318 research outputs found

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Region-based memetic algorithm with archive for multimodal optimisation.

    Get PDF
    In this paper we propose a specially designed memetic algorithm for multimodal optimisation problems. The proposal uses a niching strategy, called region-based niching strategy, that divides the search space in predefined and indexable hypercubes with decreasing size, called regions. This niching technique allows our proposal to keep high diversity in the population, and to keep the most promising regions in an external archive. The most promising solutions are improved with a local search method and also stored in the archive. The archive is used as an index to effiently prevent further exploration of these areas with the evolutionary algorithm. The resulting algorithm, called Region-based Memetic Algorithm with Archive, is tested on the benchmark proposed in the special session and competition on niching methods for multimodal function optimisation of the Congress on Evolutionary Computation in 2013. The results obtained show that the region-based niching strategy is more efficient than the classical niching strategy called clearing and that the use of the archive as restrictive index significantly improves the exploration efficiency of the algorithm. The proposal achieves better exploration and accuracy than other existing techniques

    Adaptive algorithms for history matching and uncertainty quantification

    Get PDF
    Numerical reservoir simulation models are the basis for many decisions in regard to predicting, optimising, and improving production performance of oil and gas reservoirs. History matching is required to calibrate models to the dynamic behaviour of the reservoir, due to the existence of uncertainty in model parameters. Finally a set of history matched models are used for reservoir performance prediction and economic and risk assessment of different development scenarios. Various algorithms are employed to search and sample parameter space in history matching and uncertainty quantification problems. The algorithm choice and implementation, as done through a number of control parameters, have a significant impact on effectiveness and efficiency of the algorithm and thus, the quality of results and the speed of the process. This thesis is concerned with investigation, development, and implementation of improved and adaptive algorithms for reservoir history matching and uncertainty quantification problems. A set of evolutionary algorithms are considered and applied to history matching. The shared characteristic of applied algorithms is adaptation by balancing exploration and exploitation of the search space, which can lead to improved convergence and diversity. This includes the use of estimation of distribution algorithms, which implicitly adapt their search mechanism to the characteristics of the problem. Hybridising them with genetic algorithms, multiobjective sorting algorithms, and real-coded, multi-model and multivariate Gaussian-based models can help these algorithms to adapt even more and improve their performance. Finally diversity measures are used to develop an explicit, adaptive algorithm and control the algorithm’s performance, based on the structure of the problem. Uncertainty quantification in a Bayesian framework can be carried out by resampling of the search space using Markov chain Monte-Carlo sampling algorithms. Common critiques of these are low efficiency and their need for control parameter tuning. A Metropolis-Hastings sampling algorithm with an adaptive multivariate Gaussian proposal distribution and a K-nearest neighbour approximation has been developed and applied

    Differential Evolution for Dynamic Constrained Continuous Optimisation

    Get PDF
    In this thesis, we choose the evolutionary dynamic optimisation methodology to tackle dynamic constrained problems. Dynamic constrained problems represent a common class of optimisation that occur in many real-world scenarios. Evolutionary algorithms are often considered very general search heuristics. Their main advantages (in comparison to problem-specific search methods) are their robustness, flexibility and extensibility, as well as the fact that almost no domain knowledge is required for their implementation and application. Our research is focused on the following areas. In the first part of the thesis, we modify common constraint handling techniques from static domains to suit dynamic environments. We investigate the deficiencies of such techniques and the potential of each method based on the change characteristics of the environment. In the second part, we propose a framework to create benchmarks, since we have observed a lack of benchmarks to evaluate algorithms in dynamic continuous optimisation. Third, we carry out an exhaustive empirical study of diversity mechanisms applied to solve dynamic constrained optimisation problems. Finally, we investigate the integration of a neural network into the evolution process and analyse it’s effectiveness compared to that of popular diversity mechanisms. We address the possibility of integrating such mechanisms with a neural network approach in order to improve the results.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Scalable parallel evolutionary optimisation based on high performance computing

    Get PDF
    Evolutionary algorithms (EAs) have been successfully applied to solve various challenging optimisation problems. Due to their stochastic nature, EAs typically require considerable time to find desirable solutions; especially for increasingly complex and large-scale problems. As a result, many works studied implementing EAs on parallel computing facilities to accelerate the time-consuming processes. Recently, the rapid development of modern parallel computing facilities such as the high performance computing (HPC) bring not only unprecedented computational capabilities but also challenges on designing parallel algorithms. This thesis mainly focuses on designing scalable parallel evolutionary optimisation (SPEO) frameworks which run efficiently on the HPC. Motivated by the interesting phenomenon that many EAs begin to employ increasingly large population sizes, this thesis firstly studies the effect of a large population size through comprehensive experiments. Numerical results indicate that a large population benefits to the solving of complex problems but requires a large number of maximal fitness evaluations (FEs). However, since sequential EAs usually requires a considerable computing time to achieve extensive FEs, we propose a scalable parallel evolutionary optimisation framework that can efficiently deploy parallel EAs over many CPU cores at CPU-only HPC. On the other hand, since EAs using a large number of FEs can produce massive useful information in the course of evolution, we design a surrogate-based approach to learn from this historical information and to better solve complex problems. Then this approach is implemented in parallel based on the proposed scalable parallel framework to achieve remarkable speedups. Since demanding a great computing power on CPU-only HPC is usually very expensive, we design a framework based on GPU-enabled HPC to improve the cost-effectiveness of parallel EAs. The proposed framework can efficiently accelerate parallel EAs using many GPUs and can achieve superior cost-effectiveness. However, since it is very challenging to correctly implement parallel EAs on the GPU, we propose a set of guidelines to verify the correctness of GPU-based EAs. In order to examine these guidelines, they are employed to verify a GPU-based brain storm optimisation that is also proposed in this thesis. In conclusion, the comprehensively experimental study is firstly conducted to investigate the impacts of a large population. After that, a SPEO framework based on CPU-only HPC is proposed and is employed to accelerate a time-consuming implementation of EA. Finally, the correctness verification of implementing EAs based on a single GPU is discussed and the SPEO framework is then extended to be deployed based on GPU-enabled HPC

    Advanced p-Metric Based Many-Objective Evolutionary Algorithm

    Get PDF
    Evolutionary many objective based optimization has been gaining a lot of attention from the evolutionary computation researchers and computational intelligence community. Many of the state-of-the-art multi-objective and many-objective optimization problems (MOPs, MaOPs) are inefficient in maintaining the convergence and diversity performances as the number of objectives increases in the modern-day real-world applications. This phenomenon is obvious indeed as Pareto-dominance based EAs employ non-dominated sorting which fails considerably in providing enough convergent pressure towards the Pareto front (PF). Researchers invested much more time and effort in addressing this issue by improving the scalability in MaOPs and they have come up with non-Pareto-dominance-based EAs such as decomposition-based, indicator-based and reference-based approaches. In addition to that, the algorithm has to account for the additional computational budget. This thesis proposes an advanced polar-metric (p-metric) based Many-objective EA (in short APMOEA) for tackling both MOPs and MaOPs. p-metric, a recently proposed performance based visualization metric, employs an array of uniformly, distributed direction vectors. In APMOEA, a two-phase selection scheme is employed which combines both non-dominated sorting and p-metric. Moreover, this thesis also proposes a modified P-metric methodology in order to adjust the direction vectors dynamically. In the experiments, we compare APMOEA with four state-of-the-art Many-objective EAs under, three performance indicators. According to the empirical results, APMOEA shows much improved performances on most of the test problems, involving both MOPs and MaOPs.Electrical Engineerin
    • 

    corecore