. For this simulation, 1000 data points (between 𝑡 =  0 

and 𝑡 =  250 𝑠) were collected from the simulation and the output variables were scaled with 

respect to the maximum value (Appendix A.2). The normalized data were then used in the 

Bayesian framework as outlined in subsection 2.3.2. For simplicity, only a few results in Figs. 2.7 

and 2.8 will be shown to indicate how the estimated profiles compare with the raw data. 
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Table 2.5 Classification of inputs and state variables for unit operations in CO2 absorber 

flowsheet 

Tag Equipment Extrinsic input Induced input Source 

T1 CO2  absorber 

Semilean solvent 

flowrate 
Semilean solvent species concentration 

Low pressure flash 

drum(D4) 
Temperature  

Lean solvent 

flowrate 
Lean solvent species concentration 

Selexol 

stripper(T3) 
Temperature  

Hydrogen 

recovery flowrate 

Hydrogen recovery species concentration Hydrogen 

recovery knock 

out drum(D1) Temperature 

Vapor flowrate 

from H2S 

absorber 

H2S absorber top tray vapor species 

concentration H2S absorber(T2) 

Temperature 

D1 

Hydrogen 

recovery knock 

out drum 

Hydrogen 

flowrate from 

recovery drum 

Hydrogen recovery drum species 

concentration 

Hydrogen 

recovery 

drum(D2) 

D2 
Hydrogen 

recovery drum 

Liquid flowrate 

from CO2  
absorber 

CO2  absorber liquid phase species 

concentration CO2  
absorber(T1) Temperature 

D3 
MP CO2  flash 

drum 

Liquid flowrate 

from Hydrogen 

recovery drum  

Hydrogen recovery liquid phase species 

concentration 
Hydrogen 

recovery drum 

(D2) Temperature 

D4 
LP CO2  flash 

drum 

Liquid flowrate 

from MP CO2  
flash drum  

MP flash drum liquid phase species 

concentration MP CO2  flash 

drum (D3) Temperature 
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Figure 2.7 Normalized vapor phase concentration of CO2 in stripper (left), liquid phase 

concentration of H2S (right) in the CO2 absorber: true data (blue dash dot), estimates (solid red), 

noisy signal (black) 

        

          

Figure 2.8  Normalized LP flash drum temperature (left) and H2S concentrator sump 

temperature (right). 

The algorithm presented in Section 2.3.4 is run on an Intel® Xeon® CPU E-5-1620 v2 with 32GB 

RAM which took 45 minutes. The obtained induced connectivity results are summarized in Table 

2.6, latent connectity is shown in Table A.1.  As in the case of the Van De Vusse reactor, a 

connectivity threshold of 휁 = 0.8 is considered. A few observations can be made in Table 2.6. 

With respect to the CO2 absorber (T1) row, strong connectivity is observed from H2 recovery 
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knock out drum to the CO2 absorber with respect to all variables except H2 in liquid phase and 

H2S. The weak connectivity due to H2S can be attributed to the absorption in the H2S absorber as 

most of the H2S in the incoming syngas stream (≥ 95%) is absorbed by the incoming solvent from 

the CO2 absorber. This is expected since the process is designed for deep removal of H2S 

(Bhattacharyya et al., 2010). The weak connectivity due to H2 in the liquid phase can be explained 

by noting that the H2 in the incoming vapor phase stream form the hydrogen recovery drum is fed 

towards the top of the tower thus having a lesser effect. However with respect to the low pressure 

flash vessel, strong connectivity is observed with the CO2  absorber , this is due to the fact that the 

operating conditions of the low pressure flash drum significantly affects CO2  capture in the 

absorber as discussed in (Bhattacharyya et al., 2010).   

Weak connectivity is observed from the H2S absorber to the CO2 absorber for H2S since most of 

the H2S gets captured in the H2S absorber. On the other hand, a strong connectivity is observed 

from the H2S absorber to the CO2 absorber for CO2 capture since most of the CO2 capture does 

take place in the CO2 absorber. On the other hand, strong connectivity from the CO2 absorber to 

the H2S absorber is observed as expected since the species concentration of the solvent leaving the 

CO2 absorber greatly affects that of the H2S absorber. The medium pressure (MP) flash drum (D3) 

is weakly connected to the H2 recovery drum while it is only strongly connected to the low pressure 

(LP) flash drum due to temperature. As flow progresses downstream from the CO2 absorber to the 

H2S stripper, a decrease in the connectivity due to CO2 is observed, which is expected since most 

of the CO2 is captured in the CO2 absorber and then stripped off from the solvent in the flash 

vessels in the flash vessels (D2-D4). For this test case, only a qualitative comparison could be 

made. Connectivity information obtained from the EM algorithm is found to be at par with the 

underlying thermodynamic and first-principles model. While this threshold 휁 is chosen based on 

heuristic, several runs were performed on the results by varying the connectivity threshold as 

shown in Fig. 2.4, as expected an increase in the threshold parameter results in a lower proportion 

of strongly connected variables. This will result in more islands or group of variables and a greater 

decomposition but could sacrifice the accuracy of representation. Conversely, a lower value of 휁 

would result in a reduced number of independent islands/groups. This would result in a more 

accurate depiction of the system but reduced gain for a divide and conquer based structural 

decomposition. 
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Table 2.6 Summary of induced connectivity table for the AGR unit* 

 

 FROM 

Variables 

CO2  

absorber 

(T1) 

H2 

recovery 

KO drum 

(D1) 

H2 

recovery 

drum (D2) 

MP 

flash 

(D3) 

LP 

flash 

(D4) 

H2S 

absorber 

(T2) 

H2S 

conc. 

(T4) 

T

O 

CO2  

Absorber 

(T1) 

CO2 
Vapor        

Liquid        

H2 Vapor        

Liquid        

H2S Vapor        

Liquid        

T         

H2 rec 

K.O 

drum(D1) 

CO2 Vapor        

H2 Vapor        

H2 

recovery  

drum 

(D2) 

CO2 
Vapor        

Liquid        

H2 
Vapor        

Liquid        

T         

MP flash 

(D3) 

CO2 
Vapor        

Liquid        

H2 Vapor        

Liquid        

T         

LP 

flash(D4) 

CO2 
Vapor        

Liquid        

H2 
Vapor        

Liquid        

T         

H2S 

Absorber 

(T2) 

CO2 
Vapor        

Liquid        

H2 
Vapor        

Liquid        

H2S Vapor        

Liquid        

T         

H2S 

concentrat

or (T4) 

CO2 Vapor        

Liquid        

H2 
Vapor        

Liquid        

H2S 
Vapor        

Liquid        

T         

*Green band denotes strong connectivity while grey band denotes weak connectivity. 
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Figure 2.9 Plot of fraction of strongly connected variables as threshold ζ increases 

 Conclusions  

It is observed that results from this deployment on the Van de Vusse reactor with separator shows 

that both strong and weak connectivity are correctly identified within specified tolerances. For the 

acid gas removal unit, the estimated profiles are in agreement with the true underlying data and 

the structural connectivity results are found to be qualitatively satisfactory. It should be noted that 

a different structural connectivity table can be obtained by varying the connectivity threshold 

parameter 휁. For a very low threshold parameter, it is expected that all units would be considered 

simultaneously making the large-scale problem computationally intractable. Since solving the 

decomposed problem might lead to a sub-optimal solution in comparison to when the entire system 

is solved simultaneously, a high threshold parameter may lead to larger deviation from the optimal 

solution. Thus the reduction in the computational expense versus the deviation from the optimal 

solution needs to be weighed. Nevertheless, the method proposed here can be useful where 

connectivity can be leveraged as a tool for the systematic division of the process into multiple 

islands making the system amenable to distributed computing and online deployment.  
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Chapter 3 

3 Development of Multi-agent Optimization Based Approach for 

Controlled Variable Selection 

3.1 Background 

The previous chapter outlines the algorithm for the division and decomposition of a process into 

sections/islands. In this chapter, the decomposition will be used as a means to subdivide the process 

and deploy biologically inspired controlled variable selection on each island in parallel and the 

results of different islanding/partitioning will be explored in terms of optimality. Control Structure 

Design has been studied in recent literature with focus on a holistic plant wide approach. This work 

explores the deployment of controlled variable algorithm for the selection of the optimal set of 

primary controlled variables on multiple sections of a process plant arising from structural 

decomposition algorithm.  This allows for speedy execution and prospects for faster/online 

controlled variable selection. Secondly, a metaheuristic based multiagent algorithm is examined 

as an alternative to traditional branch and bound algorithms for parallelization and improvement 

in computational speed. Both of these novelties are original works of the author and distinguish 

this work from (Jones et al., 2014). This platform is employed to solve the mixed integer multi 

objective optimization selecting controlled variables with promising economic and controllability 

performance. From each island/section, the results of the controlled variable selection algorithm 

are merged to form a selection for the whole process. These algorithms and methods are applied 

to an acid gas removal unit of an integrated gasification combined cycle.  

3.2 Introduction 

As explained, a combination of two approaches is proposed to reduce the computational time of 

the second stage optimization problem. The first approach seeks to reduce the size of the 

optimization problem by reducing the number of combinatorial problems that need to be evaluated. 

Both the first and second approaches help to reduce the computational time for solving the 

optimization problem. To proceed with the motivation behind the proposed methodologies, note 

that the CV selection problem has so far been solved holistically, i.e. the entire plant is evaluated 

together for CV selection. If the plant can be decomposed into multiple sections, it can result in 
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significant reduction in the number of possible combinations (a more formal proof is provided 

later) and the CV selection problem is then solved for each section separately. The decomposition 

is based on a novel algorithm that partitions the process plant into a number of sections based on 

the structural connectivity. It can be shown (a more formal proof is provided later) that for a 

completely unconnected system, the CV selection problem for the original problem collapses to 

the CV selection problem of the decomposed system. The decomposition provides computational 

advantage not only due to the reduced number of optimization problems to be solved, but also 

because the optimization problems can be solved in parallel on multiple processors without any 

communication overhead among the processors. In the second approach, a multiagent platform is 

leveraged providing significant computational advantage over the traditionally used BB algorithm. 

The multiagent platform employs multiple heuristic algorithms facilitating use of homogeneous or 

heterogeneous agents as needed (Gebreslassie  and Diwekar, 2015, Gebreslassie and Diwekar, 

2018). The algorithm can also select the optimal agent at any stage of iteration providing further 

computational advantage.  

3.3 Approach  

 A Priori Analysis 

To begin, an objective function 𝐽 ̅must be determined based on the operational objective of the 

process. The objective function is typically a cost function, profit function, or a measure of plant 

efficiency that is desired to be optimized. Next, constraints (mainly operational and regulatory), 

manipulated variables (degrees of freedom) and disturbances are identified. An optimization is 

performed with respect to the identified degrees of freedom and due consideration of the 

constraints. These optimizations are undertaken under nominal conditions as well as under various 

disturbance conditions. These optimization studies yield a number of important information. First, 

information about the optimal variation of the input and output variables is obtained. This 

information is used to construct scaling matrices for outputs and inputs, given by Eqs. (3.1) and 

(3.2), respectively. These scaling matrices are used for maximum singular value rule (Skogestad 

and Postlethwaite, 2007). 

 𝑆𝑦 = diag(max(|𝑐𝑛𝑜𝑚 − 𝑐𝑑|)) (3.1) 

 𝑆𝑢 = diag(max(|𝑢𝑛𝑜𝑚 − 𝑢𝑑|)) (3.2) 
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The superscript ‘nom’ and ‘d’ denote nominal and disturbance conditions, respectively, ‘c’ 

represents controlled variables and ‘u’ represents manipulated variables (MVs). These scaling 

matrices are used in the next stage where the optimization is formulated. 

Second, these optimization studies yield information about the active constraints. These constraints 

are active in all optimization studies while considering nominal and disturbance conditions. These 

active constraints must be selected as CVs. Suitable MVs are selected from the available list so 

that these CVs can be maintained within tight bounds. If there are additional MVs that can be used 

as degrees of freedom, then additional CVs are selected.   

For selecting the additional CVs, first, a list of remaining candidate controlled variables is 

generated. From this list, prescreening criteria are used to eliminate some of variables to eliminate 

infeasible CVs thus reducing the size of the combinatorial optimization in the next step. These 

prescreening criteria can be user dependent. Generally, it would be desired to eliminate variables 

that exhibit weak servo performance and/or are strongly affected by disturbances. Let 𝑁𝑦, 𝑁𝑢, 𝑁𝑑 

represent dimensions of measurements, manipulated variables and disturbances respectively. For 

applying these criteria, a linear process model is obtained from the process under nominal 

conditions as shown in Eq. (3.3) with 𝐺𝑦 ∈ ℝ𝑁𝑦×𝑁𝑢 as the process gain matrix and 𝐺𝑑
𝑦
∈ ℝ𝑁𝑦×𝑁𝑑 

as the disturbance gain matrix. These gain matrices are scaled such that all elements of inputs 𝑢, 

outputs 𝑦 and disturbances 𝑑 have a maximum magnitude of 1. The prescreening criteria are 

mathematically stated in Eqs. (3.4-3.6). If the inequality in Eq. (3.5) is not satisfied, no input can 

control output variable 𝑦𝑗 within the bounds. In addition, candidate controlled variables 𝑦𝑗 that 

have high dead time, represented by 𝑡𝑑(𝑢𝑖, 𝑦𝑗)-beyond a threshold 𝜒𝑗- with respect to the available 

manipulated variables 𝑢𝑖 can also be prescreened off by using Eq. (3.6).  The criterion 𝜒𝑗 is selected 

by ordering the time delays estimated in the transfer function model and this is empirically chosen. 

The pre-screening step can reduce the initial list of candidate controlled variables significantly 

thus decreasing the size of the combinatorial optimization in the following step.  

 𝑦 = 𝐺𝑦𝑢 + 𝐺𝑑
𝑦
𝑑 (3.3) 

 ‖(𝐺𝑦)𝑖‖∞ = 1 ∀ 𝑖  (3.4) 

 ‖(𝐺𝑦)𝑖‖∞ ≥ ‖(𝐺𝑑
𝑦
)
𝑖
‖
∞
 ∀ 𝑖  (3.5) 

 𝑡𝑑(𝑢𝑖 , 𝑦𝑗) ≤ 𝜒𝑗 (3.6) 
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 Formulation of Loss Objective Function (Local Linear Exact Method) 

This section presents the derivation of the worst case and the average case loss function which 

would be evaluated to determine the optimal subset of candidate variables ‘c’ to be chosen as 

controlled variables in the presence of changing disturbances ‘d’. Here 𝑑 ∈ ℝ𝑁𝑑  represents 

exogenous and uncontrolled inputs to the system. Given the scalar cost function denoted by 𝐽(̅from 

the first stage of the top down analysis). This scalar cost function is to be minimized by the 

available degrees of freedom at steady state denoted by �̅�. Thus the following minimization 

problem is presented 

 min
𝑢
𝐽(̅𝑥, �̅�, 𝑑) 

Subject to  

𝑔(𝑥, �̅�, 𝑑) ≤ 0 

ℎ(𝑥, �̅�, 𝑑) = 0 

(3.7) 

The variable x denotes the states of the system. The degrees of freedom of the overall system is 

denoted by �̅�. The constraints include the model equations for the system such as differential 

algebraic equations ℎ(𝑥, �̅�, 𝑑) = 0 and physical constraints g(𝑥, �̅�, 𝑑) ≤ 0. The solution of the 

optimization problem above results in the separation of active constraints where g(𝑥, 𝑢𝑎𝑐 , 𝑑) = 0 

and inactive constraints for which g(𝑥, 𝑢, 𝑑) < 0.  

It is assumed that the original degrees of freedom can be partitioned as follows, �̅� = {𝑢𝑎𝑐 , 𝑢} where 

𝑢𝑎𝑐 consists of the degrees of freedom used for the control of active constraints and 𝑢 represents 

the unconstrained degrees of freedom for the unconstrained portion of the optimization as shown 

in Eq. (3.8). As active constraints are of higher priority, selected manipulated variables are paired 

with these controlled variables.  

 min
𝑢
𝐽(𝑥, 𝑢, 𝑑) (3.8) 

It should be noted that the optimization of J is carried out with respect to unconstrained degrees of 

freedom as opposed to 𝐽.̅ As the degrees of freedom 𝑢 may be adjusted to meet the optimal cost 

function, measurements are made to estimate the disturbances and 𝑢 is freely adjusted such that 

the optimal value 𝑢 = 𝑢𝑜𝑝𝑡(𝑑) is implemented (as in EMPC). However this approach is nontrivial 

and requires both the updated value of the disturbances (which may be difficult to measure) as 
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well as the optimal value of u dependent on d. An alternative approach is to keep the controlled 

variables at constant set point as stated earlier. Given the measured variables 𝑦 ∈ ℝ𝑁𝑦, from this 

list, a subset 𝑐 is selected such that 𝑢 = 𝑢(𝑐, 𝑑) exists. Given the loss as shown below 

 𝐿(𝑐, 𝑑) = 𝐽(𝑐, 𝑑) − 𝐽𝑜𝑝𝑡(𝑑) (3.9) 

While 𝐽(𝑐, 𝑑) represents the value of the objective function while keeping variables 𝑐 controlled, 

𝐽𝑜𝑝𝑡(𝑑) represents the optimal value of 𝐽. To obtain an expression for the loss function, a local 

linear analysis is performed (Halvorsen et al., 2003). This is valid for small deviations from the 

nominal steady state point of operation (denoted by the * superscript). Performing a Taylor series 

expansion around the nominally operating point, the scalar objective cost function is expressed as: 

𝐽(𝑢, 𝑑) = 𝐽∗ + 𝐽 𝑢
∗ Δ𝑢 + 𝐽𝑑

∗Δd +
1

2
(Δ𝑢𝑇𝐽𝑢𝑢

∗ Δ𝑢 + Δ𝑑𝑇𝐽𝑑𝑑
∗ Δ𝑑 + Δ𝑑𝑇𝐽𝑢𝑑

∗ Δ𝑢) + ⋯ (3.10) 

Rewriting in vector form and replacing the deltas with deviation variables, one obtains: 

 
𝐽(𝑢, 𝑑) = 𝐽∗ + [𝐽𝑢

∗   𝐽𝑑
∗][𝑢 𝑑]𝑇 +

1

2
[
𝑢 
d
]
𝑇

[
𝐽𝑢𝑢
∗ 𝐽𝑢𝑑

∗

𝐽𝑢𝑑
∗ 𝐽𝑑𝑑

∗ ] [
𝑢 
d
] (3.11) 

At optimality: 𝐽𝑢
∗ = 𝐽𝑑

∗ = 0. Therefore the difference between the optimal cost function 𝐽∗ and the 

true value 𝐽(𝑢, 𝑑), denoted as loss 𝐿 is given as: 

 
𝐿(𝑑) = 𝐽(𝑢, 𝑑) − 𝐽∗ =

1

2
[
𝑢 
d
]
𝑇

[
𝐽𝑢𝑢
∗ 𝐽𝑢𝑑

∗

𝐽𝑢𝑑
∗ 𝐽𝑑𝑑

∗ ] [
𝑢 
d
] (3.12) 

For optimality of 𝐽, 𝑢 must be adjusted whenever disturbances change so that 𝑢𝑜𝑝𝑡 = 𝑢𝑜𝑝𝑡(𝑑). To 

arrive at a relationship between the optimal input and the moving disturbance. A local linear model 

is obtained as shown below in Eq. (3.13). The expression for 𝑢𝑜𝑝𝑡 can be obtained by expanding 

the first order derivative of the cost function with respect to 𝑢 around the nominally optimal point. 

 𝐽𝑢 = 𝐽𝑢
∗ + 𝐽𝑢𝑢

∗ 𝑢 + 𝐽𝑢𝑑
∗ 𝑑 (3.13) 

As the new point is also optimal, this implies 𝐽𝑢 = 𝐽𝑢
∗ = 0, therefore: 

 𝑢𝑜𝑝𝑡 = −𝐽𝑢𝑢
∗−1𝐽𝑢𝑑

∗  𝑑 (3.14) 

Given the model equation  𝑦 = 𝑓(𝑢, 𝑑), the linear form is given as: 

 𝑦 = 𝐺𝑦𝑢 + 𝐺𝑑
𝑦
𝑑 + 𝑛𝑦 (3.15) 
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Where 𝐺𝑦 = (𝜕𝑓 𝜕𝑢⁄ ) and 𝐺𝑑
𝑦
= (𝜕𝑓 𝜕𝑑⁄ ). Therefore 𝐺𝑦 represents the gain matrices of the full 

space of outputs 𝑦 with respect to the inputs 𝑢 and 𝐺𝑑
𝑦

 represents the gain matrices of the full space 

of outputs 𝑦 with respect to the disturbances 𝑑 i.e. 𝐺𝑦 ∈ ℝ𝑁𝑦×𝑁𝑢 , 𝐺𝑑
𝑦
∈ ℝ𝑁𝑦×𝑁𝑑. 𝑛𝑦 is the noise 

levels of the measured variables 𝑦. A subset of measured variables chosen as controlled variables 

c is expressed as: 

 𝑐 = 𝐻𝑦 (3.16) 

 𝑐 = 𝐺𝑢 + 𝐺𝑑𝑑 + 𝑛 (3.17) 

From Eqs. (3.15-3.17), it follows that 𝐺 = 𝐻𝐺𝑦, 𝐺𝑑 = 𝐻𝐺𝑑
𝑦

, 𝑛 = 𝐻𝑛𝑦. Where the matrix 𝐻 is the 

𝑛𝑐 × 𝑛𝑦 matrix mapping from ℝ𝑛𝑦 ⟼ℝ𝑛𝑐 with the condition that rank(𝐻𝐺𝑦) = 𝑁𝑢. For single 

measurements, 𝐻𝐻𝑇 = 𝐼𝑁𝑢. The set points of the optimal controlled variables is denoted by 

𝑐𝑠 (𝑐𝑠 = 0) while the actual measurements is denoted by 𝑐. Therefore:  

 𝑐𝑠 − 𝑐𝑜𝑝𝑡(𝑑) = (𝐺𝐽𝑢𝑢
∗−1𝐽𝑢𝑑

∗ − 𝐺𝑑)𝑑 + 𝑛 (3.18) 

This expression is the difference between the value of the controlled variables at the optimal point 

and the nominal operating point, therefore the associated change in manipulated variable that is 

the required driving force of the input to make this correction given in the set point error is given 

as  

 𝑢𝑜𝑝𝑡 = 𝐺
−1 ((𝐺𝐽𝑢𝑢

∗−1𝐽𝑢𝑑 − 𝐺𝑑)𝑑 + 𝑛) (3.19) 

Thus at every disturbance 𝑑, there exists a difference between the optimal input required to keep 

the controlled variables at their optimal set points and the actual input used to steer the controlled 

variables to the constant set point obtained for the nominal point. The loss function can be thus 

expressed as a function of this deviation as shown below: 

 𝐿 = 𝐽(𝑢(𝑑), 𝑑) − 𝐽(𝑢∗(𝑑), 𝑑) (3.20) 

Expanding this in form of Taylor series gives 

 
𝐿(𝑑) =

1

2
𝑢𝑇𝐽𝑢𝑢𝑢 (3.21) 

The deviation in input is obtained from (3.19) and substituted into (3.21), the following is obtained: 
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𝐿 =

1

2
𝑧𝑇𝑧 (3.22) 

where 

 z =  𝐽𝑢𝑢
1/2[(𝐽𝑢𝑢

−1𝐽𝑢𝑑 − 𝐺
−1𝐺𝑑)𝑑    𝐺

−1𝑛  ] (3.23) 

Scaling the random variables 𝑑 and 𝑛 with diagonal matrices so that the relative magnitudes of 

these variables are less than 1, the above expression can be rewritten as: 

 𝑧 =  𝐽𝑢𝑢
1/2[(𝐽𝑢𝑢

−1𝐽𝑢𝑑 − 𝐺
−1𝐺𝑑)W𝑑    𝐺

−1𝑊𝑛] [
𝑑
𝑛
] (3.24) 

3.3.2.1 Worst and Average Case Loss 

3.3.2.1.1 Worst Case Loss 

The worst case loss is obtained when the combined value of the disturbances and the measurement 

noise is 2-norm bounded, which implies the following 

 min
[
𝑑
𝑛
]≤1

𝐿 
(3.25) 

Defining the worst case loss (Halvorsen et al., 2003) gives: 

 𝜎(𝑀)2/2 (3.26) 

Where  

 𝑀 = [𝑀𝑑  𝑀𝑛] (3.27) 

 𝑀𝑑 = 𝐽𝑢𝑢
1/2(𝐽𝑢𝑢

−1𝐽𝑢𝑑 − 𝐺
−1𝐺𝑑)W𝑑 (3.28) 

 𝑀𝑛 = 𝐽𝑢𝑢
1/2(𝐺−1𝑊𝑛) (3.29) 

Where, as discussed earlier 

 𝐺 = 𝐻𝐺𝑦; 𝐺𝑑 = 𝐻𝐺𝑑
𝑦
;𝑊𝑛 = 𝐻𝑊𝑛

𝑦
 (3.30) 
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3.3.2.2 Average Case Loss 

The worst case loss as described above can be written as 

 max
𝑑∈𝒟

max
𝑛∈𝒩

(𝐽(𝑐, 𝑑) − 𝐽𝑜𝑝𝑡(𝑑)) (3.31) 

The worst case may however be an overestimation of the loss case and the average loss over the 

feasible domain of the disturbances and noise (Kariwala et al., 2008) can be rewritten as: 

 
𝐸(𝐿) =  

1

|𝒟|

1

|𝒩|
∫ ∫ (𝐽(𝑐, 𝑑) − 𝐽𝑜𝑝𝑡(𝑑))

𝒟

 
𝒩

 (3.32) 

Which gives: 

 
𝐸(𝐿) =

1

2
‖[𝑀𝑑  𝑀𝑛] [

𝑑
𝑛
]‖

2

2

 (3.33) 

Where 𝑀𝑑 and 𝑀𝑛 are as defined in Eq. (3.28) and Eq. (3.29) above. Given that the deviation of 

the disturbances belong to a space where the assumed linear model is valid, and that the 

measurement noise belongs to a set of allowable measurement noises i.e.  𝑑 ∈ 𝒟, 𝑛 ∈ 𝒩. The 

average loss can therefore be computed as: 

 
𝐸(𝐿) = 𝐸 [

1

2
[𝑡𝑟(𝑀�̃��̃�𝑇𝑀𝑇)]] (3.34) 

Where �̃� = [𝑑 𝑛]𝑇, from the above, one obtains: 

 
𝐸(𝐿) =

1

2
𝐸[𝑡𝑟(𝑀𝑇𝑀�̃��̃�𝑇)] (3.35) 

 
𝐸(𝐿) =

1

2
𝑀𝑇𝑀𝐸[�̃��̃�𝑇] (3.36) 

Now assuming 𝛼 is a uniform random variable such that 𝛼 = ‖�̃�‖
2
, 𝛼 ~ [0,1]. �̃� ∈ ℝ𝑁𝑢+𝑁𝑑 . 

 
(𝑁𝑢 + 𝑁𝑑)𝐸[�̃��̃�

𝑇] = ∫ 𝛼2 𝑑𝛼
1

0

=
1

3
 (3.37) 

Therefore substituting Eq. 3.37 for 𝐸[�̃��̃�𝑇] and Eqs. (3.27-3.29) for 𝑀,𝑀𝑑 , 𝑀𝑛 respectively in Eq. 

(3.36), the following is obtained: 
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𝐿 =

1

6(𝑁𝑢 + 𝑁𝑑)
‖𝐽𝑢𝑢

1/2(𝐽𝑢𝑢
−1𝐽𝑢𝑑 − 𝐺

−1𝐺𝑑)W𝑑   𝐽𝑢𝑢

1
2 𝐺−1𝑊𝑛‖

𝐹

2

 (3.38) 

Where the subscript (⋅)𝐹 denotes the Frobenius norm. The difference between this loss function 

and the average loss presented in (Kariwala et al., 2008) is the scaling factor 1/(𝑁𝑢 + 𝑁𝑑). The 

average loss function is a measure of the average of the singular values in the matrix hence the 

division of the Frobenius norm by the rank of the matrix since the number of singular values of 

any matrix is equivalent to the rank of the matrix. It is noteworthy that the only difference between 

the average case loss and the worst case loss is the type of norm applied, they are equivalent in 

every other respect. 

 Controllability 

Given the economic measure of the loss function derived above for both worst case loss and 

average case loss. It is also necessary to quantify the behavior and the optimality of chosen 

candidate controlled variables in terms of control performance (ease of control). The measure of 

controllability can be chosen as the inverse of the minimum singular value of the appropriately 

scaled gain matrix as defined in  (Skogestad and Postlethwaite, 2007).  This scaled gain matrix is 

given as 

 �̂� = 𝐷𝑒
−1𝐺𝐷𝑢 (3.39) 

Where the diagonal matrices 𝐷𝑒 and 𝐷𝑢 are give by the following expression: 

 𝐷𝑒 = diag(min(|𝑐 − 𝑐𝑛𝑜𝑚|, |𝑐𝑛𝑜𝑚 − 𝑐|)) (3.40) 

 𝐷𝑢 = diag(min(|𝑢 − 𝑢
𝑛𝑜𝑚|, |𝑢𝑛𝑜𝑚 − 𝑢|)) (3.41) 

The superscript ‘nom’ denotes nominal conditions. The singular value decomposition of a 

matrix  �̂� which is an 𝑁𝑦 ×𝑁𝑢 matrix is given by: 

 �̂� = 𝑈Σ𝑉𝑇   (3.42) 

With 𝑈 and 𝑉 are 𝑁𝑦 × 𝑁𝑢 and 𝑁𝑢 ×𝑁𝑢 orthogonal matrices. These matrices characterize �̂� such 

that the columns of 𝑈 span the column space of 𝐺 and the columns of 𝑉 span the row space of 

matrix �̂�. The diagonal matrix Σ is a𝑁𝑦 × 𝑁𝑢matrix of rank(min (𝑁𝑦, 𝑁𝑢)) = 𝑟 with entries 𝜎1 ≥

𝜎2 ≥ ⋯ ≥ 𝜎𝑟 ≥ 0. The right singular vectors 𝑣𝑗  which are the columns of V represent the principal 

components directions of 𝐺 and have the relationship:  
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 �̂�𝑣𝑗 = 𝜎𝑗𝑢𝑗  (3.43) 

Thus the diagonal entries represent the ‘gain’ of the system defined for the gain matrix �̂� in a 

multiple input multiple output (MIMO) sense. Therefore the controllability (ease of control) is 

defined as a measure of the worst direction of the system under control and taken as the inverse of 

the smallest singular value of �̂�. This is defined as  

 𝐽𝑐(𝑐) = 𝜎
−1(�̂�) (3.44) 

This represents the inverse of the worst input to output gain. Therefore controlled variables ‘c’ 

should be chosen so as to minimize the quantity 𝐽𝑐(𝑐). 

Other considerations of the controlled variable selection optimization includes the imposition of a 

user defined constraint which restricts the time delay  𝑡𝑑(𝑢𝑖 , 𝑦𝑗) between the manipulated variable 

𝑢𝑖 and candidate controlled variable 𝑦𝑗 to a certain maximum 𝜒𝑗. Additionally, one may impose a 

subset selection constraint such that only a fixed number of controlled variables may be selected 

from a subset denoted by columns of Π, where Π is a matrix of M logical vectos of size 𝑁𝑦 × 1, 

with 1s for  membership. Let 𝐹𝑖 denote the binary variable that candidate 𝑖 is picked from the 

subset and let 𝜉𝑚 denote the number of controlled variables that may be picked from subset 𝑄𝑚. It 

follows that  ∑ 𝐹𝑖𝑖∈Π𝑚 = 𝜉𝑚 ∀𝑚 ∈ 1, . . . , 𝑀. The argument that minimizes the combined loss is a 

logical vector 𝑃 denoting the candidate controlled variables chosen. Given the economic and the 

controllability function, the optimization problem is formulated as follows: 

 min
𝑃
{𝐿, 𝐽𝑐} 

Subject to 

𝐿 =
1

6(𝑁𝑢 + 𝑁𝑑)
‖𝐽𝑢𝑢

1/2(𝐽𝑢𝑢
−1𝐽𝑢𝑑 − 𝐺

−1𝐺𝑑)W𝑑   𝐽𝑢𝑢

1
2 𝐺−1𝑊𝑛‖

𝐹

2

 

𝐽𝑐(𝑐) = 𝜎
−1(�̂�) 

�̂� = 𝐷𝑒
−1𝐺𝐷𝑢 

∑ 𝐹𝑖
𝑖∈Π𝑚

= 𝜉𝑚 ∀𝑚 ∈ 1,… ,𝑀 

𝑡𝑑(𝑢𝑖 , 𝑦𝑗) ≤ 𝜒𝑗 

(3.45) 

The development of the multiagent optimization based approach for selection of multiple 

controlled variable sets is requires some modification as the optimization scheme only returns one 

global optimum, it is desired to reformulate the problem to find other optimal sets other than the 
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global in order of decreasing optimality. Thus the problem is reformulated as follows with the 

pseudocode below: 

Pseudocode for generation of unique solutions in multiagent optimization. 

 Initialize the agents 

 Initialize an zero matrix V of size N×P where N is the size 

of the decision variables and P is the number of solutions 

desired 

 For 𝑖 =  1 →  𝑃 

 Run the optimization with the cost function 

 Obtain solution  𝐱i = {𝑥1, 𝑥2, … 𝑥𝑁}
𝑇 

 For 𝑗 = 1 →  𝑖 − 1 

 Define 𝑔𝑗(x) = 휀 − (𝐱i
𝑇𝐱i − 𝐱j

𝑇𝐱j)
𝟐
 

In the above pseudocode, the variable 휀 satisfies 0 < 휀 ≤ 1. 

 Posteriori Analysis 

In addition to the prescreening in the apriori stage and the subsequent economic evaluation of the 

alternative controlled variable sets, it is pertinent to examine them at off design conditions to screen 

off candidate sets that perform poorly at off design conditions. 

3.4 Decomposition of Process Architecture 

The combinatorial optimization problem in Eq. (3.45) is very expensive especially when there are 

large number of candidate controlled variables.  If the process plant can be decomposed, then the 

CV selection problem can be solved independently for each section.  

Proposition: 

The combinatorics of selecting CVs under a decomposed scheme is less than the combinatorics of 

the original problem 
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Proof: 

Let the number of candidate CVs in the original problem be denoted by 𝑁𝑦 and the number of 

degrees of freedom be denoted by 𝑁𝑢. Let us further assume the decomposed problem has 2 

partitions with candidate CVs of cardinality 𝑁𝑦1, 𝑁𝑦2 with 𝑁𝑦1 + 𝑁𝑦2 = 𝑁𝑦. Let (
𝑁𝑦
𝑗
) denote the 

number of ways of choosing j from 𝑁𝑦, It can easily be seen that 

 

(
𝑁𝑦
𝑁𝑢
) =  ∑(

𝑁𝑦1
𝑗
) ⋅ (

𝑁𝑦2
𝑁𝑢 − 𝑗

)

𝑁𝑢

𝑗=0

=  [ ∑ (
𝑁𝑦1
𝑗
) ⋅ (

𝑁𝑦2
𝑁𝑢 − 𝑗

)

𝑁𝑢−1

𝑗=1

  ] + (
𝑁𝑦1
𝑁𝑢
) + (

𝑁𝑦2
𝑁𝑢
) (3.46) 

Where the term in the square brackets denote the combinatorics of selection under the decomposed 

scheme thus it can be seen trivially that decomposition would reduce the combinatorial explosion 

of CV selection hence computational time. This can be easily extended to 𝑚 decompositions as in 

Eq. (3.47). Let  𝑘𝑖 unordered items be selected from 𝑁𝑦𝑖 in partition 𝑖 with ∑ 𝑘𝑖𝑖 = 𝑁𝑢. Again the 

combinatorics under the decomposed scheme is in square brackets while the last term on the right 

denotes the decrease in combinatorics as compared with the overall system. 

(
𝑁𝑦
𝑁𝑢
) = ∑ …

𝑁𝑢

𝑘1=0

∑ ∏(
𝑁𝑦𝑖
𝑘𝑖
)

𝑚

𝑖=1

𝑁𝑢

𝑘𝑚=0

=

[
 
 
 
 

∑ (∏(
𝑁𝑦𝑖
𝑘𝑖
)

𝑚

𝑖=1

)

𝑁𝑢−1

𝑘𝑖=1

∀𝑖∈{1,…,𝑚}ℎ ]
 
 
 
 

+ ∑ (∏(
𝑁𝑦𝑖
𝑘𝑖
)

𝑚

𝑖=1

)
 ∃𝑖∈{1,…,𝑚}
𝑘𝑖∈{0,𝑁𝑢}

 (3.47) 

∎  

The method of process decomposition into different sections proceeds from Chapter 2. A second 

order nonlinear model (Eq. 2.3) is used to approximate the process data from the plant. The 

parameters of this model have been shown to translate to three types of connectivity amongst 

process subunits, namely: latent (A, H), induced (B) and extrinsic(C). Here, focus is in the 

connectivity relationships modulated by inputs (i.e. B). To begin estimation, prior assumptions are 

made on the parameters. From Bayes law, posterior densities are estimated based on likelihood 

densities and defined priors. Extra parameters known as hyperparameters are used to parameterize 

the covariance of the parameters. An expectation maximization algorithm is used to iteratively 

estimate the set of parameters {𝐴, 𝐵, 𝐶, 𝐻} of the model.  From these estimates, connectivity 

information is drawn and classified as weak or strong depending on a user defined threshold 휁 as 

shown in Eq. (3.48), where 𝐵𝑖𝑘
𝑗

 is the bilinear parameter between variables/units 𝑖 and 𝑘 modulated 

by input 𝑢𝑗 . If the connectivity between all variables of any two variables/units exceed the 
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threshold, then they are considered together as a section. For the purpose of decomposing into 

sections, different cases will be considered for examination, ranging from the full consideration of 

the process as one indivisible unit for the purpose of CV selection to the consideration of each unit 

operation to be disparate from one another. Each of this different cases would be considered for 

CV selection in terms of optimality, runtime and feasibility. Following selection criteria were 

applied: 

 
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑘 → 𝑖) ≜ {strong if 𝐵𝑖𝑘

𝑗
𝐵𝑖𝑖
𝑗
≥ 휁 ⁄

weak  otherwise
 

(3.48) 

Given a set of islands denoted by 𝑘 = 1,2, … , 𝐾 , the selection matrices for each island 𝑘 is denoted 

by 𝐻𝑦,𝑘, 𝐻𝑢,𝑘, 𝐻𝑑,𝑘 for the candidate controlled variables, the manipulated variables and the 

disturbances respectively. The following are easily derived: 𝐽𝑢𝑢
𝑘 = 𝐻𝑢,𝑘𝐽𝑢𝑢𝐻𝑢,𝑘

𝑇 , 𝐽𝑢𝑑
𝑘 =

𝐻𝑢,𝑘𝐽𝑢𝑑𝐻𝑑,𝑘
𝑇 , 𝐺𝑘 = 𝐻𝑦,𝑘𝐺 , 𝐺𝑑

𝑘 = 𝐻𝑦,𝑘𝐺𝑑𝐻𝑑,𝑘
𝑇 , 𝑊𝑛

𝑘 = 𝐻𝑦,𝑘𝑊𝑛𝐻𝑦,𝑘
𝑇 , 𝑊𝑑

𝑘 = 𝐻𝑦,𝑘𝑊𝑑𝐻𝑑,𝑘
𝑇 .  Thus for 

each island 𝑃𝑘representes the logical vector denoting the candidate variables chosen from island 𝑘. 

The optimization in Eq. (3.45) becomes 

for 𝑘 =   1,2, …𝐾  

min
𝑃𝑘
{𝐿𝑘, 𝐽𝑐

𝑘} 

Subject to 

𝐿 =
1

6(𝑁𝑢
𝑘 + 𝑁𝑑

𝑘)
‖(𝐽𝑢𝑢

𝑘 )1/2(𝐺𝑘)−1[(𝐺𝑘(𝐽𝑢𝑢
𝑘 )−1𝐽𝑢𝑑

𝑘 − 𝐺𝑑
𝑘)W𝑑

k  𝑊𝑛
𝑘]‖

𝐹

2
 

𝐽𝑐
𝑘(𝑐) = 𝜎−1(�̂�𝑘) 

∑ 𝐹𝑖
𝑖∈Π𝑚

𝑘
= 𝜉𝑚

𝑘  ∀ 𝑚 ∈ 1,… ,𝑀𝑘 

𝑡𝑑(𝑢𝑖 , 𝑦𝑗) ≤ 𝜒𝑗 

(3.49) 

end 

 

Proposition:  

For a completely unconnected system, the CV selection problem for the original problem collapses 

to the CV selection problem of the decomposed system 
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Proof 

First, let a process be given such that it can be partitioned into two sections as follows: 

𝑦 = {𝑦1, 𝑦2}, 𝑢 = {𝑢1, 𝑢2}, 𝑑 = {𝑑1, 𝑑2} such that 𝑦1 ∈  ℝ
𝑁𝑦1 , 𝑦2 ∈  ℝ

𝑁𝑦2, 𝑢1 ∈  ℝ
𝑁𝑢1 , 𝑢2 ∈

 ℝ𝑁𝑢2, 𝑑1 ∈ ℝ
𝑁𝑑1 , 𝑑2 ∈ ℝ

𝑁𝑑2. Additionally, assume 𝑢1, 𝑦1, 𝑑1 have no interaction with 𝑢2, 𝑦2, 𝑑2. 

Therefore the following can be written.   

𝐺 = [
𝐺1 0
0 𝐺2

] , 𝐺𝑑 = [
𝐺𝑑1 0
0 𝐺𝑑2

] , 𝐽𝑢𝑢 = [
𝐽𝑢𝑢,1 0

0 𝐽𝑢𝑢,2
] , 𝐽𝑢𝑑 = [

𝐽𝑢𝑑,1 0

0 𝐽𝑢𝑑,2
] 

Ignoring the scaling factor, the loss function for the whole system can be written as 

𝐿 =  ‖𝐽𝑢𝑢
1/2(𝐽𝑢𝑢

−1𝐽𝑢𝑑 − 𝐺
−1𝐺𝑑)W𝑑   𝐽𝑢𝑢

1
2 𝐺−1𝑊𝑛‖

𝐹

2

 

 

(3.50) 

= ‖[
𝐽𝑢𝑢,1

1
2 0

0 𝐽𝑢𝑢,2

1
2

] [
𝐺1
−1 0

0 𝐺2
−1] ([

𝐺1 0
0 𝐺2

] [
𝐽𝑢𝑢,1
−1 0

0 𝐽𝑢𝑢,2
−1 ] [

𝐽𝑢𝑑,1 0

0 𝐽𝑢𝑑,2
]

− [
𝐺𝑑1 0
0 𝐺𝑑2

]) [
𝑊𝑑1 0
0 𝑊𝑑2

]  [
𝑊𝑛1 0
0 𝑊𝑛2

]‖

𝐹

2

 

(3.51) 

= ‖[
𝐽𝑢𝑢,1

1
2 𝐺1

−1 0

0 𝐽𝑢𝑢,2

1
2 𝐺2

−1

] ([
(𝐺1𝐽𝑢𝑢,1

−1 𝐽𝑢𝑑,1 − 𝐺𝑑1)𝑊𝑑1 0 𝑊𝑛1 0

0 (𝐺2𝐽𝑢𝑢,2
−1 𝐽𝑢𝑑,2 − 𝐺𝑑2)𝑊𝑑2 0 𝑊𝑛2

])  ‖

𝐹

2

 (3.52) 

= ‖[
𝐽𝑢𝑢,1

1
2 𝐺1

−1(𝐺1𝐽𝑢𝑢,1
−1 𝐽𝑢𝑑,1 − 𝐺𝑑1)𝑊𝑑1 0 𝐽𝑢𝑢,1

1
2 𝐺1

−1𝑊𝑛1 0

0 𝐽𝑢𝑢,2

1
2 𝐺2

−1(𝐺2𝐽𝑢𝑢,2
−1 𝐽𝑢𝑑,2 − 𝐺𝑑2)𝑊𝑑2 0 𝐽𝑢𝑢,2

1
2 𝐺2

−1𝑊𝑛2

]‖

𝐹

2

 

 

(3.53) 

= ‖[
𝐽𝑢𝑢,1

1
2 𝐺1

−1(𝐺1𝐽𝑢𝑢,1
−1 𝐽𝑢𝑑,1 − 𝐺𝑑1)𝑊𝑑1 𝐽𝑢𝑢,1

1
2 𝐺1

−1𝑊𝑛1 0 0

0 0 𝐽𝑢𝑢,2

1
2 𝐺2

−1(𝐺2𝐽𝑢𝑢,2
−1 𝐽𝑢𝑑,2 − 𝐺𝑑2)𝑊𝑑2 𝐽𝑢𝑢,2

1
2 𝐺2

−1𝑊𝑛2

]‖

𝐹

2

 

 

(3.54) 

= ‖[𝐽𝑢𝑢,1

1
2 𝐺1

−1(𝐺1𝐽𝑢𝑢,1
−1 𝐽𝑢𝑑,1 − 𝐺𝑑1)𝑊𝑑1 𝐽𝑢𝑢,1

1
2 𝐺1

−1𝑊𝑛1
]‖
𝐹

2

+ ‖[𝐽𝑢𝑢,2

1
2 𝐺2

−1(𝐺2𝐽𝑢𝑢,2
−1 𝐽𝑢𝑑,2 − 𝐺𝑑2)𝑊𝑑2 𝐽𝑢𝑢,2

1
2 𝐺2

−1𝑊𝑛2
]‖
𝐹

2

 

 
(3.55) 

 𝐿 = 𝐿1 + 𝐿2 
(3.56) 

This can be extended to any number of partitions by mathematical induction of the first kind hence 

the proof. 
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3.5 Optimization Scheme 

 Multiagent Optimization 

Large scale combinatorial optimization problems such as posed in Eq. (3.45, 3.49) by nature do 

not possess convexity and/or have discontinuous search space therefore traditional methods of 

optimization fail considerably (Gebreslassie and Diwekar, 2016). Additionally, the exhaustive 

nature of the branch and bound renders it unsuitable for large scale problems and/or online 

applications thus a metaheuristic approach is more suitable. 

The multiagent framework used in this work employs metaheuristic optimization strategies such 

as the Efficient ant colony algorithm (Dorigo, 1991), Simulated annealing (Kirkpatrick, 1984) and 

the genetic algorithm (Hayes-Roth, 1975). As these algorithms require careful design to guarantee 

global optimality due to their random initialization and random search procedures, the multiagent 

framework allows for the combination of these stochastic algorithms and procedures into one 

framework. This framework supports the cooperation search by a group of algorithmic agents 

which are connected through the frameworks predefined information sharing protocol. By using 

several agents, the strengths of each agent can be exploited. Similar to the coordination of the 

biological organism by the central nervous system, each of the islands would be coordinated by 

the MAOP for the purpose of solving Eq. (3.49). The results of each island would then be 

aggregated as the solution for the whole system.  

As shown in Fig 3.1, the Multiagent Optimization (MAOP) framework includes the following: 

representation of the problem to be solved (this involves definition of objective function and 

constraints), the global sharing memory environment, pool of algorithmic solvers (agents), 

scheduler that allocates resource and the execution of the algorithmic agents to solve the assigned 

task(s), processing and retrieval of final solutions. 

 

Figure 3.1 The general framework of the multiagent platform 
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The solution strategy for an optimization problem in this framework involves solution sharing. 

This is predicated on a specific communication protocol between each agent and the global sharing 

environment. Every agent is unique and consists of an algorithmic procedure and a communication 

protocol. Agents employ the information gained from the algorithm to update the global sharing 

memory with better solutions until convergence and/or termination of iterations. The 

heterogeneous multiagent framework promises faster runtime compared to branch and bound. Fig. 

3.2 shows a flowchart representation of a single agent.  

 
Figure 3.2  An agent in MAOP framework (Gebreslassie and Diwekar, 2016). 

The multiagent algorithm begins by initializing OPTIONS and PARAMETERS for the global 

algorithm. PARAMETERS include the number, type of agents and framework ID while OPTIONS 

includes the maximum number of iterations for the global algorithm (which calls the individual 

agents) MaxIter and the maximum number of consecutive iterations ConIter with no objective 

function improvement. This proceeds with initializing the global sharing memory environment 

(initial solutions from each algorithmic agent is used to obtain a solution archive). Then each agent 

is also initialized with its own specific parameters (e.g. Population size for Efficient Genetic 

Algorithm). Once the global algorithm proceeds, at every iteration, a call is made to each agent in 

a random manner and the solution from the previous agents which has been communicated to the 

global sharing environment and duly updated is provided as an initialization for the next agent. 

This is stored in the local memory of each agent being called. Each agent then makes its own call 

to solve the objective function posed in Eq. (3.49) for each section as partitioned. After processing 

all sections, the results are aggregated to form the indices of the CV selected including the value 
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of the loss function and the controllability. The agents updates global solution (CV indices and 

current value of the objective function. until a termination criteria (MaxIter or ConIter) is satisfied.  

3.6 Case study: Acid gas removal (AGR) Unit 

 Process Description 

This section entails the implementation of the proposed algorithm on an IGCC power plant case 

study based upon the model developed by (Bhattacharyya et al., 2011).  This process consists of 

more than 20 unit operations, 5 recycles and 16 degrees of freedom. Table 3.1 enumerates all 

candidate controlled variables for the acid gas removal unit. 

Table 3.1 List of all candidate primary controlled variables 

S/n Candidate controlled variable Number of variables 

1.  Lean solvent (Selexol ) flow rate 1 

2.  Liquid phase CO2 fraction in CO2 absorber 15 

3.  Liquid phase H2S fraction in CO2 absorber 15 

4.  Vapor phase CO2 fraction in CO2 absorber 15 

5.  Vapor phase H2S fraction in CO2 absorber 15 

6.  Temperature of stages in CO2 absorber 15 

7.  Semilean solvent flow rate 1 

8.  Liquid phase CO2 fraction in H2S absorber 23 

9.  Liquid phase H2S fraction in H2S absorber 23 

10.  Vapor phase CO2 fraction in H2S absorber 23 

11.  Vapor phase H2S fraction in H2S absorber 23 

12.  Temperature of stages in H2S absorber 23 

13.  H2 Recovery Vessel Pressure 1 

14.  Medium Pressure Vessel Pressure 1 

15.  H2 recovery H2 vapor fraction 1 

16.  H2 recovery CO2 vapor fraction 1 

17.  H2 recovery H2 liquid fraction 1 

18.  H2 recovery CO2 liquid fraction 1 

19.  H2 recovery temperature 1 

20.  Medium pressure H2 vapor fraction 1 

21.  Medium pressure CO2 vapor fraction 1 

22.  Medium pressure H2 liquid fraction 1 

23.  Medium pressure CO2 liquid fraction 1 

24.  Stripping syngas flow 1 

25.  Liquid phase CO2 fraction in H2S concentrator 5 

26.  Liquid phase H2S fraction in H2S concentrator 5 

27.  Vapor phase CO2 fraction in H2S concentrator 5 

28.  Vapor phase H2S fraction in H2S concentrator 5 

29.  Temperature of stages in H2S concentrator 5 
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 Decomposition of AGR Unit 

The acid gas removal unit is simulated in DYNSIM® (http://software.schneider-electric.com/). The 

model is simulated from steady state with a 20% deviation in CO2-laden syngas flowrate 

(278,732.281kgh-1 – 337,478.732kgh-1) and (278,732.281kgh-1 – 222,985.825kgh-1). 1000 data 

points in the interval of 0.25s are collected between time 𝑡 = 0 and 𝑡 = 250s. These output 

variables are collected in the DYNSIM interface and exported to MATLAB where they are 

normalized and preprocessed (section 2.4.3). The obtained data from the high fidelity nonlinear 

model is then approximated by a second order nonlinear model in Eq. (2.3) employed in the system 

identification scheme. In this scheme, the parameters are then estimated through a dual expectation 

maximization scheme with Bayesian inferencing. Bayesian inferencing suffices here due to the 

use of informative priors. These priors allow us impose values that would prevent unrealistic 

connectivity results e.g. unconnected units should have a connectivity of zero. Upon convergence 

of the identification scheme, the parameters are post processed according to Eq. (3.48) to identify 

the variables which are strongly connected and hence grouped together into sections 

Given the notation as shown for various units: 

1. CO2 absorber (𝑇1) 

2. H2S absorber (𝑇2)  

3. Selexol stripper (𝑇3) 

4. H2S concentrator (𝑇4) 

5. H2 recovery K.O drum (𝐷1) 

6. H2 recovery drum (𝐷2) 

7. Medium pressure flash drum (𝐷3) 

8. Low pressure flash drum (𝐷4) 

The hardware is decoupled into five different configurations (depending on the connectivity 

threshold 휁) as shown in Table 3.2. 

Table 3.2 Decomposition of the AGR unit into sections. 

s/n Connectivity threshold Decomposition groups Number of 

sections 

1.  휁 =  ∞   [𝑇1], [𝑇2], [𝑇3],[𝑇4], [𝐷1], [𝐷2 ], [𝐷3], [𝐷4] 8 

2.  휁 = 100  [𝑇1,𝑇2,𝑇3,𝐷4], [𝐷1], [𝐷2], [𝐷3], [𝑇4] 5 

3.  휁 = 10  [𝑇1,𝑇2,𝑇3,𝑇4,𝐷4], [𝐷1,𝐷2], [𝐷3] 3 

4.  휁 = 1  [𝑇1,𝑇2,𝑇3,𝑇4,𝐷1,𝐷2, 𝐷4], [𝐷3] 2 

5.  휁 = 0.1  [𝑇1,𝑇2,𝑇3,𝑇4,𝐷1,𝐷2, 𝐷3, 𝐷4] 1 

 

http://software.schneider-electric.com/
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 Identification of Candidate Sets of Controlled Variables  

3.6.3.1 Objective Function 

To implement the controlled variable selection, first, an operational objective function is defined. 

Similar to (Bankole et al., 2018a), this objective function takes into account the operational cost 

of the acid gas removal unit which includes cost of utilities, feeds, waste streams, products and 

energy generation. The utilities encompasses the following: ammonia refrigeration duties, 

compressor power, heating and cooling costs. Feeds to the unit include shifted syngas, exit tail gas 

sent to the Claus unit, and makeup solvent used to replenish lost solvent in the system. Waste 

streams considered includes carbon monoxide and hydrogen unrecovered by the separation unit 

thus constitute losses and/or inefficiency. The contribution of this is quantified by how much 

power can be obtained in the turbine if these constituted part of the recovered syngas.  Negative 

cost was attributed to energy recovered from the gas turbine from the clean syngas. All costs were 

determined and normalized by converting to an equivalent electrical cost. This is done by 

determining the electrical power required for pumping and the compressor power required to 

generate heat duty. The assumed cost of electricity is $0.0943/kWh. Make up solvent cost is 

obtained from (Bucklin and Schendel, 1984). Lastly, product losses such as hydrogen and carbon 

monoxide which are valuable are accounted for. The entire cost function is given below: 

𝐽 (
$

ℎ
) = 6.28(�̇�𝑚𝑎𝑘𝑒𝑢𝑝𝑠𝑜𝑙𝑣𝑒𝑛𝑡) + 0.00982(�̇�𝑠𝑡𝑒𝑎𝑚) + 17.9 ∑ �̇�𝑘

𝑁ℎ𝑒𝑎𝑡𝑒𝑟

𝑘

+ 13.7 ∑ �̇�𝑙

𝑁𝑟𝑒𝑓𝑖𝑔

𝑙

+ 0.836 ∑ �̇�𝑚

𝑁𝑤𝑎𝑡𝑒𝑟

𝑚

+ 94.3( ∑ �̇�𝑖

𝑁𝑐𝑜𝑚𝑝

𝑖

+ ∑ �̇�𝑗

𝑁𝑝𝑢𝑚𝑝

𝑗

) + 3.03(�̇�𝐻2 + �̇�𝐶𝑂) 

(3.57) 

Units of power (�̇�), heat duty (�̇�) and mass flow rate (�̇�) are given as MW, MW and kgh-1.  

Given that the set of active constraints are controlled with the pairings generated for the process 

as outlined in (Jones et al., 2014) it is sought to select additional degrees of freedom for control as 

the AGR process has five degrees of freedom left for use. Therefore the remaining degree of 

freedom which span the unconstrained space (as described in section 3.3.2) are to be implemented 

in controlling five additional controlled variables from 230 leading to (
230
5
) = 5.14 × 109 

alternative combinations. The corresponding hardware for the manipulated variables, both 

spanning the constrained and unconstrained space are given in Table 3.3.  



59 

 

Table 3.3 List of manipulated variables and hardware for the AGR unit. 

S/n Manipulated variable Hardware Active 

constraint/Inactive 

1.  LP flash vessel pressure LP CO2 compressor Active 

2.  MP flash vessel pressure MP CO2 compressor Inactive 

3.  H2 recovery vessel pressure H2 recovery compressor Inactive 

4.  Speed control H2 compressor pressure Active 

5.  Recovered acid gas 

temperature 

Cooling water flowrate to 

heat exchanger 

Active 

6.  Stripper reboiler duty Steam flow rate to reboiler Active 

7.  Stripping syngas flow rate Stripping syngas flow rate 

to H2S concentrator 

Inactive 

8.  H2S concentrator pressure Stripped gas compressor Active 

9.  Semi lean solvent flow rate Semilean flowrate control 

valve 

Inactive 

10.  H2 cooler duty Cooling water flowrate to 

heat exchanger 

Active 

11.  Lean solvent flow rate Control valve regulating 

solvent flow to CO2 

absorber 

Inactive 

 

The degree of freedom analysis is as follows: the H2 recovery flash pressure, the semi-lean solvent 

flow and the lean solvent flow are available for the CO2 absorber, while only the lean solvent flow 

is available for the H2S absorber, similarly, the Stripping syngas flow rate is available for control 

of the H2S concentrator. Finally the Medium pressure and the low pressure CO2 flash vessels have 

their respective flash pressure as degrees of freedom. This analysis is necessary for the subset 

selection constraint ∑ 𝐹𝑖𝑖∈Π𝑚
𝑘 = 𝜉𝑚

𝑘  ∀𝑚 ∈ 1,… ,𝑀𝐾 formulated in Eq. (3.49). The disturbances 

considered include upstream variation in syngas flow and composition from the gasification 

section. For CV selection of the AGR process, only five unit operations have degrees of freedom 

for control namely 𝑇1, 𝑇2, 𝑇4, 𝐷2, 𝐷3.hence the decomposition in Table 3.4. 

Table 3.4 Decomposition of the AGR unit into sections for CV selection. 

s/n Connectivity threshold Decomposition groups Number of 

sections 

1.  휁 =  ∞   [𝑇1], [𝑇2], [𝑇4], [𝐷2 ], [𝐷3] 5 

2.  휁 = 100  [𝑇1, 𝑇2], [𝐷2], [𝐷3], [𝑇4] 4 

3.  휁 = 10  [𝑇1, 𝑇2, 𝑇4], [𝐷2], [𝐷3] 3 

4.  휁 = 1  [𝑇1,𝑇2, 𝑇4, 𝐷2], [𝐷3] 2 

5.  휁 = 0.1  [𝑇1,𝑇2, 𝑇4, 𝐷2, 𝐷3] 1 
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3.6.3.2 Selection of Pareto sets with Multiagent Optimization 

The optimization as defined in Eq. (3.49) was implemented on an Intel® Xeon® CPU E-5-1620 v2 

with 32GB RAM using the heterogeneous multiagent framework with three agents: efficient ant 

colony optimization, simulated annealing and genetic algorithm. Secondly for comparison, the 

optimization is solved using a stand-alone branch and bound and parallelized branch and bound as 

described in (Jones et al., 2014). The parallelized branch and bound is deployed on a MATLAB® 

distributed computing platform with 54 workers. The heterogeneous multiagent optimization 

framework is programmed in MATLAB.  A framework ID is allocated to the MAOP solver which 

indicates which agents are to be utilized in the solution. Each agent is initialized with local 

parameter settings and are only accessed by the agents. Contrarily, global parameters are accessed 

by all the agents in the memory sharing environment. The termination criteria for the framework 

is the maximum global iteration Maxiter and/or the global tolerance Eps which is the minimum 

allowable difference between any two consecutive solutions within a fixed number of consecutive 

iterations denoted as ConIter. The termination criteria for the local agents follow a similar 

approach. The parameters for the agents are given in Table 3.4. For simulated annealing, the 

objective cost (referred to as system energy) is minimized by accepting solutions from random 

perturbations of previous solution states (mimicking particle motion in annealing). If the new 

objective function is lower, then the new state is accepted otherwise it is accepted according to a 

probability function similar to the Boltzmann distribution function. Initially, probability of 

accepting new solutions (whether worse or better) is initially high (i.e. at the initial temperature) 

and consequently drops so that only solutions that minimize the objective function are accepted. 

This is controlled by the ‘quenching factor’. This continues until the iteration proceeds to reach 

maximum iteration (stop temperature). Extensive details of this algorithm is provided in (Kim and 

Diwekar, 2002).  

For the ant colony optimization, each random move from one a state to the next is denoted by an 

‘edge’ and at each iteration, the solution archive which consists of the best solutions is populated. 

Each edge has a pheromone level attached to it which depends on the quality of solution. Again, 

similar to the simulated annealing, the pheromone evaporation factor controls the quality of 

solutions that are accepted as iterations proceed.  Extensive details can be found in (Gebreslassie 

and Diwekar, 2015) 
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Finally, the efficient genetic algorithm works by mutation of solutions. At each iteration, a fraction 

of the best solutions are selected for mutation to improve the objective function. Better solutions 

are retained and used for crossover and mutation while poorer solutions are discarded. All the 

agents are cast into the multiagent framework with parameters as described in Table 3.5. The 

results of the execution time compared with parallelized branch and bound2 and conventional 

branch and bound are as given in Fig 3.3. Only the cases which correspond to 1,2 and 3 islands are 

shown are the rest are trivially fast in comparison.  

Table 3.5 Parameters for the agents 

Simulated 

Annealing 

Agent 

Initial 

temperature 

Quenching 

factor 

Maximum 

success 

MaxIter Maximum 

consecutive 

rejection 

Stop 

temperature 

1 0.9 20 200 30 1e-6 
       

Genetic 

Algorithm 

Population Mutation 

rate 

Selection MaxIter ConIter Eps 

100 0.0075 0.55 1000 20 1e-5 
       

Efficient 

ant colony 

Number of 

ants 

Pheromone 

evaporation 

Solution 

Archive 

MaxIter ConIter Eps 

10 0.7 50 2000 10 1e-5 

 

 

                                                 
2 Comparison is performed with Jones et al 2014 as the algorithm developed there is formulated with selection 

constraints and handles controllability. 
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Figure 3.3 Running time for BB (branch and bound), PBB (Parallelized branch and bound) and 

MAOP (Multiagent optimization) for the cases of 1, 2 and 3 islands respectively. 

 

The results of the MAOP differs from island to island and as expected, with more decomposition 

(i.e. more islands) comes an increased in execution speed but reduced accuracy of the best set of 

controlled variables. For the case with only one island i.e. considering the process as a whole, The 

MAOP offers approximately 90% reduction in execution time in comparison to the standalone 

branch and bounds and 70% reduction in comparison to parallelized branch and bound. This gains 

could be higher if the MAOP is parallelized as well. In this work, the agents are run sequentially. 

For brevity, Table 3.5 shows the best three global optimum set of controlled variable set for each 

decomposition (from all agents). In the first row, 5 distinct islands are considered which 

corresponds to a connectivity threshold of 휁 = ∞ as in Table 3.2. Similar correspondence between 

the connectivity threshold for other rows in Table 3.5 and Table 3.2 holds. The first entry with 5 

islands indicates controlled variable selection was carried out for each unit operation separately 

and merged while the last entry considers the whole process as a unit aggregate and corresponds 

to traditional controlled variable selection. 
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Table 3.6 Results of controlled variable selection using average loss economic and 

controllability objective function for different no of islands3. 

Islands Decomposition groups Global optimum set of 

CVs 

Average 

Loss 

($ℎ−1 ) 

Controllability 

𝜎−1 

5.   [CO2 absorber] 

 [ H2 recovery drum]  

 [ MP flash drum] 

 [ H2S absorber] 

 [ H2S concentrator] 

3   11   16   22   33 

6   9     17   26 32 

4   10   20   23 30 

78.215 62.63 

79263.6 10.83 

179073.5 10.72 

4.   [CO2 absorber; H2S 

absorber] 

 [H2 recovery drum]  

 [ MP flash drum] 

 [ H2S concentrator] 

1   13   21   24   27 

5   7     16   22   33 

5   13   18   25   29 

30.09 9.93 

350.8 1.49 

5520 5.41 

3.   [CO2 absorber, H2S 

absorber,  H2S 

concentrator]  

 [H2 recovery drum] 

 [ MP flash drum] 

5   8     16   22 31 

5   14   18   25 31 

1   14   21   24   31 

30.195 1.00 

205.392 1.03 

24853.3 4.17 

2.   [CO2 absorber, H2S 

absorber, H2 recovery 

drum,  H2S concentrator]  

 [ MP flash drum] 

5   15 21   24  28 

1   15 21   25  28 

2   12 21   22   34 

3.78 0.378 

30.179 1.02 

291.42 0.32 

1.   [CO2 absorber, H2 

recovery drum, H2S 

absorber , H2S 

concentrator, MP flash 

drum] 

2   12   19   26   34 

1   11   19   26   34 

5   11   19   26   34 

1.488 0.03 

1.723 0.378 

1.745 1.00 

 

Figs. 3.4-3.5 shows the best economic loss and controllability obtained as a function of the number 

of islands in the decomposition for both the average case and the worst case scenario. 

 

                                                 
3 CV corresponding to Indices are detailed in Table 3.7 
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Figure 3.4 Economic loss - Average case (left) and Worst case (right) versus number of sections 

considered. 

 

Figure 3.5 Controllability versus number of sections considered 

Firstly it can be observed that both the average and worst case economic loss potentially increase 

as the number of sections employed increases. This is due to the loss in information between the 

different sections which occurs as a result of decomposition and separation. Alternatively, the 

decomposition can be viewed as enforcing an assumption of non-interaction between the 

considered sections. Therefore this translates to a concomitant increase in the economic loss 

derived due to the decomposition. It can be observed from Fig. 3.4 that the case where the process 

is decomposed into two (2) sections, the optimal value of the loss function is close to the loss 

function of the case without any decomposition (i.e. the case denoted by no. of sections as 1). 



65 

 

Furthermore, it is observed that the CV sets that perform best for the average case loss equally 

perform best for the worst case loss thus the controllability plots for both cases are one and same 

and is plotted in Fig. 3.5. With respect to the sections, the controllability measure similarly 

decreases implying ease of control with less sections. It can be seen that the controllability measure 

increases by several orders of magnitude from the case of one section (𝜎−1 = 0.0005) where the 

process is considered as a whole to the extreme case where all unit operations are considered as 

separate sections (𝜎−1 = 1). It is observed that the loss of controllability is minimal until when 

the no of sections is between 2 or 3. Considering the tradeoffs, partitioning of the acid gas removal 

unit into two sections appears very attractive since the loss in the economic objective (worst case: 

43.62$h-1
, average case: 3.78$h-1) and controllability is minimal, while resulting in about 40% 

improvement in computational time on average for all three methods (BB, PBB, MAOP). The 

results of using two sections are given in Table 3.6 and corresponds to the following sets of CVs 

[Stage 15 liquid phase H2S concentration in CO2 absorber, Stage 2 Temperature in H2S absorber, 

H2 recovery flash pressure vapor H2 fraction, Medium pressure flash liquid H2 fraction, Stage 4 

liquid phase H2S concentration in H2S concentrator] 
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Table 3.7 Indices of candidate controlled variables 

Index Controlled variable* 

1.  (xCO2)04    CO2 absorber 

2.  (xH2S)07     CO2 absorber 

3.  (xH2S)13     CO2 absorber 

4.  (xH2S)14     CO2 absorber 

5.  (xH2S)15     CO2 absorber 

6.  T14               CO2 absorber 

7.  (xCO2)04      H2S absorber 

8.  (xCO2)23      H2S absorber 

9.  (xH2S)09      H2S absorber 

10.  (xH2S)19      H2S absorber 

11.  (yCO2)01        H2S absorber 

12.  (yCO2)19        H2S absorber 

13.  (yH2S)20        H2S absorber 

14.  T01                  H2S absorber 

15.  T02                 H2S absorber 

16.  H2 recovery flash pressure 
17.  H2 recovery flash Temperature 
18.  H2 recovery flash liquid CO2 fraction 
19.  H2 recovery flash liquid H2 fraction 
20.  H2 recovery flash vapor CO2 fraction 
21.  H2 recovery flash vapor H2 fraction 
22.  Medium pressure flash pressure 

23.  Medium pressure flash liquid CO2 fraction 

24.  Medium pressure flash liquid H2 fraction 

25.  Medium pressure flash vapor CO2 fraction 

26.  Medium pressure flash vapor H2 fraction 

27.  (xCO2)02      H2S concentrator 

28.  (xH2S)04      H2S concentrator 

29.  (xH2S)05      H2S concentrator 

30.  (yCO2)05    H2S concentrator 

31.  (yH2S)03     H2S concentrator 

32.  (yH2S)05     H2S concentrator 

33.  T02                  H2S concentrator 

34.  T03                 H2S concentrator 

*denotes stage number 
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3.6.3.3 Posteriori Analysis 

Upon the generation of the Pareto optimal set of candidate CVs for each decomposition case, it 

remains expedient to examine the performance of the controlled variables at off design conditions. 

This was carried out (Jones et al., 2014) by using an equation solver within Aspen Plus which 

allows for the evaluation of the loss at fixed values of the disturbances. Here, a similar mechanism 

is utilized however the process data is collected from a dynamic simulator (DYNSIM) (Zitney et 

al., 2012) at other values of the DVs other than their nominal values at which the linearization was 

performed. This study shows the sensitivity of the average and/or worst case loss function with 

respect to sectioning the process. The disturbances considered include variation of syngas flow 

rate from the gasification section to the acid gas removal unit at 80, 90, 110, and 120% of nominal 

values at steady state. This disturbances have been simulated under the assumption that the active 

constraints do not change.  

Fig. 3.6a shows the variation in the average economic loss at different off-design points (case for 

five sections not shown as average losses are about one order of magnitude higher for all values 

of disturbances examined), the increase in loss function as the number of sections increase is 

evident, which is aligned with the results of Fig 3.4. It is clear that the nominal case presents the 

lowest loss irrespective of the number of decompositions. The results clearly shows the high 

nonlinearity of the system being studied. It is observed that there is significant increase in the 

economic loss with increased no of sections when the plant throughput is increased to 110%. 

Interestingly, the case for 120% increase has a higher economic loss than the 110% case for the 

undecomposed plant case, but as the number of sections increase, the deviation in average loss 

becomes lower compared to the 110% case examined. Similar nonlinearity can be observed when 

the 80% throughput case is compared with the case with 90% throughput.   

Similar results can be seen in examining how the controllability changes at off design conditions 

as a function of the number of sections. However, it can be observed that the case with two sections 

still results in a reasonable compromise even while considering these off-design conditions.   
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Figure 3.6 Average Loss (left) and controllability (right) as a function of variation in input 

syngas flow rate to the H2S absorber 

        

3.7 Conclusion 

The main goal of this chapter was to design algorithmic methods to improve the execution speed 

of the controlled variable selection algorithm in literature. The methodology proposed in this 

chapter evidenced the performance improvement of multiagent optimization technique over 

traditional branch and bound on the speed of execution of the controlled variable selection for 

processes with numerous candidate controlled variable sets. In addition, rather than consider the 

process in a holistic manner for the purpose of controlled variable selection, connectivity strength 

amongst different variables in the process is employed to decompose a process into different 

islands based on a user defined threshold of connectivity strength. Strongly coupled variables and 

unit operations are considered to be in the same islands and vice versa. The controlled variable 

selection algorithm is then deployed on each island in parallel and the results from each island are 

merged together. This decomposition however incurs sub-optimality of the loss obtained. 

However, our results for the AGR unit shows that two island decomposition gives a fair 

compromise between speed and accuracy. Furthermore, the impact of the decomposition was 

examined on various cases when the process shifts from nominal conditions and the losses are 

found to increase as the process deviates from nominal conditions, however no clear correlation 

was found from the decomposition and islanding on the increment of the loss. 
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 Chapter 4 

4 Optimal Control Structure Design for Cyber-Physical Systems 

4.1 Background 

Hybrid gas turbine-fuel cell systems exhibit immense potential for unparalleled electrical power 

generation efficiency with clean emissions compared to fossil fueled power generation. As hybrid 

power systems form the prospect of advanced power generation now and in the near future, it 

becomes necessary to provide a methodical control structure design for the operation of such 

systems. Traditionally, process experience/heuristics have sufficed for this task. For a cyber 

physical system (CPS) however with virtual components retrofitted/rearranged, a systematic 

method becomes requisite. Using a comprehensive analytical first principles based model 

developed from data collected at the HyPer (Hybrid Performance) facility provided by US DOE 

at NETL facility, a complete control structure design is embarked upon in this chapter. This 

approach employs a multiobjective optimization function including economics and controllability 

(ease of control) of the process to determine the best possible controlled variables for feedback 

control under varying disturbances. The discussion entails a priori analysis and heuristic based 

methods for prescreening, the optimization framework for selection and finally a posteriori 

analysis of selected variables at off design conditions. The contributions and novelties of this 

chapter are published in (Bankole et al., 2018b, Bankole et al., 2018c). 

4.2 Introduction 

As an example of a cyber-physical system, a GT-SOFC hybrid system is evalauated here for 

optimal CV selection. This particular system offers immense potential for superior electrical power 

generation efficiency (Tucker et al., 2005). Fuel cell hybrid systems can be considered as part of 

the polygeneration systems where integration of multiple processes are considered for coproducing 

multiple products such as heat, power and chemicals. These systems enables system flexibility and 

efficient resource utilization. By feeding the fuel cell hybrid systems with the syngas from the 

coal-fed integrated gasification combined cycle power systems, advanced coal based power 

generation with higher efficiency and cleaner emission can be accmplished (Winkler et al., 2006). 
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Fuel cell hybrid systems are not only attractive for stationary applications, but also for mobile 

systems such as ships and aircrafts.  

Solid oxide fuel cells (SOFCs)(Adams et al., 2012) are small dimensional stationary, high-

temperature, low-noise power generation devices with immense potential to replace currently used 

combustion-based power generation systems. These fuel cells mainly consist of an  anode, a 

catdode, and  a solid oxide electrolyte snadwitched inbetween. While fuel is fed to the anode, air 

is fed to the cathode side. These electrodes are connected externally by an electrical circuit.  

Extensive details can be found in literature (Bhattacharyya and Rengaswamy, 2009, Singhal and 

Kendall, 2003).  

A GT-SOFC hybrid system has been built at the National Energy Technology Laboratory (NETL), 

Morgantown with the purpose of open research. This facility is part of the HYbrid PERformance 

(HyPer) project. The HyPer facility at NETL is a hardware simulation of a fuel cell gas turbine 

hybrid power system which has the capacity of reproducing power dynamcis of systems in the 

range of 300 kW to 900 kW. The HyPer facility is a cyber physical fuel cell facility where a fuel 

cell model interacts with the gas turbine recuperated cycle. Other than the single-shaft gas turbine, 

and a high performance exhaust gas recuperator, several pressure vessels are used to capture the 

transeint effects of the physical volumes and flow resistances of the cyber physical fuel cell, 

combustors, and related chanelling and piping. The gas turbine is an auxiliary power unit which is 

a Garret Series 85 type and consists of a two stage radial compressor. The HyPer facility utilizes 

two recuperators with countercurrent flow to preheat air entering into the pressure vessel that 

faciliates to simulate the fuel cell cathode  volume. The cyber system includes a real time fuel cell 

model that is used to control a natural gas burner which simulates the thermal output of a solid 

oxide fuel cell. The real time fuel cell runs on a dSpace platform, which is generally used for 

hardware in the loop  applications. 

As this technology is immensly promising, operational control of the fuel cell/gas turbine hybrid 

system is crucial to its development and commercialization. Thus as control is highly fundamental 

to the optimal and efficient operation of the system, a first step in the control structure design of 

the plant is to determine what variables are best for control purposes in the plant. Despite several 

studies on the dynamics of the HyPer facility and its interaction with the hardware (Smith et al., 

2006, Winkler et al., 2006, Tucker et al., 2005), there has been no literature on the controlled 
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variable structure design for the plant. This necessitates the study of a complete and thorough 

control structure design for this cyber-physical system. A systematic approach that is realtively 

fast yet yields optimal CVs is pertinent for highly complex and integrated systems such as this.  

4.3 Process Description 

The HyPer facility is as shown in Fig. 4.1and consists of the following subsystems: 

1. Compressor/ Turbine model 

2. Heat exchangers 

3. Bypass valves  

4. Pressure vessels(Air plenum, Combustor, Post-combustor) 

A description of each subsystem is given in section 4.3.1 through 4.3.4. For brevity, all model 

equations for the subsystems are omitted here and can be found in (Tsai et al., 2010). 

 

Figure 4.1 Configuration of the HyPer facility 
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 Compressor/Turbine 

The auxiliary power unit consists of a turbine and a compressor in a single shaft assembly capable 

of producing 400Hz of synchronous power. The compressor is a double stage centrifugal type 

compressor driven by the 120kW turbine which is encased within the compressor scroll. Exit air 

from the compressor exits the enclosure where concentric cooling flow is provided to the turbine 

inlet. The turbine nominally operates at 40,500 rpm. At this speed, approximately 2kg/s of 

compressed air exits the compressor at a pressure ration of four (4)(Tucker et al., 2009).  

 

Figure 4.2 Compressor turbine subsystem 

 Heat Recuperation 

The HyPer facility consists of a combustor and air plenums which is used to reproduce the heat 

effluent and stack volume of the virtual 300kW SOFC. The thermal efficiency of the facility is 

improved by using heat exchangers (HX) to recover waste heat from the turbine exhaust to increase 

the temperature of the compressed air to the fuel cell stack. This closes the loop on the recuperated 

cycle.  For the purpose of heat recovery, two parallel counter flow heat exchanger are employed. 

These primary heat recuperators obtain waste heat from the turbine exhaust to the compressed air 

which is heated up before the inlet of the SOFC cathode. This significantly increases the 

temperature of the compressed air thus reducing fuel requirements in the combustor. The typical 

effectiveness of the heat exchangers is 89% with cold side and hot side pressure losses of 2.5% 

and 3% respectively. The maximum temperature for both sides are given as 1150F (621oC) and 

1000F (537oC) for estimated flows of 4.03lb/s (1.83kg/s) and 3.9lb/s (1.77kg/s). 
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Figure 4.3 Heat exchanger subsystem 

 Bypass Valves 

The hardware configuration set up uses bypass valves within flow loops parallel to the mainstream 

flow pathways for the control of airflow to the air plenum. To minimize pressure losses in the 

system, no valves are used between the main pressure loop and the gas turbine. Currently, three 

parallel air flow control loops are being implemented in the HyPer facility, these are the Cold air 

(CA) bypass valve, Bleed air (BA) bypass valve and finally the Hot air (HA) bypass valve. These 

valves possess unique characteristics and attributes in controlling the system performance and 

efficiency. The bypass valves are used to mitigate the thermal management of the system, and 

optimize the Fuel cell-Gas turbine performance during transient operations. The bleed air valve 

has also been shown to increase compressor discharge pressure and to increase stall margins. The 

hot air valve on the other hand is effectively used to decrease cathode inlet flow. Additionally, it 

can lower pressure drop by 10%. Lastly the cold air valve was shown to be most influential in 

altering the cathode airflow, decreasing the turbine inlet temperature and increasing compressor 

surge margin (Tucker et al., 2005, Tucker et al., 2006). 

 Pressure Vessels 

The air plenum primarily serves as a SOFC volume and piping manifold. This pressure vessel is 

2.0m3
 in capacity. Similarly the post combustor and associated piping is a pressure vessel with a 

volume of 0.78m3. These vessels are meant to simulate the residence time of the fuel cell. Either 

by use of metallic floats or apertures. The vessel and channeling is created from 2.54cm Incaloy 

800AT, and is intended to work at temperatures as high as 1200K (1700ºF) at a pressure of 

310kPag.  
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Figure 4.4 Pressure vessels subsystem 

 

Figure 4.5 Simulink flowsheet for the HyPer facility 

4.4 Controlled Variable Selection 

This section consists of the setup of the CV selection for the HyPer facility including the a priori 

analysis, estimation of the variance from data obtained from the facility, and finally the cost 

function. Fig. 4.5 shows a flowsheet of how the model is laid out in SIMULINK, each block 

represents a set of equations describing the subsystems including adequate piping equations for 

pressure drop calculations during flue gas flow.  
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Firstly, a list of candidate controlled variables and a list of available manipulated variables are 

enumerated as shown in Tables 4.1 and 4.2.  The a priori analysis consists of prescreening 

candidate controlled variables based on process insight and Eqs. (3.3) - (3.6). In the 

turbine/compressor subsection as shown in Fig. 4.5, the turbine speed is a candidate controlled 

variable and all other variable (including pressure and temperature of compressor and turbine 

exhaust) within this subsection is dependent on the turbine speed(due to the coupling of the turbine 

and compressor on the single shaft assembly). The electric load is a disturbance and depends on 

the power demand of the grid (load bank for this specific example, see Fig. 4.1). In the heat 

exchanger subsection, the available candidate controlled variable is the temperature to the plenum. 

In the air plenum, the temperature is a candidate controlled variable. Similarly, in the combustor 

subsystem, the temperature is a candidate controlled variable. The mass flow rate to the post-

combustor depends on the hot air bypass, the cold air by pass and the mass flow rate to the plenum. 

The mass flow rate to the post-combustor and the mass flow rate to the plenum are both included 

as candidates, similarly the temperature in the post-combustor is considered as a candidate. The 

initial sets of candidate controlled variables reduce from 41 (Table 4.1) to 12 (Table 4.3) upon a 

priori analysis. This includes removal of controlled variables with poor controllability and high 

dead time according to Eqs. (3.5-3.6). The available degrees of freedom and disturbances are listed 

in Table 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

Table 4.1 List of all candidate controlled variables and their respective subsystem 

s/n Subsystem Candidate controlled variables 

1.  

Turbine/compressor 

subsystem 

Air Mass flow rate to compressor  

2.  
Flue gas mass flow rate to turbine  

3.  
Compressor Pressure  

4.  
Compressor Temperature 

5.  
Turbine Pressure 

6.  
Turbine Temperature  

7.   
Turbine speed  

8.  

HX subsystem 

Temperature to plenum 

9.  
Exhaust turbine temperature 

10.   
Mass flow rate to heat exchanger 

11.  

Pressure vessels (Air 

plenum, Combustor  

Post combustor)  

Mass flow rate to combustor 

12.  Air plenum Temperature  

13.  Air plenum density  

14.  Air plenum pressure. 

15.  Mass flow rate to the combustor 

16.  Combustor temperature 

17.  Mass flow rate to Post-combustor 

18.  Post-combustor Temperature  

19.  Post-combustor Pressure 

20.  Mass flow rate to turbine 

21.  Temperature to turbine 
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Table 4.2  List of manipulated variables 

s/n Subsystem Description 

1.   Temperature from turbine  

2.  

Bypass valves 

Mass flow rate cold air 

3.  Mass flow rate hot air 

4.  Mass flow rate bleed air 

 

Table 4.3 Candidate controlled variables in the hyper facility. 

Controlled variable Description 

�̇�𝑖𝑛,𝑝𝑙  Mass flow rate to the plenum 

𝑇𝑖𝑛,𝑝𝑙  Temperature to the plenum 

𝑇𝑝𝑙  Temperature in the plenum 

𝑇𝑖𝑛,𝑡𝑢𝑟𝑏  Inlet temperature to the turbine 

𝑇𝑝𝑐
  Temperature in the post combustor 

𝑇𝑐𝑜𝑚  Temperature in combustor  

𝜔  Turbine speed 

�̇�𝑖𝑛,𝐻𝑋  Mass flow rate to heat exchanger 

�̇�𝑖𝑛,𝑝𝑐  Mass flow rate to Post combustor 

�̇�𝐶𝐴  
Mass flow rate cold air 

�̇�𝐻𝐴  
Mass flow rate hot air 

�̇�𝐵𝐴  
Mass flow rate bleed air 

 Gain Matrices 

To obtain the gain matrices as defined in Eq. (3.3), the transfer function matrices must be obtained. 

Thus experimental design of inputs must be performed. Successful experiment design is critical to 

generating informative input/output data. Therefore a pseudo random binary sequence (PRBS) 

experimental input for multiple input multiple output system is designed using the guidelines 
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provided by (Gaikwad and Rivera, 1996). This guidelines aim for persistent excitation of input 

signal and statistical independence between the input and disturbances. The frequency range of 

interest [�̅�∗, �̅�
∗ ]is given by: 

 
�̅�∗ =

1

𝛽𝑠𝜏dom
𝐻 ≤ �̅� ≤

𝛼𝑠

𝜏dom
𝐿 = �̅�∗ (4.1) 

where 𝛼𝑠 is the fractional closed loop speed of the response of the process, 𝛽𝑠 is an integer 

representing the number of time constants that correspond to the settling time that is defined in 

this work as the time taken by the output(s) to reach and stay within 5% of the final value.  The 

fastest (lowest) dominant time constant is represented by 𝜏dom
𝐻  while the slowest (highest) dominant 

time constant is represented by 𝜏dom
𝐿 . To ensure excitation in the desired frequency range, the 

switching time of the PRBS is calculated to satisfy Eq. (4.2) (Gaikwad and Rivera, 1996). Eq. (4.3) 

is used to calculate the number of switches. 

 
𝑇𝑠𝑤 ≤

2.8𝜏dom
𝐿

𝛼𝑠
 (4.2) 

 
𝑁𝑠
(1)
= 2𝑛𝑟 − 1 ≥

2𝜋𝛽𝑠𝜏dom
𝐻

𝑇𝑠𝑤
 (4.3) 

Here 𝑛𝑟 is the number of shift registers and 𝑇𝑠𝑤 is the switching time. The PRBS sequence is 

repeated after 𝑁𝑠𝑇𝑠𝑤 time units. The parameters 𝛼𝑠 and 𝛽𝑠 are chosen to be 2.0 and 3.0 respectively. 

The PRBS is designed with the following parameters as estimated from open loop tests. 𝜏dom
𝐿 =

50s and 𝜏dom
𝐻 = 150s. Fig. 4.6 shows the power spectrum of the PRBS of the bleed air valve signal 

for the time interval of [3000, 3500] (for clarity). The frequency is normalized to a range of [0, 𝜋]. 

The plant used in the system identification is obtained from a first principles model developed by 

(Tsai et al., 2010). To identify linear time invariant models, two distinct simulations were run. 

Each of them lasting for 4500s. To begin, several parameters are loaded into the MATLAB® 

workspace which includes parameters for running the simulation, this includes initial conditions 

of the facility, reference parameters, piping parameters, pressure loss coefficients, air plenum 

physical data, compressor parameters and correlation/dimensionless numbers of the system.  These 

are outlined in Table 2.13. 
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Figure 4.6 Power spectra of the PRBS for the experimental setup(top left) and the PRBS for bleed 

air valve(top right);  Power spectra of the PRBS for the validation setup(bottom left) and the PRBS 

for bleed air valve(bottom right 

 

 

 

 

 

a) b) 

c) d) 
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Table 4.4 Parameters loaded into the SIMULINK workspace 

Parameters Ambient and 

reference 

conditions 

Initial conditions Piping/equipment 

parameters 

Minor 

pressure 

loss 

coefficients 

Kinematic viscosity  Post combustor density Internal diameters 

of pipes 

Relative 

roughness 

Dynamic viscosity  Pressure Temperature post combustor External diameters Equivalent 

length 

Air conductivity  Temperature post combustor 

surface 

Insulation 

diameters 

K factor 

Compressor 

parameters 

Reference 

temperature 

Temperature combustor Lengths  

Prandtl number Reference 

pressure 

Temperature plenum Air plenum 

parameters 

 

Metal conductivity Compressor 

map 

parameters 

Temperature plenum surface Heat exchanger 

parameters 

 

Metal density  Plenum density Turbine 

parameters 

 

Universal Gas 

Constant 

 Temperature compressor Combustor 

parameters 

 

  Inlet temperature to heat 

exchanger  

  

 

The nominal values of the steady state operating point was obtained from (Tsai et al., 2010) as 

13.5g/s~39% ± 10%, 45kW±5kW, 14±4%, 40±10%, 40±10% for the fuel valve, load bank, 

bleed air, cold air and hot air bypass respectively. The gain matrices are obtained using the data 
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obtained from the simulation of the available SIMULINK file. The simulation is run with the fifth 

order accurate variable time step explicit ODE numerical solver: Dormand-Prince. Firstly, data is 

obtained from the first run to obtain results from which the transfer function is estimated. Secondly, 

data is generated with a distinct set of profiles for the manipulated variables and the disturbances 

to generate validation data for the estimated transfer functions. This process allows for model 

selection from the estimated transfer functions. The Akaike Final prediction error criterion was 

used for model selection as shown in Eq. (4.4): 

 

𝐹𝑃𝐸 = det (
1

𝑁
∑𝜖(𝑡, 휃̂𝑁)𝜖(𝑡, 휃̂𝑁)

𝑇
𝑁

1

)(
1 + 𝑛𝜃/𝑁

1 − 𝑛𝜃/𝑁
)  (4.4) 

In Eq. (4.4), N is the number of values in the estimation data set, 𝜖(𝑡) is the vector or prediction 

errors, 𝑛𝜃 is the number of estimated parameters and 휃̂𝑁 is the vector of estimated parameters. The 

model classes differed in poles, zeros and time delays as can be utilized using “tfest” function from 

MATLAB®. These model classes from which selection was performed were restricted to pseudo 

first and pseudo second order transfer function models, i.e. the maximum difference between the 

number of poles and zeros is two. Figs. 4.7-4.8 show the comparison between the process (the 

Simulink model) and the model (the transfer function model) for the validation data set for two 

outputs (Temperature to plenum and temperature to turbine).  
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Figure 4.7 Comparison of model response (solid black) and process data (star blue) for 

Temperature to plenum. 

          

 

Figure 4.8 Comparison of model response (dash dot black) and process data (star blue) for 

Temperature to turbine. 
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 Estimation of Implementation Error 

The implementation error captured by the diagonal matrix 𝑊𝑛 in Eq. (3.29) can be due to the 

measurement noise and other uncertainties (Kariwala et al., 2008). For the HyPer facility, it was 

assumed that the implementation error would solely stem forth from the measurement data. The 

experimental data from the HyPer facility is used to estimate the noise. Suppose the true value of 

a measured variable denoted by  �̂�  ∈ ℝ𝑛𝑦. Then the measured data 𝑦 ∈ ℝ𝑛𝑦 is given by: 

 𝑦 = �̂� + 휀 (4.5) 

To evaluate the magnitude of variance 𝔼[휀𝑇휀], the underlying estimate  �̂� must be estimated. For 

this problem, it is assumed that the noise is Gaussian and the variance of the noise is estimated by 

fitting the data with a discretized smoothing spline in (Garcia, 2010), the variance is then estimated 

from the corresponding residuals 휀. The smoothening of the data comes from the minimization of 

the residual sum of squares and a penalty 𝑃(�̂�) as given in Eq. (4.6). The degree of smoothing is 

controlled by the parameter 𝑠. The penalty is given as the tridiagonal matrix 𝐷 which is the second 

order difference matrix. 

 𝐹(�̂�) = 𝑅𝑆𝑆 + 𝑠𝑃(�̂�) = ‖𝑦 − �̂�‖2 + 𝑠‖𝐷�̂�‖2 (4.6) 

Minimizing Eq. (4.6) with respect to  �̂� yields  

 (𝐼𝑛 + 𝑠𝐷
𝑇𝐷)�̂� = 𝐻−1�̂� = 𝑦 (4.7) 

The parameter 𝑠 is chosen to minimize the generalized cross validation score as proposed by 

(Craven and Wahba, 1978), this is given by: 

 
𝑠 = argmin GCV ≡

𝑅𝑆𝑆/𝑛

1 − 𝑡𝑟(𝐻)/𝑛2
 (4.8) 

Where RSS is the residual sum of squares given by ‖𝑦 − �̂�‖2 in Eq. (4.6) and GCV is the 

generalized cross validation. Trace is denoted by 𝑡𝑟. The number of samples is 𝑛. The estimated 

data  �̂� is obtained using discrete cosine transform (DCT) thus the noise variance is obtained as: 

 
𝔼[(𝑦 − �̂�)𝑇(𝑦 − �̂�)] =  𝔼[휀𝑇휀] = 𝑛∑(

1

1 + 𝑠𝜆𝑖
2 − 1)

2

DCTi
2(𝑦)

𝑖

 (4.9) 

Where 𝜆𝑖∀ 𝑖 = 1,… , 𝑛 are the eigenvalues of the matrix Λ obtained from the eigen-decomposition 

of 𝐷 as follows 𝐷 = 𝑈Λ𝑈−1. This algorithm is applied to the experimental data from the HyPer 

facility. Extensive details are provided in (Garcia, 2010). Estimated noise variances are shown in 
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Table 4.5 while comparison of smoothed data and raw data of some of the measured variables is 

shown in Fig. 4.9. 

          

 

 

         

Figure 4.9 Data reconciliation showing smooth data obtained from noisy data. 
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Table 4.5 Estimates of noise variance for candidate controlled variable. 

S/n Candidate controlled variable 
Noise variance Std. deviation 

 Variable Description 

1.  �̇�𝑖𝑛,𝑝𝑙 Mass flow rate to the plenum 3.9652E-10 1.99E-05 

2.  𝑇𝑖𝑛,𝑝𝑙 Temperature to the plenum 0.00051549 0.022704 

3.  𝑇𝑝𝑙 Temperature in the plenum 0.0031992 0.056561 

4.  𝑇𝑖𝑛,𝑡𝑢𝑟𝑏 Inlet temperature to the turbine 0.0060983 0.078092 

5.  𝑇𝑝𝑐 Temperature in the post 

combustor 
0.0072492 0.085142 

6.  𝑇𝑐𝑜𝑚 Temperature in combustor 0.0072492 0.085142 

7.  𝜔 Turbine speed 10000 100 

8.  �̇�𝑖𝑛,𝐻𝑋 Mass flow rate to heat exchanger 3.9652E-10 1.99E-05 

9.  �̇�𝑖𝑛,𝑝𝑐 Mass flow rate to Post combustor 3.9652E-10 1.99E-05 

 

 Cost Function 

The economic cost function for the HyPer facility is represented by the cost of producing electricity 

discounted by the profit of selling power to the grid. This is obtained according to the following 

procedure, first the compressor work and the losses is accounted for. These are given in kJ/s and 

are then converted into an equivalent cost in dollars. Similarly, the electricity drawn from the 

HyPer configuration is converted into an equivalent cost in dollars, these are implemented through 

the price of electricity. No cost is taken for the inflow of air to the HyPer facility, similarly, no 

cost is taken for the exhaust flue gas from the turbine. The cost of electricity for 2016 is given as 

10.07cents/kWh. Next, the fuel flow is converted into dollars. Both the price of electricity and 

price of natural gas are obtained from US Energy Information Administration (EIA) 

http://www.eia.gov/electricity/monthly/pdf/epm.pdf. The cost of natural gas is obtained to be 

$2.45/MMBtu which translates to $0.84cents/kWh. Therefore the following is obtained: 

 
−𝐽 (

$

ℎ
) = 0.1007(�̇�𝑐𝑜𝑚𝑝 + �̇�𝑙𝑜𝑠𝑠 − �̇�𝑒𝑙𝑒𝑐,𝑡𝑢𝑟𝑏 − �̇�𝑒𝑙𝑒𝑐,𝐹𝐶) + 0.0084�̇� (4.10) 

Now as seen in Eq. (3.38), the second order derivatives of the cost function with respect to input 

and with respect to input and disturbance are needed. The cost function in Eq. (4.10) is not an 

explicit function of the input ‘u’ and disturbances ‘d’ thus the cost is evaluated from the data 

obtained from the process and this cost is regressed to a second order quadratic function in the 

http://www.eia.gov/electricity/monthly/pdf/epm.pdf
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input space (see Table 4.2 for manipulated variables ‘u’ and disturbances ‘d’). Therefore, the 

parameters of the cost function to be employed in the controlled variable selection 𝐽𝑢𝑢, 𝐽𝑢𝑑 are 

determined.  Fig. 4.10 shows a comparison of the regressed cost function with the objective 

function data from the process. 

 

Figure 4.10  Estimate of the scaled cost function (dash dot) and the process cost function (solid 

red) 

4.5 Selection of Pareto sets with Multiagent Optimization 

Again as in section 3.6.3.2, the optimization as defined in Eq. (3.45) was implemented on an Intel® 

Xeon® CPU E-5-1620 v2 with 32GB RAM using the heterogeneous multiagent framework 

programmed in MATLAB(Bankole et al., 2018b). A similar version with worst case loss defined 

in Eq. 3.26 was implemented in (Bankole et al., 2018c). The multiagent framework with 

parameters as described in Table 3.4.  

The multiagent optimization takes approximately 57 seconds per solution totaling 15 minutes 

(while branch and bound optimization executes with a runtime of 40 minutes). The results obtained 

from the multiagent optimization must now be further analyzed in the posteriori analysis as 

discussed. The first consideration is the dependency of the controlled variables. As can be seen 
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from the Figs 4.11a - d. The cross- correlation function is used to obtain the similarity between the 

signals from the process. The cross correlation function for discrete signals 𝑓 and 𝑔 is defined as 

follows: 

 
(𝑓 ⋆ 𝑔)[𝑛] = ∑ 𝑓∗[𝑛]𝑔[𝑚 + 𝑛]

∞

𝑚=−∞

 (4.11) 

 

Where the subscript n is denoted as the lag.  The following results are obtained: 

          

        
Figure 4.11 Cross correlation function for (a) [𝑻𝒊𝒏,𝒕𝒖𝒓𝒃, 𝑻𝒄𝒐𝒎] (b) [𝑻𝒊𝒏,𝒕𝒖𝒓𝒃, 𝑻𝒑𝒄 ] (c) [𝑻𝒄𝒐𝒎 , 𝑻𝒑𝒄] 

(d) [𝑻𝒑𝒍, 𝑻𝒊𝒏,𝒑𝒍] 

The cross correlation function in Fig. 4.11a through c show peaks close to zero lag which implies 

the correlation of variables 𝑇𝑖𝑛,𝑡𝑢𝑟𝑏 , 𝑇𝑐𝑜𝑚, 𝑇𝑝𝑐. Similarly, Fig. 4.11 (d) show peaks close to zero lag 
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which implies the variables 𝑇𝑝𝑙, 𝑇𝑖𝑛,𝑝𝑙 are correlated. All mass flow rates in the system are also 

correlated thus the controlled variable set reduces to that shown in Table 4.6. 

Table 4.6 Controlled variable Pareto set in descending order of optimality 

Controlled variable Set Controlled variable Econ($/h) Controllability (𝜎) 

C0 1,2,5 34.75 1.00 

C1 2,5,8 35.65 0.99 

C2 1,3,5 36.26 0.91 

C3 3,5,8 37.22 0.90 

C4 2,5,9 31.46 0.76 

C5 3,5,9 33.97 0.75 

C6 3,5,7 81.33 0.77 

C7 2,5,7 85.78 0.28 

C8 1,3,6 31.61 0.76 

C9 1,2,6 34.64 0.28 

C10 3,6,8 37.31 0.25 

C11 2,6,8 40.79 0.25 

C12 3,6,9 74.44 0.32 

C13 2,6,9 75.72 0.32 

C14 1,5,7 162.71 0.38 

C15 5,7,8 197.11 0.37 

 

The top 16 results from the multiobjective optimization are shown in Table 4.6. Based on these 

results, it can be concluded that the controlled variables with the most self-optimizing performance 

are the mass flow rate to the plenum (1), the temperature in the plenum (2), the temperature in the 

post-combustor (5) i.e. set C0:[1,2,5]. This is because of minimal expected value of the economic 

loss ($34.75/h) and a high minimum singular value compared to other controlled variable sets. 

Therefore it exhibits the best compromise of economics and controllability at the nominal 

conditions. A Pareto plot of all controlled variable sets is given in Fig. 4.12. The sets at the top of 

the table are represented in lower right corner of Fig. 4.12, they represent lower economic loss and 

higher controllability. Contrarily, controlled variable sets at the bottom of Table 4.6 are depicted 

towards the left portion of Fig. 4.12. It should be noted that some controlled variable sets such as 

C8-C11 which offer great economic incentive are poor with controllability and as such cannot be 

selected. 
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It can be seen that all sets have some form of mass flow rate control. The control of the mass flow 

is important in this facility due to the coupled nature of the hyper facility. Transient disturbances 

in the mass flow rate can propel the system towards instability which leads to compressor surge 

and stall. This necessitates control of mass flow within the Hyper facility. Secondly, control of 

temperature is crucial. The turbine and the fuel cell are coupled via the exit temperature of the flue 

gas from the turbine, therefore the control of temperature especially the post-combustor 

temperature is crucial as this drives the turbine speed. If the temperature from the post-combustor 

is high, this would lead to a high turbine speed which in turn drives the compressor at higher speed 

as they are connected by the same shaft. Consequently, this leads to an increased airflow to the 

fuel cell leading to an overcool. Alternatively, if the temperature to the fuel cell is rather high, this 

would shorten the fuel cell life span. Therefore fluctuations in temperature are undesirable as it 

leads to thermal stress on the fuel cell. (Tucker et al., 2005). This therefore imposes the need for 

energy sink and sources to offset such transients therefore the bypass valves are highly pertinent.  

 

Figure 4.12 Pareto plots of the controlled variable selection problem. 
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4.6 Posteriori Analysis 

In this section, the top results of the Pareto sets are subjected to off design conditions. This is done 

by changing the values of the disturbances (electric load to the turbine and the fuel flow rate) from 

the preset nominal conditions, this ranges from 80% of the nominal value of disturbances to 120% 

in steps of 10%. Then the process is run till it achieves steady state and the gain matrices are once 

again identified. This process is repeated at multiple off design conditions and the defined 

controllability function 𝐽𝑐(𝑐) (inverse of the minimum singular value 𝜎 of the scaled gain matrix 

�̂�) is evaluated for the CV sets from the Pareto list in Table 4.6 (see Eqs. 3.44-3.45). For brevity, 

only the three sets which perform best at off design conditions are shown in Fig 4.13. These are 

sets C0, C1, C7. Due to the inherent nonlinearity of the process, it can be seen in Fig. 4.13a-b that 

the minimum singular value is not monotonic as the disturbances vary from 80% of the nominal 

to 120%. It can be inferred that set C1 is the best CV set to be chosen. This set has the best 

compromise between economics and controllability as well as at off design conditions. 

          

 

Figure 4.13 Controllability measure for sets C0 (square), C1 (circle), C7 (star) at off design points 

by varying a) Fuel flow rates, b) Electric load. 

        

a) 
b) 
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4.7 Conclusions 

In this chapter, a top down control structure design was performed on a cyber physical gas turbine 

– solid oxide fuel cell HyPer facility. This involves three stages: a priori stage, optimization stage 

and finally posteriori evaluation of the top performing CV sets. This establishes the set of 

controlled variables which minimize economic drift from optimality as disturbances propagate 

through the system and yet pose minimal compromise with respect to controllability. Several 

variables were prescreened off during the apriori stage and an optimization scheme was formulated 

for selecting controlled variables based on a multiobjective function. The candidate controlled 

variables were chosen such that they satisfied the self-optimizing properties required. The results 

show that the optimal set exhibit a tradeoff between the economic and controllability cost function 

as expected. Furthermore, a novel multiagent metaheuristic platform is employed in this work 

which is computationally efficient compared to traditional branch and bound method which is 

rather exhaustive. This is highly pertinent for fast enumeration of CV sets for a processes such as 

cyber physical systems. Additionally, the optimal controlled variables address the possibility of 

transients and instability in the HyPer facility. The enduring challenge is to design a feedback 

control system that satisfactorily controls these identified variables. 
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Chapter 5 

5 Real time Optimization 

5.1 Introduction 

Due to increasing concentration of CO2 in the atmosphere, several efforts have been made in recent 

years at developing  protocols for reducing anthropogenic emissions of CO2 (Weaver et al., 2007).  

Emitting about 1.9 billion metric ton of CO2 annually from coal-fired power plants, the United 

States contributes 33% of total energy related CO2 emissions, out of which 81% of CO2 emissions 

is from electricity generation facilities (Lin et al., 2012). Thus strong incentives exist for capturing 

CO2 emissions from power plants and for minimizing the corresponding energy required by the 

capture processes. 

Renewable energies such as that obtained from wind or solar can be instrumental in reducing CO2 

gas emissions. However, in cases of high penetration of renewables to the grid, fossil-based power 

plants need to follow a highly fluctuating power demand due to intermittency of the renewables, 

uncertainty in their availability, and variability in the amount of produced power. As renewable 

energy sources become more integrated into distributed power generation, load tracking of 

electricity demand becomes necessary (Carrasco et al., 2006). If the power generation plant 

includes a CO2 capture unit, optimal scheduling of CO2 capture operations would also become 

essential.  

In view of economic operation of energy plants, the need for strategies to respond to seasonal, 

diurnal, or even hourly changes in electricity load and price has been suggested in literature. For 

example, (Cohen et al., 2010) suggested that electric power output can be increased to meet higher 

electricity demand by turning off the CO2 capture plant in peak hours. According to (Chalmers et 

al., 2009), if CO2 trading price is included, bypassing CO2 capture is valuable when the $/MWh 

electricity selling price is 2–3 times higher than the $/ton penalty for not capturing the CO2. (Lin 

et al., 2012) examined variability in electricity loads using an 11-hour peak and off-peak cyclical 

period. In tracking electricity load, peak loads resulted in lower CO2 capture while off-peak 

electricity load resulted in higher CO2 capture. Optimal scheduling of CO2 capture was undertaken 

by (Sahraei and Ricardez-Sandoval, 2014), where the authors considered the control of a post-

combustion capture of CO2 using monoethanolamine (MEA).  An optimal sequence of set points 
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for CO2 capture was obtained by minimizing energy consumption and CO2 emission. Two 

scenarios, namely high electricity generation and low CO2 emission were considered.  From the 

results, the authors concluded that the interactions of energy factors, environmental constraints 

and controllability were responsible for the differences in the optimal sequence of set points in 

both scenarios.  

There is a scarcity of work in the open literature in the area of optimal scheduling of CO2 capture 

and power production by optimizing the plant economics under various scenarios of carbon tax in 

the face of dynamic changes in the electricity price and demand. Two approaches have been 

proposed in the literature to achieve optimal economic operation of a plant. One approach is to 

employ a hierarchical structure as discussed by (Skogestad, 2004, Skogestad, 2000). In this case, 

an optimization layer determines optimal set points for the supervisory layer while the supervisory 

layer is designed for optimal tracking of the set point trajectory in the face of constraints and 

disturbances. Another option is to employ economic model predictive control as discussed by 

(Omell and Chmielewski, 2013, Ellis et al., 2014), where the objective function of the lower level 

controller considers economic variables in its objective function. It should be noted that the 

scheduling problem specific to CO2 capture processes as part of an energy generating plant 

involves fluctuations in electricity demand and prices that evolve over a shorter time scale (on a 

minute or hourly scale), while taking into account CO2 credit or deficit that needs to be considered 

over a much longer time period (such as days or months). Therefore, our approach to the optimal 

scheduling problem is to use the hierarchical structure that naturally facilitates separation of time 

scales. Therefore the scheduler (also known as the real-time optimizer above the supervisory layer) 

only solves the proposed optimization problem at a time interval that is appropriate for economic 

variables. This time interval is much longer than the time interval at which the lower level 

supervisory control needs to be executed. This multiscale feature specific to the scheduling 

problem of energy plants integrated with CO2 capture units has not yet been studied in the open 

literature.  

For formulating the optimal scheduling problem, predictions of unknown energy prices and 

demand, and optimal set points are defined within a ‘base period’ (or base time). The ‘base period’ 

is defined as the compliance period in which energy companies would be examined by the 

legislative bodies to comply with the legislative CO2 capture requirements and would be taxed or 

provided incentive accordingly based on the aggregate emissions during the base period. While 
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the actual base period for CO2 capture is expected to depend on a specific region or a country, it 

is anticipated that the base period for CO2 capture may span several months to a year or more. It 

should be noted that as the CO2 capture requirement is anticipated to be satisfied over the entire 

base period, as opposed to a desired target at any point of time, any discrepancy in the capture 

during previous time instances must be accounted for in the future or vice versa.  This is not the 

case for typical control problems where the past deviation in the control objective from the set 

point might be completely neglected. This uncommon aspect anticipated for CO2 capture has 

hardly been studied in the exiting literature.  

In addition to optimal scheduling, the following three aspects need to be considered for optimal 

economic operation of the energy plant with CO2 capture: design of the supervisory layer and 

control structure selection for the supervisory and regulatory control layers. An optimal design of 

the supervisory layer is essential for tracking the changing set point from the scheduler layer 

satisfactorily. Supervisory control layer design has been an area of active research for several 

decades now (Mckay et al., 1997, Bakshi and Stephanopoulos, 1994, Richalet, 1993).  Supervisory 

controller design can be considered to be two separate, yet connected, problems: structural design 

(such as: what input(s) should be connected to what output(s), and how should they be connected) 

and controller design (such as: what type of controller should be used and how to tune those 

controllers for performance and robustness). As processes are expected to be more agile while 

operating close to the constraints, decentralized controls may become inadequate, requiring the 

need for centralized controllers (Wolff et al., 2014).  Even though feasibility of centralized 

controllers involving fairly high number of variables is being realized recently due to the advent 

of powerful hardware and software, it is still intractable to solve one, single centralized controller 

that includes all controlled and manipulated variables for a large-scale plant. Neither is this 

approach necessary since the relative improvement in control performance by solving an 

increasingly larger problem typically keeps diminishing. Therefore the trade-off between the 

increasing computational expenses vs. diminishing returns needs to be evaluated. The objectives 

here are to optimally select the number of centralized controller(s), if any, and then determine the 

set of controlled (output) and manipulated (input) variables to consider in each of them. The works 

concerning the supervisory controller layer design is provided in the appendix. 
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Furthermore, stability conditions for the scheduler with electricity production and CO2 capture are 

proposed. Lyapunov stability has been reported by (Huang et al., 2011) for cyclic steady-state 

processes. The authors have invoked Lipschitz continuity and weak controllability assumptions on 

the stage cost function and the model equations, respectively, for a generic nonlinear state space 

model. A similar approach is also investigated for infinite horizon nonlinear MPC which 

introduces a discount factor to keep the objective function bounded. Similarly, (Diehl et al., 2011) 

showed that under certain assumptions, asymptotic stability of an economic model predictive 

controller may be guaranteed by considering the stage cost as a function of deviation variables. In 

both works, valid constraints for the whole base period or cycle time of a cyclic process are not 

considered. Thus while it is possible for defined constraints to be satisfied at every given instant, 

an overall constraint may be violated. This is pertinent to the current problem description where 

an overall constraint on carbon capture must be considered.  An example of this would be 

maximum carbon capture towards the end of the base period due to inaccurate predictions of 

electricity prices and demand at the beginning of the base period. Conditions for Lyapunov 

stability are discussed in detail in Section 5.3. 

Finally, the methodology developed in this chapter is applied to an acid gas removal (AGR) unit 

as part of an integrated gasification combined cycle (IGCC) power plant. This technology has been 

the subject of research for several years (Chen and Rubin, 2009). The IGCC technology promises 

an efficient use of coal and the reduction of carbon emissions using pre-combustion capture 

compared to conventional power plants using post-combustion capture (Bhattacharyya et al., 

2011). In the AGR unit, CO2 is removed by a physical solvent such as SELEXOL due to high 

partial pressure of CO2 thereby reducing the penalty for CO2 capture. In addition to these merits, 

IGCC plants can follow load dynamically responding to the real-time price of electricity (Omell 

and Chmielewski, 2013). Furthermore, IGCC plants can be readily modified for both chemical and 

power production improving the controllability of the process in the face of fluctuating power 

demand (Robinson and Luyben, 2010).  

In summary, this chapter focuses on optimal scheduling of advanced energy plants with CO2 

capture where load tracking as well as carbon capture targets for a given base period are both 

considered in the framework of an economic objective function (shown in Fig. 5.1). This is 
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achieved by considering not only changing electricity demand but also its prices with due 

consideration of penalty/incentive for violating/exceeding carbon capture targets. Effects of three 

different carbon tax scenarios on optimal scheduling of CO2 capture and power production are 

evaluated. These scenarios are: no incentive for carbon capture; no incentive for carbon capture 

beyond a mandatory requirement; and lastly the trading of carbon emission allowances. Optimal 

set points for the extent of CO2 capture and electricity production rates from the scheduler are then 

passed on to the supervisory control layer (see appendix for supervisory control layer design). 

Contributions of this chapter include: unique formulation of economic optimization with CO2 

capture including carbon tax, inclusion of past errors in the formulation of the scheduling problem, 

incorporation of different carbon tax scenarios and the development of Lyapunov stability 

conditions for optimal scheduling of a power system with CO2 capture.  
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5.2 Mathematical Formulation 

As the objective considered here is to maximize the profitability of the energy plant under 

consideration, the economic variables relevant to the optimal operation of the plant need to be 

considered. In addition to the typical operating costs of plants with CO2 capture, real-time price of 

the product (i.e. electricity) and the effect of impending legislation on CO2 capture need to be taken 

into account. Three different scenarios are considered to account for the effect of CO2 capture 

legislation.  

Scenario 1 

In this scenario, all carbon emissions are charged at a fixed tax rate. Thus there is no allowable 

emission limit, nor is there any opportunity to trade CO2 emission allowances. 

Scenario 2 

In this scenario, there is a penalty on CO2 emissions above an allowable limit during the base 

period. However no reward whatsoever exists for capturing more CO2 beyond this set limit. An 

example of this is found in (Sahraei and Ricardez-Sandoval, 2014) where the authors have noted 

that the U.S. Environmental Protection Agency has recently established a new limit for CO2 

emission of power plants wherein a new coal-fired power plant would need to meet a limit of 1100 

lb. of CO2 per MWh of electricity. In Maryland, for example, the legislation required payments of 

carbon tax beyond a limit of a million ton per year (Lu et al., 2012). An equivalent of this also 

applies to Alberta where a $15/ton taxation is applied for emissions beyond 100,000 ton of 

greenhouse gas annually (David, 2008). The implication of this scenario is to incentivize 

companies to capture at least the carbon target set by the regulatory agencies. 

Scenario 3 

Under this scenario, the so-called ‘cap and trade’ policy is evaluated. If a plant exceeds its cap on 

CO2 emissions set by the regulatory agency, then it needs to buy the permit from the 

federal/state/local agency(ies) and/or from (private or non-private) organizations that are willing 

to trade CO2 emission allowances.  Therefore, if a plant captures more CO2 than required, it can 

trade with others. 



98 

 

 Forecasting Model 

As the economic optimization needs to be carried out over the entire base period for evaluation of 

regulatory compliance for CO2 emissions, a forecasting model is needed to generate future 

predictions of electricity prices and demand. Autoregressive integrated moving average (ARIMA) 

and state space models have been used in the open literature as forecasting models for electricity 

price and demand (Taylor et al., 2006, Taylor, 2010, Gould et al., 2008). A generic prediction 

model is considered as shown in Eq. (1), where 𝑑𝑘 and 𝑒𝑘 denote disturbances and stochastic noise 

at time step 𝑘: 

 𝑑𝑘+1 = 𝐹(𝑑𝑘)+𝑒𝑘 (5.1) 

 

 Economic Optimization Formulation 

The formulation of the economic optimization scheme performed by the scheduler at time instant 

‘i’ in the periodically spaced time horizons is given by the following: 

 max
𝑢
𝑉(𝑑, 𝑢, 𝑦, 𝛿) 

where: 

𝑉(𝑑, 𝑢, 𝑦, 𝛿) =  ∑ [ ∑ 𝑤ℎ,𝑘 (𝑓(𝑢1,𝑘 , 𝑑2,𝑘|𝑖) − 𝑝(𝑢𝑘))

𝑖+𝑚ℎ

𝑘=𝑖+𝑚ℎ−1+1

] − 𝐽(𝑦, 𝛿)

𝐻

ℎ=1

 

subject to: 

𝑑𝑘+1 = 𝐹(𝑑𝑘) + 𝑒𝑘 

𝑦𝑘 = ℱ(𝑥𝑘, 𝑣𝑘) + 𝜔𝑘 

𝛿 = ∑𝑦1,𝑘(𝑦2,𝑘 + 𝑦3,𝑘 + 𝑦4,𝑘 − 𝑧𝑐𝑎𝑝,𝑘)

𝑖−1

𝑘=1

 

Δ𝑢𝑚𝑖𝑛 ≤ Δ𝑢 ≤ Δ𝑢𝑚𝑎𝑥  
𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥  

𝑢1,𝑘 ≤ 𝑑1,𝑘

 

(5.2) 

𝑑 = [
Electricity Demand
Electiricity Price

] 
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𝑢 = [
Electricity production rate

CO2 Capture
] 

𝑦 = [

𝐹𝑜𝑢𝑡
mole fraction 𝐶𝑂2
mole fraction 𝐶𝑂
mole fraction 𝐶𝐻4

] 

The objective function 𝑉(𝑑, 𝑢, 𝑦, 𝛿) consists of revenue generation from electricity production 𝑓, 

a cost function for electricity production and the cost of carbon capture which is calculated using 

the function 𝑝(𝑢𝑘), this includes pumping and compressor costs, solvent make up, chilling, 

reboiling etc. The last term 𝐽 is a penalty cost function for carbon emission. This optimization is 

performed over the time span from the current time step i to the end of the base period. This time 

span is subdivided into H number of horizons, indexed by the variable h, and the cumulative 

number of time steps from the current time step i to the horizon h, denoted by 𝑚ℎ. The argument 

involves the function 𝑓(𝑢1,𝑘 , 𝑑2,𝑘|𝑖) evaluated as the estimated revenue generated from producing 

electricity. It should be noted that the decision variable 𝑢 and the predicted disturbances 𝑑 at any 

time step 𝑘 denoted by 𝑢𝑘 , 𝑑𝑘 are both two tuple, thus the pair 𝑢1,𝑘, 𝑑2,𝑘|𝑖 denotes the electricity 

production rate and the electricity price, respectively. The weights 𝑤ℎ,𝑘 are used to imply the 

relative confidence in the accuracy of these terms. The economic penalty (or reward, if applicable) 

of carbon emission (or capturing more than mandated) is denoted by the function 𝐽(𝑦, 𝛿). The 

carbon tax penalty depends on cumulative past errors (𝛿) in achieving the target carbon capture, 

this comprises all past errors from the beginning of the base time to current time step 𝑖. The 

maximum allowable mole fraction of greenhouse gas is denoted as 𝑧𝑐𝑎𝑝. Therefore  𝐽(𝑦, 𝛿) varies 

based on the specific carbon tax scenario.  

In Eq. (5.2), the process model is represented by a discrete time difference equation as shown 

above. In this model, x, y, 𝑣 and 𝜔 represent process states, outputs, inputs and noise. The values 

of the manipulated variables 𝑣 of the lower level controllers are implicitly dependent on the results 

of the optimization of Eq. (5.2). The set points obtained from (2) are passed as references 𝑟 to an 

MPC where 𝑣 is obtained from an optimization problem outlined later in Eq. (5.20). The constraint 

𝑢1,𝑘 ≤ 𝑑1,𝑘 ensures that the electricity production never exceeds the demand apportioned to the 

power plant. The outputs of concern in the optimization are the flow of fuel/syngas 𝐹𝑜𝑢𝑡 which 

directly impacts electricity production and mole fractions of greenhouse gases (CO2, CO and CH4). 

After every base time, the optimization problem is reset, assuming that CO2 credits or taxes cannot 
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be carried forward from one base period to another. One of the features of the optimization scheme 

as posed in Eq. (5.2) is its coupled multiscale nature. It should be noted that the electricity 

production rate affects the fuel flowrate which, in turn, acts as a disturbance to the AGR unit where 

the CO2 is captured. As the three different scenarios outlined earlier differ based on carbon tax 

scenario, the formulation for 𝐽(𝑦, 𝛿) for the three scenarios is written as discussed. 

 

 

Scenario 1 

In this case, all expected emissions are simply penalized by a carbon tax rate 𝛾𝑖. For generality, 

this is allowed to vary, hence the subscript i. Considering the typical carbon bearing components 

present in the feed gas to the AGR unit, Eq. (5.3) can be used to represent the penalty function 

where syngas/fluegas flow is denoted by 𝑦1,   the mole fraction of chemical species are denoted by 

the outputs 𝑦2, 𝑦3, 𝑦4 and the past errors are dentoed by 𝛿. For post-combustion CO2 capture, there 

is hardly any CO or CH4 in the flue gas. For pre-combustion CO2 capture, the syngas would contain 

all of these species plus some minor concentration of other carbon bearing species such as COS, 

CS2, etc.   

 
𝐽(𝑦, 𝛿) = 𝛾𝑖 ⋅ (𝛿 +∑ [∑ 𝑤ℎ,𝑘𝑦1,𝑘|𝑖(𝑦2,𝑘|𝑖 + 𝑦3,𝑘|𝑖 + 𝑦4,𝑘|𝑖)

𝑖+𝑚ℎ

𝑘=𝑖+𝑚ℎ−1+1
]

𝐻

ℎ=1
) (5.3) 

where 

 

𝛿 = ∑𝑦1,𝑘(𝑦2,𝑘 + 𝑦3,𝑘 + 𝑦4,𝑘)

𝑖−1

𝑘=1

 (5.4) 

 

Scenario 2 

In this scenario, the tax function only becomes active if emitted carbon exceeds the allowed 

cap 𝑧𝑐𝑎𝑝. This scenario is represented by Eqs. (5.5), (5.6) and (5.7). The past cumulative 

contributions to the carbon released from the beginning of the base time to the current time step 

(due to excess or less CO2 capture) is denoted by 𝛿. At current time step i, this is the first 

summation term in Eq. (5.6) while the second sum denotes estimation of future contributions to 

carbon emissions from all horizons to the penalty term. The carbon tax only exists as outlined in 

Eq. (5.7) if the 𝜖 term is positive. This scenario reduces to scenario 1 if 𝑧𝑐𝑎𝑝 = 0. 
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𝛿 = ∑𝑦1,𝑘(𝑦2,𝑘 + 𝑦3,𝑘 + 𝑦4,𝑘 − 𝑧𝑐𝑎𝑝,𝑘)

𝑖−1

𝑘=1

 (5.5) 

 

𝜖 = 𝛿 +∑[ ∑ 𝑤ℎ,𝑘𝑦1,𝑘|𝑖(𝑦2,𝑘|𝑖 + 𝑦3,𝑘|𝑖 + 𝑦4,𝑘|𝑖 − 𝑧𝑐𝑎𝑝,𝑘)

𝑖+𝑚ℎ

𝑘=𝑖+𝑚ℎ−1+1

]

𝐻

ℎ=1

 (5.6) 

 𝐽(𝑦, 𝛿) = {
𝛾𝑖 ⋅ 𝜖  ∀𝜖 > 0
0        ∀𝜖 ≤ 0

 (5.7) 

 

Scenario 3 

This is represented by Eqs. (5.8), (5.9) and (5.10). In this scenario, if more greenhouse gases are 

released, carbon credits are bought to compensate, denoted by the penalization term 𝛾𝑏𝑢𝑦,𝑖 i.e. the 

cost of purchasing credits. On the other hand, if less greenhouse gases are emitted than mandated, 

then equivalent credits can be sold at the rate of 𝛾𝑠𝑒𝑙𝑙,𝑖. This scenario reduces to Scenario 2 if 

𝛾𝑠𝑒𝑙𝑙,𝑖 = 0. As before, the 𝛿 term denotes past errors in meeting up with designated carbon capture 

target. 

 

𝛿 = ∑𝑦1,𝑘(𝑦2,𝑘 + 𝑦3,𝑘 + 𝑦4,𝑘 − 𝑧𝑐𝑎𝑝,𝑘)

𝑖−1

𝑘=1

 (5.8) 

 

 

𝜖 = 𝛿 + ∑ [ ∑ 𝑤ℎ,𝑘𝑦1,𝑘|𝑖(𝑦2,𝑘|𝑖 + 𝑦3,𝑘|𝑖 + 𝑦4,𝑘|𝑖 − 𝑧𝑐𝑎𝑝,𝑘)

𝑖+𝑚ℎ

𝑘=𝑖+𝑚ℎ−1+1

]

𝐻

ℎ=1

 (5.9) 

 
𝐽(𝑦, 𝛿) = {

𝛾𝑏𝑢𝑦,𝑖 ⋅ 𝜖   ∀ 𝜖 ≥ 0

−𝛾𝑠𝑒𝑙𝑙,𝑖 ⋅ 𝜖 ∀𝜖 < 0
 (5.10) 

 

5.3 Stability 

In this section, a Lyapunov stability analysis is presented. However, unlike the work of Huang et 

al. (Huang et al., 2011) which presents the Lyapunov stability analysis of a cyclic process, the 

power plant integrated with CO2 capture is considerably different since it is neither cyclic nor there 

is any desired steady state. Furthermore, as the CO2 capture target is specified for a base period, 

discrepancy in the past CO2 capture within a given base period must be accounted for.  In addition, 
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as load-following is considered, plant dynamics strongly depends on forecasting of demand and 

price of electricity. Therefore, a Lyapunov stability analysis of this interesting system is 

undertaken.  

A general discrete function for prediction of disturbances 𝑑 given by Eq. (5.1) is assumed. At time 

step k, let the stage cost of the optimization problem in Eq. (5.2) be denoted by 𝑙(𝑑𝑘 , 𝑢𝑘 , 𝑦𝑘, 𝛿𝑘) 

where 𝑢𝑘 denotes manipulated variables to be used as set points for the supervisory control layer 

beneath the scheduler. While these are outputs (degrees of freedom) of the scheduler optimization, 

they are inputs to the supervisory control layer. it should be noted that 𝑦 here denotes computed 

values of future outputs as past outputs have been absorbed in 𝛿. It is proposed that the economic 

objective function, defined as in Eq. (5.2), is a Lyapunov function under certain assumptions. 

Assumption 1 

The underlying process defined by 𝑦𝑘 = ℱ(𝑥𝑘, 𝑣𝑘) is controllable, i.e.  For any final time t > 0 and 

any initial state 𝑥0, there exists a control that transfers the state to the desired value at time t.  

Assumption 2 

The predictions denoted by 𝐹(𝑑𝑘) and the stage cost 𝑙(𝑑𝑘, 𝑢𝑘, 𝑦𝑘, 𝛿𝑘) are both Lipschitz 

continuous on the set of all 𝑢 ∈ 𝕌, 𝑑 ∈ 𝔻, 𝑦 ∈ 𝕐, 𝛿 ∈ 𝔇 with Lipschitz constants 𝑙𝑓 , 𝑙𝑙 ≥ 0 such 

that ∀ 𝑢 ∈ 𝕌, 𝑑 ∈ 𝔻, 𝑦 ∈ 𝕐, 𝛿 ∈ 𝔇 this gives the following: 

 |𝐹(𝑑1) − 𝐹(𝑑2)| ≤ 𝑙𝑓|𝑑1 − 𝑑2| (5.11) 

 |𝑙(𝑑1, 𝑢1, 𝑦1, 𝛿1) − 𝑙(𝑑2, 𝑢2, 𝑦2, 𝛿2)| ≤ 𝑙𝑙|(𝑑1, 𝑢1, 𝑦2, 𝛿1) − (𝑑2, 𝑢2, 𝑦2, 𝛿2)| (5.12) 

Assumption 3 

In the absence of estimation errors of the forecasting model, let the optimal sequence of set points 

obtained from the optimization at time step 𝑘 of the base period be denoted by �⃗� ∗(𝑥, 𝑘) =

{𝑢∗(𝑘|𝑘), 𝑢∗(𝑘 + 1|𝑘), … , 𝑢∗(𝑁|𝑘)} and optimally computed outputs be denoted by 

{𝑦∗(𝑘|𝑘), 𝑦∗(𝑘 + 1|𝑘), … , 𝑦∗(𝑁|𝑘)}.  For the inputs 𝑢, predicted outputs 𝑦 and control errors 𝛿, it 

is assumed that there exists 𝜅∞ functions 𝛽(∙), 𝛾 (∙), 𝜉(∙)  such that for some arbitrary time step 

𝑘 = 𝑖, such that 

 

∑|𝑢(𝑘|𝑖) − 𝑢∗(𝑘|𝑖)| ≤∑𝛽(|𝑑𝑘 − 𝑑𝑘
∗ |)

𝑁

𝑘=𝑖

𝑁

𝑘=𝑖

 (5.13) 
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∑|𝑦𝑘|𝑖 − 𝑦𝑘|𝑖
∗ | ≤ ∑𝛾(|𝑑𝑘 − 𝑑𝑘

∗ |)

𝑁

𝑘=𝑖

𝑁

𝑘=𝑖

 (5.14) 

 

∑|𝛿𝑘| ≤∑𝜉(|𝑑𝑘 − 𝑑𝑘
∗ |)

𝑁

𝑘=𝑖

𝑁

𝑘=𝑖

 (5.15) 

 

Where the predictions and the actual values of the disturbances are denoted by 𝑑 and 𝑑∗ 

respectively. The above assumption ensures that the deviation in scheduler outputs (degrees of 

freedom) and the lower level computed outputs remain bounded as the true value of the 

disturbances deviate from the optimal prediction.  

Assumption 4 

The optimization problem defined in Eq. (5.2) satisfies the linear independent constraint 

qualification (Nocedal and Wright, 2006), sufficient second order conditions (Nocedal and Wright, 

2006) and strict complementarity (Nocedal and Wright, 2006) at the solution.  

Assumption 4 indicates that Eq. (5.2) is well-posed and thus a solution exists which is locally 

unique. The formulation defined by Eq. (5.2) is transformed to the form of deviation variables 

from the optimal (Diehl et al., 2011, Huang et al., 2011). Thus 

 �̅�𝑘 = 𝑑𝑘 − 𝑑𝑘
∗  

�̅�𝑘 = 𝑢𝑘 − 𝑢𝑘
∗  

�̅�𝑘 = 𝑦𝑘 − 𝑦𝑘
∗ 

𝛿�̅� = 𝛿𝑘 − 𝛿𝑘
∗ 

(5.16) 

Thus the transformed disturbance model evolves according to the following: 

 �̅�𝑘+1 = 𝐹(�̅�𝑘 + 𝑑𝑘
∗) − 𝑑𝑘+1

∗ = �̅�(�̅�𝑘) (5.17) 

where  �̅�(0) = 0 

For the transformed system, the stage cost is modified as follows: 

 

 𝑙(̅�̅�, �̅�, �̅�, 𝛿̅)  ≜ 𝑙(𝑑, 𝑢, 𝑦, 𝛿) − 𝑙(𝑑∗, 𝑢∗, 𝑦∗, 𝛿∗) (5.18) 

Lemma 1 

The stability of the transformed formulation with stage cost 𝑙(̅�̅�, �̅�, �̅�, 𝛿̅) at (0,0,0,0) is equivalent 

to the stability of the original system with stage cost 𝑙(𝑑, 𝑢, 𝑦, 𝛿) at (𝑑∗, 𝑢∗, 𝑦∗, 𝛿∗). 
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Assumption 4 implies that a unique solution exists to the optimization problem formulated in Eq. 

(5.2) and ∑ 𝑙(𝑑∗, 𝑢∗, 𝑦∗, 𝛿∗)𝑁
𝑘=𝑖  is a constant thus the solution to the optimization problem using 

Eq. (5.18) as a stage cost is the same as the solution obtained with Eq. (5.2).  

Thus the objective function is similarly transformed 

 

�̅�(𝑖) =∑𝑙(̅�̅�𝑘, �̅�𝑘 , �̅�𝑘, 𝛿�̅�)

𝑁

𝑘=𝑖

 (5.19) 

 

�̅�(𝑖) =∑(𝑙(�̅�𝑘 + 𝑑𝑘
∗ , �̅�𝑘 + 𝑢𝑘

∗ , �̅�𝑘 + 𝑦𝑘
∗ , 𝛿�̅� + 𝛿𝑘

∗) − 𝑙(𝑑𝑘
∗ , 𝑢𝑘

∗ , 𝑦𝑘
∗ , 𝛿𝑘

∗))

𝑁

𝑘=𝑖

 (5.20) 

 

From Eq. (5.20), it is evident that 𝑙(̅0,0,0,0) = 0. Therefore the stability of the transformed 

formulation in Eq. (5.19) is equivalent to the stability of the original system in Eq. (5.2). 

Due to the Lipschitz continuity of the prediction model and cost function, it is apparent that the 

transformed system and the cost function are Lipschitz continuous i.e. ∀ 𝑑 ∈ 𝔻, 𝑢 ∈ 𝕌 there exists 

Lipschitz constants  𝑙�̅� and  𝑙�̅� such that 

 |�̅�(�̅�1) − �̅�(�̅�2)| ≤ 𝑙�̅�|�̅�1 − �̅�2| (5.21) 

 |𝑙(�̅�1, �̅�1, �̅�1, 𝛿1̅) − 𝑙(�̅�2, �̅�2, �̅�2, 𝛿2̅)| ≤ 𝑙𝑙 ̅|(�̅�1, �̅�1, �̅�1, 𝛿1̅) − (�̅�2, �̅�2, �̅�2, 𝛿2̅)| (5.22) 

In addition, this implies that the transformed system has bounded inputs, future outputs and errors 

such that: 

 

∑|�̅�(𝑘|𝑖)| ≤ �̅�|�̅�𝑖 − 0|

𝑁

𝑘=𝑖

 (5.23) 

 

∑|�̅�𝑘|𝑖| ≤ �̅�(�̅�𝑖 − 0)

𝑁

𝑘=𝑖

 (5.24) 

 

∑|𝛿�̅�| ≤ 𝜉̅(�̅�𝑖 − 0)

𝑁

𝑘=𝑖

 (5.25) 

Assumption 5 

There exists a 𝜅∞ function 𝜓(⋅) such that the stage cost 𝑙(̅�̅�𝑘, �̅�𝑘 , �̅�𝑘, 𝛿�̅�) satisfies 

 𝑙(̅�̅�, 𝑢,̅ �̅�, 𝛿̅) ≥ 𝜓(|�̅� − 0|) (5.26) 
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Theorem: 

Based on assumptions 1-5, then 𝑉(𝑖) as defined by Eq. (5.2) is a Lyapunov function and the 

transformed formulation defined by Eq. (5.19) is asymptotically stable at (0,0,0,0). 

Proof: 

The following is obtained:  

 �̅�(𝑖 + 1) − �̅�(𝑖) = −𝑙(̅�̅�𝑖, �̅�𝑖 , �̅�𝑖 , 𝛿�̅�) ≤ −𝜓(|�̅�𝑖 − 0|) (5.27) 

 

From assumption 5, Eq. (5.19) and Eq. (5.20), and triangle inequality, one obtains 

 

�̅�(𝑖) =∑𝑙(̅�̅�𝑘, �̅�𝑘 , �̅�𝑘, 𝛿�̅�)

𝑁

𝑘=𝑖

 

=∑(𝑙(̅�̅�𝑘, �̅�𝑘, �̅�𝑘, 𝛿�̅�) − 𝑙(̅0,0,0,0))

𝑁

𝑘=𝑖

 

≤ 𝑙𝑙 ̅ (∑|�̅�𝑘 − 0| +∑|�̅�𝑘 − 0|

𝑁

𝑘=𝑖

𝑁

𝑘=𝑖

+∑|�̅�𝑘 − 0|

𝑁

𝑘=𝑖

+∑|𝛿�̅� − 0|

𝑁

𝑘=𝑖

) 

(5.28) 

 

From the Lipschitz continuity of �̅�(. , . ) , one obtains 

 |�̅�𝑘 − 0| ≤ 𝑙�̅�
𝑘−𝑖|�̅�𝑖 − 0| (5.29) 

 

∑|�̅�𝑘 − 0|

𝑵

𝒌=𝒊

≤ 𝐿𝐹[|�̅�𝑖 − 0|] (5.30) 

where 𝐿𝐹 ≥ ∑ 𝑙�̅�
𝑘−𝑖𝑁

𝑘=𝑖  

Substituting Eqs. (5.30), (5.23), (5.24) and (5.25) into Eq. (5.28), the following is obtained 

 �̅�(𝑖) ≤ 𝑙𝑙 ̅ (𝐿𝐹(|�̅�𝑖 − 0|) + �̅�(|�̅�𝑖 − 0|) + �̅�(|�̅�𝑖 − 0|) + 𝜉̅(|�̅�𝑖 − 0|)) (5.31) 

Therefore 

 �̅�(𝑖) ≤ Φ(|�̅�𝑖|) (5.32) 

 

where Φ(⋅) = 𝑙𝑙 ̅ (𝐿𝐹(⋅) + �̅�(⋅) + �̅�(⋅) + �̅�(⋅)) is a 𝜅∞ function. The set of equations in (5.26), 

(5.27) and (5.32) completes the proof that the function �̅�(⋅) defined as in Eq. (5.19) is a Lyapunov 
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function. Therefore with respect to Lemma 1, the original system 𝑉(⋅) defined as in Eq. (5.2) is a 

Lyapunov function. ∎ 

5.4 Case Study 

The proposed optimal scheduling algorithm is implemented on an IGCC power plant with CO2 

capture based upon the model developed by (Bhattacharyya et al., 2011). In this process, the 

syngas, mainly hydrogen and carbon monoxide, produced in the gasifier is sent to a series of water 

gas shift reactors (modeled as adiabatic plug flow reactors in series) with inter-stage cooling.  The 

shifted syngas is then sent to the AGR unit where CO2 and hydrogen sulfide (H2S) are selectively 

absorbed from the syngas leaving mostly hydrogen in the clean syngas. The cleaned syngas is then 

sent to the gas turbine for power production. The hot exhaust gas from the gas turbine is then sent to 

a heat recovery steam generator where it is used to raise steam at various pressures for additional power 

production. Readers are referred to (Bhattacharyya et al., 2011) for a comprehensive discussion. 

 Problem formulation 

The terms in the cost function for electricity production and carbon capture in Eq. (5.2) need to be 

specified before one can proceed.  

 𝑓(𝑢1,𝑘, 𝑑2,𝑘|𝑖) = 𝐸𝑘|𝑖 ⋅ 𝐹𝑠,𝑘휂 ⋅ 𝐿𝐻𝑉 (5.33) 

In Eq. (5.33),  𝑓(𝑢1,𝑘, 𝑑2,𝑘|𝑖), 𝐸𝑘|𝑖 , 𝐹𝑠, and 휂 denote the revenue, electricity price, syngas flow rate, 

and overall efficiency for converting the syngas to electricity defined based on the lower heating 

value (LHV). The cost of carbon capture 𝑝(𝑢𝑘) is obtained from the least squares regression to fit 

a quadratic model as shown in Eq. (5.34). As stated in Section 5.2.2, this cost includes pumping 

and compressor costs, solvent make up, chilling, reboiling etc. as can be seen in Section 3.1.1 of 

(Jones et al, 2014) and Eq. (3.57). To reduce computational complexity, two horizons namely the 

near and far horizon are used.  In this case, the weights 𝑤ℎ in Eq. (5.2) reduce to 𝑤1 and 𝑤2. The 

relative change in CO2 capture due to change in the concentration of CO and CH4 in the outgoing 

stream from the SELEXOL unit are neglected since partial pressure of these species at the 

SELEXOL unit inlet is low resulting in negligible capture in the absorbers.  

 
𝑝(𝑢𝑘) =  (

50𝐹𝑠,𝑘𝑧𝑐,𝑘
𝐹𝑠,𝑚𝑎𝑥

+ 0.198𝑧𝑐,𝑘
2 ) 11.58⁄  (5.34) 
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Since this study is focused on a single power generation unit while in real life a large number of 

power generators would participate in following the load, the electricity demand data available 

from the grid are scaled such that the IGCC plant considered here is able to provide the maximum 

electricity demand. The maximum syngas flow rate to the process is given as 2.79 × 104kmol/h 

while minimum syngas flow is set at 4.53 × 103kmol/h. Nominal flow is set at 1.63 × 104 

kmol/h. Minimum carbon capture is set at 55% while maximum carbon capture is set at 97%. 

Efficiency 휂 and the LHV of syngas are assumed constant and the product η ⋅ LHV  is set as 154.3 

MJ/kmol. The target CO2 capture for the second and third scenarios is set to be 80%. The carbon 

tax 𝛾 is set at $100/ton carbon (Poterba, 1991). For simplicity, the base period is set to be three 

months while the near horizon is set to two weeks. The objective function differs for each scenario 

due to the difference in the carbon tax penalty term which is outlined for the different scenarios 

below. As the penalty term 𝐽(𝑦, 𝛿) is based on the CO2 released, in the formulations that follow 

𝑧𝑐,𝑘 denotes the carbon capture setpoint from the scheduler at time step k, while 𝛼 denotes the 

carbon capture target set by regulating agencies. It should be noted that the decision variable 𝑢 

here consists of [𝐹𝑠 , 𝑧𝑐]. 

Scenario 1 

 

𝑉(𝑑, 𝑢, 𝑦, 𝛿) = ∑𝑤1,𝑘 (𝐸𝑘|𝑖𝐹𝑠,𝑘휂𝐿𝐻𝑉 − 𝑝(𝑢𝑘))

𝑖+𝑚

𝑘=𝑖

+ ∑ 𝑤2,𝑘 (𝐸𝑘|𝑖𝐹𝑠,𝑘휂𝐿𝐻𝑉 − 𝑝(𝑢𝑘))

𝑁

𝑘=𝑖+𝑚+1

−  𝐽(𝑦, 𝛿) 

(5.35) 

 

𝐽(𝑦, 𝛿) = 𝛾(𝛿 +∑𝑤1,𝑘𝐹𝑠,𝑘|𝑖𝑧𝐶𝑂2,𝑘(1 − 𝑧𝑐,𝑘|𝑖)

𝑖+𝑚

𝑘=𝑖

+ ∑ 𝑤2,𝑘𝐹𝑠,𝑘|𝑖𝑧𝐶𝑂2,𝑘(1 − 𝑧𝑐,𝑘|𝑖)

𝑁

𝑘=𝑖+𝑚+1

) 

(5.36) 

 

Where 𝛿 =  ∑ 𝐹𝑠,𝑘𝑧𝐶𝑂2,𝑘(1 − 𝑧𝑐,𝑘)
𝑖−1
1  

Eqs. (5.35) and (5.36) follows Eqs. (5.2), (5.33), (5.3) and (5.4), represent the objective function 

for Scenario 1. In Eq. (5.36), the product 𝐹𝑠𝑧𝐶𝑂2 denotes the flow of CO2 into the AGR unit and 
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𝑧𝑐,𝑘 denotes the fraction of CO2 captured at time k while 𝑧𝑐,𝑘|𝑖 denotes future CO2 capture fraction 

set points from the scheduler.  

Scenario 2 

𝑉(𝑑, 𝑢, 𝑦, 𝛿) = ∑𝑤1,𝑘 (𝐸𝑘|𝑖𝐹𝑠,𝑘휂𝐿𝐻𝑉 − 𝑝(𝑢𝑘))

𝑖+𝑚

𝑘=𝑖

+ ∑ 𝑤2,𝑘 (𝐸𝑘|𝑖𝐹𝑠,𝑘휂𝐿𝐻𝑉 − 𝑝(𝑢𝑘))

𝑁

𝑘=𝑖+𝑚+1

−  𝐽(𝑦, 𝛿) 

(5.37) 

𝜖 = 𝛿 +∑𝑤1,𝑘𝐹𝑠,𝑘|𝑖𝑧𝐶𝑂2,𝑘(𝛼 − 𝑧𝑐,𝑘|𝑖)

𝑖+𝑚

𝑘=𝑖

+ ∑ 𝑤2,𝑘𝐹𝑠,𝑘|𝑖𝑧𝐶𝑂2,𝑘(𝛼 − 𝑧𝑐,𝑘|𝑖)

𝑁

𝑘=𝑖+𝑚+1

 (5.38) 

𝐽(𝑦, 𝛿) = {
𝛾𝑖 ⋅ 𝜖  ∀ 𝜖 ≥ 0
0        ∀ 𝜖 < 0

 (5.39) 

where 𝛿 = ∑ 𝐹𝑠,𝑘𝑧𝐶𝑂2,𝑘(𝛼 − 𝑧𝑐,𝑘)
𝑖−1
𝑘=1 . 

Scenario 2 is represented by Eqs. (5.37) - (5.38). In Eq. (5.39), the discrepancy in carbon capture 

(i.e. difference between target and actual capture) in the past is denoted by the first term while the 

second and third terms denote predicted differences in CO2 capture in the near and far horizon. 

Scenario 3 

𝑉(𝑑, 𝑢, 𝑦, 𝛿) = ∑𝑤1,𝑘𝐸𝑘|𝑖 (𝐹𝑠,𝑘휂𝐿𝐻𝑉 − 𝑝(𝑢𝑘))

𝑖+𝑚

𝑘=𝑖

+ ∑ 𝑤2,𝑘𝐸𝑘|𝑖 (𝐹𝑠,𝑘휂𝐿𝐻𝑉 − 𝑝(𝑢𝑘))

𝑁

𝑘=𝑖+𝑚+1

−  𝐽(𝑦, 𝛿) 

(5.40) 

𝜖 = 𝛿 +∑𝑤1,𝑘𝐹𝑠,𝑘|𝑖𝑧𝐶𝑂2,𝑘(𝛼 − 𝑧𝑐,𝑘|𝑖)

𝑖+𝑚

𝑘=𝑖

+ ∑ 𝑤2,𝑘𝐹𝑠,𝑘|𝑖𝑧𝐶𝑂2,𝑘(𝛼 − 𝑧𝑐,𝑘|𝑖)

𝑁

𝑘=𝑖+𝑚+1

 (5.41) 

𝐽(𝑦, 𝛿) = {
    𝛾𝑏𝑢𝑦,𝑖 ⋅ 𝜖  ∀ 𝜖 ≥ 0

−𝛾𝑠𝑒𝑙𝑙,𝑖 ⋅ 𝜖  ∀𝜖 < 0
 (5.42) 

 

Eqs. (5.40-5.42) denote the objective function for Scenario 3. Here, 𝛿 is computed as before in 

Scenario 2.  
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 Forecasting model 

Here, a stochastic state space model shown in Eq. (5.43) has been identified using historical hourly 

electric price and grid load for the year 2014 for the Texas grid obtained from www.pjm.com.   

 𝑞𝑘+1 = �̅�𝑞𝑘 + �̅�𝑒𝑘  
𝑑𝑘+1 = 𝐶̅𝑞𝑘 

(5.43) 

 

Forecasting models for the electricity price and demand are of the form given by Eq. (5.43).  In 

the near horizon, forecasting is expected to be more accurate than the longer range predictions. In 

addition, monthly predictions are arrived at by scaling with respect to the standard deviation for 

each month to accurately simulate the monthly variations in prices and demand. Figs. 5.2 and 5.3 

show the goodness of fit for the forecasting model. It can be observed that the model predicts the 

daily change in electricity demand and prices within given tolerance. During the optimization at 

any time step k when the scheduler runs, the discrete time model employs an error term calculated 

as the difference between previous forecasts for the current time step and actual values, which is 

then used to adjust future predictions. This accounts for unexpected variations in load and price of 

electricity.  The forecasting model is then used to model electricity demand and price data obtained 

from www.pjm.com for the Commonwealth Edison utility company serving Illinois area. The 

purpose of using a different data set than those that were developed to simulate the forecasting 

model is to simulate errors in the forecasting model and study performance of the scheduler in the 

face of such errors.  

http://www.pjm.com/
http://www.pjm.com/
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Figure 5.2 Comparison of predicted and actual scaled electricity prices (data from 

www.pjm.com for the Texas grid for 2014). 

 

Figure 5.3 Comparison of predicted and actual scaled electricity demand (data from 

www.pjm.com for the Texas grid for 2014). 
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 Software Implementation 

The MPC control toolbox in MATLAB Simulink was used to develop the controller and the 

Simulink flowsheet was coupled with MATLAB workspace where the scheduler is being run 

through interfacing blocks within Simulink. 

At any time step, when the scheduler runs, the present price and demand, current run step and past 

values of the controlled variable and other variables are fed into the MATLAB script that calls the 

function which performs the optimization. Therein the prices and demand are scaled depending on 

the present month determined based on the current time. Next, future predictions are made using 

an identified stochastic model. Then the optimizer employs the sequential quadratic programming 

method (SQP) implemented in MATLAB’s ‘fmincon’ function. Once the optimal setpoints are 

obtained, the current set point is passed to the MPC and the process unit in Simulink where the 

discrete state space linear model is used to model the AGR unit of the IGCC plant. There, a variable 

step size ODE solver (Dormand-Prince) is employed to simulate the process from the current time 

step to the next time step (i.e. one hour). Actual values of the CVs are stored in the MATLAB 

workspace and are transferred back to the workspace of the script which calls the optimization 

function.  The process is repeated until the end of the base time. The sequence of steps and 

interaction between the MATLAB and Simulink blocks is shown in Fig. 5.4 while the simulation 

flowsheet as implemented in Simulink is shown in Fig. 5.5. 
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Figure 5.4 Flowsheet of scheduler control problem 

 

 

 

Figure 5.5 Schematic of the simulation flowsheet in Simulink 
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 Results 

In computing the optimal sequence of syngas flow rates and carbon capture rate, the data on 

electricity price and demand were obtained from http://www.pjm.com/markets-and-

operations/data-dictionary.aspx for January through March 2015 for the ComEd utility company 

and were used for all three scenarios. Real time electricity demand and prices are shown in Figs. 

5.6-5.7. To render the results and the data more amenable to visual analysis, the electricity prices 

and demand were averaged out on a daily basis thus reducing data points from 2160 (hour) to 90 

(day) as shown in Figs. 5.9a and 5.9b. The proposed algorithm can work on longer periods but 90 

days is chosen here for the sake of brevity. Prediction errors of the developed forecasting model 

on both electricity prices and demand are shown in Fig. 5.8a and 5.8b respectively. 

 

Figure 5.6 Hourly variation of electricity demand from January to March, 2015 for the ComEd 

utility company 

 

http://www.pjm.com/markets-and-operations/data-dictionary.aspx
http://www.pjm.com/markets-and-operations/data-dictionary.aspx
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Figure 5.7 Hourly variation of electricity price from January to March, 2015 

          

Figure 5.8 Errors in predictions of (a) electricity demand and (b) price from January to March, 

2015. 
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Figure 5.9 Daily averaged electricity price (a) and demand (b) from January to March, 2015 

 Figs. 5.10-5.12 show the change in the syngas flowrate and CO2 capture rate for Scenarios 1-3, 

respectively.  For all three scenarios, the syngas flow rate is correlated with the electricity demand 

and one can observe a general trend in the sequence of Figs. 5.10a, 5.11a, and 5.12a.  

For Scenario 1 in Fig. 5.10, tax is levied on all carbon released so the optimal sequence obtained 

from the RTO (Real Time Optimizer) keeps the CO2 capture rate at its maximum. This occurs as 

long as the tax levied on the CO2 released is greater than the cost of CO2 capture. Contrarily, if no 

RTO was in place, this would be at a nominal carbon capture set point. No interesting interplay 

exists between energy demand, electricity prices and the optimal set point policy during operation. 

However, as shown later, as the carbon tax is lowered, the cost of carbon capture becomes higher 

than the carbon tax penalty levied and thus Scenario 1 can result in lower CO2 capture than the 

nominal target.  
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Scenario 1 

 

          
 

Figure 5.10 Syngas flow rates (a) and CO2 capture fraction set points (b) for the Scenario 1 

For Scenarios 2 and 3, when electricity prices are low, higher incentives exist to capture higher 

percentages of CO2 and conversely, when the electricity prices peak, the scheduler decreases the 

carbon capture set points accordingly. Dips in the electricity prices can be seen to correspond to 

peaks in the CO2 carbon capture. Two prominent peaks can be seen around day 50, and the 

resulting troughs in CO2 capture can be seen in both Scenarios 2 and 3 as shown in Figs. 5.11b and 

5.12b. The results of Scenario 3 are similar to Scenario 2 with respect to higher CO2 capture targets 

at low electricity prices and vice versa, however in contrast to Scenario 2, when the buying and 

selling price of CO2 credit are both high, and the selling price is higher than the cost of CO2 capture, 

maximum CO2 capture is generally preferred by the optimizer in order to sell prospective CO2 

credit. In contrast, when the selling price is very low and the buying price is equally low, and lower 

than the cost of CO2 capture, the scheduler sets minimum CO2 capture targets. 

               

 

 

 

 

b) a) 



117 

 

Scenario 2 

        

Figure 5.11 (a) Syngas flow rates and (b) CO2 capture fraction set points for Scenario 2 

Scenario 3 

          

Figure 5.12 (a) Syngas flow rates and (b) CO2 capture fraction set points for Scenario 3 

      

The relative advantage of the RTO with respect to plant operation at nominal conditions can be 

seen in Figs. 5.13-5.15 for Scenarios 1-3, respectively. For each scenario, a plot of the total profit 

objective function value and a plot of the operational cost of carbon capture are placed side by 

a) b) 

a) b) 
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side. For Scenario1, higher values of revenue can be generated by exploiting the stochastic 

predictions of electricity demand from the grid as opposed to nominal power production (Fig. 

5.13a). This exploitation however leads to an increase in CO2 capture cost compared to the nominal 

case as seen in Fig. 5.13b. For Scenario 2, similar arguments apply to the total objective function 

as shown in Fig. 5.14a, however the operational cost of the plant is lower than the nominal case. 

This is due to the optimized carbon capture profile where higher percentages of carbon capture are 

scheduled for periods with lower electricity prices and vice versa.  Therefore while the nominal 

case sets a constant power production and carbon capture, exploitation of the electricity prices 

enables the scheduler to achieve lower operational cost for the AGR unit (Fig. 5.14b). Close 

inspection shows that the RTO achieves higher costs with respect to the nominal case between day 

1 and day 20, however this is only due to the higher carbon capture at the beginning of the base 

time as electricity prices are relatively low (cf Fig. 5.9b). 

Finally for Scenario 3 in Fig. 5.12, due to the flexibility of trading tax credits, the difference in the 

profit objective function value with respect to the nominal case is significant. Higher values of 

revenue in the beginning of the base period can be seen due to higher carbon capture as the real 

time optimizer takes advantage of lower electricity prices in the beginning of the base period (cf 

Fig. 5.9b) while capturing relatively lower amounts of carbon emissions towards the end of the 

base period. Similar to Scenario 2, this corresponds to a higher carbon capture cost as shown in 

Fig. 5.16b. In this scenario, both buying and selling prices of CO2 are set at $100/ton (see section 

5.4.1), thus the high selling price motivates the scheduler to capture an average of 90% of the 

overall carbon (cf fig 15b) as compared to the nominal target of 80% as specified in Section 5.4.1. 

This difference renders prospective selling units of CO2 credits available for revenue. Thus the 

marked difference in the objective function for the RTO and nominal case in Fig. 5.15a. This 

corresponds to a significant increase in the cost of carbon capture for the AGR unit.  For a 90 day 

period, the overall values are summarized in Table 5.1. 

Table 5.1 Summary of objective function values and cost of carbon capture for all scenarios 

 Scenario 1 Scenario 2 Scenario 3 

 RTO No RTO RTO No RTO RTO No RTO 

Objective function ($)× 107 3.82 3.38 6.33 5.65 11.07 5.65 

CO2 capture cost ($)× 105 2.22 2.00 1.73 1.65 1.91 1.65 
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Figure 5.13 Objective function (Profit) and cost of carbon capture for Scenario 1 (with RTO – 

black solid, without the RTO– blue dash dot). 

           

Figure 5.14 Objective function (Profit) and cost of carbon capture for Scenario 2 (with RTO – 

black solid, without the RTO– blue dash dot). 

           

b) a) 

b) a) 
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Figure 5.15 Objective function (Profit) and cost of carbon capture for Scenario 3 (with RTO – 

black solid, without the RTO– blue dash dot). 

           

Results from the RTO strongly depend on the amount of tax levied on carbon emissions. Therefore, 

a study is conducted to evaluate the RTO dynamics due to change in the carbon tax ($/ton). For 

Scenarios 1 and 2, the tax levied on the CO2 emissions was varied and for Scenario 3, the geometric 

mean of the buying and selling credit for CO2 emissions was varied. These tax values were varied 

until the minimum and maximum carbon capture is reached for each scenario. The average carbon 

capture during the entire base period is plotted against different tax values as shown in Fig 5.16. 

   
b) 

a) 

b) a) 
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Figure 5.16 Sensitivity of average carbon capture due to changes in the carbon tax γ($/ton CO2) 

(a) Scenario 1; (b) Scenario 2; (c) Scenario 3. 

From Figs. 5.16a-c, it is apparent that reduced tax levied on CO2 emissions results in a concomitant 

decrease in the amount of CO2 captured as expected. In the case of Scenario 2, the maximum CO2 

captured is the target specified for the base time as no credit is gained by capturing more CO2. For 

Scenario 3, a similar trend is observed where the CO2 capture varies from the maximum to 

minimum as the geometric mean of the buying and selling price of CO2 decreases. However, 

greater incentives to capture higher carbon exists for Scenario 3 due to the possibility of selling 

CO2 credits hence the sharp rise in the CO2 capture fraction at 𝛾𝑏𝑢𝑦 = 𝛾𝑠𝑒𝑙𝑙 = 0.08$/ton CO2. 

5.5 Conclusions 

Optimal scheduling of an IGCC power plant with CO2 capture is provided in this study. A complete 

mathematical formulation including revenue generation and operational cost of carbon capture 

under different tax scenario is presented. In addition to this, Lyapunov-based stability conditions 

are provided for which the results are guaranteed for the optimizer. Effects of three different 

scenarios for carbon tax on optimal set points of syngas flowrate and CO2 capture are investigated. 

As expected, carbon capture for all scenarios considered is negatively correlated with electricity 

price. Results show how exploitation of the stochastic predictions of electricity price and demand 

can result in increased profits for power plants. For Scenario 1, it is shown that higher values of 

c) 
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profit can be obtained by producing just the required amount of electricity to offset power produced 

by fluctuating sources such as renewables. For Scenario 2, in addition to higher values of profit 

which is obtained in part by load following, reduced cost of carbon capture is obtained by 

exploiting variation in electricity prices. Lastly for Scenario 3, higher values of profit are obtained 

due to three properties, one is the exploitation of electricity demand, secondly the electricity prices 

are used to schedule carbon capture, lastly prospective selling or buying of CO2 credits can be 

taken advantage of to arrive at optimal scheduling of power production and carbon capture.  Of all 

scenarios, Scenario 3 takes most advantage of the scheduling as can be seen in the sensitivity of 

the percentage of CO2 capture to changes in tax prices. The insights gained from this study can be 

applicable to real power plants for increasing profit and revenue without violating environmental 

constraints of carbon capture especially when the operational cost of running the plant is high. 
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Chapter 6 

6 Recommendations and future research 

The contributions of this thesis includes the development of a connectivity estimation procedure 

and algorithm for the purpose of decomposition. This decomposition is then used for CV selection 

to reduce computational time. Secondly, metaheuristic algorithms are coupled into one framework 

referred to as the multiagent optimization programming which is utilized to solve CV selection 

optimization. Lastly, real time optimization is examined for further optimality of energy plants. 

Further studies should be carried out with nonlinear plants of sizes considerably larger than 

considered here for the purpose of control structure design. This would necessitate the utility of 

the estimation of structural connectivity for the purpose of reorganization of the process into 

different islands/sections while seeking for the optimal CV selection with the new organization. 

While the DCM was developed for continuous time systems with full model integration, analysis 

could be extended to discrete time systems with comparison to the findings here for continuous 

time systems as most processes are inherently modelled as discrete systems. It may also be crucial 

to identify other filtering techniques that could be exploited such as particle filtering and/or 

unscented Kalman filters for the purpose of powerful system identification techniques. This may 

compromise computational efficiency. Additionally, the DCM can be utilized for obtaining 

pertinent information for controller design such as Gramian and Relative gain arrays. 

Studies could be carried out for further algorithm development towards performance and 

computational time improvements. In particular, the agent-based nature of the proposed algorithm 

could be investigated in details for further advancements. For example, the computational time 

performance of the biologically-inspired methods could be improved by examining parallel 

computation of agent’s trajectories. 

The real time optimization considers two pertinent variables for the advanced energy plant with 

CO2 capture, it should be investigated if additional variables could be incorporated into real time 

optimization. Additionally, the methods developed in this thesis could be extended to other 

applications for the purpose of comparison and future research.  

The biomimetic control structure design methods could be implemented further to address other 

cyber physical systems.



 

Appendix 

A.1 Supervisory Control Layer Design 

A.1.1 Interaction Analysis 

As noted earlier, three major Gramian-based measures for input-output variable interaction are the 

PM (Conley and Salgado, 2000), HIIA (Wittenmark and Salgado, 2002) and Σ2 measure (Birk and 

Medvedev, 2003) . The traditional measure for interaction, RGA, is given by Eq. (1) where G is 

the steady-state gain and ‘.*’ denotes element-by-element matrix multiplication. In Eq. (1), the 

element 𝜆𝑖𝑗 corresponds to yi and vj. Eq. (2) is the formal definition of what the elements of the 

RGA represent. Each of these elements shows how the gain of input j on output i changes when 

all remaining loops are closed. This provides information on loop-loop interactions as the further 

away an element is from 1, the higher the degree of loop-loop interactions.  

 

 Π(𝐺) = 𝐺(0).∗ (𝐺(0)−1)𝑇 (1) 

 

Π(𝐺) = [

𝜆11 𝜆12 ⋯ 𝜆1𝑛
𝜆21 𝜆21 … 𝜆2𝑛
⋮ ⋮ ⋱ ⋮
𝜆𝑛1 𝜆𝑛2 ⋯ 𝜆𝑛𝑛

]  

 

𝜆𝑖𝑗 =

(
𝜕yi
𝜕𝑣𝑗

)
all loops open

(
𝜕yi
𝜕𝑣𝑗

)
loop 𝑖 open

 (2) 

Gramian-based interaction measures are a relatively new and potentially powerful tool in the 

analysis of multiple-input, multiple-output control structures. The main features of these 

interaction measures are outlined.  Readers interested in a more thorough examination are directed 

to (Halvarsson, 2008, Van De Wal and Jager, 2001). 

The Gramian-based interaction measures all rely upon the controllability and observability 

Gramians.  Consider the following continuous time-invariant state-space model:  

                                                   �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑣(𝑡)

y(𝑡) = 𝐶𝑥(𝑡)
 (3) 
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where x(t) is the state vector, v(t) is the input vector, and y(t) is the output vector.  The 

controllability and observability Gramians for this system are defined by Eqs. (14) and (15).   

 
𝑃 =  ∫ 𝑒𝐴𝜏𝐵𝐵𝑇𝑒𝐴

𝑇𝜏𝑑𝜏
∞

0

 (4) 

 
𝑄 =  ∫ 𝑒𝐴𝜏𝐶𝐶𝑇𝑒𝐴

𝑇𝜏𝑑𝜏
∞

0

 (5) 

The three Gramian-based interaction measures discussed in this paper all are based upon the 

Hankel matrix, defined as the product of the observability and controllability Gramians.  An 

important property of the Hankel matrix is that it is independent of the state-space realization and, 

therefore, so is any interaction measure derived from it.   Eqs. (6), (7) and (8) define the PM, HIIA, 

and the Σ2 interaction matrices, respectively.  The matrix norms are defined in Eqs. (9) and (10).   

 
[Φ]𝑖𝑗 =

𝑡𝑟(𝑃𝑗𝑄𝑖)

𝑡𝑟(𝑃𝑄)
 (6) 

 
[Σ𝐻]𝑖𝑗 =

‖𝑃𝑖𝑄𝑗‖𝐻
∑ ‖𝑃𝑘𝑄𝑙‖2𝑘𝑙

 (7) 

 
[Σ2]𝑖𝑗 =

‖𝑃𝑗𝑄𝑖‖2
∑ ‖𝑃𝑘𝑄𝑙‖2𝑘𝑙

 (8) 

 ‖𝐺‖𝐻 = √𝜆max(𝐺) (9) 

 
‖𝐺(𝑠)‖2 ≡ √∑∫ |𝑔𝑖𝑗(𝜏)|

2
𝑑𝜏

∞

0𝑖,𝑗

  (10) 

An important characteristic of the Gramian-based interaction measures is that they are scaling 

dependent.  Therefore, before these measures can be used for the design of a control structure, a 

systematic means of scaling must be defined.  Several scaling methods have been proposed in the 

open literature (Salgado and Conley, 2004, Shaker and Stoustrup, 2013). In this paper, the 

Gramian-based interaction measures are scaled in such a way that the sum of any row (column) is 

equal to the sum of any other row (column).  Scaling in this way ensures that all output variables 

are considered of equal importance, i.e., one output variable is not considered more significant 

than others.  Additionally, it is assumed that the relative ‘power’ of all input variables is the same, 
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specifically, all input variables have the same relative gain.  Scaling in this manner gives the 

Gramian matrices some of the similar properties to that of the RGA. 

As mentioned earlier, the expected computation time required for the calculation of control actions 

if an MPC were used is proposed here as a quantitative measure of controller complexity.  For 

simple PID controls, it is assumed that the computation is completed instantaneously and therefore 

has zero controller complexity. For MPC control, it is assumed the computational time and 

controller complexity is defined as Eq. (11). This measure is based upon the time complexity of 

the evaluation of an n dimensional optimization problem (Karmarkar, 1984).  Using this measure 

for controller complexity, the optimization problem shown as Eq. (12) is formulated where 𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

is calculated from one of the Gramian interaction measures.  The solution of this optimization 

problem will yield a set of Pareto optimal control structures which balance the tradeoffs of control 

performance with control complexity.  

 𝒪(𝑛2𝑙𝑛(𝑛) ) (11) 

  (𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑣, y) ⋅ (𝑣 + y)
2𝑙𝑛(𝑣 + y))  𝑣,𝑦  

min  (12) 

A.1.2 Optimal Tuning 

In addition to control structure design, tuning of MPC controllers has been a subject of ongoing 

research for several decades now.  These tuning methods fall into one of two general categories: 

online and offline tuning.   For a review of many of tuning methods proposed, readers are directed 

to (Garriga and Soroush, 2010).  The method proposed in this work is an offline tuning method 

where the tuning parameters of the MPC are manipulated to optimize the sum of a time domain 

control performance metric, the integral squared error (ISE), scaled based upon the individual CV's 

impact on the economic performance of the process. This is a promising method, as the framework 

allows for the introduction of constraints on the process response and the incorporation of 

economic insights of the process that were attained during the course of the plant-wide control 

system design procedure into the tuning method. 

 

 ∑(ŷ𝑘+𝑝|𝑘 − 𝑟)
𝑇
Ψ(�̂�𝑘+𝑝|𝑘 − 𝑟) +

𝑁𝑝

𝑝=1

 Δ𝑣   
min ∑ Δ𝑣𝑘+𝑗|𝑘

𝑇 Φ

𝑁𝑐−1

𝑗=1

Δ𝑣𝑘+𝑗|𝑘 

s.t. 

�̂�𝑚𝑖𝑛 ≤ �̂�𝑘 ≤ �̂�𝑚𝑎𝑥 

(13) 
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𝑣𝑚𝑖𝑛 ≤ 𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 

Δ�̂�𝑚𝑖𝑛 ≤ Δ𝑣𝑘 ≤ Δ𝑣𝑚𝑎𝑥 

�̂�𝑘+1 = �̂��̂�𝑘 + �̂��̂�𝑘 + θ𝑘  
ŷ𝑘+1 = �̂��̂�𝑘+1 

𝑘 = 0, 𝑇𝑠, 2𝑇𝑠, … 

Consider a general MPC formulation, as defined in Eq. (13).  Here, ŷ𝑘+𝑝|𝑘 represents the vector 

of the plants CVs at the (𝑘 + 𝑝)th time interval. Similarly the vector 𝑣𝑘+𝑗|𝑘 denotes the future 

values for the manipulated variables at the (𝑘 + 𝑗)th time interval which are to be optimally decided 

in the face of constraints to drive the CVs  �̂� to the reference set point 𝑟 passed down from the 

scheduler (denoted by 𝑢 at the scheduler level). The scalars 𝑘, 𝑝 and 𝑗 represent time, indexes for 

the prediction and control horizons respectively. 𝑁𝑝 and 𝑁𝑐 represent the prediction horizon and 

the control horizon, respectively. Ψ and Φ are weighting matrices.  The effects of disturbance θk 

at any time 𝑘 is incorporated into the discrete state space model 

The ‘tuning parameters’ for this MPC are the sampling interval, Ts, the prediction horizon, 𝑁𝑝, the 

control horizon, 𝑁𝑐, and the weighting matrices Ψ and Φ.  In this work, the prediction horizon is 

set following the heuristics of (Banerjee and Shah, 1992) to a value of 95% of the settling time to 

steady state and the control horizon is set following the heuristics of (Georgiou et al., 1988) to a 

value of 60% of the settling time to steady state.   

For the determination of the optimal output and movement suppression weights, an optimization 

problem is formulated. Here, 𝑛𝑦 is the number of CVs, ISE is the integral squared error of the 

primary controlled variable i, and , Θ𝑖 is the scaling factor based upon the economics of the process. 

The objective function to be optimized is the summed, scaled ISE values of the CVs, defined as in 

Eq. (14).  The scaling factors, Θ𝑖 are based upon the impact of individual CVs on the economics 

of the process. These are the same scaling factors as used in our previous work (Jones et al, 2014) 

for the selection of secondary CVs.   

 

min
Ψ,Φ

∑Θ𝑖𝐼𝑆𝐸𝐲𝑖

𝑛𝑦

𝑖=1

 

Subject to 

(14) 

 Γ(𝑟, 𝑦, 𝑣, 𝑡) ≤ 0  (15) 

In addition to the minimization of the summed, scaled ISE, one can include constraints on the 

process responses given set point changes or measured/unmeasured disturbances.  For example, 

one may wish to specify that a controlled variable have no more than a 3% overshoot in response 
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to a step change to its set point.  Including such constraints within the optimization allows for 

important process characteristics to be addressed during tuning the initial tuning of the MPC.  

These inequality constraints can take many user defined forms and represented as Eq. (15). 

Results 

First, the optimal structure of the supervisory control layer needs to be selected as outlined in A.1. 

To begin, the state space model of the AGR unit is required. This is obtained from the Aspen Plus 

Dynamics model of the AGR unit. From this state space model, the controllability and 

observability Gramians are calculated for each of the individual subsystems, i.e., each of the 

pairings of input to output. From these calculations, the three unscaled Gramian interaction 

matrices are obtained. Next, each of these Gramian interaction matrices are scaled, according to 

the methodology discussed in Section A.1. The three Gramian interaction matrices, namely HIIA, 

PM and Σ2 interactions measures, are used to determine the optimal pairings of the structure. These 

Gramian interaction measures may lead to the same or different control structures. The 

optimization problem shown in Eq. (9) is solved for all possible control structures that involve 

either decentralized or centralized, or any combination thereof where 𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is calculated from 

the Gramian interaction measure used. To determine the actual structure to be used, the numerical 

derivative of the control performance criteria with respect to the controller complexity is calculated 

for the PM, HIIA and Σ2 interactions measures listed in Table A.1. From this table, it is observed 

that using a combination of ‘one 4 by 4 centralized' controller and 'one 2 by 2 centralized’ 

controller is optimal.  

Table A.1 Numerical Derivative of Control Performance with respect to Controller Complexity 

[listed in increasing controller complexity] 

Disturbance Σ2  PM  HIIA  

Decentralized - - - 

One 2x2 Centralized 0.039638 0.036428 0.040864 

Two 2x2 Centralized 0.034841 0.033038 0.030405 

Three 2x2 Centralized 0.021244 0.018322 0.012263 

One 2x2 Centralized 

One 3x3 Centralized 
0.012298 0.015821 0.014232 

One 4x4 Centralized 0.010963 0.010176 0.009009 

Two 3x3 Centralized 0.01767 0.011027 0.006856 

One 4x4 Centralized 

One 2x2 Centralized 
0.002028 0.00617 0.007597 

One 6x6 Centralized 0.009358 0.007953 0.006746 
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With the structure of the supervisory control determined, the design of the supervisory control 

system is undertaken. The 4×4 centralized controller comprises the following controlled variables, 

namely CO2 capture rate, vapor composition in the CO2 absorber, H2S purity to the Claus unit, and 

solvent composition in the H2S absorber, and the following manipulated variables, namely the LP 

flash pressure, semi-lean solvent flowrate, lean solvent flowrate, and H2S concentrator pressure. 

The 2x2 centralized controller controls H2S capture and water content of the solvent using the 

stripper bottom temperature and steam flow to the stripper. For the purposes of this work, the forms 

used for these centralized controls are linear model predictive controls (LMPC).  

Models were identified by applying a pseudorandom binary sequence (PRBS) input signal to the 

nonlinear process model in Aspen Plus Dynamics. Using the MATLAB system identification 

toolbox, the output data and the PRBS input data were used to identify linear transfer functions. 

Using these identified models, the LMPCs for the process are designed. For the tuning of the 

LMPCs, the economic information obtained during controlled variable selection is introduced as 

described in (Jones et al, 2014). The objective of the optimization is shown in Eq. (11). Table A.2 

shows comparison of the objective function values of the initial, non-optimized tuning used for 

the LMPCs and that of the PID controllers. Table A.2 shows that superior performance, as 

compared to PID control, is attained from the LMPCs using these tuning parameters.  

Table A.2 Comparison of Initial ISEs of the LMPC to PID for Three Disturbances 

Disturbance Integral Square error (ISE) Percent improvement 

 PID LMPC  

-20% Step in syngas flow 701.4 222.7 68.25% 

+2% Step in CO2 Capture 116.9 43.0 63.20% 

-2% Step in CO2 Capture 103.7 49.3 52.43% 

 

For the first row, comparison of the performance of the PID controller and MPC for CO2 capture, 

H2S purity to Claus unit, CO2 vapor fraction in CO2 absorber and the scaled ISEs is shown in Figs. 

A.1 and A.2, respectively, for a -20% step change in syngas flow. 
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Figure A.1 CO2 Capture Fraction(a) and H2S Purity to Claus unit (b) after 20% Step Decrease in 

the Syngas Flowrate 

 

 

 

Figure A.2 CO2 vapor fraction(a) and ISEs (b) due to 20% Step Decrease in the Syngas Flowrate 

 

 

 

 

 

 

a) b) 

a) b) 
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A.2 Dynamic Causal Model 

Table A.3 Latent connectivity for the acid gas removal unit 

  

  FROM 

Variables 

CO2 

absorber 
(T1) 

H2 

recovery 

KO 
drum 

(D1) 

H2 
recovery 

drum 

(D2) 

MP flash 

(D3) 

LP 

flash(D4) 

H2S 

absorber 
(T2) 

H2S 

concentrator 
(T4) 

TO 

CO2 

Absorber(T1) 

CO2  
Vapor               

Liquid               

H2 
Vapor   `           

Liquid               

H2S 
Vapor               

Liquid               

H2 recovery 

K.O drum(D1) 

CO2  Vapor               

H2 Vapor               

H2 recovery  

drum(D2) 

CO2  
Vapor               

Liquid               

H2 
Vapor               

Liquid               

MP flash (D3) 

CO2  
Vapor               

Liquid               

H2 
Vapor               

Liquid               

LP flash(D4) 

CO2  
Vapor               

Liquid               

H2 
Vapor               

Liquid               

H2S Absorber 
(T2) 

CO2  
Vapor               

Liquid               

H2 
Vapor               

Liquid               

H2S 
Vapor               

Liquid               

H2S 

concentrator 
(T4) 

CO2  
Vapor               

Liquid               

H2 
Vapor               

Liquid               

H2S 
Vapor               

Liquid               
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Normalization 

Consider the equation  

 

�̇�(𝑡) = (�̅� +∑𝑢𝑗�̅�
𝑗

𝑗

+ diag(𝑋)�̅�)𝑋 (16) 

Let the variables be scaled such that 

 

�̇̃�(𝑡) = (�̃� +∑�̃�𝑗�̃�
𝑗

𝑗

+ diag(𝑋)�̃�) �̃� (17) 

Where 

�̃�𝑖 = 𝑋𝑖/max (𝑋𝑖)  

�̃�𝑝 = 𝑢𝑝/max (𝑢𝑝)  

It follows that 

𝐴𝑖𝑗 =
�̃�𝑖𝑗max (𝑋𝑖)

max (𝑋𝑗)
  

𝐵𝑖𝑗
𝑝
=

{
 
 

 
 

�̃�𝑖𝑗
𝑝max (𝑋𝑖)

max (𝑢𝑝)max (𝑋𝑗)
   ∀ 𝑗 > 1

            �̃�𝑖𝑗
𝑝 max (𝑋𝑖)

max (𝑢𝑝)
   , 𝑗 = 1

 

𝐻𝑖𝑗 = �̃�𝑖𝑗/max (𝑋𝑗) 
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