
Scalable Parallel Evolutionary
Optimisation based on High Performance

Computing

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

Chen Jin

BEng(ElecEng), Beihang University, China

MEng(ElecEng), Beihang University, China

School of Science

College of Science, Engineering, and Health

RMIT University

June 2019

Declaration

I certify that except where due acknowledgement has been made, the work is that of the author

alone; the work has not been submitted previously, in whole or in part, to qualify for any other

academic award; the content of the thesis is the result of work which has been carried out since

the official commencement date of the approved research program; any editorial work, paid or

unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines

have been followed.

Chen Jin

School of Science

College of Science, Engineering, and Health

RMIT University

29 June 2019

Acknowledgement

I would like to express my special appreciation and thanks to my supervisors Dr. Jeffrey Chan

and Dr. Kai Qin, not only for their tremendous support to my thesis writing, but also for the

enlightenment on academic thinking which is the lifelong benefit. Without their consistent and

illuminating instruction, this thesis could not have reached its present form.

I want to say thanks to my wife Bichen Ni, who has been doing the utmost to support

me in all these years since she has come to Australia. I owe her everything. I am also hugely

appreciative to my beloved dad and mum for their loving considerations and great confidence

in me all through these years.

I also want to say thanks to Dr. Xiaodong Li and Dr. Andy Song, who gave me plenty of

precious advice on my research. I also learn a lot from the weekly ECML meeting organised

by them. Moreover, I owe my sincere gratitude to my friends Pengfei Li, Boyu Zhang, Youhan

Xia, Hui Song, Pei-Wei Tsai, Tsz Ho Wong, Wei Shao, Steven Wu and Xiaolu Lu. They gave

me their help and time in listening to me and helping me work out my problems during the

difficult course of the thesis.

I acknowledge the support of powerful computing facilities by National Computational

Infrastructure (NCI). I also acknowledge the RMIT School of Graduate Research and RMIT

School of Science for their support in the form of scholarship, research support and grants.

Credits

Portions of the materials used in this thesis have previously appeared or under consideration

in the following scientific publications:

• Chen. Jin, A. K. Qin and Ke Tang, “Local ensemble surrogate assisted crowding differ-

ential evolution,” in Evolutionary Computation (CEC), 2015 IEEE Congress on. IEEE,

2015, pp. 433-440.

• Chen Jin and A. K. Qin, “A GPU-based Implementation of Brain Storm Optimization,”

in Evolutionary Computation (CEC), 2017 IEEE Congress on. IEEE, 2017, pp. 2698-

2705.

Abstract

Evolutionary algorithms (EAs) have been successfully applied to solve various challenging op-

timisation problems. Due to their stochastic nature, EAs typically require considerable time

to find desirable solutions; especially for increasingly complex and large-scale problems. As

a result, many works studied implementing EAs on parallel computing facilities to accelerate

the time-consuming processes. Recently, the rapid development of modern parallel computing

facilities such as the high performance computing (HPC) bring not only unprecedented com-

putational capabilities but also challenges on designing parallel algorithms. This thesis mainly

focuses on designing scalable parallel evolutionary optimisation (SPEO) frameworks which run

efficiently on the HPC.

Motivated by the interesting phenomenon that many EAs begin to employ increasingly

large population sizes, this thesis firstly studies the effect of a large population size through

comprehensive experiments. Numerical results indicate that a large population benefits to

the solving of complex problems but requires a large number of maximal fitness evaluations

(FEs). However, since sequential EAs usually requires a considerable computing time to achieve

extensive FEs, we propose a scalable parallel evolutionary optimisation framework that can

efficiently deploy parallel EAs over many CPU cores at CPU-only HPC. On the other hand,

since EAs using a large number of FEs can produce massive useful information in the course of

evolution, we design a surrogate-based approach to learn from this historical information and

to better solve complex problems. Then this approach is implemented in parallel based on the

proposed scalable parallel framework to achieve remarkable speedups.

Since demanding a great computing power on CPU-only HPC is usually very expensive, we

design a framework based on GPU-enabled HPC to improve the cost-effectiveness of parallel

vi

EAs. The proposed framework can efficiently accelerate parallel EAs using many GPUs and can

achieve superior cost-effectiveness. However, since it is very challenging to correctly implement

parallel EAs on the GPU, we propose a set of guidelines to verify the correctness of GPU-based

EAs. In order to examine these guidelines, they are employed to verify a GPU-based brain

storm optimisation that is also proposed in this thesis.

In conclusion, the comprehensively experimental study is firstly conducted to investigate

the impacts of a large population. After that, a SPEO framework based on CPU-only HPC

is proposed and is employed to accelerate a time-consuming implementation of EA. Finally,

the correctness verification of implementing EAs based on a single GPU is discussed and the

SPEO framework is then extended to be deployed based on GPU-enabled HPC.

Contents

Declaration ii

Acknowledgement iii

Credits iv

Abstract v

Contents vii

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Research Scope . 1

1.2 Motivations . 4

1.3 Objectives . 6

1.4 Contributions . 9

1.5 Organisation of the Thesis . 11

2 Background and Literature Review 14

2.1 Evolutionary Algorithms (EAs) . 14

2.1.1 Overview . 14

2.1.2 Representative EAs . 15

vii

CONTENTS viii

2.1.3 Brain Storm Optimisation . 19

2.2 Population Sizes in EAs . 20

2.2.1 EAs with a Large Population . 20

2.2.2 EAs with a Small Population . 27

2.3 Parallel EAs . 30

2.3.1 Overview . 30

2.3.2 Island Model . 31

2.3.3 GPU-based Parallel EAs . 36

2.4 Modern High Performance Computing (HPC) 39

2.4.1 Overview . 39

2.4.2 CPU-only HPC . 40

2.4.3 GPU Computing . 41

2.4.4 GPU-enabled HPC . 45

3 Study on the Effect of Large Population Size in EAs 47

3.1 Introduction . 47

3.2 Methodology . 49

3.2.1 Selection of Highly Complex Optimisation Problems 49

3.2.2 Selection of Representative EAs . 50

3.3 Experimental Results . 51

3.3.1 Experimental Settings . 51

3.3.2 Effectiveness of EAs with a large population 52

3.3.3 Efficiency of EAs with a large population 58

3.4 Conclusions . 60

4 SPEO based on CPU-only HPC (SPEOHPCcpu) 61

4.1 Introduction . 61

4.2 The Proposed Method . 62

4.2.1 Framework . 62

4.2.2 Implementation of SPEOHPCcpu . 67

CONTENTS ix

4.3 Experimental Results . 68

4.3.1 Test Problems . 68

4.3.2 Experimental Settings . 69

4.3.3 Scalability Analysis . 70

4.3.4 Performance Analysis on Diversity Preserving Buffer 73

4.3.5 Performance Analysis on Topology Density 73

4.3.6 Performance Comparison with State-of-the-art Parallel EAs 75

4.4 Conclusions . 77

5 Local Ensemble Surrogate Assisted Crowding DE and its Parallel Im-

plementation based on the SPEOHPCcpu Framework 79

5.1 Introduction . 79

5.2 Background . 81

5.2.1 Extreme Learning Machine (ELM) . 81

5.2.2 Online Sequentially Extreme Learning Machine (OS-ELM): 82

5.3 The Proposed Method . 82

5.3.1 LES-CDE Algorithm . 82

5.3.2 Parallel Implementation of LES-CDE based on the SPEOHPCcpu Framework 84

5.4 Experiments . 86

5.4.1 Experiments Setup . 86

5.4.2 Study on Parametric Sensitivity . 87

5.4.3 Performance Comparison of Solution Quality with CDE 88

5.4.4 Performance Comparison of Computing Speed 89

5.4.5 Analysis on Chunk and Volume of Online Training Data 90

5.5 Conclusions . 92

6 Correctness Verification for Implementing Parallel EAs based on a Sin-

gle GPU 93

6.1 Introduction . 93

6.2 Issues and Analysis . 95

CONTENTS x

6.2.1 Build-in Functions and Libraries . 97

6.2.2 Numerical Precision of Floating Point 99

6.2.3 Race Condition . 101

6.3 The Proposed Guidelines . 102

6.3.1 Obtaining Correct CPU-based EAs as the Reference 103

6.3.2 Unifying GPU-inherent Issues . 103

6.3.3 Collecting Results . 105

6.3.4 Evaluating Correctness . 105

6.4 A Working Example: Implement and Verify GPU-based MBSO 106

6.4.1 Implementation of GPU-based MBSO 108

6.4.2 Numerical Analysis . 110

6.5 Conclusions . 115

7 SPEO based on Multiple GPUs at GPU-enabled HPC (SPEOHPCgpu) 116

7.1 Introduction . 116

7.2 The Proposed Method . 117

7.2.1 Framework . 117

7.2.2 Implementation of SPEOHPCgpu . 121

7.3 Experiments . 127

7.3.1 Test Problems . 128

7.3.2 Experimental settings . 129

7.3.3 Scalability Analysis . 130

7.3.4 Performance Analysis on Dual Control Mode 133

7.3.5 Performance Analysis on Dynamic Regrouping Strategy 135

7.3.6 Discussion on Cost-effectiveness . 136

7.4 Conclusions . 138

8 Conclusions and Future Work 141

8.1 Conclusions . 141

8.2 Future Work . 142

CONTENTS xi

Bibliography 145

List of Figures

2.1 Common migration topologies in the island model. 33

2.2 The architecture of HPC. 40

2.3 CPU-only HPC infrastructure. 41

2.4 Threads batching in CUDA. 42

2.5 CUDA device memory model. 43

2.6 Infrastructure of GPU-enabled HPC (NCI). 46

3.1 Mean convergence characteristics of DE with NP = 64, 256, 1024 and 4096 on

f30 for D = 30. 56

3.2 Mean population diversity of DE with NP = 64, 256, 1024 and 4096 on f30 for D

= 30 (Population diversity smaller than 10−3 is recorded as 10−3). 57

4.1 Deployment of SPEOHPCcpu on CPU-only HPC. 63

4.2 Framework of SPEOHPCcpu . 65

4.3 Average speedups of SPEOHPCcpu with asynchronous or synchronous migration

on 8 test problems for D = 10, 30 and 50 on up to 512 CPU cores. 71

4.4 Example of diversity curve of different buffers on f28 for D = 10. 74

4.5 Computational time of SPEOHPCcpu and a state-of-the-art island-based parallel

EA (CloudDE). 76

6.1 Different outcomes of sorting function by C++ and CUDA. 98

6.2 Example of arithmetic operation associations. 100

6.3 Runtime flowchart of asynchronous sequential PSO based on CPU. 101

xii

LIST OF FIGURES xiii

6.4 Runtime flowchart of asynchronous parallel PSO based on GPU. 101

6.5 Guidelines of correctness verification of GPU-based EAs. 103

6.6 Flow chart of GPU-based MBSO. 107

7.1 The deployment of SPEOHPCgpu on the infrastructure of GPU-enabled HPC. . . 119

7.2 Framework of SPEOHPCgpu with the dual control mode. 120

7.3 Implementation of parallel DE on GPU. I represents the interval for active mi-

gration and G is the current generation. 126

7.4 Scalability test of SPEOHPCgpu with different island sizes on increasing GPUs. . . 131

List of Tables

1.1 The top 10 HPC in TOP500 site at November 2018. 2

1.2 The algorithms and their population sizes that win at CEC competitions from

2014 to 2018. 3

3.1 Selected algorithms and configurations. 51

3.2 Mean FEVs of L-SHADE with a consistent population and LPSR. 52

3.3 Mean FEVs of jSO with a consistent population and LPSR. 53

3.4 Mean FEVs of DE with NP=64, 256, 1024 and 4096. 53

3.5 Mean FEVs of GA with NP=64, 256, 1024 and 4096. 54

3.6 Mean FEVs of PSO with NP=64, 256, 1024 and 4096. 54

3.7 Summarised statistical tests(+/≈/-) indicate that NP = 4096 performed signifi-

cantly better (+), similarly (≈) or worse than NP = 64, 256 and 1024, respectively. 55

3.8 Computation speed of sequential and parallel DE measured by time (hh:mm:ss)

and the speedup of parallel DE with NP = 64, 256, 1024 and 4096 on f24 and f26

for D = 10, 30 and 50. 59

4.1 Configurations of SPEOHPCcpu . 69

4.2 Mean FEVs of diversity preserving and 3 simple buffer managements. Summarised

statistical tests (+/≈/-) indicate basic buffers perform significantly better (+),

worse (-), or similarly (≈) than the diversity preserving buffer. 72

4.3 Mean FEVs of SPEOHPCcpu with connection ratesRc = 0.1%, 1%, 2%, 10%, 25%, 50%

and 100%. 74

xiv

LIST OF TABLES xv

4.4 Mean FEVs of SPEOHPCcpu with improved dynamic and three common migration

topologies for D = 10. Summarised statistical tests(+/≈/-) indicate common

topologies perform significantly better (+), similarly (≈), or worse (-) than the

improved dynamic topology. 75

4.5 Mean FEVs of SPEOHPCcpu and state-of-the-art parallel EAs at D = 10, 30 and 50. 77

5.1 Performance comparison of LES-CDE with different nt and k using the Iman and

Davenport test with the Hochberg post-hoc procedure over 8 test functions at

dimension 10, 30 and 50, respectively. 87

5.2 Comparisons of mean FEVs between standard CDE and LES-CDE using D ∗ 104

total FEs on 8 test problems for D = 10, 30 and 50. Statistical tests (+/≈/-)

indicate LES-CDE performs significantly better (+), similarly (≈), or worse (-)

than CDE based on Wilcoxon rank-sum test over 15 independent runs. 88

5.3 Average computational time (hh:mm:ss) required by sequential CDE, LES-CDE

and SPEO-LES-CDE to solve 8 test problems for three dimensions (D = 10, 30

and 50). The execution time presented use a small (D ∗ 104) and large (D ∗ 106)

number of FEs, respectively. The sequential CDE and LES-CDE are conducted

on a single CPU core and the SPEO-LES-CDE is conducted on 128, 256 and

512 CPU cores. The cost for demanding 512 CPU cores to conduct the entire

experiments (8 test problems with 15 runs) are presented at the brackets. 89

5.4 Comparisons of mean FEVs of SPEO-LES-CDE using different data chunk and

volume. Statistical tests (+/≈/-) indicate SPEO-LES-CDE performs significantly

better (+), similarly (≈), or worse (-) than basic configuration (Rm = 0.1 and

Cb = 64) based on 15 independent runs. 91

5.5 Average computational time (hh:mm:ss) that is required by SPEO-LES-CDE with

different buffer capacities (Cb = 64, 128 and 256) and migration rates (Rm =

0.1, 0.5 and 1) to solve 8 test problems for D = 10. Totally D ∗ 106 FEs are used

herein over 512 CPU cores at CPU node at NCI HPC. 91

LIST OF TABLES xvi

6.1 Mean FEVs of four implementations of PSO with different RNGs on four func-

tions. 96

6.2 Mean FEVs of four implementations of PSO with the identical RNG on four

functions. 96

6.3 Mean FEVs of GPU-MBSO and CPU-MBSO and their biases before applying

correctness verification guidelines. 111

6.4 Mean FEVs of GPU-MBSO and CPU-MBSO and their biases after applying cor-

rectness verification guidelines. 111

6.5 The average computing time (seconds) of CPU-based MBSO (denoted as CPU-

MBSO) and GPU-based MBSO (denoted as GPU-MBSO) on 30 test functions

with three dimensions (D = 10, 50 and 100) and four population sizes (NP =

50, 100, 500 and 1000). Total FEs are D ∗ 104. 113

7.1 Configurations of SPEOHPCgpu . 128

7.2 Average computational time (hh:mm:ss) of SPEOHPCgpu on 8 test problems with

increasing GPUs (Mgpu = 2, 4, 8, 16, 32 and 64) and various island sizes (Ns =

64, 128, 256, 512, 1024, 2048 and 4096). Total FEs are D ∗ 107 = 109. 130

7.3 Comparisons of mean FEVs with different island sizes on 64 GPUs. Significantly

better value is typed in bold. 132

7.4 Comparisons of mean FEVs on different GPUs (2 GPUs to 64 GPUs) with a fixed

island size Ns = 4096. Mgpu = 2 and Ns = 64 is also shown to represent DE with

a normal population size. Significantly better value is typed in bold. 133

7.5 Comparison of computing time (T) and communication cost (comm.%) between

SPEOHPCgpu and its variant with the single control mode (denoted as Single-

SPEOHPCgpu). Aggregative statistical tests (+/≈/-) indicate SPEOHPCgpu per-

forms statistically better, similar and worse than Single-SPEOHPCgpu 134

LIST OF TABLES xvii

7.6 Comparisons of mean FEVs of SPEOHPCgpu with its variant without dynamic

regrouping (denoted as Static-SPEOHPCgpu). They are executed on 64 GPUs with

three island sizes (Ns = 1024, 2048 and 4096). Statistical tests (+/≈/-) indicate

Static-SPEOHPCgpu performs significantly better (+), similarly (≈), or worse (-)

than SPEOHPCgpu . 135

7.7 Unit price and maximal computing time with different budgets (1, 10, 50 and 100

USD) on AWS EC2. 136

7.8 Comparison of mean FEVs of SPEOHPCgpu (2, 16 and 64 GPUs) with SPEOHPCcpu

(32, 128 and 512 cores) and CloudDE (32 cores) with 1 USD budget. 138

7.9 Comparison of mean FEVs of SPEOHPCgpu (2, 16 and 64 GPUs) with SPEOHPCcpu

(32, 128 and 512 cores) and CloudDE (32 cores) with 10 USD budget. 139

7.10 Comparison of mean FEVs of SPEOHPCgpu (2, 16 and 64 GPUs) with SPEOHPCcpu

(32, 128 and 512 cores) and CloudDE (32 cores) with 50 USD budget. 139

7.11 Comparison of mean FEVs of SPEOHPCgpu (2, 16 and 64 GPUs) with SPEOHPCcpu

(32, 128 and 512 cores) and CloudDE (32 cores) with 100 USD budget. 140

Chapter 1

Introduction

1.1 Research Scope

Evolutionary algorithms (EAs) [1–4] are a broad class of meta-heuristic optimisation algo-

rithms that use mechanisms inspired by biological evolution, such as reproduction, mutation,

recombination, and selection. As population-based searching methods, EAs first generate the

initial population in the solution space and then iteratively update it by applying the above

evolutionary operators until it converges or a certain number of generations is reached. Since

EAs ideally do not make any assumption about the underlying fitness landscape, they have

been successfully used to solve various real-world optimisation problems [5–10]. However, due

to the nature of the stochastic search, EAs usually need a long computational time to find

satisfactory solutions [5–8, 10].

Intrinsically, EAs are highly parallel owing to the data-parallel algorithmic structure in

which each individual performs genetic operations independent of each other. Thus, this time-

consuming process of EAs can be highly accelerated by distributing the considerable computa-

tional effort on multiple machines. First introduced in the 1980s, parallel EAs [11–14] deploy

the massive computational load onto many machines for parallel processing. Specifically, the

existing parallel models of EAs can be divided into population-distributed and dimension-

distributed [15–18]. The population-distributed model that includes master-slave [19–22], is-

land [14, 23–25] and cellular model [26–29] distributes the global population to parallel comput-

1

Research Scope 2

Table 1.1: The top 10 HPC in TOP500 site at November 2018.

Rank System CPU Cores GPUs Rpeak (TFlop/s)

1 Summit (United States) 2,282,544 26,136 (Nvidia V100) 187,659.30
2 Sunway TaihuLight (China) 10,649,600 - 125,435.90
3 Sierra (United States) 1,572,480 17,280 (Nvidia V100) 119,193.60
4 Tianhe-2A (China) 4,981,760 - 100,678.70
5 ABCI (Japan) 391,680 4,352 (Nvidia V100) 32,576.60
6 Piz Daint (Switzerland) 361,760 5,320 (Nvidia V100) 25,326.30
7 Titan (United States) 560,640 18,688 (Nvidia K20x) 27,112.50
8 Sequoia (United States) 1,572,864 - 20,132.70
9 Trinity (United States) 979,968 - 43,902.60
10 Cori (United States) 622,336 - 27,880.7

ing facilities and achieves parallelism between individuals. The dimension-distributed model

such as coevolution model [30–33] distributes the entire problem to parallel computing facilities

and achieves parallelism between elements of solutions. However, limited accelerations were

achieved by parallel EAs in the past because scientists can not easily access or afford parallel

computing facilities even though they were backward.

With the increasing scale and complexity of real-world optimisation problems, higher com-

puting power has become a necessity. Therefore, high performance computing (HPC), which

can scale to extensive computing resources, has become increasingly important in research and

engineering fields in recent years. Accordingly, Table 1.1 from the Top500 site (November

2018)1 indicates that the top 10 HPCs in the world assemble many processors. Furthermore,

dynamically provisioned and pay-as-you-go computing resources of HPC are now offered by

some cloud computing providers such as Amazon Web Services (AWS), Google Cloud Platform,

and Microsoft Azure. Consequently, many compute-intensive tasks, which were impractical in

the past, can now be efficiently completed on HPC. Moreover, inspired by the unprecedented

computational power of modern HPC, parallel EAs have become popular again and justify a

new presentation of the state-of-the-art in the field [34–37]. Real et al. [38] distributed 1,000

individuals onto 250 CPU cores to automatically design a deep neural network structure for

image classification. Furthermore, Salimans et al. [39] solved the MuJoCo 3D humanoid task

1https://www.top500.org/lists/2018/11/

Research Scope 3

Table 1.2: The algorithms and their population sizes that win at CEC competitions from 2014
to 2018.

Algorithm Population Year Winner

L-SHADE 2000* 2014
CEC2014 Competition on Single Objective
Real-Parameter Numerical Optimization

SPS-L-SHADE-EIG up to 2046* 2015
CEC2015 Competition on Learning-based

Real-Parameter Single Objective Optimization

MVMO up to 3594 2016
CEC2016 Competition on Learning-based

Real-Parameter Single Objective Optimization

CEC2016 Competition on Real-Parameter Single
Objective Computationally expensive Optimization

EBOwithCMAR 6504* 2017
CEC2017 Competition on Single Bound

Constrained Real-Parameter Numerical Optimization

L-SHADE44 1800* 2017
CEC2017 Competition on

Constrained Real-Parameter Numerical Optimization

HS-ES 683 2018
CEC2018 Competition on Single Bound

Constrained Real-Parameter Numerical Optimization

IUDE 500 2018
CEC2018 Competition on Constrained

Real-Parameter Numerical Optimization

* The algorithm employs a population reduction strategy that gradually reduces a large population
during the period of evolution.

by employing evolution strategies (ES) with a population size of 1,440 as an alternative way

of reinforcement learning (RL). The proposed method required 11 hours if only 18 CPU cores

were being utilised while being reduced to 10 minutes if 1440 CPU cores were demanded.

In recent years, various dedicated computing facilities which have been optimised for power

efficiency, compute-intensive, and throughput-intensive scenarios–have entered mainstream

computing. Therefore, general-purpose computing on graphics processing units (GPGPU)

is one of the most important heterogeneous solutions. The GPU, which was designed for ad-

dressing highly computational graphics tasks since its inception, has many computational cores

and can provide massive parallelism at a reasonable price. Moreover, the high performance of

floating-point arithmetic and memory operations on GPUs makes them particularly well-suited

to several similar scientific and engineering workloads that occupy CPUs. Inspired by the in-

credible computing capability, many HPCs evolve from traditional clusters of homogeneous

nodes (CPU-only) to clusters of heterogeneous nodes (CPU + GPU) (a half of top 10 HPCs

Motivations 4

at Table 1.1 are GPU-enabled). Apart from the powerful computing capability, GPU-enabled

HPC also has better cost-effectiveness (price/performance ratio) than traditional CPU-only

HPC. As a result, GPU-enabled HPC has become an ideal platform for scientific computing

and has remarkably accelerated many existing EAs that were sequentially implemented on

CPU [40–45].

1.2 Motivations

The increasingly complex and large-scale problems bring the rapidly rising solution spaces

and quickly exceed the searching capabilities of traditional EAs. As a result, the approach of

using EAs to address these difficult problems is currently attracting significant attention [5–

10]. An interesting phenomenon observed in recent works is that many state-of-the-art EAs

have started to employ a population that is significantly larger than the size suggested by

classic EAs [46–48]. For example, many winners at the famous CEC competitions since 2014

have employed a large population (up to 6504) to achieve satisfactory solutions (see Table 1.2)

and many real-world problems [49–53] also employ a large population to achieve satisfactory

solutions.

Although large populations have been widely employed, researchers in the domain of EAs

have not reached a consensus on the benefits of this approach. Two opposing theoretical views

exist, and solid numerical evidence is still lacking. Specifically, some works [54–59] have theo-

retically proven that a large population can eventually improve the solution quality of problems

with complex landscapes if sufficient fitness evaluations (FEs) are provided. Conversely, other

studies [60–62] have indicated that a large population does nothing to improve the solution

quality. Since most theoretical findings are based on problems and algorithms that can be

represented by simple mathematical models (e.g., discrete problems and simple EAs without

crossover), it is necessary to examine both opinions by numerical experiments in practice.

On the other hand, EAs with a large population require a significantly long computational

time. Although researchers do not yet agree on the benefits of a large population, it is a

common view [58, 59, 61] that EAs with a large population usually require significantly large

FEs. Therefore, designing parallel EAs with a large population based on modern powerful

Motivations 5

HPC facilities may make it possible to achieve numerous FEs in a short time. Since the use of

parallel EAs based on HPC is not a new topic in the field of EAs, this thesis mainly focuses

on the following aspects that have not been perfectly addressed yet.

Firstly, the scalability is essential in parallel computing and determines whether parallel

EAs can efficiently utilise extensive computing resources. As the optimisation problems are

increasingly complicated and time-consuming, efficiently utilising more computing resources to

employ an even larger population or to achieve better speedup is necessary. However, it is not

an easy task because communication and synchronisation costs increase rapidly with the use of

more computing resources. To avoid significant deterioration of computational efficiency, most

existing parallel EAs [63–66] are designed to use only a small number of CPU cores efficiently.

Although a few studies [35, 37, 67–70] have achieved scalability by using many devices, these

approaches have had to employ sparse and light communication schemes, which unavoidably

sacrifice the solution quality proven by works [66, 71, 72].

Secondly, EAs are intrinsically a class of iterative generate-and-test procedures, which

iteratively create new populations based on their previous populations. In such a process,

a significantly large number of FEs are employed by a large population, but only a small

proportion of candidate solutions are superior and may enter new populations (most candidate

solutions will be discarded). In fact, any previously evaluated candidate solutions, whether

superior or inferior, may carry some useful information about the search landscape. The

landscape can facilitate the search process by producing more superior candidate solutions if

the evaluated solutions are properly learnt and used. Therefore, if these evaluated solutions

can be reused rather than abandoned as inferior solutions, parallel EAs may provide better

solution accuracy for solving difficult real-world problems.

Thirdly, CPU-only HPC with numerous CPU cores is a common platform to accelerate

various parallel EAs. Since a single CPU core offers limited computing capability, many CPU

cores are necessary to generate and evaluate sufficient candidate solutions in a short time.

As a result, the high expense for demanding considerable computing resources is unavoidable.

Currently, GPU devices shows the prospect in the field of EA research because even a single

GPU can provide similar computing power to a large number of CPU cores with less expense.

Objectives 6

For instance, if the work of Liu [69] is executed on the Amazon EC2 CPU instance2, it will cost

USD 696.2 on 16,384 CPU cores for 1 hour; however, executing the same number of floating

point operations on the AWS GPU instance would save around 80% of the cost. However,

there are also some challenges when utilising GPUs to accelerate parallel EAs:

• Modern GPUs are characterised by inexpensive prices, general-purpose parallel comput-

ing infrastructures, and easy-to-use programming models, which have intensified common

personal computers (PCs), i.e., desktops and laptops. So far, GPUs have accelerated

many time-consuming EAs [73–78] and offered remarkable speedups. However, program-

ming on a single GPU is much more difficult than programming in a serial-oriented order

on a single CPU. Parallel programming based on GPU involves many challenges which are

not typically encountered in conventional serial-oriented programming. In other words,

implementing correct GPU-based EAs is not straightforward, resulting in a high risk

that GPU-based EAs may output incorrectly. So far, all existing studies neglect the

correctness of GPU-based EAs, making the significant speedups potentially unreliable.

• Although a single GPU is capable of offering considerable computing power, the scala-

bility is still limited because each GPU has a maximal number of GPU processors and

cannot offer further more computing power. Therefore, it is ideal to utilise a GPU-enabled

HPC that can increase GPU computing power by allocating on-demand GPU devices.

However, existing works on GPU-based EAs have been designed for a single GPU [79–82]

or a small fixed number of GPUs [83–87] without scalability. As a result, existing parallel

EAs are not able to efficiently utilise the unprecedented computing power offered by a

large number of GPUs.

1.3 Objectives

Based on the above discussion, several objectives can be summarised as follows.

Objective 1: Comprehensively study the impact of a large population by nu-

merical experiments

2https://aws.amazon.com/ec2/pricing/on-demand/

Objectives 7

The benefits of a large population have been studied by many theoretical works based on

some simplified mathematical models. In this thesis, we tend to examine these theoretical find-

ings by conducting a comprehensive investigation using numerical experiments. The challenge

of this work is how to design experiments to comprehensively investigate the impacts of a large

population. Specifically, the selected algorithms should range from classic to state-of-the-art or

from simple to complex. Moreover, the ideal selected problems should be famous and difficult

because supporting theoretical works admit that a large population mainly benefits to solve

difficult or complex problems.

Objective 2: Utilise many CPU cores at CPU-only HPC to achieve remarkable

improvements on both the computing speed and the solution quality

Currently, CPU-only HPC has become a common parallel computing platform in the scien-

tific computing area. In this thesis, we target at utilising many CPU cores at CPU-only HPC

to improve both the computing speed and the solution quality of traditional sequential EAs.

The two sub-objectives are as follows:

• We intend to design a scalable parallel evolutionary optimisation (SPEO) framework that

can efficiently utilise on-demand computing resources on CPU-only HPC. The proposed

framework can be easily employed to significantly accelerate common classic and state-

of-the-art EAs by efficiently using a large number of CPU cores. The main challenge

of this work is accomplishing the essential scalability, which requires the expertise in

parallel computing and is not a straightforward task. Specifically, utilising more devices

and maintain adequate information exchange usually significantly increase the commu-

nication/synchronisation cost which rapidly occupies the majority of the computational

budget.

• We intend to improve the search capability of EAs by learning from the extensive histor-

ical information. Due to the significant computing power offered by CPU-only HPC, the

proposed framework can create far more candidate solutions than traditional sequential

EAs. Therefore, the searching capability of parallel EAs can be highly improved when the

extensive historical information carried by these solutions is utilised properly. The main

challenge of this work is to find a proper approach to take advantage of this historical

Objectives 8

and effectively improves the searching capability of EAs; otherwise, the search process

may be misled to an even worse result.

Objective 3: Utilise GPU devices to achieve both reliable solutions and re-

markable accelerations

GPU-enabled HPC is a modern parallel computing platform that can offer a significantly

large computing power. In this thesis, we target at utilising GPU devices to achieve both

reliable solutions and remarkable accelerations. The two sub-objectives are as follows:

• We intend to propose guidelines for researchers to correctly implement parallel EAs

based on a single GPU. Such guidelines can assist EA researchers in guaranteeing the

correctness of parallel GPU-based EAs. The challenge of this work is the complexity of

implementing parallel EAs based on GPU. Specifically, many GPU-inherent factors may

bring unexpected outcomes compared to traditional CPU-based EAs and the stochastic

searching nature of EAs even aggravates this issue.

• We intend to extend the above SPEO framework from CPU-only HPC to GPU-enabled

HPC. The proposed framework can accomplish outstanding scalability to efficiently utilise

on-demand GPU devices and requires a lower cost when compared to CPU-based parallel

EAs. The two main challenges of this work are as follows.

– CPU and GPU work cooperatively in a heterogeneous architecture, thus computing

tasks can be assigned to either GPU or CPU or a combination of both. There-

fore, the mapping choice has a great impact on the computational efficiency of the

framework because the CPU and GPU are suitable for different jobs.

– Compared to traditional CPU-based parallel computing, information sharing be-

tween GPU devices is more complex and inefficient. Since each CPU of the existing

multi-GPU EAs is in charge of both communication and GPU control, the increas-

ing communication workload rapidly occupies the CPU’s computing power, which

results in the waiting of launching GPU kernel functions. Therefore, it is challeng-

ing but essential to design a proper scheme that can avoid the impacts of extensive

communication workload on computing efficiency.

Contributions 9

1.4 Contributions

Based on the above objectives and their corresponding challenges, the research contributions

are summarised as follows:

Contribution 1: We experimentally study and investigate the impacts of a large pop-

ulation on EAs. Specifically, we select five representative EAs including two state-of-the-art

and three classic EAs. We also choose eight complex composition functions from the famous

CEC2014 benchmark [88] as test problems. In this work, we examine different population

sizes ranging from small (64) to large (4096) using a very large FEs. As an experimental

supplement to the theoretical findings, this work confirms the universal benefits of a large

population to solve difficult problems. Compared to some complex methods that are carefully

designed for specific algorithms, employing a large population is a feasible and simple option

to significantly improve the solution quality of various EAs if researchers can access to a large

computing power.

Contribution 2: We study utilising many CPU cores at CPU-only HPC to achieve re-

markable improvements on the computing speed and the solution quality. We firstly propose

a generic scalable parallel evolutionary optimisation (SPEO) framework based on many CPU

cores at CPU-only HPC. Based on this framework, we also design and implement a local en-

semble surrogate scheme to improve the searching capability of the traditional crowding DE

algorithm. The two sub-contributions are described as follows:

• We propose the SPEO on CPU-only HPC (SPEOHPCcpu) which achieves outstanding

scalability by employing the island model with a buffer-based asynchronous migration

strategy. The proposed SPEOHPCcpu is designed to be able to execute common sequential

implementations of EAs on each CPU core. Based on this framework, EA researchers

can significantly accelerate their novel sequential EAs without worrying about the issues

related to parallel computing.

• The SPEOHPCcpu can produce unprecedented candidate solutions that carry useful histor-

ical information and improve the search capability of EAs. In this thesis, we design a local

ensemble surrogate crowding DE (LES-CDE) algorithm that significantly improves the

Contributions 10

solution quality by learning from the extensive historical information. We also implement

LES-CDE based on the SPEOHPCcpu and achieve remarkable speedups. It demonstrates

that the SPEOHPCcpu framework is very ideal to accelerate such data-driven algorithms

that require a unprecedented computing budget to learn from historical data.

Contribution 3: We utilise GPU devices to further accelerate parallel EAs and achieve

reliable solutions meanwhile. We firstly propose a set of guidelines to assist in correctly imple-

menting GPU-based EAs. Then we extend the SPEO framework onto GPU-enabled HPC so

that a correct implementation of parallel EAs based on a single GPU can be simply deployed

over multiple GPUs for further speedups. The two sub-contributions are described as follows:

• We firstly figure out some GPU-inherent factors that may bring difficulties when imple-

menting parallel EAs based on a single GPU. Then, we propose a set of guidelines to assist

EA researchers in verifying the implementation of GPU-based EAs against these factors.

Benefiting from this work, EA researchers can guarantee that parallel GPU-based EAs

are correctly implemented. In order to examine the proposed guidelines, we employ them

to correctly implement a complex EA called modified brain storm optimisation (MBSO)

based on GPU.

• We design an extended SPEO framework (SPEOHPCgpu) based on many GPUs at GPU-

enabled HPC. In order to efficiently utilise many GPUs and achieve outstanding scal-

ability, the above proposed SPEOHPCcpu needs to be adjusted based on the characters

of GPU-enabled HPC. Similar to the SPEOHPCcpu , the buffer-based island model is still

applied by SPEOHPCgpu to run EAs independently on many GPUs, which avoids time-

consuming synchronisation between GPUs. Furthermore, a dual control mode is addition-

ally introduced to improve the efficiency of CPU-CPU and CPU-GPU communication.

Three contributions of this work are listed as follows:

– The SPEOHPCgpu is the first solution that can deploy EAs over a large number

of GPUs. It is now possible for EAs to solve some extremely large-scale or time-

consuming problems that were impractical in the past.

Organisation of the Thesis 11

– The SPEOHPCgpu does not limit the GPU-based implementations of EAs, thus re-

searchers who already have implemented a specific EA on a single GPU can easily

deploy it over many GPUs without worrying about the essential interactions between

GPUs.

– The proposed framework is an ideal option for researchers who have a limited budget

because it costs significantly less than CPU-based parallel EAs to achieve similar or

better performance.

1.5 Organisation of the Thesis

The remainder of this thesis is organised as follows:

In Chapter 2, the basic concepts of the topics related to this research are introduced. Firstly,

The basic knowledge of EAs and three representative EAs including genetic algorithm (GA),

differential evolution (DE), particle swarm optimiser (PSO) and brain storm optimisation

(BSO) are briefly described. Then we survey the existing works on the population sizing.

After that, the basic concepts of parallel EAs and some population topology models are briefly

introduced. As a representative population topology model, the island model which works as

the foundation of this thesis is described in this chapter. The GPU-based parallel EAs are

surveyed then. Finally, we give a brief introduction of the modern HPC facilities and some

basic knowledge of GPU computing.

In Chapter 3, we conduct the first comprehensively experimental study to investigate the

impacts of a large population on the performance of EAs in terms of the solution quality and

computing speed. Specifically, we present that a large population improves the solution quality

of two state-of-the-art and three generic EAs on eight difficult benchmark functions. Moreover,

we also demonstrate that a large population can bring better parallelism and speedups when

implemented in parallel.

In Chapter 4, We propose the SPEO framework on CPU-only HPC (SPEOHPCcpu). The

proposed framework is implemented based on a standard DE algorithm and its performance is

evaluated on eight composition functions of CEC2014 benchmark at the Australian National

Organisation of the Thesis 12

Computational Infrastructure (NCI) platform using up to 512 CPU cores. Experimental results

demonstrate that SPEOHPCcpu is very scalable because approximately linear speedups are

achieved. The results also present that SPEOHPCcpu not only increases the computational

efficiency but also improves the solution quality when compared to a state-of-the-art parallel

EA.

In Chapter 5, we proposed the LES-CDE which can use historical search information to

improve the searching capability. Specifically, we design an ensemble of several neighbouring

local models that are trained by historical information to guide the generation of promising

trial vectors. In this work, an online sequential extreme learning machine (OS-ELM) is used to

construct and update these models in an online manner. After that, we implement the LES-

CDE in parallel based on the SPEOHPCcpu framework. The numerical results demonstrate that

sequential LES-CDE can achieve significantly better solutions than the original CDE regardless

that it requires a very long computing time to train the model. Benefiting from the SPEOHPCcpu

framework, the parallel LES-CDE can be remarkably accelerated and only requires a very short

computing time to achieve extensive FEs. Finally, we provide a recommendation on configuring

the chunk and volume of online training data for LES-CDE to achieve both satisfactory solution

quality and computing speed.

In Chapter 6, a comprehensive procedure for verifying the correctness of GPU-based EAs is

proposed to address the difficult but necessary correctness verification problem. An example of

migrating the PSO from CPU based coding to the GPU environment is given as an example. In

addition, some GPU-inherent issues, which influence the output of GPU-based EAs including

the library functions, the numerical precision, and the race condition, are examined one by

one. To cope with the issues mentioned above, a set of guidelines are proposed to verify the

correctness of the GPU-based EAs. Finally, we present a working example that applies these

guidelines to correctly implement the GPU-based MSBO.

In Chapter 7, we propose the SPEO framework on GPU-enabled HPC (SPEOHPCgpu) that

works efficiently with many GPUs. The SPEOHPCgpu introduces a dual control mode to im-

prove the scalability when an increasing number of GPUs are utilised. The performance of

SPEOHPCgpu is evaluated on eight composition functions of CEC2014 benchmark at NCI using

Organisation of the Thesis 13

up to 64 GPUs. Experimental results demonstrate that SPEOHPCgpu scales well by obtaining

linear speedups and achieves 3,000x speedups compared to its sequential counterpart. Re-

sults also demonstrate that the SPEOHPCgpu outperforms SPEOHPCcpu and a state-of-the-art

CPU-based parallel EA with the same computational budget of USD 1, 10, 50 and 100.

Chapter 8 concludes the thesis with some recommended further research directions.

Chapter 2

Background and Literature Review

In this chapter, some concepts of the topics related to this research are introduced. Firstly,

The basic knowledge of EAs and three representative EAs including GA, DE and PSO are

briefly described. Then we survey the existing works on the population sizing. After that, the

basic concepts of parallel EAs and some population topology models are briefly introduced.

We detailedly describe the island model which is a representative population topology model

and works as the foundation of this thesis. The GPU-based parallel EAs are surveyed then.

Finally, we give a brief introduction of the modern HPC facilities and some basic knowledge

of GPU computing.

2.1 Evolutionary Algorithms (EAs)

2.1.1 Overview

EAs [1–4] are a broad class of meta-heuristic optimisation algorithms which use mechanisms

inspired by biological evolution, such as reproduction, mutation, recombination, and selection.

As population-based searching methods, EAs firstly generate the initial population in the

solution space and then iteratively update it by applying above evolutionary operators until it

converges or a certain number of generations are reached. Since EAs ideally do not make any

assumption about the underlying fitness landscape, they are successfully used to solve various

real-world optimisation problems [5–10]. DE [47], PSO [89] and GA [90] are some well-known

14

Evolutionary Algorithms (EAs) 15

representatives.

2.1.2 Representative EAs

2.1.2.1 Differential Evolution

The DE algorithm [91–97] is a simple yet powerful population-based stochastic search tech-

nique, which is an efficient and effective global optimiser in the continuous search domain.

There are also many popular DE variants [98–101] that offer excellent searching capabil-

ity. In the D-dimensional search space, DE evolves a population of NP individual vectors

XG = {x1,G, · · · ,xNP,G}, where xi,G = {x1i,G, · · · , xDi,G}, i = 1 · · ·NP in quest of globally opti-

mal solutions. The initial population at generation G = 0 is randomly generated in the search

space. From a certain generation to the next, DE employs several operators, i.e. mutation and

crossover, to produce NP trial vectors. Then the trial vectors are evaluated and the target

vectors are updated by the selection operator.

2.1.2.1.1 Mutation

At generation G, a mutant vector vi,G = {v1i,G, · · · , vDi,G}, i = 1 · · ·NP is produced from a

target vector xi,G by mutation operation. The five frequently used strategies are as follows:

• DE/rand/1: vi,G = xr1,G + F · (xr2,G − xr3,G)

• DE/best/1: vi,G = xbest,G + F · (xr1,G − xr2,G)

• DE/rand-to-best/1: vi,G = xr1,G + F · (xbest,G − xr1,G) + F · (xr2,G − xr3,G)

• DE/current-to-best/1: vi,G = xi,G + F · (xbest,G − xi,G) + F · (xr1,G − xr2,G)

• DE/rand/2: vi,G = xr1,G + F · (xr2,G − xr3,G) + F · (xr4,G − xr5,G)

• DE/best/2: vi,G = xbest,G + F · (xr1,G − xr2,G) + F · (xr3,G − xr4,G)

Where the distinct integer indices r1, r2, r3, r4 and r5 are randomly selected in the range [1, NP]

and are also different from the target vector’s index i. The scaling factor is a positive F control

Evolutionary Algorithms (EAs) 16

parameter for scaling the difference vector. xbest,G is the best member in the population at

generation G.

2.1.2.1.2 Crossover

Crossover operator generates the i-th trial vector ui,G = {u1i,G, · · · , uDi,G} from the mutant

vector vi,G and its corresponding target vector xi,G

udi,G =

 vdi,G if (randj [0, 1] ≤ CR) or (j = jrand)

xdi,G otherwise
d = 1, 2, · · ·D

Where CR ∈ [0, 1) is set by users as the crossover rate parameter and jrand is a random in-

teger in the range [1, NP] to ensure that the trial vector ui,G is different from its corresponding

target vector xi,G

2.1.2.1.3 Selection

After generating a trial vector, the constraint checking will be applied to ensure that this newly

generated trial vector is a feasible candidate solution. We will apply random re-initialisation or

some other schemes to repair an infeasible trial vector to make the repaired one to satisfy the

constraints. Then, a set of generated trial vectors UG = {u1,G, · · · ,uNP,G} are evaluated in

terms of their objective function values denoted by F (UG) = {f(u1,G), . . . , f(uNP,G)}, Each

trial vector ui,G will compare its function value f(ui,G) , with the function value f(xi,G) of its

corresponding target vector xi,G. If the trial vector performs better than the target vector, it

will replace the target vector and enter the next population. Otherwise, the target vector will

be retained in the next population. This operation is described as follows:

xi,G+1 =

 ui,G f (ui,G) < f (xi,G)

xi,G otherwise

2.1.2.2 Particle Swarm optimisation

PSO [89, 102–111] is a family of swarm intelligence algorithms inspired by the bird’s creative

problem-solving process, which has achieved successes in various applications. It does not use

Evolutionary Algorithms (EAs) 17

evolution operators such as crossover and mutation; instead, the particle in the swarm adapts

its search behaviour by learning from knowledge not only obtained from its own but also from

other particle in the whole swarm. These phenomena are studied by mathematical models. In

PSO, each particle has a position and a velocity which are adapted based on the best knowledge

of each individual and the global best knowledge from the entire swarm as follows [89]:

vdi,G ← vdi,G + c1 ∗ rand1 ∗ (pbestdi − xdi,G) + c2 ∗ rand2 ∗ (gbestd − xdi,G)

xdi,G ← xdi,G + vdi,G

where xi,G = (x1i,G, x
2
i,G, . . . , x

D
i,G) is the position of the i-th particle; vi,G = (v1i,G, v

2
i,G, . . . , v

D
i,G)

represents velocity of particle i. pbesti = (pbest1i , pbest
2
i , . . . , pbest

D
i) is the best position that

has been found by the particle i ; and gbest = (gbest1, gbest2, . . . , gbestD) is the best position

discovered by all particles in the whole swarm. c1 and c2 are the two parameters that control

the weight how much each particle learns to pbest and gbest, respectively. rand1 and rand2

are uniform random numbers ranging [0, 1] to avoid that all particles have the same behaviour.

If the absolute speed of any particle exceeds a maximum value vmax, the velocity of that

dimension is assigned to sign(
∣∣vdi ∣∣)vdmax.

2.1.2.3 Genetic Algorithm

GA [112–116] is a metaheuristic technique that simulates the natural selection and genetic

mechanism of Darwin’s theory of natural evolution. GA initialises and evolves a population

withNP chromosomes XG = {x1,G, · · · ,xNP,G} at generationG, where xi,G = {x1i,G, · · · , xDi,G},

i = 1 · · ·NP . In each generation G, based on a certain selection strategy, several promising

parents are selected from the current population to generate offspring based on genetic opera-

tions including crossover and mutation. The best NP chromosomes are selected among current

population and all newly generated offspring as the new population for generation G+ 1.

2.1.2.3.1 Selection

GA is usually designed to select the solutions with better quality to inspire the entire population

evolve towards a better quality. Specifically, the chromosomes with high fitness values have a

Evolutionary Algorithms (EAs) 18

larger chance of being selected. One common selection is roulette wheel selection [117] which

is also known as fitness proportionate selection. In roulette wheel selection, each chromosome

is selected according to the probability which is calculated as follows:

pi =
fi∑NP
j=1 fj

where fi is the fitness value of chromosome i. Accordingly, chromosome with a higher fitness

value will be less likely to be eliminated.

2.1.2.3.2 Crossover and mutation

The crossover operation, also known as recombination, combines parents to creates new off-

spring. Here we review and list some popular crossover schemes which are available for binary

representation and real parameter optimisation respectively.

• Single point crossover [118] first randomly select a certain gene of parents’ chromosomes

a crossover point. Two parents swap their chromosome based on this point. Specifically,

the genes at the left side of crossover point is kept the same as the original parent and

the genes at right side of chromosome are swapped between two parents.

• Linear crossover [119] generates three candidate offspring based on two randomly selected

parents xi,G and xj,G as follows, where i and j are two different indices selected from

[1, NP]. Linear crossover selects the two best candidate offspring as the new offspring.

x′1 = 0.5 ∗ xi,G + 0.5 ∗ xj,G

x′2 = 1.5 ∗ xi,G − 0.5 ∗ xj,G

x′3 = 1.5 ∗ xj,G − 0.5 ∗ xi,G

The mutation operation changes some genes of chromosome to explore in searching space

where may not be searched before. to improve the diversity of population. Each gene is selected

to be mutated based on a regulated mutation rate MR and the value of this gene randomly

changes if it is selected. For example, if the k-th gene is selected as the mutation point,

the original chromosome xi,G = {x1i,G, . . . , xki,G, . . . , xDi,G} changes to {x1i,G, . . . , x̂ki,G, . . . , xDi,G},

where x̂ki,G is randomly generated in the searching space.

Evolutionary Algorithms (EAs) 19

2.1.3 Brain Storm Optimisation

The brain storm optimization [120] algorithm works as a kind of search space reduction algo-

rithm, the N ideas are grouped into M clusters eventually and the best idea in each cluster is

denoted as the representation. Then, the new idea is generated based on selected ideas from

one or two clusters. The two important operators are as follows.

• Convergent operator: the convergent operator groups all the current ideas into several

clusters based on their difference in solution space. k-means clustering algorithm is

applied in this operator, and the best idea in each cluster is set as the centre of this

group when k-means finishes.

• Divergent operator: the new ideas are created by current ideas which are randomly

selected from one or two clusters and added by a random noise. In Shi’s work, a uniform

random number from [0,1] is used in random selection and Gaussian random noise N(0, 1)

is used for random noise addition.

Although these implementations can make the BSO algorithm able to work, it would be

faced with the time-consuming problem when solve high dimension problems. However, con-

sidering that an accurate clustering is not necessary for BSO, various variants are designed to

reduce the computation time on convergent operator. Modified BSO (MBSO) [121] that is a

promising variant shares the same architecture with original BSO.

• Convergent operator: A simple grouping method (SGM) is introduced to group all the

current ideas instead of k-means. The new method separates all the ideas based on

randomly selected cluster centres, which avoids iteration of distance calculation.

• Divergent operator: In stead of using a fixed logarithmic sigmoid transfer function based

on the generation and without feedback information from the search process, MBSO

introduces idea difference strategy (IDS) to generate new ideas. IDS taking account of

the difference of current ideas when creating new ideas.

Population Sizes in EAs 20

2.2 Population Sizes in EAs

As population-based optimisation algorithms, EAs search for good solutions by updating the

population and converging to the optima by generations. Specifically, the initial population is

randomly generated in the solution space at the beginning of process; then the new population

is iteratively reproduced by applying evolutionary operators (e.g. crossover and mutation)

until it converges or a certain number of generations are reached. Consequently, the characters

of population impact on how the quality of the solutions is and how long it takes to find

them, for example, a smaller population may converge more efficiently [122–124] but a larger

population may have a greater global search capability [54–59, 61]. In this section, we provide

a brief survey on two views 1) a large population can improve the solution quality, especially

for complex problems 2) a large population is unhelpful and a small population is sufficient.

2.2.1 EAs with a Large Population

2.2.1.1 Theoretical Analysis

Due to the significant impacts of population size on performance of EAs, the ideal size of

a population is studied in many theoretical works. Goldberg [125] studied the optimisation

accuracy achieved by GA with a large-enough population regardless of the computing budget.

They stated that GA makes many errors of decision and buffeted by the vagaries of chance when

a small population size is employed; while GA becomes reliably discriminate between good and

bad building blocks if a large population is used. Summarily, if enough computing resources are

provided, GA with a large population can be more reliable than a small population to find the

global optima. In 2013, to figure out the relationship between optimisation accuracy, reliability

and population size, Goldberg [126] further theoretically analysed the impacts of population

size on GA and claimed that stochastic effects on performance by a small population can be

improved by a sufficient large population size. It is affirmed the benefits of a large population

by providing an equation of a conservative population bound. The equation indicates that

a increasing population size is required when 1) probability of error is decreased, 2) noise

increases, 3) cardinality of the schema increases and 4) signal difference decreases.Additionally,

Population Sizes in EAs 21

he also analysed the multiple building block cases and indicated that the population sizes must

increase exponentially in number of building blocks to guarantee the converge to the global

optima if a complex problem has multiple difficult building blocks. Summary, this work proved

that GA requires exponentially large population sizes to ensure convergence to good solutions

reliably and + that GA with a sufficiently large population size was able to find one of the 32

global solutions (among the 5.2 ∗ 106 local optima).

Jansen et al. [127] pointed out that for a simple problem, a small population can also

have a high probability of successfully finding the global optima; while for a complex problem,

a large population is required to find global optima with high probability. Specifically, it

is pointed out that an increasingly large population can improve the quality of solutions by

avoiding falling into local optima when solving a difficult and complex problem. They used

empirical analyses to verify their findings and presented that (1+λ) EA can always find the

global optima even with a small λ when the dimension n of complex problem SUFSAMP is

small (n < 24). It is because the landscape of SUFSAMP with a small n is not complex

enough. When the dimension becomes large (24 < n < 90), the solution quality of EA with an

increasing λ ∈ [1, n] can be improved significantly. Authors also inferred that sufficient function

evaluations are very necessary for large a λ because they observed that a large population size

may not further improve the solutions if function evaluations are insufficient. Summary, a large

λ is necessary and beneficial for EAs when solving complex problems.

Thomas et al. [58] presented that smaller populations yield better results at the beginning

of the process but are outperformed by the larger populations eventually. Witt [59] figured

out that an EA with a large population size outperforms the same EA with a small population

because a large population can provide sufficient exploration and avoid trapping into local

optima.

Rowe and Sudholt [128] extended the theory of non-elitist evolutionary algorithms (EAs)

by considering the offspring population size in the (1,λ) EA. They pointed that the (1,λ) EA

needs exponential time on every function that has only one global optimum if population size

is small. They also studied arbitrary unimodal functions and investigated the threshold for

offspring population size. They found that this threshold is preferred to be shifted towards a

Population Sizes in EAs 22

larger value. Finally, they conducted an experimental study and demonstrated that a large λ

requires less generations to solve OneMax, LeadingOnes, and Ridge problems.

Gieben and Witt [129] obtained the theoretical results by a careful study of order statistics

of the binomial distribution and variable drift theorems for upper and lower bounds. Based on

OneMax problem, they figured out that a large population makes the algorithm more robust

with respect to the choice of the mutation probability.

Qi and Palmieri [130] established fundamental theoretical properties of population size

for GA in continuous space. They let the population size go to infinity and deriving the

consequent limiting behavior of selection, mutation, and crossover. They pointed put that

population members tend to cover the entire solution space continuously as the population

size gets large. After that, they showed that the probability density function (PDF) of the

population will be narrowly concentrated around the global maximum after sufficiently long

computing time.

Apart from these works which are regardless of considerations of computational cost, some

works [58, 59, 61] pointed out that sufficient fitness evaluations are necessary to converge a

large population to an optima.

2.2.1.2 Empirical Analysis

Although theoretical analyses claim that a large population benefits to the exploration of EA

with sufficient computing budget, it is necessary to employ experiments to examine whether

EAs with a large population is practical to solve optimisation problems.

Costa et al. [131] investigated an empirical comparative study of EAs with the different

population size (50, 100, 512 and 1000). It is observed that GA perform best with a population

size 512 on on several problems. According to authors’ view, population size 1000 performs

worse than 512 due to the shortage of function evaluations.

Hu and Banzhaf [132] tested the Genetic Programming with different population sizes

(200, 2000 and 20000). Results indicated that a larger population is better at searching and

maintaining a high quality of solutions than smaller population. However, since the authors

measured the evolutionary speed by the number of generations which results in more fitness

Population Sizes in EAs 23

evaluations are a large population to reach the same generation as a small population.

Tung and Yu [133] investigated the performances and behaviors of convergence in optimal

mixing evolutionary algorithms and examined the performance of population bound equation

proposed by Goldberg [125, 126]. Experiments indicated that the success rate increases from

0 to 1 with an increasing population size from 50 to 300. They also studied the convergence

time with one mask of size 5 of OMEA with different population sizes and observed that the

time increases when population increase from 1200 to 10000 but keeps stable from 10000 to

204800. It is very interesting to see when solving problems with l = 100 with masks of size 5,

the convergence time of population 100000 is even shorter than 200 which is also match some

theoretical findings by [125, 126].

Friedrich et al. [134] analysed and compared various diversity-preserving mechanisms for

global exploration including crowding, fitness sharing and so on. A simple bimodal test function

for 30 dimension and rigorous runtime analyses are employed in this study and the population

size increases from 2 to 1024. Results show that a larger population always has a higher success

rate than a small rate for all diversity-preserving mechanisms.

Hansen and Kern [53] studied the impacts of the population size λ on the performance of

CMA-ES. They found that CMA-ES, which is designed for a small population size, can be

remarkably improved with a large population size. In this work, CMA-ES with population

size from 5 to 1000 are compared on eight numeric test functions. Results shows that a large

population can always achieve higher success rate compared to a small population.

Belkhir et al. [52] also investigated the effects of a large population on performance of

CMA-ES and employed a self-CMA-ES to better utilise a large population size. They tested

the CMA-ES on BBOB benchmark which containing 24 functions and set the λ from 10 to

1000. Results indicated that the self-CMA-ES with a large population outperform a CMA-ES

with default parameters.

De Jong and Spears [135] presented some theoretical and empirical results on the interacting

roles of population size and crossover in genetic algorithms. They firstly proved that the

crossover productivity effects are much less dramatic if a large population is used. They tested

population sizes ranging from 20 to 1000 and demonstrated that a larger population results in

Population Sizes in EAs 24

better solutions, although the GA must be run for a greater number of generations.

Zhang et al. [136] examined effects of genetic fluctuations on the performance of GA calcu-

lations. They considered the roles of mutation by using the stochastic schema theory within the

framework of the Wright-Fisher model of Markov processes. The success probability of obtain-

ing the optimum solution was investigated experimentally and theoretically. They conducted

the experiments using population from 10 to 500 and noticed that the numerical calculations

approaches the theoretical result when the population is large. On the contrary, there will be

little change for the convergence of average fitness the small population.

Mallipeddi and Suganthan [137] investigated the effect of population size on the quality

of solutions and the computational effort required by the DE Algorithm. The experiments

are conducted on various population sizes ranging from 2D to 10D, where D is problem di-

mension (10 and 30). From these experiments, they observed that a large population with a

strategy having good exploration capacity reduces the probability of premature convergence

and stagnation effects, but the convergence speed can be slower.

Oda et al. [138] dealt with the effect of changes in population size and number of genera-

tions for node placement problem in Wireless Mesh Networks (WMNs). They considered two

population sizes 8 and 512 and for every population size the number of generation are 200

and 20,000. Thus, the increase of the population size results in better performance behaviour.

However, when the number of generation is also increased, the computation time is increased.

Sarkers and Kazi [139] investigated the effect of population sizes on the quality of solutions

to be obtained, the computational time to he required and the size of search spaces of the

problems under consideration. They selected a two-stage transportation problem as a test case

and also used a well-known conventional optimization technique to compare the solutions. The

experimental results are performed on population sizes ranging from 50 to 2000. The results

state that the population sizes may need to increase for improving the quality of solutions for

a two stage transportation problem, and it may need further increasing for higher dimensional

models. In summary, they concluded that the quality of solutions is highly dependent on the

population size specifically when the search space is larger.

Piotrowski [140] briefly reviewed the opinions regarding DE population size setting and

Population Sizes in EAs 25

verified the impact of the population size on the performance of DE algorithms. Ten DE

algorithms with fixed population size, each with at least five different population size settings,

and four DE algorithms with flexible population size are tested on CEC2005 benchmarks and

CEC2011 real-world problems. According to the numerical results, a large population size is

useful when the problem is very hard and multimodal. Moreover, too low population sizes

may diminish the number of available moves and prevent convergence within the specified

number of function calls, even in case of unimodal problems. Moreover, they also stated that

some variants of DE with flexible population size do not outperform the variants with fixed

population size, if the fixed population is configured properly.

Zhan et al. [141] studied the population size how to impact on convergence rate, convergence

time and global search capability of the genetic algorithm for the typical benchmark functions.

According to their work, the increase of population size will reduce the evolution generation

numbers if the total fitness evaluations are fixed and the global search capability still enhance.

Hernhdez-Aguirre et al. [142] used the Probably Approximately Correct (PAC) framework

to derive the size of a GA population. Their experiments used population sizes ranging from

66 to 2518 and demonstrated that small populations converge quickly without finding the

solution. On the contrary, large populations have greater chances to find the solution but the

consequences are paid in long processing time.

Belmont-Moreno [143] selected a particular set of test problems make an empirical study

of a standard algorithm observing general trends when used with the set of test problems. In

this work, the behavior of two particular parameters in GA is analyzed. In the experiments,

the various population size that are up to 3000 are tested with various total numbers of fitness

evaluations that are up to 300,000. It can be observed that if a big number of evaluations is

necessary, the optimum population size moves into a bigger number. If a small or moderate

number of evaluations are used, there exists a favored population size.

Dong and Yao [144] studied the impacts of population size on performance of Estimation

of distribution algorithm (EDA). They figured out that classical EDAs with a small popu-

lation that use maximum likelihood to estimate Gaussian usually fail because the exploring

effectiveness will be fast deteriorating and premature convergence will arise. The performance

Population Sizes in EAs 26

of different population sizes ranging from 100 to 2000 are compared by experiments on sev-

eral test functions. Results shows that sufficiently large population sizes assist the maximum

likelihood estimates to be precise and reliable, while a insufficient population performs poor

and unstably. Summary, authors concluded that if more efforts are devoted into tunning and

algorithm design, the population size can be reduced to save computing budget; however, it is

very difficult for EDA to solve difficult problems with with a too small population.

Currently, benefiting from the modern parallel / distributed computing facilities (e.g.,

GPGPU, cloud computing and HPC), the impacts of population are also studied based on

these parallel computing platforms. Folino et al. [67] proposed a scalable cellular parallel GP

and employ population sizes ranging from 800 to 6400 on up to 64 computing nodes. Results

shows that parallel GP with a larger population converges faster and achieve better solu-

tions than a smaller population when executing on parallel computing platform. Tatsukawa et

al. [145] used a many-objective EA designed for massive parallelisation (CHEETAH) on the

K supercomputer. They compared the performances of different population sizes from 100 to

1,000,000 on test problems DTLZ1, DTLZ2, DTLZ3 and DTLZ4 at up to 4000 cores on super

computer. Results showed that a larger population can achieve significantly better solutions

than a smaller population.

2.2.1.3 Applications

So far, there are many applications which employ EAs with a large population to solve dif-

ficult optimisation problems especially for some complex real-world problems such as protein

structure prediction and neural network design.

Li et al. [50] proposed a novel graph-based EDA and employ reinforcement learning (RL) to

enhance the performance in terms of fitness values, search speed, and reliability. The proposed

EDA employed a large population 1800 and achieve significantly better solutions compared

to genetic network programming (GNP) or GP with a relatively small population size of 300.

Valdez et al. [49] proposed a Boltzmann based EDA and showed that different problems require

different population size. In the experiments, population sizes are set ranging from 200 to 2400

for 2 to 80 variables. Hans-Georg and Sendhoff. [51] proposed two evolutionary strategies (ES)

Population Sizes in EAs 27

for the optimisation of problems with actuator noise as encountered in robust optimisation.

they stated that a large population does improve the final solution quality if strong noise exists

and examined this idea by employing a (320,800) ES on Sphere function.

Since many works indicated that a large population may result in very slow computing

speed, parallel computing becomes increasingly popular on applying a large population. Thus,

effective utilizing a large population and processing a large number of fitness evaluations in a

reasonable time is no longer impossible. Consequently, various works have utilised parallel EAs

with a large population to resolve complicated real-world applications which are far too difficult

for a small population before. Real et al. [38] applied parallel EA with a 1000 population on

250 CPU cores for 256 hours to automatically design a neural network for image classification

and achieved excellent accuracy compared to manually designed ones. Salimans et al. [39]

explored the use of ES as an alternative approach to solve RL problems. In this work, they

had been able to use EA with with a 1440 population to solve the MuJoCo 3D humanoid

task within 10 minutes on 1440 CPU cores. Roy et al. [146] proposed a new distributed

architecture for GAs based on distributed storage of the individuals in a persistent pool. In

the experiments, up to 32 threads are used to evolve up to 200 individuals on each thread; in a

word, up to total 6400 individuals are tested. Desell et al. [147] discussed different strategies for

computing EAs on distributed environments. In particular, sequential strategies which require

synchronization between successive populations are compared to asynchronous strategies that

do not have explicit dependencies. In the experiments, a population up to 1000 are used to solve

Ackley, Rastrigin and Rosenbrock problems. Luque et al. [148] implemented an asynchronous

parallel cellular GA for combinatorial optimisation. It used up to 8 processors to accelerate 800

individuals. Li and Wang [69] proposed a scalable parallel genetic algorithm which can process

an extremely large population size up to 1,638,400 for the Generalized Assignment Problem

(GAP) on HPC with up to 16,384 CPU cores.

2.2.2 EAs with a Small Population

There are also many works support the benefits of utilsing a small population. Most early

works on classical EAs applied a relatively small population, for example, the population size

Population Sizes in EAs 28

was suggested at 100 for standard GA [46], a population ranging from 5 to 100 is suggested by

the DE [47], and 20 for PSO [48].

Chen et al. [60] conducted theoretical study and analyzed the role of population further

in EAs and showed rigorously that large populations may not always be useful. They also

discussed the conditions under which large populations can be harmful. Specifically, their study

was based on the TrapZeros problem and the (N + N) EA without the crossover operation.

According to their research, a large population may not be useful and even becomes harmful

when a problem has an attraction basin leading to some local optimum, and the individuals at

this basin are with relatively high fitness than most individuals.

Cabrera and Coello [149] presented a multi-objective EA (MOEA) based on PSO algorithm

which is characterized for using a very small population size. The experiments are conducted

using a small population that only has 5 individuals. This small population size combined with

a good mechanism to preserve diversity allows them to produce reasonably good approxima-

tions of the Pareto front of several test problems of moderate dimensionality (up to 30 decision

variables), while performing only 3,000 objective function evaluations.

Many EDAs use a large population size to better represent the landscape of problems.

Hong et al. [150] firstly illustrated why EDA does not work well under small population size.

However, they then proposed a novel approach termed as over-selection to boost EDA under

small population size. Experiments were conducted on several benchmark problems using a

relatively small population size 100 for the proposed approach and were compared it to the

performance of uni-variate marginal distribution algorithm (UMDA) under four different sizes

(M = 15,M = 50,M = 100,M = 500). The results demonstrated that the over-selection with a

small population is often able to achieve a better solution without significantly increasing its

time consumption when compared with the original version of EDA with a large population.

Ashlock [151] compared the use of various population sizes for three genetic programming

problems: 4-parity using parse trees, Tartarus using ISAc lists, and several versions of plus-

onerecall-store (PORS) using parse trees. According to experiments based on population sizes

that range from 4 to 1000, the best results were obtained by the smallest population for all

problems.

Population Sizes in EAs 29

Mao and Li [152] employed the MPGA to retrieve the dust particles size distribution using

AOT data taken by a sun photometer CE-318. The results showed that the MPGA presents

better properties when compared with the SGA; specifically, it requires smaller population size

(population 30 for MPGA and 200 for SGA) and fewer generation numbers (generation time

25 for MPGA and 50 for SGA) to achieve smaller inversion errors to retrieve the aerosol size

distribution.

Kok et al. [153] conducted on the performance of GA at various selection schemes and

population sizes (from 10 to 50). Results showed that large population sizes do not contribute

in improving the performance of GA; namely, increasing population size does not considerably

improve the convergence speed at least in path planning.

Alander [154] investigated the optimum population size for GA and conducted the test on

a sequential machine. Population sizes are tested on up to 120 and the results claimed that a

large population is less appealing if fast convergence or great divergence is aimed at.

Haupt [155] conducted experiments to determine the optimum population size and mutation

rate for a simple real GA. The experiments were based on various population size ranging from

4 to 128. The results of this investigation showed that a small population size and relatively

large mutation rate is far superior to the large population sizes and low mutation rates that

is used by most of the papers presented in the electromagnetics community and by the GA

community.

Mora-Melia et al. [156] analyzed the optimal size of EA in designing water distribution

networks. Experiments demonstrated that large initial population sizes are not more efficient

than small populations in finding the best solution. Specifically, for P > 50 on Hanoi and

GoYang network, the efficiency decreases as the size of population increase; for New York

network, there is no significant differences between population sizes are appreciated for P > 75.

Nodehi [157] used a novel functional sized population Quantum Evolutionary Algorithm

for fractal image compression. The experiments are conducted on three images that are Lena,

Pepper and Baboon using small population sizes raning form 15 to 30. The results turned out

satisfactory enough and there is no need to employ a larger population size.

Allia et al. [158] investigated the effect of population sizes from their proposed method

Parallel EAs 30

of feature selection on different learning classifier algorithms using Random Forest, Voting,

Decision Tree, Support Vector Machine and Stacking. Experiments on Ling-Spam email dataset

using small population sizes from 1 to 9 demonstrated that even by using the smallest size of

the population, it is still able to produce a good result.

Zhang et al. [159] presented a hybrid PSO approach with small population size (HPSO-SP)

for solving the optimal short-term HTUC problem. A small population size 5 is used in the

experiments and satisfactory solutions are achieved even such a small population is employed.

2.3 Parallel EAs

2.3.1 Overview

In order to efficiently deploy the computational tasks into parallel computing platforms for

speedups, there are two main types of population topology models which are population-

distributed and dimension-distributed [15–18]. The population-distributed model that in-

cludes master-slave [19–22], island [14, 23–25] and cellular model [26–29] distributes the global

population to parallel computing facilities and achieves parallelism between individuals. The

dimension-distributed model such as coevolution model [30–33] distributes the entire problem

to parallel computing facilities and achieves parallelism between elements of solutions.

• The master-slave model is the most straightforward method to distribute time-consuming

computational tasks into parallel computing facilities. Single master only does light tasks

such as crossover and mutation, while the fitness evaluation which is usually the most

time-consuming part is distributed to many slaves. Each slave only receives a portion of

global population from the master and sends them back to the master after the evaluating

fitness values of individuals on the salver. Communication only exists between master

and slave and slaves work independently.

• The island model is a coarse-grained parallel model of EAs and is conceptually a rather

simple enhancement to a standard EA. The island model deploys a single global popula-

tion into several sub-populations (a.k.a. islands) and exchanges information by migration.

Parallel EAs 31

Each island shares the information with its neighbor island as defined in the graph of

possible inter-island links commonly referred to as migration topology.

• The cellular model is a fine-grained parallel model of EAs. In cellular model, the global

population are divided into individuals and assigned to each machine. The interaction

such as crossover between individuals are realised through the communication defined

by a network topology. Each individual can only interacts with its neighbors and thus

promising individual spreads its information gradually to the entire global population.

• The coevolution model is a dimension-distributed model. Unlike to master-slave, cellular

and island model, the coevolution model decomposes the complex problem into simple

problems and deploys all dimensions into different machines. The basic approach of

cooperative coevolution is to divide a large system into many modules and evolve the

modules separately. Then these modules are combined again to form the whole problem.

2.3.2 Island Model

As a coarse-grained parallel model of EAs, the island model is conceptually a rather simple

enhancement to a standard EA. The island model can outperform standard EAs and is ideal for

parallelisation due to the two following benefits. Firstly, the island model is capable to achieve

better solutions than standard EAs with a single population because many islands usually

provide abundant searching behaviors and improve the diversity of the global population.

Secondly, the island model is ideal to implement on multiple machines because all islands can

run genetic operations simultaneously. Compared to the master-salve and the cellular model

that require communications or synchronisation at each generation, the island model spends

less on non-computational tasks since islands only interact in several generations instead of in

each generation.

2.3.2.1 Basic Parameters

Basically, the global population with NP individuals are equally divided into several islands.

Island size Ns represents the number of individuals in a single island which is the smallest

Parallel EAs 32

unit processed by a single EA. Island number M represents the total number of islands which

usually equals with the number of machines.

Another two crucial migrated-related parameters are migration interval I and migration

rate Rm which determine how often the migration occurs and how many individuals are mi-

grated, respectively. Some works [25, 160] pointed out that a medium migration interval is

preferred for the island model because frequent migrations with a small I causes all islands

homogenous and lose global diversity. On the contrary, a rare migration with a large I may

lead to insufficient information exchange. Regarding migration rate Rm, it does not impact as

much as interval on the solution quality, thus a small migration rate is sufficient according to

the work [25].

Some works studied dynamically adapting the migration interval and rate for better per-

formance. Whitley et al. [161] configured the interval and migration rate based on the island

size when solving linearly separable problems. Specifically, the interval and the migration rate

are set 250 and 4% when island size is 50; when the island size increases to 1000, the interval

increases to 5000 and the migration rate decreases to 0.5%. Gong and Fukunaga [63] replace

the interval parameter with dynamically sending individuals to other islands. The migration

occurs unless the best individual in island is updated, by which the algorithm can effectively

avoid sending the same or less promising individuals to other islands. Liu and Wang [69]

employed different migration intervals for exporting and importing by utilizing a buffer-based

asynchronous migration strategy. Zhan et al. [36] proposed an cloud-based island model and

replaced the constant interval with a non-linearly increasing probability as follows:

pm = 0.01 + 0.09
exp(10G

Gmax
)

exp(10)− 1
∈ [0.01, 1.00]

where G is the current generation and Gmax is the maximal generations. The probability

increases from 0.01 at the beginning to 1.00 at the end of algorithm. By this scheme, CloudDE

can balance the exploration and exploitation at different stages of the algorithm.

2.3.2.2 Migration Policy

The migration policy determines how the emigrants are selected from the current island and

how to insert the immigrants into the recipient island. Basically, migration policy in island

Parallel EAs 33

(a) Chain topology (b) Uni-directional ring topology (c) Ring topology

(d) Hypercube topology (e) Lattice topology (f) Fully connected topology

Figure 2.1: Common migration topologies in the island model.

model can be narrowed down to randomness and elitism [162]. For random-based migration

policy, one or more individuals in the island are randomly selected or replaced; while elitism

select the best individuals as emigrants and replaces the worst ones in the island by immigrants.

Araujo and Merelo [24] claimed that elitism-based migration policies increase the selection

pressure and can significantly speedup the converge; however, an excessively selection pressure

may also lead to converge prematurely. On the other hand, if the island size is small or

medium, randomness policy can prevent the “conquest” effect in the recipient island. Zhan et

al. [36] employed a randomness policy which directly insert immigrants into the island instead

of replacing certain existing island members.

Parallel EAs 34

2.3.2.3 Migration Topology

The island model exchanges the information based on the graph of links between islands which

can be defined as the migration topology. The migration topology determines the path and

speed of spreading useful information among islands [66, 163], specifically, a topology with a

smaller diameter usually spreads the information faster [66]. For example, if totally M islands

are employed, a fully connected topology can exchange information between any two islands

by a single migration; while a chain topology require at least M −1 steps from the head to tail

island. Figure 2.1 shows some frequently used migration topologies. Rucinski et al. [66] studied

and compared the performance of 14 migration topologies including ring, chain, torus, lattice,

hypercube, fully connected. Experiments demonstrated that no topology can perform well on

all problems and the best option for specific problems or algorithms always depends. However,

a dense topologies are usually a safer choice because they perform more stably than sparser

topologies. Many works [64, 71] also proved that denser topologies brought better solutions

but are also more costly than sparse topologies due to the larger demand of communication.

Besides these static migration topologies, there are also some dynamic migration topolo-

gies. Standard dynamic topology [163] does not predefine any connection between islands,

instead, each island randomly selects an island as its recipient in each migration. Some dy-

namic topologies works based on overall quality of islands. Zhan et al. [36] proposed the

CloudDE algorithm with a dynamic migration topology which lets some individuals migrate

from a relatively poorly-performed islands to a relatively well performed island, so as to benefit

reproduction from configurations of the well-performed islands.

2.3.2.4 Synchronous and Asynchronous Migration

It is a common practice to use multiple machines to speed up the island model. A parallel

island model does not need to communicate as often as a traditional EA, which is important

when the communication through a network is several orders of magnitude slower than within

a single machine. The migration can be synchronous or asynchronous when the island model is

implemented in parallel on multiple processors. Synchronous migration [36, 164–166] will not

perform the computation such as crossover and mutation unless all islands finish exchanging

Parallel EAs 35

individuals. Therefore, all processors have to stall until the slowest one completes the migration,

making it very inefficient and unscalable when a large number of islands are synchronised

frequently by a centralised approach. Regarding the asynchronous migration, it performs the

computation as soon as it finishes the exchange of individual, without taking into account the

state of other islands.

Galeano and Fernández [167] compared the performance of island-based genetic program-

ming (GP) with synchronous and asynchronous migration. Moreover, due to the close relation-

ship between communication efficiency and number of processors, they also investigated how

the number of islands impacts on the performance of parallel GP. In this work, the synchronous

model will synchronise all islands when they share information; while the asynchronous model

sends emigrants every a few generations and receives the immigrants whenever they arrive.

Experiments indicated that if there are a small number of processors, synchronous model may

perform better than asynchronous one because the latter model spend some time to check

incoming message to receive in every generation while the former one only check after a few

generations. However, when a large number of processors are utilised, asynchronous model

performs significantly better than the synchronous model due to the high demands of syn-

chronisation. Alba and Troya [168] also analysed the synchronous and asynchronous parallel

GA. Experiments shows that asynchronous migrations effectively reduce the computing time

compared to their equivalent synchronous versions for any interval and migration topologies.

Regarding to the optimisation accuracy, both models can achieve similar numeric performance.

As the asynchronous island model offers better computational speed and similar solution

quality with the synchronous one, it is becoming increasingly popular when implementing

the island model in parallel. Liu and Wang [69] proposed a scalable parallel GA with an

asynchronous migration which scales well on up to 16,384 CPU cores. To avoid the synchro-

nisation among processors, an import pool is designed to store all incoming immigrants once

they arrive. Similarly, a buffer-based asynchronous migration was also proposed by Märtens

and Izzo [169] who designed an asynchronous island-based model by employing a list to store

all emigrants. Kurose et al. [170] proposed an asynchronous migration EA by deploying the

EA operations, fitness evaluation and communication on different processors. Consequently,

Parallel EAs 36

the efficiency of processors that work on computational tasks is hardly influenced because the

synchronisation only exists among the processors that undertake the communication tasks.

Izzo and Ampatzis [171] proposed an asynchronous island model by processing migration on

a master processor and evolution tasks on clients. Unlike Zhan’s work [36] in which master

processor will not process migration unless all islands are ready, the master processor in this

work performs asynchronous migration once any client is ready for importing or exporting

individuals. Since the algorithm is implemented based on multi-threads programming library

(POSIX THREADS) on a single machine, a mutual exclusion of access to the shared memory

is designed to avoid the conflicts of the memory access.

2.3.3 GPU-based Parallel EAs

In recent years, GPUs have become a powerful and affordable computing device that can

support general-purpose massive data-parallel computation. Nowadays, modern GPUs have

empowered numerous personal computers (PCs), making it accessible for many researchers.

As a dominant of parallel computing platforms and programming models, CUDA enables

dramatic increases in computing performance by harnessing the power of the NVIDIA’s GPU.

As a result, many EAs that were sequentially implemented on central processing units (CPUs)

have been re-designed and implemented based on CUDA, achieving remarkable speedups.

2.3.3.1 Parallel EAs on a Single GPU

DE was first implemented on GPU by Veronese and Krohling [74], Zhu [73], and Zhu and

Li [172]. The GPU-based implementations are test on several numerical test problems and

achieved up to 34 speedup comparing with sequential DE on CPU. Krömer et al. [173] im-

plemented DE on GPU targeting at fully occupying the device. The experiments were tested

on test problems and achieved up to 9.7 times speedup comparing with sequential DE. Qin et

al. [174] proposed an improved GPU-based implementation of DE. This work considered the

time of kernel launching and thus merged several kernels into one single kernel. Moreover, the

configurations of program was automated decide by the device and several streams are used to

increase the overlap between different kernels. Experiments showed the improved GPU-based

Parallel EAs 37

DE had a remarkable improvement compared to the original GPU-based DE based. Wong

et al. [79] introduced the cuSaDE that implements the SaDE on GPU with CUDA. In this

work, GPU conducted the time-consuming learning operator and the DE operators as well.

Some benchmark functions were tested with different population sizes and problem dimen-

sions. Results indicated that cuSaDE achieves a better speedup with a larger population size

and problem dimension. Fabris and Krohling [175] proposed a co-evolutionary variant of the

DE for max-min optimisation problems. In this work, DE maintained 2 populations for syn-

chronisation and achieved a up to 6.33 speedup meanwhile obtained a promising solution. A

more general framework was designed for reducing the difficulties for implementation on GPU

by Arabas [176] who developed a more general framework of DE implemented on GPUs. In

this work, a universal platform Easy Specification of Evolutionary Algorithms (EASEA) for

GPU-based DE was introduced, in which just the fitness evaluation was conducted on GPU

to reduce the difficulties of implementation on GPU. The implementation of fitness evaluation

was the only task conducted by users which makes developing a GPU-based DE easier.

PSO was implemented and executed in parallel on GPU shortly after the inception of the

platform. Rabinovich et al. [75] implemented a Gaming PSO on GPU in a single kernel. In

this kernel, each thread was launched with each element of particle. The authors obtained

a remarkable speedup on an NVIDIA GTX456 GPU. Roberge and Tarbouchi [76] proposed

GPU-based PSO with curand library for generation of pseudorandom numbers. Several kernels

are launched, in which one block handles one particle and one thread works for one element

of one particle. Rosenbrock function was used as the test function and the speedup is 215

times faster than the CPU-based PSO. GPU-based PSO is also used in work of Roberge [177]

for 3D pose estimation and a 140 times speedup over a sequential implementation is achieved.

Reguera-Salgado and Martin-Herrero [178] applied thrust library to generate ortho images and

reduced the execution time of GPU in less than 4 minutes. Platoš et al. [179] introduced

a GPU-based PSO for document classification. Some widely used data mining benchmarks

are employed and 2.5 to 10 speedups are achieved. Some promising variants of PSO are also

employed and implemented on GPU. Zhang and Seah [180] employed a GPU-based niching PSO

with local search. Kernels launched by the proposed algorithm contain 64 threads in one block

Parallel EAs 38

and up to 30 speedups are achieved. Nobile et al.[181] implemented a multiple-swarm PSO

on GPU, which launched a kernel with one thread handling one particle in PSO operators

and achieved 24 speedup compared to the CPU-based implementation. Sharma et al. [182]

implemented a modified PSO based on GPU which achieved a 40 times speedup. Chen et

al. [183] proposed a Latin Hypercube design for PSO (LaPSO) whose kernel are launched with

one thread for each particle, the achieved speedup reaches up to 51 times faster than the CPU-

based implementation. Different with most work which CPU launch GPU kernel function in

every generation, the work done by Wachowiak and Foster [184] introduced an implementation

of which the GPU threads run for a certain iterations before synchronisation. The algorithm

was used to solve several realistic problems with different characteristics including toy protein

folding, logistic function (regression benchmark problem) optimisation.

Other EAs were implemented on the GPU in last years. Zhou et al. [78] solved the trav-

elling salesman problem (TSP) using a tour construction and pheromone update stages with

Ant Colony optimisation (ACO) on the GPU and achieved up to 8 times speedup. Tsutsui

et al. [185] solved quadratic assignment problems (QAP) problems by GPU-based GA. Exper-

iments claimed a speedup ration from 3 to 12 times faster than the sequential GA. Dawson

and Stewart [186] solved the edge detection problems with GPU-based ACO and a promis-

ing data-parallel approach was introduced that maps individual ants to A thread warp. The

ants-to-warp showed its advantage and achieved up to 7.8 times speedup when comparing with

ants-to-thread and ants-to-block. Chitty and Darren [187] studied the method to maximally

utilised the performance of device, this work exploited the fast on-chip memory(L1 cache and

shared memory) of GPU. Experiments showed that a maximum performance is up to 36 billion

genetic programming (GP) operations per second.

2.3.3.2 Parallel EAs on Multiple GPUs

Goli and Brown [188] described a heuristic searching algorithm based on Monte Carlo Tree

Search on heterogeneous CPU/GPU platform. They demonstrated that their algorithm achieved

remarkable speedups on 2 GPUs. Pablo Vidal et al. [83, 189] designed a novel implementation

of a cellular GA (cGA) model for a multi-GPU platform. It performed with two NVIDIA GTX-

Modern High Performance Computing (HPC) 39

285 cards and achieved remarkable speedups with a large population (up to 262,144). Tsutsui

and Fujimoto [84] implemented ACO with two different parallel models (the island model and

master/slave model) on a PC which has 4 GTX 480 GPUs. The master/slave model showed

promising speedup for large instances of QAP problems. Ha and Moon [87] tackled the prob-

lem of knowledge discovery in big financial time series with GP on up to 8 GPUs. Jaros [86]

proposed a novel implementation of the island-based GA exploiting a multi-GPU cluster. The

proposed algorithm was executed on up to 14 NVIDIA GTX 580 cards and achieved the

overall performance of 5.67 TFLOPS. Ježowicz [85] described five different evolutionary-based

approaches that solved the classification problem on the Anselm cluster with up to 16 NVIDIA

Kepler K20. The proposed algorithm only utilised the GPU to calculate the cost functions for

the particles.

2.4 Modern High Performance Computing (HPC)

2.4.1 Overview

Currently, the further more computing power is always highly desired since the scale of real-

world problems keep increasing. Therefore, as parallel computing platforms that can scale

to a large number of processors, HPC [190–194] is the use of parallel processing techniques

for solving complex computational problems and thus has become increasingly important in

research, manufacturing and finance in recent years. Furthermore, dynamically provisioned

and pay-as-you-go computing resources of HPC are now also offered by some cloud computing

providers such as Amazon Web Services (AWS), Google Cloud Platform and Microsoft Azure.

HPC cloud helps to reduce costs by providing CPU, GPU, and FPGA servers on-demand,

optimised for specific applications, and without the need for large capital investments. HPC

allows scientists or engineers to remarkably accelerate solving of compute-intensive problems

by assembling a large number of processors, high-performance network, fast storage and large

amounts of memory which can be seen at Figure 2.2.

Modern High Performance Computing (HPC) 40

Computing Nodes

Switch
InfiniBand

Login Node

Internet

User (submitting jobs)

Figure 2.2: The architecture of HPC.

2.4.2 CPU-only HPC

A CPU-only HPC is a set of loosely or tightly connected CPU nodes that work together so

that, in many respects, they can be viewed as a single system. Computer clustering relies on

a centralised management approach which makes the nodes available as orchestrated shared

servers. It is distinct from other approaches such as peer to peer or grid computing which also

use many nodes, but with a far more distributed nature.

As shown at Figure 2.3 that presents the infrastructure of CPU-only HPC, the components

of CPU-only HPC is the CPU compute node which has several CPUs, each of which usually

possesses many computing cores, QPI that connects Intel CPUs at the same node, the fast

local area networks (e.g. infiniBand) between different CPU compute nodes. Users submit jobs

through the internet and login serve, while the jobs actually run at the CPU compute nodes.

When utilizing CPU-only HPC, minimal changes are required to the existing source code of

CPU programs, with the exception of possible modifications necessary for message passing.

However, it is usually expensive to acquire sufficient computing power because numerous CPU

cores are usually necessary to achieve significant computing power.

Modern High Performance Computing (HPC) 41

QPI

InfiniBand

Node NNode 1

Node i

16 cores INTEL
XEON CPU

NUMA j NUMA j+1

17
core

18
core

19
core

20
core

21
core

22
core

23
core

24
core

25
core

26
core

27
core

28
core

29
core

30
core

31
core

32
core

1
core

2
core

3
core

4
core

5
core

6
core

7
core

8
core

9
core

10
core

11
core

12
core

13
core

14
core

15
core

16
core

Figure 2.3: CPU-only HPC infrastructure.

2.4.3 GPU Computing

Modern Graphics Processing Units (GPUs), which are originally designed to support for com-

puter graphics and gaming applications, can offer a considerably powerful platform in favor

of massively parallel applications. Moreover, numerous PCs are equipped with affordable

GPUs leading to powerful parallel platform accessible for resolving time-consuming applica-

tions. Currently, GPUs greatly outperform CPUs in both arithmetic throughput and memory

bandwidth.

GPGPU has been a very active research topic in the last years, especially since computing

frameworks such as CUDA or OpenCL were introduced. These platforms have allowed using

the great computing capabilities of modern GPU for general purpose problems by using exten-

sions of high level programming languages. OpenCL (Open Computing Language) [195–199] is

the open, royalty-free standard for cross-platform, parallel programming of diverse processors

found in personal computers, servers, mobile devices and embedded platforms. OpenCL greatly

improves the speed and responsiveness of a wide spectrum of applications in numerous market

categories including gaming and entertainment titles, scientific and medical software, profes-

sional creative tools, vision processing, and neural network training and inferencing. CUDA

(Compute Unified Distributed Architecture) [200–209], which dedicated supports for modern

NVIDIA’s GPUs, is a parallel computing platform to improve the efficiency of general-purpose

GPU computing. CUDA-C is an extension of the C programming language and requires less

effort for programming on GPU when programmers are familiar with C/C++ language. This

Modern High Performance Computing (HPC) 42

Figure 2.4: Threads batching in CUDA.

platform coordinates CPU and GPU, so-called host and device, into a heterogeneous comput-

ing system to make the best use of both of them. Although OpenCL promises a portable

language for GPU programming on both AMD and NVIDIA cards, while CUDA only works

on NVIDIA cards, OpenCL’s generality may entail a performance penalty.

CUDA, which was first introduced by NVIDIA in November 2006, is a general purpose

parallel computing platform and programming model that leverages the parallel compute engine

in NVIDIA GPUs to solve many complex computational problems in a more efficient way than

on a CPU. CUDA comes with a software environment that allows developers to use C as a

high-level programming language.

CUDA groups hundreds of SPs into several stream multiprocessors (SMs), each of which

Modern High Performance Computing (HPC) 43

Figure 2.5: CUDA device memory model.

consists several SPs that share the on-chip control logic unit, shared memory with low latency

and registers. SMs communicate with each other by global memory with high latency. From

the birth of CUDA, 7 generations of hardware architectures has been released (Tesla, Fermi,

Kepler, Maxwell, Pascal, Volta and Turing). The new generation always bring some break-

through, i.e., the successful Kepler-class names the SMs as SMX and features a larger number

of more powerful SPs; Kepler-class support dynamic parallel which also brings a better perfor-

mance comparing with its previous generation (Fermi-class), Volta introduced the tensor core

to improve the computing power for deep learning.

CUDA-C [200] is a C-based programming model for NVIDIA GPUs. This model unifies

CPU and GPU, so called host and device, into a heterogeneous computing system to make the

best use of both of them. The host code can contain arbitrary CC++ operations, data types,

and functions while the device code can contain only a subset of operations and functions

implemented on the device. The structure of CUDA program and the mapping of threads is

Modern High Performance Computing (HPC) 44

illustrated in Figure 2.4 from [210]. Some basic knowledge of CUDA-based programming is as

follows:

• Execution model: CUDA-C consists of three types of functions: (1) host function, invoked

and executed by CPU as same as C language. (2) kernel functions, invoked by CPU

but executed on GPU. Kernel configurations such as dimensions of the block and the

grid, the shared memory allocation and streams are associated and must specified within

‘<<<...>>>’. (3) device functions, invoked and executed by GPU. The kernel functions

are device functions are tagged with ‘global’ and ‘device’ keywords respectively when

declaring and defining functions.

• Thread, block and grid: hundreds or thousands of streaming processors (SP) are grouped

into several streaming multiprocessors (SMs) on GPU) (presented at Figure 2.4). A

thread is processed by each SP at one time and a large number of threads are executed

by the same instruction at the same time in the single instruction multiple data (SIMD)

mode, leading to the great parallelisation. These threads are grouped into several blocks,

each one of which can be processed by a SM. A grid groups several blocks and is processed

by a GPU. A block and grid are organised as one-dimensional, two-dimensional, or three-

dimensional. The configurations of thread, block and grid are used in ¡¡¡...¿¿¿ execution

configuration syntax mentioned above.

• Memory types:According to Figure 2.5 from [203] which presents the CUDA memory

model, six types of memory with unique characteristics are provide by CUDA to better

utilise the GPUs. (1) registers are independently accessed by each thread. They are the

fastest on-chip memory but their number are very limited. (2) shared memory are jointly

accessed by all threads in one block. They are slower than registers but also on-chip

memory with low latency. They store more data than registers but still very limited. (3)

Local memory accesses only occur for some automatic variables which are allocated with

undetermined quantities or the required quantities are more than registers. (4) constant

memory are read-only memory spaces accessible by all threads and is cached. (5)texture

memory are read-only spaces accessible by all threads and is optimised cached for 2D

Modern High Performance Computing (HPC) 45

spatial locality. (6) global memory resides in device memory with the largest space but

the slowest access speed.

2.4.4 GPU-enabled HPC

The HPC with millions of CPUs offers advantages in availability and extensibility, modularity

and compatibility. However, these metrics do not tell the whole story. Specifically, since CPU

is usually designed for general computing tasks instead of compute-intense tasks, numerous

CPU cores are necessarily demanded to solve large-scale problems; as a result, it leads to the

high expense.

Inspired by the incredible computing capability, many HPCs evolve from traditional clusters

of homogeneous nodes (CPU-only) to clusters of heterogeneous nodes (CPU + GPU) [211,

211–213]. It can be observed from Table 1.1 that a half of top 10 HPCs are GPU-enabled.

Especially, the latest and most powerful HPC (Summit at the Department of Energy’s (DOE)

Oak Ridge National Laboratory (ORNL)) is assembled with 26,136 NVIDIA Tesla V100 GPUs

and provides with a performance of 122.3 petaflops on High Performance Linpack (HPL)

benchmark. An example of infrastructure of GPU-enabled HPC is presented at Figure 2.6 based

on the architecture of the GPU node at Australian National Computational Infrastructure

(NCI)1. Three principal components are used in a GPU cluster: GPUs, interconnect and

host CPUs. Since GPUs are designed to carry out a substantial portion of the calculations,

high-end GPUs, such as the NVIDIA Tesla, are usually assembled by GPU-enabled HPC

as the accelerators. In order to maintain a well balanced system, powerful PCIe bus and

network interconnect (e.g. InfiniBand) with a low latency and high bandwidth are necessary.

Furthermore, a many-to-one ratio of CPU cores to GPUs may be desirable to better utilise the

GPU device in case some applications require extra CPU cores for specific operations.

Apart from the powerful computing capability, GPU-enabled HPC is better cost efficient

(price/performance ratio) than CPU-only HPC. For example, when compared to AWS EC2

C4 instance (Intel Xeon E5-2666 v3), AWS EC2 P2 GPU instance (NVIDIA Tesla K80) only

charges around 1/5 to achieve the similar performance on the Linpack benchmark [214]. In-

1https://opus.nci.org.au/display/Help/GPU+User+Guide

Modern High Performance Computing (HPC) 46

PCIe switch PCIe switch

QPI

NVLINK

InfiniBandNode i

Node NNode 1

INTEL
XEON CPU

NVIDIA
P100

NUMA j NUMA j+1

Figure 2.6: Infrastructure of GPU-enabled HPC (NCI).

spired by the attractive flops/dollar ratio and the incredible growth in the speed of modern

GPUs, GPU-enabled HPC have become an ideal platform for scientific computing. For in-

stance, the work [215] trained a deep neural network with 1 billion parameters by 3 GPU

nodes in a couple of days and scale to networks with over 11 billion parameters with 16 GPU

nodes.

Chapter 3

Study on the Effect of Large

Population Size in EAs

3.1 Introduction

The increasingly complex and large-scale problems bring the rapidly rising solution spaces.

Under this circumstances, many researchers [46–53] have started to study and to employ a large

population to improve the searching capabilities of EAs for complex problems. So far, many

theoretical works [54–59] have proven the benefits of a large population and some empirical

studies [52, 53, 67, 131–145] are also conducted as a necessary supplement to these theoretical

findings. However, a few researchers [60, 149–159] still insist that applying a large population

does not bring any benefits but require more computational budget. Therefore, it is necessary

to comprehensively examine the benefits of a large population by experiments taking into

account that existing empirical works are limited in one or more of the following aspects:

• Focused on limited algorithms. Many works only examined the benefits of a large pop-

ulation based on limited series of algorithms (e.g. [135, 136, 141–143] based on GA and

[137, 140] based on DE). However, comprehensively investigating the performance of a

large population requires taking into account EAs with different searching patterns.

• Experimented with relatively small population sizes. Many works [52, 53, 131, 134–

47

Introduction 48

137, 140] increased the population from a small size (e.g. 20 or 50) to less than or around

1000. However, several hundreds of individuals may not be adequate for increasingly

complex real-world problems.

• Tested on specific or simple optimisation problems. Some works [138, 139, 143] only

focused on the test problems in their specific domains and failed to promote universal

conclusions. Some others [52, 53, 131, 132, 132–137, 140, 143] used a few famous bench-

mark functions for better applicability. However, these works are very limited in terms of

both the number and difficulties of test problems. As a result, they cannot fully examine

the potentiality of a large population.

• Performed the experiments with insufficient fitness evaluations (FEs) on sequential ma-

chines. So far, most works [53, 131–144] only implemented the algorithms in sequential.

Due to the insufficient computing power, they are only able to offer a limited FEs, that

are far from adequate to converge a large population.

Aiming to address these four issues, we systemically investigate the impacts of a large

population in this chapter. Specifically, we select two state-of-the-art EAs that rank top at

CEC competitions and three classic EAs (GA, PSO and DE) that have significantly different

searching patterns. We also use eight difficult problems (composition functions f23-f30 of

CEC2014 benchmarks) that are never successfully solved and use three dimensions (10, 30 and

50) for each problem, which compose totally 24 problem instances. Furthermore, we implement

three classic EAs in parallel on the GPU to achieve considerable FEs in a reasonable time.

Experiments using population sizes from 64 to 4096 demonstrate that a large population can

help EAs find better solutions on difficult problems if adequate FEs are provided. Moreover, we

also present that a larger population can offer better parallelism and achieve better speedups

when implemented on parallel computing platforms.

The rest of the chapter is organised as follows. In Section 3.2, we provide an overview of the

experimental methodology. In Section 3.3, we present the experimental results and illustrate

the benefits of a large population. Section 3.4 concludes this chapter.

Methodology 49

3.2 Methodology

In this section we provide a detailed description of the experimental design. We first study

on selection of difficult problems in order to examine the potentiality of large population on

complex problems. Then we study on selection of several representative EAs in order to

generalise the benefits of large populations.

3.2.1 Selection of Highly Complex Optimisation Problems

In order to demonstrate the potentiality of EAs on solving complex problems, we study on

selecting some difficult problems from famous benchmarks which are never successfully solved

by state-of-the-art EAs. In recent years, many real-parameter optimisation problems are pro-

posed as ideal benchmarks to test the novel optimisation algorithms, i.e., the CEC [88] and

BBOB [216]. In order to comprehensively test the performance of algorithms, benchmarks

usually include various kinds of problems, for example, CEC2014 [88] comprises unimodal

functions, simple multimodal functions, hybrid functions and composition functions.

In this work, difficult composition functions [217] are selected as the test problems to

examine the performance of selected algorithms. The selected tested functions assembles several

basic famous benchmark functions such as Rosenbrock, Griewank and Rastrigin to construct a

series of very difficult composition functions. These composition functions are very deceptive

compared to basic functions mentioned above because they have only one global optima but

many local optima. Furthermore, these composition functions even employ gaussian functions

to blur the landscape of each assembled function. The composition functions are asymmetrical

multi-modal problems with different properties on different areas. They are minimisation

problems defined as following:

min(F (x)), x = [x1, x2, . . . , xD]T

where the construction of F (x) are presented in [217]

F (x) =
∑N

i=1 {ωi · [λigi (x) + biasi]}+ F ∗

gi (x) can be a basic function, N is the number of basic functions, biasi defines the bias for

each basic function: λi used to control each gi (x)’s height and ωi is the weight value for each

Methodology 50

gi (x), it is calculated as ωi = wi/
∑N

i=1wi, where wi is defined as below:

wi =
1√∑D

j=1 (xj − oij)
exp(−

∑D
j=1 (xj − oij)2

2Dσ2i
)

oij is new shifted optimum position for each gi (x) which defines the global and local optima’s

position, σi is used to control each gi (x)’s coverage range, a small σi gives a narrow range.

In this chapter, we select 8 composition test functions (f23 − f30) from CEC2014 [88]

benchmarks as our test problems. The function value of the global best of each test function

is 0 and thus these test functions are all minimizing problems. Each function is tested with 3

dimensions which are D = 10, 30, and 50, and each dimension is bounded within [-100, 100].

3.2.2 Selection of Representative EAs

In order to demonstrate that a large population is a common method to improve the perfor-

mance of EAs, both the state-of-the-art and classic EAs are applied in this work. The classic

EA applies some basic and simple mechanisms inspired by biological evolution, such as repro-

duction, mutation, recombination, and selection. In this work, we investigate the impacts of

large population on three famous classic algorithms (DE, GA and PSO). Regarding the state-

of-the-art algorithms, we survey the top-ranked state-of-the-art algorithms [218, 219] of famous

CEC real-parameter single objective competitions from 2014 to 2017. There is an interesting

phenomenon that most algorithms utilised dynamic population sizing methods [220–223] to

effectively combines the advantages of both a large population’s exploratory power and a small

population’s convergence speed. Here, we select two DE-based state-of-the-art algorithms L-

SHADE [218] and jSO [219] which ranked 1th in CEC2014 and 2nd in CEC2017 competition

respectively. Both algorithms apply a dynamic population sizing method LPSR (linear pop-

ulation size reduction) which compromises extra computing efforts and exploration ability by

linearly reducing the population size during the increasing of generations. In this work, we

compare the original state-of-the-art EAs with dynamic population sizing methods to their

counterparts with a consistent large population to demonstrate that a consistent large popu-

lation perform not worse or even better than dynamic population sizing methods regardless of

the computing budget.

Experimental Results 51

3.3 Experimental Results

In this section, we present the experimental analysis of the performance of EAs with a large

population on solving complex problems in terms of effectiveness and time-efficiency. The

experiments are started with analyzing the effectiveness of a large population on state-of-the-

art EAs; namely, we compare the solution quality achieved by original L-SHADE and jSO

with the population reduction scheme to their counterparts with a consistent large population.

Then DE, GA and PSO are tested to further present whether classic algorithms with a larger

population can benefit from larger populations. After that, we examine the time-efficiency of

EA with a large population based on a single GPU.

3.3.1 Experimental Settings

Table 3.1: Selected algorithms and configurations.

Name Configurations

L-SHADE configured as [218]

jSO configured as [219]

DE current-to-rand/1/bin [101], CR = 0.9, F = 0.5 [47]

GA
binary tournament selection [224], linear crossover [119]

elitist model [225], CR = 0.6 , MR = 0.001 [226]

PSO C1=C2 = 1.49445, W = 0.729 [48]

To avoid losing the generality, default configurations except population size are applied for

all test algorithms and listed in Table 3.1. Since parallel EAs can offer considerable FEs to

converge a large population, the maximal FEs are set as D × 106 which is a hundred times

bigger than the suggested D× 104 in CEC2014 [88]. Each problem is tested with 3 dimensions

(D = 10, 30 and 50). Each algorithm run 15 independently with different random number

seeds on each problem and dimension for statistical analysis.

All experiments are conducted on NCI HPC. The sequential implementations run on NCI

CPU node and the parallel implementations run on a single GPU at NCI GPU node1.

1https://opus.nci.org.au/display/Help/GPU+User+Guide

Experimental Results 52

3.3.2 Effectiveness of EAs with a large population

In order to comprehensively present the effectiveness of EAs with a large population, the

comparisons are divided into two main parts. Firstly, we show that these state-of-the-art

algorithms achieve better effectiveness when LPSR is replaced by a consistent large population.

Secondly, we present that classic EAs can also benefit from a larger population by comparing

themselves with smaller population sizes.

The effectiveness in this work is evaluated by comparing solution quality of a large popu-

lation to the one of a small population. The solution quality is defined as the function error

values (FEVs) [88], which presents the difference between the global optimum and the function

values of the best found solution. The definition of FEVs is given as

FEV s = f(x)− F ∗

where f(x) is the fitness value of the best solution x found by EAs, and F ∗ is the known global

optimal of the solution space. The results are shown with the mean values of 15 independent

runs and statistically analyaed based on the Wilcoxon rank-sum test [227] with the significant

level of 0.05.

3.3.2.1 State-of-the-art algorithms

Table 3.2: Mean FEVs of L-SHADE with a consistent population and LPSR.

D NP f23 f24 f25 f26 f27 f28 f29 f30

10
180 to 4 329.46 110.35 112.43 100.08 74.57 375.45 222.20 462.92

180 329.46 107.06 131.56 100.03 74.30 380.10 222.03 462.34

30
540 to 4 315.24 224.04 202.58 100.16 300.00 826.04 716.70 1040.81

540 315.24 224.98 202.58 100.08 300.00 826.12 716.20 1062.49

50
900 to 4 344.01 275.11 205.30 100.25 333.10 1087.36 789.87 8682.94

900 344.01 274.93 205.30 100.11 323.90 1105.61 807.30 8655.35

Firstly, we compare the effectiveness of large population size on state-of-the-art EAs (L-

SHADE and jSO). The Mean FEVs achieved by L-SHADE and jSO are presented in Table 3.2

and Table 3.3. The bold values in the table are statistically better than the normal values.

Experimental Results 53

Table 3.3: Mean FEVs of jSO with a consistent population and LPSR.

D NP f23 f24 f25 f26 f27 f28 f29 f30

10
182 to 4 329.46 112.50 123.44 100.11 48.23 378.95 221.79 465.06

182 329.46 102.89 106.59 100.04 42.23 369.78 221.21 464.12

50
466 to 4 315.24 205.78 202.55 100.25 300.00 824.95 715.89 767.38

466 315.24 201.45 202.54 100.08 300.00 814.01 714.60 616.84

30
692 to 4 344.01 271.26 205.06 100.37 308.88 1108.04 814.16 8269.82

692 344.01 271.56 204.97 100.11 302.23 1087.71 778.06 8181.14

According to Table 3.2 and Table 3.3, L-SHADE with a consistent large population performs

significantly better than original L-SHADE on 7 out of 24 test problems (eight functions for

three dimensions) and they perform similarly on the rest 17 problems. Regarding jSO with

a consistent large population size, it performs significantly better than original jSO on 12

problems and does not lose in any problem. Summarily, with a sufficiently FEs, state-of-the-

art EAs with a consistent large population size can help achieve better solutions than LPSR.

3.3.2.2 Classic EAs

Table 3.4: Mean FEVs of DE with NP=64, 256, 1024 and 4096.

D NP f23 f24 f25 f26 f27 f28 f29 f30

10

64 329.55 106.30 154.84 100.03 143.94 405.99 244.40 539.13
256 329.46 111.25 164.14 100.03 209.16 439.62 228.73 618.06
1024 329.46 109.41 138.83 100.02 26.72 432.24 218.96 513.07
4096 329.46 103.57 125.79 100.03 0.07 415.59 206.80 523.35

30

64 341.28 232.46 206.95 114.63 489.80 1000.7 3341.6 4227.7
256 315.74 223.58 203.67 106.76 320.26 835.96 1026.6 659.23
1024 315.25 223.33 202.64 100.09 300.00 813.13 688.43 378.35
4096 315.24 223.13 202.59 100.11 300.00 808.04 567.89 376.45

50

64 492.05 285.71 220.44 187.45 899.80 1985.6 6.7×105 8.6×104

256 357.76 270.26 210.72 180.23 358.80 1262.4 1765.5 1.0×104

1024 344.63 268.18 205.59 101.14 300.00 1140.2 887.59 8714.0
4096 344.17 267.52 204.91 100.20 300.00 1095.4 824.15 8297.8

We have shown that a large consistent population contributes to L-SHADE and jSO in

Experimental Results 54

Table 3.5: Mean FEVs of GA with NP=64, 256, 1024 and 4096.

D NP f23 f24 f25 f26 f27 f28 f29 f30

10

64 329.47 134.81 186.62 100.30 293.35 545.24 1.4×105 1086.25
256 329.47 125.33 187.89 100.20 209.34 506.63 395.17 1117.65
1024 329.47 120.71 160.64 100.09 4.40 451.18 368.87 966.87
4096 329.46 113.49 130.99 100.09 3.08 387.98 374.90 801.87

30

64 315.35 231.11 213.75 140.32 725.21 1521.2 1359.3 2892.5
256 315.28 230.52 212.30 107.06 589.70 1372.7 1152.4 3032.7
1024 315.25 229.50 209.81 100.37 428.65 1159.3 1049.4 2788.3
4096 315.25 227.05 204.41 100.25 403.09 1019.6 957.09 2168.1

50

64 344.02 263.98 228.87 180.48 1176.0 3006.6 1802.9 1.2×105

256 344.02 261.53 225.42 166.96 1151.6 2479.7 1825.1 1.3×105

1024 344.01 262.53 210.01 113.76 1132.9 2744.3 1377.8 1.3×105

4096 344.01 263.07 200.01 100.39 1019.6 2158.0 1148.1 1.3×105

Table 3.6: Mean FEVs of PSO with NP=64, 256, 1024 and 4096.

D NP f23 f24 f25 f26 f27 f28 f29 f30

10

64 329.46 122.09 191.95 100.12 262.64 477.53 394.58 899.96
256 329.46 119.17 188.98 100.08 235.99 446.81 290.21 837.49
1024 307.49 116.76 147.94 100.06 80.28 436.67 304.04 805.50
4096 307.49 110.65 135.72 100.04 0.24 412.14 287.08 630.86

30

64 315.27 236.59 210.82 106.98 654.66 1578.2 4.2×106 3525.5
256 315.25 230.51 208.49 100.29 440.65 1393.3 1562.3 2674.9
1024 315.25 228.72 206.34 100.26 431.28 968.28 1509.7 2556.7
4096 315.24 229.54 205.82 100.23 401.51 959.77 1274.1 2118.0

50

64 344.65 284.28 224.68 153.76 1320.8 3685.7 4.7×107 3.0×105

256 344.04 277.53 217.20 140.38 1095.6 2924.9 8.5×106 1.7×105

1024 344.02 276.14 215.40 120.41 1059.3 2386.3 5.1×106 1.5×105

4096 344.01 276.22 214.63 100.38 871.58 1879.4 2101.1 1.3×105

terms of effectiveness. In this experiment, we demonstrate that a large population contributes

to not only DE-based state-of-the-art algorithms (L-SHADE and jSO), but also various classic

EAs. Here, we compare the mean FEVs obtained by classic EAs (DE, PSO and GA) with

different population sizes that range from small (NP = 64) to large (NP = 4096) at Table

3.4, Table 3.5 and Table 3.6. Results show that a large population size can achieve far better

solutions than a small population on some problems; i.e., mean FEVs achieved by DE with

Experimental Results 55

Table 3.7: Summarised statistical tests(+/≈/-) indicate that NP = 4096 performed signifi-
cantly better (+), similarly (≈) or worse than NP = 64, 256 and 1024, respectively.

Algorithms NP = 4096 vs. NP= D = 10 D = 30 D = 50

DE
64 5 / 3 / 0 8 / 0 / 0 8 / 0 / 0
256 4 / 4 / 0 7 / 1 / 0 8 / 0 / 0
1024 3 / 5 / 0 3 / 5 / 0 6 / 2 / 0

GA
64 7 / 1 / 0 7 / 1 / 0 8 / 0 / 0
256 7 / 1 / 0 7 / 1 / 0 8 / 0 / 0
1024 6 / 2 / 0 6 / 2 / 0 6 / 2 / 0

PSO
64 6 / 2 / 0 6 / 2 / 0 8 / 0 / 0
256 5 / 3 / 0 5 / 3 / 0 5 / 3 / 0
1024 2 / 6 / 0 2 / 6 / 0 4 / 4 / 0

NP = 4096 on f29 for D = 50 reaches 824.15 that is much smaller than 6.7×105 achieved by

DE with NP = 64.

Table 3.7 shows the aggregate results of statistical analysis of three algorithms by comparing

the mean FEVs achieved by NP = 4096 with NP = 64, 256 and 1024 on 8 test problems for

D=10, 30 and 50. According to Table 3.7, major observations are as follows:

• Classic EAs with a large population size (NP = 4096) perform better than them with

smaller population sizes (NP = 64, 256 and 1024) for all dimensions. Specifically, regard-

ing 24 test problems (8 test function and 3 dimensions), DE, GA and PSO with smaller

population sizes cannot even perform significantly better than NP = 4096 on any prob-

lem. Moreover, results indicate that the larger difference of population size is, the larger

improvement is achieved, i.e., if utilizing PSO on problems for D = 10, NP = 4096 can

only win at two out of eight compared to NP = 1024, but the wins reach six compared

to NP = 64.

• Benefits of a large population to classicc EAs become more remarkable when problem

dimensions increase from 10 to 50. It is due to the fact that with the dimension increases,

the problem could be more complicated and a larger population can avoid EAs to fall

into a local optima easily.

Experimental Results 56

Figure 3.1: Mean convergence characteristics of DE with NP = 64, 256, 1024 and 4096 on f30
for D = 30.

In order to further study the reason why a larger population brings better solutions, we

show the curve of convergence of DE with four different populations (NP = 64, 256, 1024 and

4096) on f30 for D = 30 as an example in Figure 3.1. It can be observed that:

• DE with a larger population converges slower than a smaller population, i.e., to reach

the 105 function error values (FEVs), DE with NP = 4096 requires more than 105 FEs,

while NP = 64, 256 and 1024 only need 2× 103, 9× 103and 2× 104 respectively.

• DE with a larger population can eventually find better solutions if a large number of FEs

are provided, i.e., DE with NP = 64, 256 and 1024 already converges at 4× 103, 8× 102

and 4× 102 FEVs respectively, while DE with NP = 4096 has already achieved 4× 102

Experimental Results 57

Figure 3.2: Mean population diversity of DE with NP = 64, 256, 1024 and 4096 on f30 for D
= 30 (Population diversity smaller than 10−3 is recorded as 10−3).

when it reaches the maximal FEs and its FEVs can be further improved if more FEs are

provided based on the tend in this figure. Therefore, a large population can help find the

better solutions but requires more computing budgets.

Figure 3.2 shows the population diversity that is defined as the standard deviation of fitness

values of individuals in population [228]. It can be observed that the curve of diversity includes

four stages as follows:

• Stage 1: in the beginning, DE with different population sizes has the similar behavior as

their population diversities drop fast from 109 to 103. The reason of initially high diversity

population is the randomly generated individuals that are uniformly distributed in the

Experimental Results 58

entire searching space. Due to the employing of evolutionary operations, some diverse

but bad individuals are replaced by better individuals that are more similar compared

to the randomly generated ones.

• Stage 2: once population diversity reaches 103, it decreases gently for a while. It could

be due to the process that DE searches the neighbor of many local optima but does not

converge yet. According to Figure 3.2, a larger population size has a longer Stage 2, i.e.,

when NP = 64, DE stays in this stage from 7 × 103 to 2 × 104 FEs, while NP = 1024

stays in this stage from 105 to 1.5× 107 FEs. NP = 4096 stops at this stage because the

maximal fitness evaluation reaches.

• Stage 3: after the Stage 2, the population diversity rapidly decreases to 0. It is due to

the reason that the population of DE converges to the best local optima.

• Stage 4: population diversity stays at 0 until the maximal FEs reach.

Summarily, DE with different population sizes mainly behaves differently in stage 2. A small

population stays at Stage 2 quite short and its diversity decreases rapidly because the small

population is hard to maintain the diversity in search space with many local optima. Conse-

quently, it is easy to converge a small number of individuals to the best solution found so far.

On the contrary, a large population stays at Stage 2 for a long period and diversity decreases

gently because a large number of individuals can search the neighbor of many local optima

concurrently and delay the convergence to some promising local optima.

3.3.3 Efficiency of EAs with a large population

We have illustrated the effectiveness of EAs with a large population regardless of the computing

time. However, achieving a large number of FEs in a reasonable computing time is also

significant if a large population is employed. This section examines the impacts of a large

population on the computing efficiency. The computing efficiency can be measured by the

speedup that is defined as

speedup =
Ts
Tgpu

Experimental Results 59

Table 3.8: Computation speed of sequential and parallel DE measured by time (hh:mm:ss) and
the speedup of parallel DE with NP = 64, 256, 1024 and 4096 on f24 and f26 for D = 10, 30
and 50.

elapsed time (hh:mm:ss)

D NP sequential DE parallel DE speedup

f24 f26 f24 f26 f24 f26

10

64 0:00:55 0:04:35 0:00:15 0:00:32 3.6 8.4
256 0:00:55 0:04:35 0:00:05 0:00:13 10.8 20.7
1024 0:00:56 0:04:35 0:00:02 0:00:07 22.1 38.5
4096 0:00:56 0:04:36 0:00:01 0:00:05 29.2 47.4

30

64 0:06:11 0:35:42 0:00:49 0:01:44 7.4 20.6
256 0:06:11 0:35:44 0:00:16 0:00:40 22.2 53.3
1024 0:06:11 0:35:45 0:00:08 0:00:22 45.1 96.6
4096 0:06:12 0:35:46 0:00:06 0:00:18 60.3 115.0

50

64 0:20:03 1:55:50 0:01:13 0:03:45 12.4 30.7
256 0:20:04 1:55:51 0:00:30 0:01:36 34.2 71.9
1024 0:20:06 1:55:55 0:00:16 0:00:58 62.2 119.7
4096 0:20:08 1:55:57 0:00:11 0:00:50 77.2 137.8

where Ts and Tgpu are the runtime of sequential and GPU-based parallel implementation re-

spectively.

In this experiment, we select two functions as the test problems which are the fastest (f24)

and the slowest (f26) in eight composition functions (f23 − f30). Table 3.8 shows the runtime

of sequential DE on a single CPU core; as well as the runtime and speedups of parallel DE

on a single GPU. The time presented in this table is calculated based on a single instance of

problem. The major observations are as follows:

• When dimensions increase from 10 to 50, the runtime of sequential DE increases rapidly,

i.e., sequential DE requires only 5 minutes on f26 for D = 10 but around 2 hours for D =

50. Therefore, when solving complex and complicated problems with a high dimension,

sequential EAs with a large population become impractical due to the requirement of an

unreasonable computational budget.

• Parallel DE runs significantly faster than sequential DE, especially for the more time-

Conclusions 60

consuming problem. For example, parallel DE achieves 77.2 speedups on f24 for D = 50

but achieves 137.8 speedups on f26 .

• Given a problem, a larger population always brings larger acceleration. For example,

regarding to f26 on D = 50, the speedup is 30.7 for NP = 64 and 71.9 for NP = 256.

Here, the main finding is that increasing population can always improve the speedups.

Given a specific problem dimension that corresponds to a specific maximum number of FEs,

the population size determines the total number generations (main loops) and accordingly the

execution times of GPU kernels functions involved in the main loop. As the population size

increases, the number of main loops decreases, which potentially reduces the total computing

time. Therefore, a larger population can benefit computing efficiency if EAs are implemented

in parallel.

3.4 Conclusions

This chapter experimentally studies the performance of EAs with a large population on solving

complex and complicated problems in terms of solution quality and runtime. Specifically,

we apply two state-of-the-art algorithms and three classic EAs on eight difficult composition

problems to investigate the ability to search good solutions of EAs with a large population.

Experiments showed that EAs with a large population can achieve significantly better solutions

than those of EAs with a small population, as well as better speedups when implemented in

parallel.

Chapter 4

SPEO based on CPU-only HPC

(SPEOHPCcpu
)

4.1 Introduction

Chapter 3 has shown that a large population can significantly improve the solution quality of

EAs. However, it also mentioned that parallel computing platforms and parallel implemen-

tations of EAs are necessary to achieve sufficient FEs in a reasonable time. Therefore, this

chapter studies designing a generic scalable framework of parallel EAs which has outstanding

scalability and wide applicability. Specifically, the proposed framework is designed to accel-

erate various classic or state-of-the-art sequential EAs by utilising numerous CPU cores at

CPU-only HPC.

The proposed framework is based on the island model [14, 23–25], which has been em-

ployed by many parallel EAs [35, 37, 63–70]. However, most of existing works are designed to

efficiently use only a small number of islands to avoid the serious communication congestion

which significantly reduces the computational efficiency. Although a few studies [35, 37, 67–70]

are able to use a large number of islands, these approaches have to employ sparse communi-

cation topology. Have been proven by many works [66, 71, 72], these approaches reduce the

communication workload at the sacrifice of searching capability but also bring the worse so-

lution quality. Aiming to solve this issues, we propose the SPEO based on CPU-only HPC

61

The Proposed Method 62

(SPEOHPCcpu) with a buffer-based asynchronous migration to avoid the serious communica-

tion congestion and to significantly improve the computing efficiency. Then, we implement

the proposed framework based on a standard DE and examine its performance on eight com-

position functions of CEC2014 benchmark at the Australian National Computational Infras-

tructure (NCI) platform using up to 512 CPU cores. Experimental results demonstrate that

SPEOHPCcpu is very scalable even a dense topology is employed; namely, approximately linear

speedups are achieved when a fully connected topology is used. The results also present that

it not only increases the computational efficiency but also improves the solution quality when

compared to a state-of-the-art island-based parallel EA.

The remainder of this chapter is organised as follows. Section 4.2 describes the design

of the proposed SPEOHPCcpu . Experimental results are presented in Section 4.3. Section 4.4

concludes this chapter.

4.2 The Proposed Method

In this section, we firstly introduce the framework of the proposed SPEOHPCcpu and then we

implement the framework based on a standard DE algorithm.

4.2.1 Framework

In order to efficiently utilise a larger number of CPUs at CPU-only HPC in a scalable way,

the island model [14, 23] is chosen as the population-distribution model due to the following

reasons:

• The island model can work with a larger global population by simply adding islands on

more processors. It offers excellent scalability to solve increasingly complex problems.

• As different islands may have various searching behaviors, the island model can offer

outstanding population diversity which is also the target of using a large population.

• Apart from the information exchange between islands, each island evolves itself indepen-

dently as a common sequential EA. Thus, most existing sequential EAs can be simply

The Proposed Method 63

island
1

island
2

island
3

island
Mcpu

island
i

comm. system

RAM

data flow via network

comm. control flow

RAM control flow

CPU

subpopulation of the island i

active connection bestween islands

inactive connection bestween islands

Figure 4.1: Deployment of SPEOHPCcpu on CPU-only HPC.

accelerated by applying the proposed framework and deploying on many CPU cores.

• The performance of the island model is determined by the migration topology [66]. The

island model can have various searching behaviors if different migration topologies are

employed. For example, it has been proven that a dense migration topology is suitable

to solve complex and difficult problems [66, 71, 72]. However, existing works fail to

efficiently employ a dense topology over a large number of CPU cores because it brings

a significant communication congestion.

4.2.1.1 SPEOHPCcpu and the infrastructure of CPU-only HPC

The population distribution model of SPEOHPCcpu is presented at the inside circle of Figure 4.1.

Here, an island with Ns individuals are deployed to each of Mcpu CPU cores; thus the global

population contains totallyNP = Ns·Mcpu individuals. These islands exchange information via

The Proposed Method 64

a specific migration topology represented by solid lines in Figure 4.1. It also can be observed

that all pairwise islands are connected by either the dotted and solid lines, which indicates

that the proposed framework is not limited by a specific topology and supports even the most

complex topology (fully connected).

The deployment of SPEOHPCcpu on a common infrastructure of CPU-only HPC is presented

at the outside ring with the shadow in Figure 4.1. Enclosed by the dotted ellipse, a CPU core,

RAM and communication system undertake all operations to evolve a single island. Without

loss of generality, the communication system can be a mixture of network (e.g. InfiniBand),

inter-core communication, point-to-point processor interconnect (e.g. QPI) and some specific

devices applied by CPU-only HPC.

The proposed framework is presented at Figure 4.2. Accordingly, the proposed framework

is concurrently initialised on Mcpu CPU cores. Each CPU core performs EA operations to

evolve its corresponding island and performs asynchronous migration to exchange information

with other CPU cores. Each island is also enclosed with a buffer which temporarily stores

immigrants sent from other islands. The island frequently updates itself by inserting some

immigrants selected from the buffer. After all CPU cores terminate its tasks, a centralisation

operation will be performed to summarise all islands and output the best solution found so far.

4.2.1.2 Buffer-based asynchronous migration

When more CPU cores are demanded, increasingly serious communication congestion will sig-

nificantly reduce the computing efficiency; especially a dense migration topology is utilised. In

this chapter, the proposed framework introduces a buffer-based asynchronous migration strat-

egy to achieve the outstanding scalability. At Figure 4.2, the migration operation undertakes

information exchange including three main aspects as follows:

• Update island (green arrow): it updates the island when the current island seeks

new information to better explore in the searching space. In this operation, several

immigrants are selected from the buffer and are merged with the current island.

• Import immigrants (yellow arrow): it receives newly arrived immigrants that are

The Proposed Method 65

island
EA

Initialisation

Start

Communication Bus

Async
Migrate

b
u
f
f
e
r

End

Centralisation

Async
Migrate

b
u
f
f
e
r

island
EA

Async
Migrate

b
u
f
f
e
risland

EA

CPU core1 CPU core2 CPU coreM cpu

Figure 4.2: Framework of SPEOHPCcpu .

sent from other islands. Instead of directly inserting into the island, immigrants are

temporarily stored at the buffer based on a specific buffer management scheme.

• Export emigrants (grey arrow): it selects emigrants from the current island and

sends them to other islands via the communication bus. As an asynchronous migration,

it will not stall for the success of sending; instead, it will immediately step into the further

instructions.

As the key component of the SPEOHPCcpu , buffer-based asynchronous migration improves

the computing efficiency when a large number of CPU cores are utilised. Specifically, the

migration is only performed based on the runtime status of the SPEOHPCcpu ; as a result, it

will not wastes any computational budget on stalling for the communication congestion such

as 1) waiting for availability of communication system to send emigration and 2) waiting for

the incoming immigrations from other islands.

The Proposed Method 66

Algorithm 1: DE-based SPEOHPCcpu on ith CPU core, i ∈ [1,Mcpu]

input : {island size Ns, buffer capacity Cb, migration rate Rm, connection rate Rc,
interval I}

1 Initialise island Pi,0 with Ns individuals;
2 Initialise buffer Bi ← ∅, G = 0;

3 while the predefined termination criteria is not met do
/* EA: Perform DE algorithm */

4 Perform DE/rand/1/bin at Pi,G to generate trial vectors Ti,G;
5 Evaluate Ti,G;
6 Generate Pi,G+1 based on Pi,G and Ti,G;
7 G← G+ 1;

/* Async migrate: Update island */

8 if mod(G, I) = 0 then
9 Select the first Rm ∗Ns immigrants from the buffer Bi and insert into island

Pi,G;
10 Delete used immigrants from the buffer;

11 end

/* Async migrate: Import immigrants */

12 while immigrants arrive (mpi Iprobe() = 1) do
13 Receive arrived immigrants IM by mpi Recv();

/* Diversity preserving buffer */

14 foreach im ∈ IM do
15 if length(Bi) < Cb then
16 insert im into Bi;
17 else
18 b← nearest immigrant in the buffer Bi to im;
19 if b is worse than im then
20 Replace b with im;
21 end

22 end

23 end

24 end

/* Async migrate: Export emigrants */

25 r← randomly select Rc ∗ (Mcpu − 1) recipient islands;
26 EM← select the best Rm ∗Ns emigrants from Pi,G;
27 while Communication system is available (mpi Test() = 1) and r is not empty do
28 Send EM to the first island in r by mpi Isend();
29 Delete the first island from r;

30 end

31 end

The Proposed Method 67

4.2.2 Implementation of SPEOHPCcpu

The SPEOHPCcpu framework can be implemented by developers based on their specific de-

mands. Algorithm 1 presents the implementation of the proposed SPEOHPCcpu based on a

standard DE. In this work, several key features of the implementation are described as follows:

• Employing EA: DE [47] is selected and implemented since it is an efficient and effective

global optimiser in the continuous search domain.

• Selecting emigrant and importing immigrant: selecting emigrant represents the

way of selecting emigrants from the current island and importing immigrant represents

the way of merging immigrants with the current island. Here, both operations apply

an elitism-based method; specifically, the best Rm ∗ Ns (Rm ∈ [0, 1] is the migration

rate) individuals are selected from the current island as emigrants and are sent to the

recipients. Regarding immigrant importing, the Rm ∗Ns immigrants are firstly inserted

into the current island and then the best Ns individuals are selected from Ns +Rm ∗Ns

merged individuals as the new island.

• Diversity preserving buffer management: In order to avoid importing too many

similar or bad immigrants into the island, this work implements a diversity preserving

buffer (line 14 to line 23 at Algorithm 1) which is designed to only store high-quality

or unique immigrants sent from other islands. Compared to traditional buffers such as

first-in-first-out (FIFO) or best preserving, the diversity preserving buffer stores immi-

grants considering their characters both in solution and objective space. As a result, the

imported immigrants are diverse and promising which furthest prevent the premature

converging.

• Dense migration topology: Compared to existing island-based parallel EAs, the pro-

posed framework can efficiently employing dense migration topologies. Here, we imple-

ment a random-based migration topology that is called improved dynamic migration

topology which is extended from the standard dynamic topology [163]. The standard dy-

namic topology randomly selects only one recipient for each migration, while our proposed

Experimental Results 68

dynamic topology randomly selects distinct Rc ∗ (M − 1) recipients, where Rc ∈ (0, 1] is

the connection rate that indicates how dense the topology is. Therefore, the topology

is able to vary from the sparsest (the standard dynamic topology, Rc < 1/M − 1) to the

densest (the fully connected topology, Rc = 1) based on the actual demands.

The main body of SPEOHPCcpu is implemented with C/C++ and the communication oper-

ations (“import” and “export”) are implemented using the MPI message-passing program-

ming model [229]. The non-blocking point-to-point communication API MPI Isend() and

MPI Iprobe() are used for sending or checking messages, respectively. The blocking receiving

API MPI Recv() is employed to receive messages once MPI Iprobe() indicates any message

arrives. MPI Test() is utilised to check whether the previous message is sent successfully.

4.3 Experimental Results

In this section, the performance of the proposed SPEOHPCcpu is examined at following aspects:

• Whether the SPEOHPCcpu is scalable with increasing CPU cores and whether the scala-

bility benefits from the asynchronous migration.

• Whether the diversity preserving buffer outperforms traditional buffers on the solution

quality and how the buffer capacity influences the solution quality.

• How the migration topology density influences the solution quality and whether the dense

topology improves the solution quality of SPEOHPCcpu compared to some traditional

topologies.

• Whether the proposed SPEOHPCcpu outperforms the state-of-the-art island-based EA in

terms of the solution quality and the computational speed.

4.3.1 Test Problems

To examine the performance of SPEOHPCcpu , 8 difficult test functions (complex composition

function f23−f30 from CEC2014 [88] benchmarks) which are briefly introduced at Chapter 3.2.1

Experimental Results 69

Table 4.1: Configurations of SPEOHPCcpu .

Parameters notation Settings

Global population size NP 8192

CPU cores Mcpu 4, 8, 16, 32, 64, 128, 256, 512

Interval I 100

Connection rate Rc 0.1%, 1%, 2%, 5%, 10%, 25%, 50%, 100%

Migration rate Rm 5%

Buffer capacity Cb 16

EA DE/rand/1/bin, CR=0.9 and F=0.5

are selected as our test problems. Each function has 3 dimensions which are D = 10, 30, and

50. Each dimension is bounded within [-100, 100]. 8 test problems are implemented with

C/C++.

4.3.2 Experimental Settings

4.3.2.1 Configurations

Table 4.1 presents the configurations of SPEOHPCcpu . In order to avoid losing generality, DE is

configured with standard settings that are DE/rand/1/bin with CR = 0.9 and F = 0.5 based

on the work [47]. Taking into account the demand of great number of FEs for converging a

large population in a reasonable time, the total fitness evaluations are set large as D ∗ 106.

4.3.2.2 Computing Platform

All experiments are conducted on CPU nodes at NCI that is Australia’s most highly-integrated

high-performance research computing environment and supercomputer. In this work, up to

512 CPU cores are utilised to comprehensively investigate the scalability of the proposed

SPEOHPCcpu .

Experimental Results 70

4.3.2.3 Evaluations

The solution quality is measured by the function error values (FEVs) [88], which is the index

presenting the difference between the global optimum and the function values of the best found

solution. The definition of FEVs is given as

FEV s = f(x)− F ∗

where f(x) is the fitness value of the best solution x found by EAs, and F ∗ is the known global

optimal of the solution space. The results are shown with the mean values of 15 independent

runs and statistically analysed based on the Wilcoxon rank-sum test [227] with the significant

level of 0.05.

The computational efficiency is measured by the speedups of the parallel implementation

of the algorithm executed on the CPU-only HPC against its sequential counterpart executed

on the single CPU core. The definition of speedup is given as

speedup =
Ts

Tncore

where Ts and Tncore are the average execution time of the sequential and the parallel imple-

mentations over n CPU cores on all test problems, respectively.

4.3.3 Scalability Analysis

In Chapter 3, experiments illustrate that a significant computing budget is necessary to effec-

tively converge a large population using extensive FEs, which brings long computing time if

executed sequentially. In this section, we present that SPEOHPCcpu with a large population

(NP = 8192) can always achieve approximately linear speedups when increasing number of

CPU cores are used.

Therefore, the strong scaling test [230, 231] in parallel computing is employed to evaluate

the scalability of the proposed SPEOHPCcpu framework. Extended by Liu’s work [69], the

strong scaling test can demonstrate how the execution time varies with the increasing number

of devices when the global population size NP is fixed.

Experimental Results 71

(a) D = 10 (b) D = 30 (c) D = 50

Figure 4.3: Average speedups of SPEOHPCcpu with asynchronous or synchronous migration on
8 test problems for D = 10, 30 and 50 on up to 512 CPU cores.

The scalability of the SPEOHPCcpu is demonstrated by comparing it to the linear speedups

from 4 to 512 processors at Figure 4.3. It can be observed that SPEOHPCcpu achieves approxi-

mately linear growth of speedups with the increasing number of CPU cores for all dimensions.

Since more CPU cores results in more incoming immigrants and thus a larger cost on calcu-

lating their similarities, it is reasonable to observe the slight loss of speedups when 256 or 512

processors are utilise.

In order to prove that asynchronous migration benefits to the scalability of SPEOHPCcpu , we

also present and compare speedups of SPEOHPCcpu with its synchronous variant (SPEOHPCcpu

using synchronous migration, denoted as SYNC-SPEOHPCcpu) at Figure 4.3. Three main ob-

servations are listed:

• When a small number of CPU cores are utilised (less than 128), SYNC-SPEOHPCcpu

performs similarly with SPEOHPCcpu for all dimension. It is because asynchronous mi-

gration is designed for the communication-intensive scenario with numerous processors.

Thus the improvement could be slight if a small number of processors are utilise.

• Given the problem dimension, increasing CPU cores from 128 to 512 enlarges the gap

between SYNC-SPEOHPCcpu and SPEOHPCcpu . It demonstrates the benefits of asyn-

Experimental Results 72

Table 4.2: Mean FEVs of diversity preserving and 3 simple buffer managements. Summarised
statistical tests (+/≈/-) indicate basic buffers perform significantly better (+), worse (-), or
similarly (≈) than the diversity preserving buffer.

func Diversity Persevering Best Persevering Random Selection FIFO

f23 285.848 300.503 (-) 305.645 (-) 282.678 (≈)

f24 112.325 113.48 (-) 114.839 (-) 117.438 (-)

f25 121.458 124.631 (-) 128.128 (-) 127.552 (-)

f26 100.057 100.061 (≈) 100.055 (≈) 100.058 (≈)

f27 2.829 2.615 (≈) 2.385 (+) 2.495 (+)

f28 370.483 367.893 (≈) 370.552 (-) 378.118 (-)

f29 173.332 192.779 (-) 202.526 (-) 208.062 (-)

f30 455.594 518.405 (-) 517.171 (-) 554.674 (-)

+/ ≈ /− - 0/3/5 1/1/6 1/2/5

chronous migration when facing heavy communication workload with numerous proces-

sors.

• Given the number of CPU cores, increasing the dimension from 10 to 50 decreases the

speedups of SYNC-SPEOHPCcpu but has a small impact on the proposed SPEOHPCcpu .

For example, SYNC-SPEOHPCcpu achieves speedups of 447 when D = 10 and it decreases

to 374 when D = 50. It is due to the fact that the increasing dimension enlarges the size

of single message; as a result, the communication congest happens more frequently and

seriously for SYNC-SPEOHPCcpu . Regarding the proposed SPEOHPCcpu , the increasing

communication workload is hidden by asynchronous migration and thus similar speedups

are achieved.

In conclusion, the asynchronous migration improves the scalability of SPEOHPCcpu with better

computational efficiency especially utilizing a large number of CPU cores or problems with a

larger scale.

Experimental Results 73

4.3.4 Performance Analysis on Diversity Preserving Buffer

In order to demonstrate the benefits of proposed diversity preserving buffer, we compare its

performance with three basic buffers that are described as follows:

• Best preserving: compares the incoming immigrant with the worst existing immigrant in

the buffer and stores the better one.

• Random selection: replaces a randomly selected existing immigrant in the buffer by the

incoming immigrant.

• First-in-first-out (FIFO): inserts the incoming immigrant at the tail of the buffer and

discards the first existing immigrant in the buffer.

Table 4.2 shows the solution quality of SPEOHPCcpu with diversity preserving and three basic

buffers on 8 test problems for D = 10. The aggregated statistic results at Table 4.2 prove that

the diversity preserving buffer improves the solution quality of SPEOHPCcpu compared to some

basic buffers.

In order to figure out whether the diversity preserving buffer improve the solution diversity

as expected, we compare the diversity of different buffers against the generations. The diversity

is defined as the standard deviation of fitness values of all individuals [228] in the buffer. Here,

we choose f28 for D = 10 as an example in Figure 4.4. Accordingly, diversity of all buffers

increase rapidly from 0 at the beginning because many immigrants are filling in the empty

buffer. Then, the diversity preserving buffer slightly decreases its diversity and keeps stable at

a good level (≈ 600), while three basic buffers rapidly decrease the diversity to ≈ 100 and keep

stable. Therefore, the diversity preserving buffer does improve the diversity of immigrants.

4.3.5 Performance Analysis on Topology Density

In order to investigate the impacts of topology density on the solution quality of SPEOHPCcpu ,

we compare the solution quality obtained by different connection rates Rc ranging from 0.1%

to 100% at Table 4.3. The bold values in the table are statistically better than the normal

values. The results indicate that small connection rates (e.g. 0.1%, 1% and 2%) result in

Experimental Results 74

Figure 4.4: Example of diversity curve of different buffers on f28 for D = 10.

Table 4.3: Mean FEVs of SPEOHPCcpu with connection rates Rc =
0.1%, 1%, 2%, 10%, 25%, 50% and 100%.

func Rc = 0.1%[1] Rc = 1% Rc = 2% Rc = 10% Rc = 25% Rc = 50% Rc = 100%[2]

f23 301.476 300.57 317.144 268.488 285.848 288.14 329.568

f24 123.539 121.555 117.071 116.348 112.325 113.614 114.482

f25 140.186 133.296 125.702 122.165 121.458 123.26 121.66

f26 100.07 100.062 100.051 100.058 100.057 100.054 100.054

f27 5.098 4.442 4.198 3.367 2.829 3.039 2.748

f28 409.062 396.224 383.439 371.723 370.483 369.834 365.262

f29 236.552 219.552 190.205 176.168 173.332 167.395 171.741

f30 679.821 617.622 468.777 436.164 455.594 441.438 457.314

[1] Rc = 0.1% is equivalent to standard dynamic topology [163]
[2] Rc = 100% is equivalent to fully connected topology [66]

Experimental Results 75

Table 4.4: Mean FEVs of SPEOHPCcpu with improved dynamic and three common migration
topologies for D = 10. Summarised statistical tests(+/≈/-) indicate common topologies per-
form significantly better (+), similarly (≈), or worse (-) than the improved dynamic topology.

func Improved Dynamic Chain Ring Lattice

f23 285.84 298.353 (-) 286.141 (-) 289.409 (-)

f24 112.325 126.294 (-) 127.359 (-) 123.07 (-)

f25 121.458 143.716 (-) 143.067 (-) 140.873 (-)

f26 100.057 100.096 (-) 100.095 (-) 100.07 (-)

f27 2.829 11.876 (-) 8.596 (-) 5.002 (-)

f28 370.483 430.001 (-) 443.757 (-) 403.725 (-)

f29 173.332 260.439 (-) 267.752 (-) 239.798 (-)

f30 455.594 802.507 (-) 836.649 (-) 640.916 (-)

+/ ≈ /− - 0/0/8 0/0/8 0/0/8

unsatisfactory solutions because the useful information is spread insufficiently among a large

number of islands. Specifically, even total FEs is as large as 107 and the interval is 10, each

island of SPEOHPCcpu with a global population size NP = 8192 migrates only 120 times totally.

As a result, if the connection rate is set as 0.1%, each island only migrates to at most 120 out

of 512 islands within its life cycle which is far away from sufficiency. The results highly meet

the existing findings which figured out the benefits of a dense topology. On the other hand, it

is also unnecessary to set a very high connection rate which will result in a high communication

cost but hardly improve the solution quality. In this case, a moderate connection rate around

25% is large enough.

In order to reinforce the above finding, Table 4.4 also compares the improved dynamic

topology (Rc = 25%) with three sparse common topologies that are chain, ring and lattice

presented at Figure 2.1. It can be concluded that a dense topology indeed benefits to the

solution quality because it completely outperforms three sparse topologies.

4.3.6 Performance Comparison with State-of-the-art Parallel EAs

The performance of SPEOHPCcpu is further evaluated by comparing to CloudDE [36] that is a

state-of-the-art parallel EA based on the island model and DE algorithm. In order to compare

Experimental Results 76

(a) D = 10 (b) D = 30 (c) D = 50

Figure 4.5: Computational time of SPEOHPCcpu and a state-of-the-art island-based parallel EA
(CloudDE).

the capability and scalability of both algorithms with a large population over numerous cores,

CloudDE configures the global population size and demands the number of CPU cores the same

as SPEOHPCcpu . The rest configurations of CloudDE is chosen based on the default settings.

Regarding the configurations of DE, CloudDE sets its four islands with different mutation

schemes and CR values as follows:

• island 1: DE/rand/1/bin/CR = 0.9

• island 2: DE/rand/1/bin/CR = 0.1

• island 3: DE/best/1/bin/CR = 0.9

• island 4: DE/best/1/bin/CR = 0.1

In order to avoid the influence of DE algorithm on the comparison, SPEOHPCcpu is set as the

similar DE configurations as CloudDE. Specifically, ith island is the same as island mod(i, 4)+1

of CloudDE where mod is the modulus operator; for example, 15th island of SPEOHPCcpu is

set the same as island 4 of CloudDE. Regarding other model-related parameters, SPEOHPCcpu

employs default settings at Table 4.1.

Table 4.5 presents solution quality and statistical results on SPEOHPCcpu and CloudDE for

D = 10, D = 30 and D = 50. It can be observed that SPEOHPCcpu performs similarly with

CloudDE for D = 10 and significantly better than CloudDE for D = 30 and 50. It could

Conclusions 77

Table 4.5: Mean FEVs of SPEOHPCcpu and state-of-the-art parallel EAs at D = 10, 30 and 50.

func
D = 10 D = 30 D = 50

CloudDE SPEOHPCcpu CloudDE SPEOHPCcpu CloudDE SPEOHPCcpu

f23 307.585 171.674 (+) 315.244 315.244 (≈) 344.005 344.005 (≈)

f24 102.47 104.263 (≈) 222.727 223.033 (-) 261.648 255.39 (+)

f25 106.623 106.821 (-) 204.124 203.34 (+) 211.132 (≈) 208.213 ≈)

f26 100.084 100.056 (+) 100.198 100.172 (+) 100.309 100.232 (+)

f27 1.236 1.87 (-) 403.233 400.477 (+) 502.719 488.194 (+)

f28 352.456 356.838 (-) 748.942 776.991 (-) 1099.015 1149.6 (-)

f29 250.72 173.222 (+) 1197.455 739.129 (+) 1449.592 866.763 (+)

f30 474.846 467.22 (+) 1268.448 963.153 (+) 8536.38 8320.691 (+)

+/ ≈ /− - 4/1/3 - 5/1/2 - 5/2/1

be due to the reason that CloudDE only employs 4 islands which can not provide sufficient

searching diversity to find better solutions among an increasing number of local optima when

the dimension increases.

We also compare the computational time of SPEOHPCcpu with CloudDE at Figure 4.5 for

3 dimensions. It can be observed that SPEOHPCcpu requires less computational time than

CloudDE with the same computing resource, especially for a large number of processors. For

example, when utilizing 32 CPU cores for Figure 4.5c, CloudDE requires more than double

time of SPEOHPCcpu ; when CPU cores increase to 512, CloudDE requires 14.2 times of runtime

than SPEOHPCcpu . It is because CloudDE utilises synchronous communication scheme and it

could be weakly scalable due to the increasing demands of global synchronisation between more

and more cores.

4.4 Conclusions

This chapter proposes the SPEOHPCcpu framework based on CPU-only HPC. This framework

introduces an asynchronous migration. We then implement this framework with a standard

DE algorithm and an improved dynamic topology for information exchange on up to 512 CPU

Conclusions 78

cores. The results present that SPEOHPCcpu not only increases the computing efficiency but

also improves the solution quality when compared to a state-of-the-art island-based parallel

EA.

Chapter 5

Local Ensemble Surrogate Assisted

Crowding DE and its Parallel

Implementation based on the

SPEOHPCcpu
Framework

5.1 Introduction

When deploying the SPEOHPCcpu framework over many CPU cores, a large number of candidate

solutions (e.g., 100,000,000 for D = 100 in Chapter 4) are now achievable. However, only a

very small proportion of these solutions can facilitate the search process because EAs usually

perform iterative generate-and-test operations. In other words, a very large number of solutions

are directly discarded if they are evaluated as inferior, which wastes the most computing budget

on unhelpful time-consuming fitness evaluation. However, any already evaluated candidate

solutions, no matter superior or inferior, may carry some useful information about the search

landscape in fact. Therefore, if the historical information that is carried by massive candidate

solutions can be properly learnt and used, the search process by producing more superior

candidate solutions can be facilitated.

79

Introduction 80

One possible approach of using some of the already evaluated candidate solutions is to

model the search landscape by surrogate models, which can estimate the quality of the newly

generated candidate solutions. Therefore, we can generate more candidate individuals and

filter the inferior ones by the trained model instead of evaluating their actual fitness values

by time-consuming fitness evaluation. However, the training and utilisation of the surrogate

model are very important but challenging because the performance of this kind of approach

closely depends on the accuracy of the surrogate model. Specifically, if the search landscape

is precisely modelled by sufficient data, the surrogate model can help to efficiently identify

superior candidate solutions and accordingly facilitate search; otherwise, the solution quality

even reduces when surrogate models are trained by insufficient data and only provide misleading

information. From this perspective, the SPEOHPCcpu can produce unprecedented data and thus

assists in better modeling the problem landscape. It makes the SPEOHPCcpu crucial for such

surrogate approaches that require extensive learning data.

In this chapter, we design a local ensemble surrogate assisted crowding DE (LES-CDE). The

proposed LSE-CDE builds many local surrogate models using extreme learning machine (ELM)

and proposes a majority voting scheme to predict whether a trail vector is superior and worthy

to be actually evaluated. After that, we implement the proposed LES-CDE in parallel based

on the SPEOHPCcpu (denoted as SPEO-LES-CDE). The SPEO-LES-CDE inherits the most

features of the DE-based implementation of SPEOHPCcpu except replacing the DE with CDE

and introducing the ELM surrogate models. Experiments that compare the solution quality of

original CDE and the sequential LES-CDE illustrate the superiority of the proposed LES-CDE

over 8 test problems (f23 − f30 of CEC2014) for three dimensions (D = 10, 30 and 50). Then

we study the computing time that is required by sequential LES-CDE and CDE to achieve

a small (D ∗ 104) and large (D ∗ 106) number of total FEs. We also present the computing

time of SPEO-LES-CDE over up to 512 CPU cores in order to examine its computational

efficiency. Results indicate that SPEO-LES-CDE only requires less than 12 minutes when

using 50,000,000 total FEs to solve 50-dimension problems, while the CDE requires more than

2.5 hours and that of LES-CDE even exceeds the maximal execution time allowed by the HPC

provider. Finally, we investigate the impacts of the chunk and volume of online training data

Background 81

on the performance of SPEO-LES-CDE in terms of solution quality and computing speed.

The remaining chapter is organised as follows. Section 5.2 briefly introduces the background

of ELM and its online learning version. Section 5.3 presents the proposed LES-CDE and

its parallel implementation based on SPEOHPCcpu . Experimental results are reported and

discussed in Section 5.4. Finally, Section 5.5 draws conclusions.

5.2 Background

5.2.1 Extreme Learning Machine (ELM)

Extreme learning machine (ELM) [232, 233] is a highly time-effective single-hidden layer feed-

forward neural network (SLFN). In comparison with traditional methods, ELM has the out-

standing performance in terms of speed and accuracy. ELM randomly initializes its hidden

nodes, and calculate the output as follows: fL(x) =
∑L

i=1 βihi(x) = h(x)β, Where βi is the

output weight from the i-th hidden node to output node and β = [β1, · · · , βL]T . hi(x) is the

output of i-th hidden node, h(x) = [h1(x) · · ·hL(x)] is the output vector of input x.

Bartlett’s theory shows that feedforward neural networks perform better if achieving the

smaller fitting error and smaller norm of weights. Thus, the objective is to minimize the fitting

error: min(‖Hβ −T‖2) and the weight norm: ‖β‖)

Where

H =

h(x1)

...

h(xN)

=

h1(x1) · · · hL(x1)

...
. . .

...

h1(xN) · · · hL(xN)

and T = [T1, · · · , TN]T , where Ti is the real value of train data xi.

The minimal norm least-square method is used to calculate β = H†T, where H† is the

Moore−Penrose generalized inverse matrix of H. According to the orthogonal projection

method, H† and β is calculated as follows: H† = HT
(
HHT

)−1
and β = HT

(
HHT

)−1
T.

The Proposed Method 82

5.2.2 Online Sequentially Extreme Learning Machine (OS-ELM):

When handling the data that arrive chunk-by-chunk, ELM has to be updated by online train-

ing the incoming data stream. Therefore, online sequential extreme learning machine (OS-

ELM) was proposed in [234]. Let (Xi,Ti)
M0
i=1 denotes the initially available input data.

We first apply the original ELM to minimize ‖Hβ −T‖2. Then, after another chunk of

data (Xi,Ti)
M0+M
i=M0+1 arrives, the problem turns into minimizing

∥∥∥∥∥∥
 H0

H1

 β̂−
 T0

T1

∥∥∥∥∥∥
2

with

β̂ = K−1

 H0

H1

T T0

T1

 and K =

 H0

H1

T H0

H1

5.3 The Proposed Method

5.3.1 LES-CDE Algorithm

LES-CDE uses historical search information to build multiple local surrogate models, and uses

an ensemble of neighbouring local surrogates to guide the creation of promising trial vectors.

The surrogate models employ the OS-ELM to build and online udpdate surrogate models. The

algorithmic description of LES-CDE is presented in Algorithm 2. Several major components

of LES-CDE are explained in details as follows.

5.3.1.1 Local surrogate model initialisation

To ensure the basic accuracy of local surrogate models, each model needs to be pre-trained

before being used. A ratio r is defined to control the proportion of the total objective function

evaluations (maxFEs) expended to generate pre-training data. When the current number of

FEs is less than r·maxFEs, the original CDE is executed with each of its generated trial vectors

truly evaluated and stored in a training set S = {s1, · · · , sm}, where m = br∗maxFEsc. After

this step, we obtain a population PG = {x1,G, · · ·xNP,G} at generation G, which also serves

as landmarks of the NP models. To build local models, each train data si is assigned to k

sub-training sets of k models belonging to si’s nearest k models represented by landmarks of

PG. Then, ELM is used to initilise all local models denoted by M = {m1, · · · ,mNP }.

The Proposed Method 83

Algorithm 2: The LES-CDE Algorithm

input : {NP , CR, F , k, nt, r = 0.3, L = 1000, activation function is sigmoidal}
1 Initialise P0 = {x1,0, · · · ,xNP,0}, M = {m1, · · · ,mNP }, {T1 = ∅, · · · ,TNP = ∅};
2 while the predefined termination criteria is not met do
3 if currFEs < r ·maxFEs then
4 for i = 1→ NP do
5 Generate trial vector ui,G by DE/rand/1/bin and evaluate fitness f(ui,G);
6 Find ui,G’s nearest population member xj,G;
7 Choose the better one from xj,G and ui,G as xj,G+1;

8 end

9 else
10 if Models M are not trained then
11 foreach s ∈ S do
12 Find k nearest population members {xh1,G, ·,xhk,G} with respect to s;
13 Insert s into k training set Th1 , ·,Thk

;

14 end
15 for i = 1→ NP do
16 Train mi with train data Ti using ELM;
17 end

18 end
19 T1 = ∅, · · · ,TNP = ∅;
20 for i = 1→ NP do
21 for j = 1→ nt do
22 Generate cuj based on the strategy DE/rand/1/bin;
23 Find k nearest population members {xh1,G, ·,xhk,G} for cuj ;
24 Estimate fitness of cuj using k belonging models;
25 if more than k/2 estimated fitness are less than f(xi) then
26 Set ui,G = cuj and end this loop;
27 else
28 Record cuj and the average of its nt estimated function values;
29 end

30 end
31 if ui,G = ∅ then
32 Set ui,G as cuj that has the smallest average estimated fitness from

{cu1, · · · , cunt};
33 end
34 Evaluate ui,G to obtain its objective fitness value f(ui,G);
35 Find k nearest population members {xh1,G, ·,xhk,G} with respect to ui,G;
36 Add ui,G into k training set Th1 , ·,Thk

;
37 Find ui,G’s nearest population member xj,G;
38 Choose the better one from xj,G and ui,G as xj,G+1;
39 currFEs = currFEs+ 1, G = G+ 1;

40 end
41 for i = 1→ NP do
42 if Ti is not ∅ then
43 Update mi with Ti using OS-ELM;
44 end

45 end

46 end

47 end

The Proposed Method 84

5.3.1.2 Local ensemble surrogate assisted trial vector generation

At generation G, LES-CDE sequentially generates nt trail vectors for each target vector. For

each generated trial vector cuj , j = 1, · · · , nt, its nearest k models will be identified. The

estimated fitness value cuj will be estimated by each of these k models, and then compared to

the true fitness value f(ui) of the target vector ui. The majority voting scheme (line 21 to line

30 at Algorithm 2) is employed to predict whether this generated trail vector can outperform

the target vector. If so, this trial vector gets truly evaluated and no more new trial vectors

for this target vector will be produced. Otherwise, another new trial vector will be generated

and the above steps will be repeated. If all of the generated trial vectors are predicted as

not outperforming the target vector, the trial vector having the best average fitness value

estimation gets truly evaluated.

5.3.1.3 Local surrogate model updating

Trail vectors UG = {u1,G, · · · ,uNP,G} produced at generation G will be used to update local

models. Firstly, all sub-training sets {T1, · · · ,TNP } will be emptied. Then each trail vector

ui,G is assigned to its k training sets {Th1 , · · · ,Thk
} belonging to ui,G’s k nearest models rep-

resented in terms of xh1,G, · · · ,xhk,G. After all trial vectors are assigned to their corresponding

models, we can obtain the training set Ti of each local model mi, i = 1, · · · , NP , and use it

to update mi in an online manner. Here, OS-ELM is used for online learning.

5.3.2 Parallel Implementation of LES-CDE based on the SPEOHPCcpu

Framework

Although ELM is a simpler and faster training method compared to some traditional training

ways, it is still very time-consuming if a significant volume of data is used to train the models.

In order to obtain high-accurate surrogate models by training them with massive evaluated in-

dividuals in a reasonable time, we expect to accelerate the LES-CDE by using the SPEOHPCcpu

framework proposed in Chapter 4. Compared to original SPEOHPCcpu , the proposed parallel

LES-CDE (SPEO-LES-CDE) replaces the standard DE with CDE and additionally introduces

the surrogate models.

The Proposed Method 85

Algorithm 3: SPEO-LES-CDE on ith CPU core, i ∈ [1,Mcpu]

input : Ns, Cb, Rm, I, and parameters of LES-CDE

1 Initialise the island, the models the same as LES-CDE, B = ∅;
2 while the predefined termination criteria is not met do
3 if currFEs < r ·maxFEs then
4 *Perform CDE on Pi,G to generate and evaluate Pi,G+1;
5 currFEs = currFEs+Ns;
6 Store all evaluated individuals in the training buffer B;

7 else
8 if Models M are not trained then
9 *Train the models LES-CDE using the training data buffer B;

10 B = ∅;
11 end
12 if size(B) > Cb then
13 *Use all training data in buffer B to update Ns models based on OS-ELM;
14 B = ∅;
15 end
16 *Perform CDE and majority voting on Pi,G to generate Pi,G+1 based on the

surrogate models M;
17 Evaluate Pi,G+1;
18 currFEs = currFEs+Ns;
19 *Insert all evaluated trial vectors UG into the buffer B;

20 end
/* Perform the main body of asynchronous migration proposed in

Algorithm 1 */

21 Select recipients and send emigrants to other CPU cores based on Rm and I;
22 Receive immigrants from other islands and store them in the buffer B;
23 G = G+ 1;

24 end
25 * represents the same procedure with sequential LES-CDE

In Chapter 4, the received immigrants are used to build the diversity preserving buffer

which always imports the unique and promising individuals into the current island. However,

SPEO-LES-CDE, which exchanges information between islands in another way, uses them to

train or update ELM surrogate models. Specifically, the island on each CPU core uses Ns ELM

surrogate models that is represented by Ns individuals in the island, where Ns is the number

of individuals of each islands.

The brief introduction of SPEO-LES-CDE can be seen at Algorithm 3, from which we

Experiments 86

can observe that it shares the same communication scheme with SPEOHPCcpu and the similar

optimisation / training procedure with LES-CDE. The main difference between LES-CDE and

the SPEO-LES-CDE is the collection of training data. The training data of SPEO-LES-CDE

includes immigrants from other islands and the evaluated solutions from the current island.

In SPEO-LES-CDE, the buffer simply stores all training data instead of performing diversity

preserving operation. Regarding the model update, SPEO-LES-CDE initilises the surrogate

models when the FEs reach r ∗maxFEs, and it updates these models once the buffer is full

(exceed the buffer capacity Cb). The buffer will be cleared when the training data is used.

5.4 Experiments

In this section, several experiments are conducted to examine the LES-CDE and SPEO-LES-

CDE. Firstly, we evaluate the performance of the proposed sequential LES-CDE under different

parameter settings (k and nt) and find their best configurations for LES-CDE. Then we indicate

the superiority of LES-CDE by comparing it with the original CDE in terms of the solution

quality. After that, we present the execution time required by CDE, sequential LES-CDE and

SPEO-LES-CDE using a small (D∗104) and large (D∗106) number of total FEs. Experiments

using massive FEs illustrate that SPEO-LES-CDE can run great faster than CDE and LES-

CDE which is even unable to finish running in a reasonable time. Finally, we investigate the

impacts of the chunk and volume of online training data on the performance of SPEO-LES-CDE

in terms of solution quality and computing speed.

5.4.1 Experiments Setup

The computing platform and test problems are exactly the same as the DE-based SPEOHPCcpu

in Chapter 4. We test the proposed algorithm and CDE use the strategy “DE/rand/1/bin” to

generate trial vectors, and employ the commonly suggested parameter settings of NP = 64,

CR = 0.9, and F = 0.5 [47]. In order to investigate the impacts of significant parameters k

and nt, we examine the LES-CDE under different parameter settings: [k, nt] ∈ [1,3,5,7] x [5,

9]. Some less sensitive settings in each ELM-based local surrogate model, such as the number

Experiments 87

Table 5.1: Performance comparison of LES-CDE with different nt and k using the Iman and
Davenport test with the Hochberg post-hoc procedure over 8 test functions at dimension 10,
30 and 50, respectively.

D = 10 D = 30 D = 50

nt = 5

k = 1 *

k = 3 * * *

k = 5 * * *

k = 7 * *

nt = 9

k = 1

k = 3 *

k = 5

k = 7

of hidden neurons and the type of activation function are fixed (see Algorithm 2) based on

default OS-ELM [234]. Each of the algorithms is executed for 15 independent times on each

test problem at each dimension.

5.4.2 Study on Parametric Sensitivity

We firstly investigate how k and nt impact the solution quality of LES-CDE. In this experiment,

k is set from {1, 3, 5, 7} and nt is set from {5, 9}. We apply the Iman and Davenport test [235,

236] to compare the FEVs of each run achieved by all the algorithms over 8 functions at

D = 10, 30 and 50, respectively. In order to figure out whether there is a group of configurations

performing significantly better than the rests, we employ the post-hoc procedures [235, 236].

Table 5.1 presents the results of LES-CDE with 8 different configurations. Here, those

leading to the statistically significantly better performance (at the significance level 0.05) over

others are denoted by *. An empty cell means that corresponding algorithm is statistically

significantly worse than some other algorithms. According to the result, LES-CDE with k = 3

or 5 performs significantly better than other configurations. Here, too small k (k = 1) performs

bad because majority voting fails to work without sufficient estimated fitness values. On the

Experiments 88

Table 5.2: Comparisons of mean FEVs between standard CDE and LES-CDE using D ∗ 104

total FEs on 8 test problems for D = 10, 30 and 50. Statistical tests (+/≈/-) indicate LES-
CDE performs significantly better (+), similarly (≈), or worse (-) than CDE based on Wilcoxon
rank-sum test over 15 independent runs.

D = 10 D = 30 D = 50

func CDE LES-CDE CDE LES-CDE CDE LES-CDE

f23 329.457 329.457 (≈) 315.244 315.244 (≈) 344.004 344.004 (≈)

f24 137.979 138.999 (≈) 225.128 224.313 (+) 303.400 303.333 (+)

f25 162.647 158.560 (+) 207.998 206.050 (+) 237.538 238.300 (≈)

f26 100.230 100.241 (≈) 100.517 100.499 (+) 100.703 100.702 (+)

f27 13.336 15.350 (−) 521.226 532.919 (−) 1803.149 1816.806 (−)

f28 411.901 403.938 (+) 1117.660 1117.245 (+) 1785.477 1763.400 (+)

f29 190.513 190.083 (+) 374.784 328.361 (+) 10630.261 10296.892 (+)

f30 634.628 626.782 (+) 1597.820 1620.783 (≈) 10306.145 10155.024 (+)

+/ ≈ /− - 4/3/1 - 5/2/1 - 5/2/1

other hand, too large k (k = 7) brings some inaccurate estimated fitness values, which are

calculated by some far away models and mislead the majority voting. Moreover, increasing the

value of nt cannot further improve the performance of LES-CDE. Based on these observation,

we choose one of the best performed LES-CDE configuration: k = 3 and nt = 5 for the

following experiments.

5.4.3 Performance Comparison of Solution Quality with CDE

Table 5.2 reports the comparison results of the proposed LES-CDE with CDE. Here, CDE acts

as the control algorithm and is compared by LES-CDE based on the Wilcoxon’s signed rank

test respect to each dimension. According to the results, the proposed LES-CDE outperforms

CDE for each tested dimension. This demonstrates the superiority of local ensemble surrogate

models on improving the solution quality.

Experiments 89

Table 5.3: Average computational time (hh:mm:ss) required by sequential CDE, LES-CDE
and SPEO-LES-CDE to solve 8 test problems for three dimensions (D = 10, 30 and 50). The
execution time presented use a small (D ∗104) and large (D ∗106) number of FEs, respectively.
The sequential CDE and LES-CDE are conducted on a single CPU core and the SPEO-LES-
CDE is conducted on 128, 256 and 512 CPU cores. The cost for demanding 512 CPU cores to
conduct the entire experiments (8 test problems with 15 runs) are presented at the brackets.

MaxFEs Algorithm #CPU cores D = 10 D = 30 D = 50

D ∗ 104
CDE 1 00:00:04 00:00:32 00:01:35

LES-CDE 1 00:05:26 00:24:23 00:57:49

D ∗ 106

CDE 1 00:06:34 00:53:37 02:32:49

LES-CDE 1 09:12:27 46:12:32 –:–:–1

SPEO-LES-CDE

128 00:04:23 00:19:57 00:43:28

256 00:02:15 00:10:02 00:22:01

512 00:01:09 00:05:10 00:11:35

(21.76 USD/hour)2 (50.0 USD) (224.3 USD) (504.1 USD)

1 It requires more computing time than the maximal execution time supported by NCI.
2 Based on the pricing policy of AWC EC2 C5 instance.

5.4.4 Performance Comparison of Computing Speed

Although Table 5.2 illustrates the superiority of the LES-CDE, it naturally requires a longer

computing time than CDE because a significantly larger computational budget is required to

train surrogate models. Therefore, it is necessary to figure out how LES-CDE performs in

terms of the computing speed, which determines the capability of LES-CDE solving increasing

complex problems using a large population and massive FEs.

Table 5.3 records the average computational time (hh:mm:ss) that is required by sequential

CDE, LES-CDE and SPEO-LES-CDE to solve 8 test problems for three dimensions (D = 10, 30

and 50). When D∗104 total FEs are used, regardless that LES-CDE is much slower than CDE,

LES-CDE and CDE can still finish within a reasonable time. However, when D ∗106 total FEs

are used, LES-CDE completely fails to finish the execution for D = 50 due to the limitation

of the maximal execution time of NCI (48 hours). Therefore, we then present the computing

time of SPEO-LES-CDE using such a large FEs over 128, 256 and 512 CPU cores. Here, the

Experiments 90

SPEO-LES-CDE employs a large population size NP=#CPU cores*Ns (island size Ns = 64).

Results illustrate that the SPEO-LES-CDE can achieve such a large FEs in a short time. For

example, LES-CDE fails to solve problems for D = 50 and CDE requires more than 2.5 hours,

while SPEO-LES-CDE using 512 CPU cores only requires 11 minutes to achieve 100,000,000

total FEs. It is because the massive training tasks are distributed over a large number of CPU

cores and the communication scheme of SPEOHPCcpu can guarantee the efficient information

exchange.

Basically, when researchers execute sequential EAs like CDE and LES-CDE, they hardly

pay attend to the cost of computing facilities. However, purchasing computing powers from

HPC or cloud providers can be sometime costly. Therefore, it is necessary to investigate how

much the SPEO-LES-CDE may cost if it runs on such platforms. Table 5.3 also presents

the cost for demanding 512 cores to conduct the entire experiments which include totally 120

instances (8 test problems and 15 runs for each problem). Here, we refer the pricing policy of

AWS EC2 C5 CPU instance, which charges 21.76 USD to demand 512 CPU cores for one hour.

It can be observed that a large expense is necessary to achieve such remarkable speedups and

the cost increases significantly when the problem dimension becomes larger. For example, to

conduct 120 instances, totally 2.3 hours and 50.0 USD is required when dimension is 10, while

it reaches 23.2 hours and 504.1 USD when problem dimension is 100.

5.4.5 Analysis on Chunk and Volume of Online Training Data

As an online learning neural network, the performance (solution quality and computational effi-

ciency) of SPEO-LES-CDE is impacted by the chunk and volume of training data. Specifically,

the data chunk (buffer capacity Cb) determines how much data is used to update the model

each time, and data volume (migration rate Rm) determines how much data is exchanged

among islands. Therefore, we compare the performance of SPEO-LES-CDE using different

data chunks (Cb = 64, 128 and 256) and volumes (Rm = 0.1, 0.5 and 1.0).

Table 5.4 presents the solutions quality of SPEO-LES-CDE using different data chunks

and volumes. Results indicate that different configurations do not bring significantly different

solution qualities. However, different computing speeds are observed according to the Table 5.5.

Experiments 91

Table 5.4: Comparisons of mean FEVs of SPEO-LES-CDE using different data chunk and
volume. Statistical tests (+/≈/-) indicate SPEO-LES-CDE performs significantly better (+),
similarly (≈), or worse (-) than basic configuration (Rm = 0.1 and Cb = 64) based on 15
independent runs.

Cb = 64 Cb = 128 Cb = 256

Rm = 0.1 Rm = 0.5 Rm = 1.0 Rm = 0.1 Rm = 0.5 Rm = 1.0 Rm = 0.1 Rm = 0.5 Rm = 1.0

f23 279.69 295.78(≈) 283.6(≈) 223.47(≈) 292.23(≈) 239.05(≈) 238.77(≈) 288.9(≈) 250.83(≈)

f24 128.81 131.07(−) 130.07(≈) 130.01(≈) 129.45(≈) 130.62(−) 130.32(≈) 131.0(−) 129.71(≈)

f25 146.65 146.3(≈) 147.5(≈) 147.45(≈) 148.48(≈) 146.27(≈) 148.37(≈) 146.53(≈) 147.31(≈)

f26 100.18 100.15(+) 100.17(≈) 100.18(≈) 100.17(≈) 100.17(≈) 100.17(≈) 100.18(≈) 100.18(≈)

f27 12.01 12.43(≈) 12.89(≈) 12.84(≈) 12.41(≈) 12.1(≈) 11.97(+) 12.15(≈) 12.88(≈)

f28 401.5 412.39(≈) 402.88(−) 395.48(≈) 396.78(≈) 395.63(≈) 402.56(≈) 395.95(≈) 403.17(≈)

f29 154.77 151.68(≈) 154.44(≈) 157.37(≈) 156.39(≈) 151.99(≈) 153.59(≈) 151.48(≈) 152.03(≈)

f30 582.93 576.78(≈) 586.85(≈) 576.4(≈) 576.83(≈) 582.51(≈) 578.86(≈) 596.1(≈) 597.15(−)

+/ ≈ /− - 1/7/1 0/7/1 0/8/0 0/8/0 0/7/1 1/7/0 0/7/1 0/7/1

Table 5.5: Average computational time (hh:mm:ss) that is required by SPEO-LES-CDE with
different buffer capacities (Cb = 64, 128 and 256) and migration rates (Rm = 0.1, 0.5 and 1) to
solve 8 test problems for D = 10. Totally D ∗ 106 FEs are used herein over 512 CPU cores at
CPU node at NCI HPC.

Cb = 64 Cb = 128 Cb = 256

Rm = 0.1 00:01:09 00:01:20 00:01:36

Rm = 0.5 00:01:58 00:02:15 00:02:34

Rm = 1.0 00:03:05 00:03:28 00:04:07

Results indicate that the data volume Rm has significantly more impacts on the speed. For

example, when Cb increases from 64 to 256, the computing time of SPEO-LES-CDE with

Rm = 1.0 only increases from 3 minutes to 4 minutes. However, when Rm increases from 0.1

to 1.0, the computing time of SPEO-LES-CDE with Cb = 256 increases from 1.5 minutes to 4

minutes. The reason is that a large data volume not only increases the communication workload

between CPU cores, but also increases the workload of training process. In summary, to balance

the solution quality and computing speed, a small data chunk and volume are recommended

for SPEO-LES-CDE.

Conclusions 92

5.5 Conclusions

This chapter proposes the LES-CDE which can uses historical search information to train

multiple local surrogate models. Moreover, an ensemble of several neighbouring local models is

applied to guide the generation of promising trial vectors. To reduce model training costs, ELM

is used to build surrogate models and OS-ELM is used to update these models in an online

manner. Furthermore, we also implement it in parallel based on the SPEOHPCcpu framework.

In experiments, we compared the original CDE, sequential LES-CDE and SPEO-LES-CDE

in terms of solution quality and computing speed. Experiments indicate that the LES-CDE

outperforms CDE in terms of the solution quality and the SPEO-LES-CDE can make up the

slow computing speed of LES-CDE if massive FEs are used. However, we also figure out that

a significant cost is necessary to achieve such a remarkable speedup. Finally, we provide a

recommendation on configuring the chunk and volume of online training data to achieve both

satisfactory solution quality and computing speed.

Chapter 6

Correctness Verification for

Implementing Parallel EAs based on

a Single GPU

6.1 Introduction

In Chapter 4 and Chapter 5, we have shown that a large number of CPU cores can remarkably

speedup the time-consuming EAs if designed and executed in parallel. However, it also can

be very costly for researchers to demand so many CPU cores; thus, modern powerful GPUs

that require a lower cost and provide a larger computing power have entered computing’s

mainstream. So far, many EAs that were sequentially implemented on CPU are now redesigned

and implemented based on GPU and achieve significant speedups [73–78]. However, compared

to traditional serial-oriented programming, GPU-based programming is more complicated and

thus obtaining correct outputs by GPU-based EAs is not so straightforward as the CPU-based

EAs. The reasons include that the parallel programming brings in many challenges, which are

not typically encountered in the conventional serial-oriented programming. For example, the

memory barriers are essential in parallel computing for preventing the access conflicts when

multiple threads write to the same shared data. Moreover, to program on GPUs requires

93

Introduction 94

programmers to have grown skills and a certain level know-how of GPU hardware structures.

For instance, the developer needs to understand the characters and differences between six types

of GPU memories and uses them, properly. In addition, monitoring thousands of threads makes

it difficult to debug the GPU programming. In summary, implementing GPU-based programs

is very challenging and thus guaranteeing the correctness before applying these programs is

necessary.

Many existing works [237–239] studied how to verify the correctness in some simple GPU-

based applications. Some commercial software, e.g. Matlab GPU CoderTM, even provides

an API for checking the correctness of GPU codes before executing them on GPUs. Due to

the stochastic nature of EAs, existing works, which focus on simple GPU-based applications,

are not capable of verifying the correctness of complex GPU-based EAs. In other words, it

still lacks the work that can verify the correctness of GPU-based EAs when they are migrated

from CPU-based programming. Therefore, many GPU-based EAs [79–82] observed the biased

outputs with their counterparts but failed to figure out the reasons. As a result, it exists risks

that GPU-based EAs may output incorrectly even they can provide remarkable speedups.

Instead of studying accelerating parallel EAs based on a single GPU, this chapter propose

guidelines for EA researchers to verify the correctness after they implement EAs based on a

single GPU. In this chapter, an example of migrating the PSO from CPU based coding to

the GPU environment is firstly given to show why correctness verification is necessary for

GPU-based EAs. Then, this chapter discusses some GPU-inherent issues including the library

functions, the numerical precision, and the race condition which influence the output of GPU-

based EAs. To cope with the issues mentioned above, a set of guidance is proposed to verify

the correctness of the GPU-based EAs. Finally, the effectiveness of the proposed guidelines

is examined by employing a working example based on a GPU-based modified brain storm

optimisation (MBSO) [121, 240].

The rest of the chapter is organised as follows. Section 6.2 presents an example revealing

the difficulty and the necessity of correctness verification for GPU-based PSO. Moreover, the

impact on the outputs caused by the GPU-based EAs is discussed from aspects of three GPU-

inherent issues including the library function, the numerical precision, and the race condition.

Issues and Analysis 95

Section 6.3 proposes a set of guidance for verifying the correctness of the GPU-based EAs

against the issues mentioned above. Section 6.4 presents a working example based on GPU-

based MBSO to demonstrate the effectiveness of the proposed guidelines.

6.2 Issues and Analysis

The correctness verification did not attract much attention in existing works when most EAs

were designed for running on the conventional serial-based computing facilities because the

correctness verification can be simply achieved by comparing the outputs of the different im-

plementations of the same algorithm, directly. However, things get complicated when the EAs

are put on the GPU-based environment because the difference of the outputs generally caused

by the unpredictable execution order of the parallel processes. An example of the conventional

PSO algorithm is given as an example in both the sequential and the GPU-based ways in

this section to showcase the difficulty and failure of correctness verification in the GPU-based

environment against the CPU-based environment. In addition, four programming languages

including Matlab, Python, C/C++, and CUDA are used to establish four versions of PSO

to get more objective results. Four test functions, namely, Sphere, Ackley, Griewank, and

Rastrigin, are used with D = 10 where D is the problem dimension. The outputs of solution

quality are measured by the mean FEVs [88] of 30 independent instances repeated with differ-

ent random seeds. The configuration of these PSO implementations are based on the standard

PSO [241], and the maximal fitness evaluation is set to D ∗ 104 as the stopping criterion. It

has been known in common sense that the Random Number Generators (RNGs) influence the

outputs of the EAs. Thus, two different RNG configurations are used in the example and are

listed as follows:

• Employing the default RNG in the programming language: The Mersenne Twister (MT)

is used in Matlab and Python; the Linear Congruential Generator (LCG) is used in

C/C++, and the Xorshift is used in CUDA.

• Employing the static RNG file: To eliminate the differences caused by different RNGs, a

pregenerated file containing sufficient random sequences is fed as the input to ensure the

Issues and Analysis 96

Table 6.1: Mean FEVs of four implementations of PSO with different RNGs on four func-
tions.

Sphere Ackley Griewank Rastrigin

Matlab 0.0210 (0.019) 16.5337 (8.296) 0.1939 (0.108) 26.8214 (9.242)

Python 0.0155 (0.014) 12.3227 (9.116) 0.1475 (0.119) 29.3329 (8.667)

C/C++ 0.0194 (0.018) 17.8694 (7.004) 0.2415 (0.180) 25.3294 (9.583)

CUDA 0.0190 (0.017) 16.7155 (8.064) 0.2152 (0.114) 33.3595 (9.022)

Table 6.2: Mean FEVs of four implementations of PSO with the identical RNG on four
functions.

Sphere Ackley Griewank Rastrigin

Matlab 0.0119 (0.012) 17.8308 (7.173) 0.1393 (0.068) 28.5840 (8.495)

Python 0.0119 (0.012) 17.8308 (7.173) 0.1393 (0.068) 28.5840 (8.495)

C/C++ 0.0119 (0.012) 17.8308 (7.173) 0.1393 (0.068) 28.5840 (8.495)

CUDA 0.0326 (0.024) 15.3420 (8.831) 0.2222 (0.138) 26.4825 (9.287)

identical random numbers are used in all implementations.

The mean FEVs and the standard deviations (in brackets) of all test functions and imple-

mentations are shown in Table 6.1 (default RNGs) and Table 6.2 (unified RNG). According to

Table 6.1, it is observable that the same sequential PSO algorithm implemented in different

programming languages present unidentical results and bring in ununified searching behaviours

to PSO when the default RNGs are used in the experiment. On the contrary, all implemen-

tations present same searching behaviours and results in Table 6.2 after employing the same

random sequence file except the CUDA-based implementation. To conclude in short, the re-

search topic of how to verify the correctness was not raised in the earlier researches because the

correctness can be easily verified utilizing the unified RNG. It is an interesting phenomenon

that the results still different even the random sequence is identical to the others. In this

scenario, neglecting the unexpected biases without verifying the correctness making the out-

come of GPU-based EAs unreliable because researchers will have no idea about whether the

outcome of the GPU-based EAs is correct or not. Motivated by the phenomenon revealed in

the example, some GPU-inherent issues that may influence the outputs of the GPU-based EAs

Issues and Analysis 97

are studied and a set of guidance to verify the correctness of GPU-based EAs is proposed.

In this chapter, we investigate three fundamental and GPU-inherent issues, which cause the

biases to EA results. Related discussions remain vacant in the literature of the existing GPU-

based EAs. According to the observation on the example given in the previous section, we’ve

known that the default RNGs in different programming language produce unidentical random

sequences and cause the biased results in EAs. However, there are other elements that influence

on the resulting consistency. The libraries and functions built by different programmer perform

different but all correct results when the feasible answer is not unique. Another thing caught

our appetite is the numerical precision because the EAs naturally involve a lot of numerical

operations in the processes. The other issue is the commonly seen race conditions in the parallel

computing system.

6.2.1 Build-in Functions and Libraries

Many of the build-in functions can be found in all well-developed programming languages

providing convenient and efficient assistance to the developers to reduce the programming

burden. These functions are customisedd for a specific programming language to maximise

the execution performance. As a result, functions built for the same purpose may produce

different results in different programming languages or platforms even if the identical inputs are

given. Taking the same example from the previous section, all RNGs in different programming

languages are designed to generate random numbers, but the outputs are entirely different even

if the same random seed is used.

Comparing the libraries for CPU and GPU, we can say that these two libraries are dissimilar

because the GPU libraries are designed to include many parallel processes and implemented

for maximally utilse thousands of parallel threads while CPU libraries, in general, designed

to support much fewer threads to be executed in parallel. Therefore, GPU libraries can be

difficult for average programmers to understand. Some of the GPU libraries are even closed

source without revealing the process of manipulating data. As a result, the detail of functions

in GPU libraries are not generally known, and the biases caused by the functions and libraries

in GPU are easily neglected. To verify the correctness of the GPU-based EAs, solutions to

Issues and Analysis 98

1 7 8 3 2 5 4 1

p2p1 p4p3 p6p5 p8p7

1 7 832 41 5

p8p1 p4p5 p6p7 p3p2

7 82 41 5

p1p8 p4p5 p6p7 p3p2

1 3

CUDA Thrust::sort()

C+
+

qso
rt()

Figure 6.1: Different outcomes of sorting function by C++ and CUDA.

these issues need to be developed.

Example: Besides the example of random number generation given above, the fundamental

functions in the build-in libraries provide efficient support to the programmers. Nevertheless,

many of them have the same issue of producing correct but different results. Taking the sorting

function, which is heavily used in the rank-based fitness assignment [242, 243], as an example,

the sorting is used in EAs when calculating the fitness values based on the ranking of the

objective values of all individuals. The left side of figure 6.1 shows an example containing eight

individuals {p1, . . . , p8} with objective values {1, 7, 8, 3, 2, 5, 4, 1} in the queue.

In this example, qsort() function in the C++ library and Thrust::sort() [244] function in the

CUDA library are employed. The right side of figure 6.1 shows the results obtained by C++

and CUDA build-in functions after sorting. The sorting results are {p8, p1, p5, p4, p7, p6, p2, p3}

and {p1, p8, p5, p4, p7, p6, p2, p3}, which are obtained by qsort() and Thrust::sort(), respectively.

It is noticeable that these functions produce different sorted indices for p1 and p8 because they

are implemented with different sorting algorithms. The qsort() in C++ library is built based

on the quick sort algorithm [245], which is unstable when more than one elements contain the

identical value in the list. On the other hand, The Thrust::sort() is implemented based on the

merge sort [246] and the radix sort [247] algorithms, which are all stable sorting algorithms

regardless whether repeated values are included in the sorting list. In other words, having two

elements (p1 and p8) with the same value in this example, qsort() may return the sorted result

Issues and Analysis 99

in different orders, but Thrust::sort() will always keep the result identical. As a result, the bias

caused by the sorting would eventually grow in operations such as the parent selection in EAs

and produce different outcomes.

6.2.2 Numerical Precision of Floating Point

In most cases of numerical computation on computers, the real numbers are represented by

floating point. Since floating point arithmetic is an approximation way, there are usually

some loss of precision when presenting a real number by floating point. Especially, when the

number belongs to the irrational number category. Therefore, in some crucial situations such

as scientific computing, numerical precision is an important issue that influences the accuracy

of results and needs to be carefully studied. To have a common standard for coping with this

issue, IEEE-754 standard [248] is introduced to ensure the reliability and portability of floating

point across different software or hardware platforms. NVIDIA also follows this standard to

product all generations of its GPU products. The current generation of NVIDIA GPUs such

as Tesla P100 and GTX1080 support both single and double precision defined by IEEE-754

standard for most of the CUDA-based numerical computations. However, in order to achieve

better performance, there could be a trade off between numerical precision and computing

speeds for GPU in some cases, which results in the biases between CPU and GPU on the

results of numerical computation.

EAs usually consist of various numerical computation operators such as summation and

multiplication. As the matter of fact, CPU and GPU show different precision on these op-

erations and do result in the biases, which influence the outputs of EAs. Although the bias

from a single operation is relatively small, the effect can be accumulated over thousands of

generations. Therefore, the numerical precision plays an important role, which significantly

affects the computing results and increases the difficulty of correctness verification.

Example: An example of numerical precision in EAs is the roulette wheel selection [117]

which calculates the selecting probability of parent xi as follows:

P (xi) =
f(xi)∑NP
i=j f(xj)

Issues and Analysis 100

1030 -1030 1 1+ + +

round(1030 -1030)=0

round(0+1)=1

round(1+1)=2

+

+

+

step 1:

array:

step 2:

step 3:

(a) sequential summation

1 1+ + +

round(1030 +1)=1030

round(1030 -1030)=0

+ +

+

1030 -1030array:

step 1:

step 2:

step 3:

round(-1030 +1)=-1030

(b) parallel summation reduction

Figure 6.2: Example of arithmetic operation associations.

where f(xi) is the fitness value of xi and NP is the population. When implementing the

summation of all the fitness values (
∑NP

j=1 f(xj)) for roulette wheel selection on GPU, parallel

reduction, which reduces the time complexity form O(n) to O(log(n)) by adding pairwise data

elements in parallel, is usually employed. In order to make the values significant and easy to

compare, fitness values of four chromosomes in this example are set as {1030,−1030, 1, 1}. The

traditional CPU-based sequential summation and GPU-based parallel reduction are shown as

follows:

• CPU: a sequential loop is employed to sum all elements. Figure 6.2a shows the summation

value
∑NP

i=1 f(xi) = 2.

• GPU: Parallel reduction executed on GPU is shown at Figure 6.2b. The summation

value
∑NP

i=1 f(xi) = 0.

Sequential summation and parallel reduction output with different precision because they have

different association of arithmetic operation. As a result, round() function rounds different

real values that are summed by different pair of numbers which produces the different losses of

precision when converting a real value to a floating point. In conclusion, the issue of numerical

precision such as association of arithmetic operation can bring different numerical precision as

well as the output of EAs.

Issues and Analysis 101

read

write

gb
2

particle
j

particle
i

Update gbest and
pbest

Evaluate fitness

Update gbest and
pbest

Evaluate fitness

Update volicity
and position

Update volicity
and position

gb
2

gb
1 gb

1

read

write

gb
1

gb
0

gb
0

Figure 6.3: Runtime flowchart of asynchronous sequential PSO based on CPU.

read

write
'gb
2

gb
0

particle
j

particle
i

Update gbest and
pbest

Evaluate fitness

Update gbest and
pbest

Evaluate fitness

Update volicity
and position

Update volicity
and position

read

write

'gb
2

gb
1

gb
0

gb
0

gb
1

Figure 6.4: Runtime flowchart of asynchronous parallel PSO based on GPU.

6.2.3 Race Condition

When GPU-based parallel programs are executed on GPU, computing tasks are assigned to

different threads to process concurrently. GPU groups threads in warps and dispatches them

The Proposed Guidelines 102

based on runtime status of GPUs and thus thousands of GPU threads are executed disorderly.

Consequently, if there is any interaction between more than two threads, race condition [249]

occurs and outputs are uncertain; otherwise, a parallel program on thousand threads perform

the same with a sequential program on a single thread.

Race condition makes correctness verification of GPU-based EAs more challenging due to

their unexpected outputs. The main source of race condition in GPU-based EAs is population

updating mechanism. Namely, when EAs are implemented on GPU, the entire population are

usually processed by many threads in parallel. Since each individual may read from and write

to other individuals for crossover and selection operations, the different accesses orders may

lead to different outputs.

Example: An example is given to show how asynchronous PSO (APSO) [250, 251] triggers

race condition when it is executed in parallel. Figure 6.3 shows the sketch of sequential APSO

in which particle i, j read and update global best by turns. Namely, particle i firstly reads the

global best gb0 and updates it as gb1, then particle j reads global best gb1 and updates it

as gb2. Regarding GPU-based APSO, there is no guarantee that particle j will wait for the

finish of particle i. Figure 6.4 presents a possible case that particle j reads gb0 before particle

i updating the global best. In this example, the new position of particle j that is generated

based on gb0 is different with that of sequential APSO in which particle j is generated based

on gb1. Moreover, global best of GPU-based parallel APSO and sequential APSO are gb′2

and gb2, respectively. As a result, the final outputs of GPU-based and CPU-based PSO must

be different after thousands of generations. Moreover, the issue can be more significant if the

population size is large because there are ANP
NP possible process orders for a population with

NP individuals.

6.3 The Proposed Guidelines

This section describes a set of guidelines to verify GPU-based EAs considering the context and

issues that are studied in previous section. Here, we give a short overview of the guidelines

and then describe the details.

Figure 6.5 show the four main steps for correctness verification. Firstly, we obtain the

The Proposed Guidelines 103

Obtain correct CPU-
EA as reference

Verify the
correctness
of reference

Check & unify platform-
inherent factors

Check & unify
numeric precision

Collect results to
verify correctness

Evaluate
correctness

Check & unify
library function

Check & unify race
condition

Obtain CPU-EA
as reference

Employ CPU-based
fitness evaluation

for CUDA-EA

Repeatedly execute
CUDA-EAs and its

reference

Evaluate
correctness

Release CUDA-
EA

Set confident
level

Figure 6.5: Guidelines of correctness verification of GPU-based EAs.

CPU-based sequential implementation which works as reference. Then we address the GPU-

inherent issues to avoid their influence on correctness verification. Thirdly, we run the tests and

compare optimisation accuracy collected from GPU-based EA and its CPU-based reference.

Finally, we evaluate and confirm the correctness based on the comparison results.

6.3.1 Obtaining Correct CPU-based EAs as the Reference

Obtaining a correct reference of GPU-based EAs is the foundation of correctness verification.

This first step mainly focuses on developing a correct reference.

Obtaining a CPU-based EAs as the reference: A CPU-based sequential implemen-

tation of EA is required as the reference for correctness verification. If this reference does not

exist, developers are suggested to implement it with CPU-based programming languages such

as Matlab or C/C++.

Confirming the correctness of the reference: When a sequential implementation of

EA is obtained as the reference, its correctness needs to be carefully confirmed. Since developers

usually have much experience in implementing sequential programs, correctness verification of

the reference is not a difficult task.

6.3.2 Unifying GPU-inherent Issues

This step focuses on avoiding the biases that are caused by GPU-inherent issues when com-

paring a GPU-based EA with its reference. Guidelines of checking and unifying three issues

The Proposed Guidelines 104

(library functions, numerical precision and race condition) are provided as follows.

Unifying library functions: The unification of library functions can be divided into two

aspects. For some library functions that output completely differently with CPU libraries such

as RNGs, we can unify them as follows:

• Transfer the input date from GPU global memory to CPU host memory

• Employ corresponding CPU library functions to calculate the output with the input data

• Transfer the output data back to GPU global memory

Regarding some library functions that occasionally bring small bias, the necessity of replacing

them with CPU library functions is up to developers’ expertise on GPU-based programming.

Although the replacement is not compulsory, it increases the credibility of final conclusion for

the correctness verification.

Unifying numerical precision: Since the association of arithmetic operations is the most

common reason that causes the issue of numerical precision, developers can check whether

there are mathematical operators like
∑

or
∏

in GPU-based EAs. If this operator exists and

is implemented with the parallel reduction method, developers can unify by replacing it with

a sequential way. Similar with some library functions, unification of numerical precision is also

not compulsory because the bias caused by numerical precision are not large in most cases.

Avoiding race condition: In order to check the issue of race condition, developers can

examine the existence of the shared variable in GPU-based program. If a variable that is stored

in GPU global memory is accessed by two or more threads (at least one thread writes data to

this shared data), race condition occurs probably. Especially, the population updating mech-

anism needs to be examined carefully because race condition probably exists if asynchronous

mechanism is employed. To avoid the race condition in this case, it is recommended to replace

the asynchronous population updating mechanism with synchronous one for both GPU-based

EA and its reference.

The Proposed Guidelines 105

6.3.3 Collecting Results

Employing CPU-based fitness evaluation for GPU-based EAs: Our work aims to

verify the correctness of the algorithmic implementation of GPU-based EAs excluding the

implementation of test problems. In order to avoid the uncertainty brought by fitness evaluation

during correctness verification, we suggest to utilse the CPU-based implementation of fitness

evaluation for both the GPU-based EA and its reference. In this way, GPU-based EAs can

transfer the entire population to CPU memory for fitness evaluation and then transfers them

back to GPU global memory for further processes.

Executing GPU-based EAs and the reference repeatedly: In order to comprehen-

sively evaluate correctness of GPU-based EAs and avoid the influence of occasional issues,

multiple runs with various configurations for GPU-based EA and its reference are suggested.

The configurations could be random seeds, algorithmic parameters, test problems and so on.

6.3.4 Evaluating Correctness

Setting tolerance rate: According to above discussion, some GPU-inherent issues occa-

sionally produce small biases but take lots of efforts to unify, thus their unification are not

compulsory and up to developers’ expertise on GPU-based programming. Therefore, the tol-

erance of noises that caused by non-bug issues is necessary to avoid the misjudgment of some

correct instances. Here, tolerance rate T% is designed to represent how reliable the conclusion

of correctness verification is. A higher T makes the confirmation of correctness more reliable

but it may fail to verify an indeed correct GPU-based EAs because it is sensitive with the noise

caused by above non-bug factors. On the contrary, a lower T tolerates many occasional issues

but reduces the reliability of correctness verification. A high T is suggested if:

• The unification is comprehensively employed on most GPU-inherent factors

• The implementation of GPU-based EA is relatively simple and there is no complex op-

eration that is difficult to code in parallel.

• The application requires a highly reliable confirmation of correctness of GPU-based EAs.

A Working Example: Implement and Verify GPU-based MBSO 106

• A large number of instances with different configurations or problems are tested .

The tolerance rate T works as a threshold that represents the minimal ratio of correct instances

among all tested instances. Specifically, the correctness of a GPU-based EA is confirmed if

it outputs correctly for more than n ∗ T% out of n instances, where n is the number of total

instances.

Evaluating correctness: Before comparing the optimisation accuracy of GPU-based EA

with that of its reference, users are required to specify the acceptable error level (AEL) which

relies on each test problem. AEL represents the maximal systemic error for a specific problem

and any bias that is smaller than AEL is neglected in correctness verification. For example, if

our test problems are selected from CEC2014 benchmark, we can set AEL at 10−8 because a

solution is regarded as the global optima when its FEV is less than 10−8 [88].

Once AEL is specified, the correctness of the GPU-based EA is evaluated by comparing

its optimisation accuracy with that of its reference for each independent run. Specifically, if

the bias is smaller than AEL, GPU-based EA is counted as correct at this run. Then the

comparison results for all runs are synthesised and users can confirm the correctness if the

ratio of correct runs are larger than T%.

Releasing GPU-based EAs: If the correctness of the GPU-based EA is verified, all the

unification can be discarded and the original implementation is ready to release because all

unification are only designed for correctness verification and may reduce the computational

efficiency.

6.4 A Working Example: Implement and Verify GPU-based

MBSO

In order to examine the effectiveness of guidelines, we implement a novel EAs called MBSO

based on a single GPU and verify its correctness according to the above guidelines. Here,

MBSO is selected as the working example because it is a state-of-the-art EA and have more

complex evolutionary operations compared to some traditional simple EAs. The proposed

A Working Example: Implement and Verify GPU-based MBSO 107

Figure 6.6: Flow chart of GPU-based MBSO.

GPU-based MBSO encapsulates all of the evolutionary operations into seven kernel functions

that are illustrated in Figure 6.6.

A Working Example: Implement and Verify GPU-based MBSO 108

6.4.1 Implementation of GPU-based MBSO

6.4.1.1 Initialization of ideas and clusters

kernel(Ip) initialise all the ideas randomly. This kernel uses one thread for each elements of

the idea array and uses the global memory to store population data.

Once all of the ideas are generated, kernel(E) is employed to evaluate the quality of

these ideas. This kernel calculates the objective function values of the ideas and writes them

into the global memory. The objective function is defined according to the problem being

solved and thus has varying complexity. Here, we employ CEC2014 benchmark functions as

the optimization problems and implement them based on CUDA. Each thread of this kernel

operates on one element of the idea array and thus this kernel has the same block size number

as kernel(Ip). Since the benchmark functions contain the addition and/or multiplication

operations on all elements of a population member, we employed the parallel reduction to

make the sum and production calculations. It is worth of noting that the objective function

evaluation could be the most time-consuming, especially when the problem and population

size grow. Therefore, the effective parallelization of this part on GPU may lead to remarkable

computational speedup. In addition to the global memory, kernel(E) also uses the shared

memory and the constant memory to store the data that needs to be frequently used.

Beside idea initialization, cluster centers are initialized by kernel(Ic) and written into

the global memory. Since this kernel is independent of kernel(E), it can be executed in

a different streams to increase computational efficiency [17]. To ensure cluster centers are

successfully initialized before being used by other kernels, two streams w.r.t. kernel(E) and

kernel(Ic) need to be synchronized. Similar to kernel(Ip), each thread of kernel(Ic) operates

on one element of the idea array and thus kernel(Ic) has the same block size as kernel(Ip).

6.4.1.2 Convergent operator

Convergent operator involves the calculation of distances between all ideas and group (cluster)

centers, which is suitable for be parallelized on GPU. kernel(L) calculates the distances be-

tween one idea to every group center and labels this idea with the index of its nearest group

A Working Example: Implement and Verify GPU-based MBSO 109

center. In this kernel, M group centers initialized by kernel(Ic) are firstly loaded into the

shared memory to avoid frequent global memory accesses. Each thread operates on one element

of an idea. Specifically, the squared difference between an idea and a center at one dimension is

calculated by each thread, and parallel reduction of summation is employed to sum the values

of all squared differences. Due to the typically small number of idea groups, a shallow loop is

employed to compute the distances from an idea to all group centers.

After labeling all the ideas with the index of its nearest group center, kernel(B) is used to

find every group’s best idea that is set as the representation of this group. In this kernel, block

number is set as M and each block works on finding the best idea for one group. Specifically,

ith thread in jth block identifies whether ith idea belongs the jth group based on the label of ith

idea which was produced by kernel(L) and stored in the global memory. Parallel reduction

is utilised here to compare all the ideas belongs to the jth group and find the idea with the

best objective function value. Thus, the blockDim.x of kernel(B) is N and blockDim.y is 1.

As to data storage, a large number of registers and the shared memory are used in this kernel

for the parallel reduction operation. Then the ideas are clustered based on specific clustering

algorithms.

6.4.1.3 Divergent operator

kernel(S) implements the divergent operator to generate new ideas. In this kernel, each thread

handles one element of an idea. Accordingly, the block size and number are exactly the same

as the kernel(Ip). The shared memory is used to store some repeatedly used data, such as

the centers of groups.

After generating new ideas, kernel(E) is employed to evaluate the objective function values

of all new ideas. Then, kernel(G) is employed to combine the old and new ideas to produce

the population for the next generation. This kernel uses one thread to compare the objective

function value of an old idea with that of a newly generated idea. If the new idea is better,

D′ threads updates all elements of the old idea with the newly generated idea. Otherwise, D′

threads do nothing. Therefore, the block size and number are the same as kernel(Ip). When

this kernel finishes, GPU-based MBSO checks whether to stop the algorithm. If some stopping

A Working Example: Implement and Verify GPU-based MBSO 110

criterion is met, the algorithm terminates. Otherwise, stream synchronization is involved to

ensure the completion of kernel(Ic) before starting the next generation.

6.4.2 Numerical Analysis

Here, we compare the performance of GPU-MBSO with the sequential MBSO on 30 CEC2014

benchmark problems in terms of solution quality and computing speed.

6.4.2.1 Experiments Setup

Experiments are conducted on a PC equipped with an Intel Xeon E5-2630 CPU at 2.30 Ghz

and a NVIDIA Geforce GTX Titan GPU with 6GB of GDDR5 global memory. GTX Titan

supports compute capability 3.5, which has 2880 SPs evenly deployed in 15 SMXs, i.e. each

SMX consists of 192 SPs. Our development environment is made of Windows 7 operating

system, CUDA toolkit 7.5 and Microsoft Visual Studio 2013.

The parameters are set as [120, 121] mentioned. Population sizes are set to 50, 100, 500

and 1000, respectively, for each test case. For each test problem of a specific dimension, each

implementation under a specific parameter setting is executed 30 times starting from different

random generator seeds while all CPU and GPU based implementations share the same initial

random number generator seed for any individual run. The algorithm terminates once the

maximal number of function evaluations is reached, which is set to 104 times the problem

dimension size.

6.4.2.2 Verifying the Implementation of GPU-based MBSO

Table 6.3 shows the FEVs achieved by GPU-MBSO and its reference (denoted as CPU-MBSO).

According to the guidelines, we set the original sequential MBSO as the reference and 30

CEC2014 benchmark functions at D = 10 as the test problems. The population size is set as

NP = 50. The AEL is set at 10−8 based on the instruction of CEC2014 benchmark [88]. Every

problem is tested for 30 independent instances with different random seeds. In order to achieve

confident conclusion, we set a high T = 95%. The significantly biased outputs indicate that

A Working Example: Implement and Verify GPU-based MBSO 111

Table 6.3: Mean FEVs of GPU-MBSO and CPU-MBSO and their biases before applying
correctness verification guidelines.

func f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

CPU-MBSO 692.756 1121.3 17.274 1.624 20.363 1.535 0 15.235 14.652 441.763
GPU-MBSO 685.954 1185.2 17.534 1.862 20.352 1.723 0 16.852 14.474 440.235

bias 6.802 63.9 0.260 0.238 0.011 0.188 4.8×10−9 1.617 0.178 1.528
#corr. 0/30 0/30 0/30 0/30 0/30 0/30 26/30 0/30 0/30 0/30

func f11 f12 f13 f14 f15 f16 f17 f18 f19 f20

CPU-MBSO 1786.83 0.5262 0.0732 0.4286 0.0663 0.2578 1023.094 925.673 0.4523 0.2035
GPU-MBSO 1753.62 0.4673 0.0867 0.5979 0.0760 0.3482 946.563 962.454 0.6483 0.1998

bias 33.304 0.0598 0.0135 0.1693 0.0097 0.0904 76.531 36.781 0.1960 0.0037
#corr. 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30

func f21 f22 f23 f24 f25 f26 f27 f28 f29 f30

CPU-MBSO 20.764 100.526 342.628 0 273.539 144.244 400.462 530.632 83082.4 14286.4
GPU-MBSO 20.457 100.532 342.692 0 274.622 141.452 400.843 530.668 83126.8 14085.3

bias 0.307 0.006 0.064 7.3×10−7 1.083 2.792 0.381 0.036 44.4 201.1
#corr. 0/30 0/30 0/30 22/30 0/30 0/30 0/30 0/30 0/30 0/30

Table 6.4: Mean FEVs of GPU-MBSO and CPU-MBSO and their biases after applying cor-
rectness verification guidelines.

func f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

CPU-MBSO 687.02 1170.9 17.536 1.252 20.342 1.675 0 12.659 14.423 440.675
GPU-MBSO 687.02 1170.9 17.536 1.252 20.342 1.675 0 12.659 14.423 440.675

bias 2.3×10−12 6.2×10−9 0 5.4× 10−12 0 4.6×10−10 1.3×10−11 0 0 1.9×10−7

#corr. 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 26/30

func f11 f12 f13 f14 f15 f16 f17 f18 f19 f20

CPU-MBSO 1779.5 0.3562 0.0436 0.7383 0.0584 0.2385 987.438 982.90 0.5752 0.1947
GPU-MBSO 1779.5 0.3562 0.0436 0.7383 0.0584 0.2385 987.438 982.90 0.5752 0.1947

bias 6.6×10−7 0 0 0 0 0 8.2×10−9 4.6×10−7 0 0
#corr. 26/30 30/30 30/30 30/30 30/30 30/30 29/30 28/30 30/30 30/30

func f21 f22 f23 f24 f25 f26 f27 f28 f29 f30

CPU-MBSO 20.563 100.53 342.62 0 272.69 140.66 400.73 530.45 83102.7 14175.2
GPU-MBSO 20.563 100.53 342.62 0 272.69 140.66 400.73 530.45 83102.7 14175.2

bias 0 5.1×10−7 5.8×10−12 0 0 0 5.8×10−11 8.2×10−9 1.4×10−6 6.0×10−7

#corr. 30/30 25/30 30/30 30/30 30/30 30/30 30/30 27/30 20/30 22/30

the correctness is unclear; specifically, it only runs correctly at 48 out of 900 (5.4%) instances.

Here are the actions we conducted based on the proposed guidelines:

• The original sequential CPU-MBSO is implemented based on C/C++ as the reference.

The correctness of CPU-MBSO is carefully verified to insure it outputs correctly.

• The original RNG of GPU-MBSO is based on cuRAND which is significantly different

with the one used by CPU-MBSO. Thus, the cuRAND-based RNG of GPU-MBSO is re-

A Working Example: Implement and Verify GPU-based MBSO 112

placed with the default C/C++ one that is used by CPU-MBSO. Moreover, CPU-MBSO

and GPU-MBSO generate sufficient random numbers and store them at CPU RAM in

the beginning of the algorithm to insure that each random number is used exactly the

same between two implementations. Then GPU-MBSO transfers these random numbers

to GPU global memory. When MBSO needs random numbers, both implementations

load from existing random numbers sequence instead of generating real-time random

numbers.

• According to the work [121], CPU-MBSO updates the population in a asynchronous

way, so the race condition will happen for GPU-MBSO. Therefore, we replace the update

mechanism with a synchronous way; specifically, the population will be updated unless

all the new individuals are generated and evaluated. Since there is no other operation

that will cause race condition, it does not need action to avoid the race condition other

than the modification of population mechanism.

• The parallel reduction of summation is employed to accumulate the values when calculat-

ing the distance from an individual to the cluster center. Therefore, in order to avoid its

influence, we implement a CPU-based distance calculation operation and transfer all the

individuals to CPU host memory for distance calculation. Finally, the distance values

are transferred back to GPU global memory for labeling.

• The GPU-based benchmark functions are replaced with the original sequential implemen-

tations. Specifically, after GPU-based MBSO generates the new solutions, the population

will be transferred from the GPU global memory to CPU RAM. Then the sequential

benchmark functions are employed to evaluate their fitness values. Finally, the popula-

tion that are updated with new fitness values are transferred back to the GPU global

memory for the next generation.

After employing these guidelines, we conduct the experiments and list the FEVs for GPU-

MBSO and its reference at Table 6.4. It can be observed that GPU-MBSO and CPU-MBSO

perform very similar at most test problems. Namely, GPU-MBSO performs correctly for 863

out of 900 (95.9% > 95%) instances. Therefore, the correctness of GPU-MBSO is verified

A Working Example: Implement and Verify GPU-based MBSO 113

Table 6.5: The average computing time (seconds) of CPU-based MBSO (denoted as CPU-
MBSO) and GPU-based MBSO (denoted as GPU-MBSO) on 30 test functions with three
dimensions (D = 10, 50 and 100) and four population sizes (NP = 50, 100, 500 and 1000).
Total FEs are D ∗ 104.

Algorithm NP = 50 NP = 100 NP = 500 NP = 1000

D = 10

CPU-MBSO 0.72s 0.72s 0.73s 0.73s

GPU-MBSO 0.38s 0.28s 0.23s 0.25s

Speedups 1.85 2.93 7.95 14.82

D = 50

CPU-MBSO 18.6s6 18.58s 19.10s 19.33s

GPU-MBSO 2.32s 1.86s 0.72s 0.61s

Speedups 8.48 11.98 23.58 28.31

D = 100

CPU-MBSO 82.60s 82.54s 83.22s 83.62s

GPU-MBSO 4.47s 3.38s 2.38s 2.18s

Speedups 18.67 25.00 36.79 40.61

and the original GPU-MBSO can be employed confidently to accelerate the time-consuming

optimisation problems.

6.4.2.3 Performance Analysis on Speedups

As the implementation of GPU-MBSO is successfully verified, it’s safe to study the acceleration.

Table 6.5 reports the computing time of the CPU-based sequential MBSO and the GPU-based

MBSO across varying population sizes (NP = 50, 100, 500 and 1000) and under different

problem dimensions (D = 10, 50 and 100), as well as the speedup of GPU-based MBSO. Major

observations are as follows:

• The parallel GPU-based MBSO consistently demonstrates the superior computing speed

over the sequential MBSO with respect to any population size and any problem dimen-

sion.

• Given a specific problem dimension, as the population size increases, the speedup of the

parallel GPU-based MBSO over the sequential MBSO keeps increasing remarkably.

A Working Example: Implement and Verify GPU-based MBSO 114

• Given a specific population size, as the problem dimension increases, the speedup ratio

of the parallel GPU-based MBSO over the sequential MBSO is consistently increasing.

Here, the most existing finding is that increasing population can always improve the

speedups, especially for a small dimension. Given a specific problem dimension that corre-

sponds to a specific maximum number of function evaluations, the population size determines

the total number generations (main loops) and accordingly the execution times of those ker-

nels involved in the main loop. As the population size increases, the number of main loops

decreases, which potentially reduces the total computing time. It has a great significance for

EAs to apply a large population. Namely, a larger population can only improve the solution

quality of CPU-based EAs, while it benefits to GPU-based EAs in terms of both comput-

ing speed and solution quality. It makes GPU-based EAs ideal for solving very complex and

large-scale problems.

However, the speedups increase slightly when continuously increasing a population that is

already very large, especially the problem dimension is large.

• Given a small dimension (D = 10), speedups increase significantly when population

increases from small (NP = 50) to large (NP = 1000).

• Given a large dimension (D = 50 or 100), speedups increase significantly when population

increases from small (NP = 50) to medium (NP = 500) and increase slightly when

population increases from medium (NP = 500) to large (NP = 1000). It is because

problems with a large population easily occupy the GPU device and further increasing

the population size can not improve the parallelism.

Summarily, when solving very complex or large-scale problems using a large population,

a part of population have to wait for the vacant of GPU threads, resulting in difficulties in

the scalability. In order to address this issue, we will discuss how to improve the scalability of

GPU-based EAs by utilising more GPU devices in Chapter 7.

Conclusions 115

6.5 Conclusions

This chapter designs a set of guidelines to verify the correctness of GPU-based EAs. Specifically,

an example of migrating the PSO from CPU based coding to the GPU environment is firstly

given as an example to show the importance of correctness verification. In addition, some GPU-

inherent issues, which influence the output of GPU-based EAs including the library functions,

the numerical precision, and the race condition, are examined one by one. To cope with the

issues mentioned above, a set of guidance is proposed to verify the correctness of the GPU-

based EAs. Finally, a working example based on GPU-MBSO is presented to examine the

effectiveness of the proposed guidelines. From the working example, we also present that EAs

based on a single GPU will suffer a weak scalability due to the limited computing power.

Chapter 7

SPEO based on Multiple GPUs at

GPU-enabled HPC (SPEOHPCgpu
)

7.1 Introduction

In Chapter 6, we also shown that a single GPU can only offer limited computing power which

fails to speedup GPU-based EAs with increasingly large population size or problem dimen-

sion. As a result, on-demand GPUs on GPU-enabled HPC, which can provide scalable GPU

computing power, becomes ideal for solving extremely large-scale problems by using a large

population size.

However, utilizing on-demand GPUs on GPU-enabled HPC is associated with a new chal-

lenge apart from the ones that are faced in SPEOHPCcpu . Specifically, CPU and GPU work

cooperatively in heterogeneous architecture, and thus tasks can be assigned to either GPU or

CPU or a combination of both. Therefore, finding the optimal mapping choice is essential to

achieve scalability when running parallel EAs on GPU-enabled HPC. So far, existing works fail

to carry out this essential scalability because they are only designed for a single GPU [79–82]

or a small fixed number of GPUs [83–87].

In this chapter, we propose the SPEO based on GPU-enabled HPC (SPEOHPCgpu). As

extended is from SPEOHPCcpu , the SPEOHPCgpu inherits the crucial asynchronous migration

of SPEOHPCcpu , and additionally introduces a dual control mode to further improves the scal-

116

The Proposed Method 117

ability. The proposed framework is implemented with a GPU-based implementation of DE

algorithm and its performance is evaluated on eight composition functions of CEC2014 bench-

mark at NCI GPU-enabled HPC. Experimental results demonstrate that it achieves linear

speedups on 2 to 64 GPUs which indicates the excellent scalability. Results also show that the

SPEOHPCgpu outperforms the SPEOHPCcpu and a state-of-the-art CPU-based parallel EA with

the same computational budget of USD 1, 10, 50 and 100.

The remainder of this paper is organised as follows. Section 7.2 describes the proposed

SPEOHPCgpu framework. Experimental results over numerical optimisation problems are pre-

sented in Section 7.3. Section 7.4 concludes this chapter.

7.2 The Proposed Method

Generally, SPEOHPCgpu framework is also based on the island model with buffer-based asyn-

chronous migration scheme. Thus, it has the same algorithm flow with SPEOHPCcpu . However,

from the perspective of the deployment, they are significantly different in two following aspects:

• SPEOHPCgpu performs genetic operations on GPUs, while SPEOHPCcpu performs them

on CPU cores.

• SPEOHPCgpu assigns an independent CPU core to perform the asynchronous migration

for each island, while SPEOHPCcpu executes the genetic operations and the asynchronous

migration on the same CPU cores.

In this section, we firstly introduce how to deploy parallel EAs on GPU-enabled HPC to

efficiently utilise many powerful GPU devices. Then we implement the proposed framework

with a GPU-based DE and a dynamic regrouping strategy.

7.2.1 Framework

GPU computing is known as ”heterogeneous” or ”hybrid” computing, thus computing tasks can

be assigned to either GPU or CPU or a combinations of both. Therefore, the mapping choice

has a great impact on the computational efficiency of the framework taking into account that

The Proposed Method 118

GPU and CPU work in significantly different manners. In particular, the proposed SPEOHPCgpu

framework is designed here to realize the following four forms:

• In order to efficiently utilise increasing number of GPUs in a scalable way, the proposed

framework deploys the global population over multiple GPUs based on the island model

which has been shown very scalable in Chapter 4.

• As GPU is designed to undertake the compute-intensive tasks, each GPU is designed to

perform parallelisable EA-related operations including crossover, mutation, evaluation

and replacement.

• As GPU acts as a co-processor in GPU computing, a CPU core is necessarily assigned

for each GPU to undertake GPU-related operations including launching kernel functions

of GPU-based EAs, and synchronising data between GPU global memory and system

RAM.

• When multiple GPUs are demanded, CPU cores are also responsible for communication

in most cases (direct communication between GPUs is available in limited conditions,

e.g. NVLINK). The proposed framework applies a dual control mode which utilises an

extra CPU core for each GPU to perform communication tasks.

7.2.1.1 SPEOHPCgpu and the infrastructure of GPU-enabled HPC

The population distribution model of SPEOHPCgpu is presented at the inside circle of Figure 7.1.

Here, an island with Ns individuals are deployed to each of Mgpu GPUs; thus the global

population contains totally NP = Ns ·Mgpu individuals. These islands exchange information

via a specific migration topology represented by solid lines in Figure 7.1. It also can be

observed that all pairwise islands are connected by either the dotted and solid lines, which

indicates that the proposed framework is not limited by a specific topology and supports even

the most complex topology (fully connected).

The deployment of SPEOHPCgpu on a common infrastructure of GPU-enabled HPC is pre-

sented at the outside ring with the shadow in Figure 7.1. Enclosed by the dotted ellipse,

two CPU cores, a GPU, RAM and communication system compose a single computing unit

The Proposed Method 119

island
1

island
2

island
3

island
Mgpu

island
i

comm. system

GPU

RAM

data flow via network

data flow via PCI-E

comm. control flow

RAM control flow

GPU control flow

CPU

subpopulation of the island i

active connection bestween islands

inactive connection bestween islands

Figure 7.1: The deployment of SPEOHPCgpu on the infrastructure of GPU-enabled HPC.

that undertake all operations to evolve a single island. Without loss of generality, the com-

munication system can be a mixture of network (e.g. InfiniBand), point-to-point processor

interconnect (e.g. QPI) and some specific devices applied by GPU-enabled HPC. Here, two

CPU cores are utilised by the dual control mode to separate the GPU control tasks with the

management of communication tasks. Specifically, one CPU core undertakes all GPU-related

tasks (green dotted arrow) and manages data flow between GPU global memory and system

RAM (blue solid arrow); while another CPU core controls the communication system (pink

dotted arrow) and manages the data flow between the system RAM of all computing units via

the communication system (orange solid line and arrow).

The SPEOHPCgpu framework also employs the buffer-based asynchronous migration strategy

that is proposed for the SPEOHPCcpu . Specifically, the migration strategy performs following

three tasks: 1) It updates the island when the current island seeks new information to better

The Proposed Method 120

Initialisation

Start

Communication Bus

Async
Migrate

b
u
f
f
e
r

Launch
GPU-EA

End

Centralisation

CPU core2M

execution
core

comm.
core

CPU core3 CPU core4

Async
Migrate

b
u
f
f
e
r

Launch
GPU-EA

execution
core

comm.
core

Async
Migrate

b
u
f
f
e
r

Launch
GPU-EA

execution
core

comm.
core

CPU core1 CPU core2 gpu
CPU core2Mgpu-1

Figure 7.2: Framework of SPEOHPCgpu with the dual control mode.

explore in the searching space (green arrow). 2) It receives newly arrived immigrants that are

sent from other islands (yellow arrow). 3) It selects emigrants from the current island and

sends them to other islands via the communication bus (grey arrow). In order to improve the

computing efficiency and avoid the communication congestion when an increasing number of

GPU devices are utilised, a dual control mode is proposed for SPEOHPCgpu .

7.2.1.2 Dual control mode

In this chapter, we propose a dual control mode which improves the computational efficiency

when increasing number of GPUs are used. The proposed dual control mode utilises two CPU

cores for each GPU to manage communication tasks and to control GPU separately. Figure

7.2 presents the diagram of the dual control mode. It can be observed that Mgpu CPU cores

(core 1, 3, 5 . . . , 2Mgpu − 1) are initialised as execution cores to control the GPU to perform

GPU-based EA operations on islands (the blue line and box) and another Mgpu CPU cores

(core 2, 4, 6 . . . , 2Mgpu) are initialised as communication cores to manage the communication

The Proposed Method 121

for migration between islands (the red line and box). A buffer is also designed to store the

imported immigrants from other islands. When all execution cores finish the evolving of islands,

a centralisation operation is performed to collect all islands from Mgpu GPUs and the best

solution is finally outputted.

The execution core acts very similar with existing parallel EAs based on a single GPU

except following two aspects. 1) It imports some immigrants from the buffer and insert them

into the island (green arrow). 2) It selects some emigrants from the current island and exports

them to the communication core for further sending to other islands (gray arrow).

The communication core manages massive communication tasks that share information

with other islands via the communication system in the following two aspects. 1) It receives

immigrants from communication cores belonging to other islands. Then the buffer is update

with these immigrants by using some specific strategies such as the diversity preserving buffer

that is proposed in Chapter 3 (yellow arrow). 2) It sends the emigrants, which is exported

from the execution core, to the communication cores belonging to other islands via the com-

munication system (gray arrow).

In this way, each communication core links with all other communication cores but links

only one execution core which controls a single GPU. When the number of GPUs increases,

the execution core only concentrates on controlling its corresponding GPU regardless of the

increasing workload of communication. Thus, the proposed framework can always work effi-

ciently even though increasing GPUs are demanded.

It will not bring any extra cost because most modern GPU-enabled HPCs package a GPU

with several CPU cores and only charge for the utilisation of GPU. For example, each K80

GPU is packaged with 3 CPU cores at NCI1 and 4 CPU cores at AWS EC2 P2 instance2,

respectively.

7.2.2 Implementation of SPEOHPCgpu

As each computing unit concludes two CPU cores and one GPU, the proposed SPEOHPCgpu

have to be implemented correspondingly based on specific devices and functions.

1https://opus.nci.org.au/display/Help/GPU+User+Guide
2https://aws.amazon.com/ec2/pricing/on-demand/

The Proposed Method 122

7.2.2.1 Implementation of SPEOHPCgpu on the execution core

Algorithm 4: implementation SPEOHPCgpuof ith execution core, i ∈ [1,Mgpu]

input : {Ns, I, Rm}
1 Perform kernel(I) and kernel(E) to initialise the island Pgpu

i,G on GPU global

memory;
2 G = 0, group size S ← Ns;

3 while the predefined termination criteria is not met do
4 Perform kernel(MC) to generate trial vectors Tgpu

i,G based on Pgpu
i,G , the group size

S and DE parameters;
5 Perform kernel(E) to evaluate fitness values of Tgpu

i,G ;

6 Perform kernel(R) to generate Pgpu
i,G+1 based on Pgpu

i,G and Tgpu
i,G ;

7 G← G+ 1;

/* Export emigrants to communication core */

8 if mod(g, I) = 0 then
9 copy Pgpu

i,G at GPU global memory to Pcpu
i,G at CPU RAM;

10 EM← select Rm ∗Ns emigrations from Pcpu
i,G ;

11 Non-blocking send EM to ith communicator by mpi Isend();

12 end

13 if immigrations arrive (mpi Iprobe() = 1) then
/* Update island */

14 IM← Receive immigrations from ith communicator using mpi Recv();
15 copy Pgpu

i,G at GPU global memory to Pcpu
i,G at CPU RAM;

16 Merge Pcpu
i,G and IM;

/* Perform dynamic regrouping */

17 Randomly generate the group size S;
18 Randomly shuffle Pcpu

i,G ;

19 copy Pcpu
i,G at CPU RAM to Pgpu

i,G at GPU global memory;

20 end

21 end

The execution core is responsible to launch GPU kernel functions and to perform some light-

compute tasks. Algorithm 4 presents the implementation of SPEOHPCgpu on the execution core.

Apart from GPU kernels that will be discussed later, three assistant operations are implemented

at as follows:

Export emigrants to the communication core: It firstly copies the island at the GPU

The Proposed Method 123

global memory to CPU RAM. Then it selects the best Ns ∗ Rm emigrants from the island

and passes them to its communication core which will further sharing this information with

other islands. Here, the passing of emigrants from the execution core to the communication

core is also via the communication system, while users can choose some other ways such as via

the shared memory. Specifically, a non-blocking sending MPI API (MPI Isend()) is employed

(the line 11 at Algorithm 4). Thus, the execution core will immediately conduct the further

instructions, instead of wait for the successful sending. It can save computing budget and

avoid the waiting of execution core if the communication core is busy now and cannot receive

information immediately.

Update island: It checks the communication system and will immediately receive the

arrived immigrants that are sent from the buffer of the communication core. Then it copies

the island at GPU global memory to CPU RAM and merges the islands with the immigrants.

Perform dynamic regrouping: When implementing parallel EAs based on GPUs, the

data volume (a.k.a. the population size) impacts the searching behavior as well as the compu-

tational efficiency of GPU. Specifically, many works [79, 174, 240] have indicated that a large

population size significantly improves the computational efficiency due to the better utilisation

of thousands of GPU cores. However, a large population may suffer the difficulties in conver-

gence. Thus the dynamic regrouping strategy is introduced and implemented to insure the

exploitation capability of a large island and to maintain the computational efficiency on GPU

meanwhile. The dynamic regrouping strategy are described as follows:

• When the dynamic regrouping strategy is performed, a group size S is randomly generated

and the large island is divided into several small groups based on this group size. The

group size is generated as S = 2n ∗ Smin, where interger n is randomly selected from

[0, log2(
Ns

Smin
)] and Smin is the minimal size pre-defined by users based on the specific

EAs.

• A group is the minimal evolution unit so that genetic operations such as crossover only

occurs between individuals belonging to the same group. As a result, groups do not

exchange any information once a certain grouping result is obtained. To share information

between different groups belonging to the same island, dynamic regrouping strategy is

The Proposed Method 124

performed frequently during the life circle of evolution to produce different grouping

results in terms of group sizes and group members.

• When implementing the dynamic regrouping, the individuals of an island are assigned into

groups in turns. For example, if 16 individuals are grouped into 4 groups, the individual

1 to 4 are group 1, the individual 5 to 8 are group 2 and so on. Thus, to generate different

grouping results in terms of group members, the individuals of an island are randomly

shuffled (see the line 18 at Algorithm 4) when the dynamic regrouping is performed.

After the dynamic regrouping is performed, the shuffled island at CPU RAM is copied to GPU

global memory and it steps into the next generation.

7.2.2.2 Implementation of SPEOHPCgpu on the communication core

Algorithm 5 illustrates the implementation on the communication core. The communication

core starts with initializing the diversity preserving buffer Bi and follows a loop and will not

stop unless it meets termination condition.

Communicate with the execution core: The ith communication core stores emigrants

EM sent from the ith execution core. Then it selects the first Rm ∗Ns immigrations from the

buffer Bi and sends them back to the ith execution core immediately. After that, it selects

several recipients r based on the improved dynamic topology the same as SPEOHPCcpu .

Communicate with other communication cores: The communication core alao re-

ceives emigrations from other communication cores and inserts them into the diversity preserv-

ing buffer Bi in the same way as SPEOHPCcpu . After that, EM that are the latest emigrants

received from the execution core are sent to other communication core of SPEOHPCcpu . Specif-

ically, it checks the availability of communication system and the emigrants EM are sent to

the first recipient island r in r. After that, the recipient r is deleted from r. Otherwise, it

finishes current iteration and starts the next.

The implementations of SPEOHPCgpu on execution core and communication core are pro-

grammed with C/C++ and the communication operations are implemented using the MPI

message-passing programming model [229]. The non-blocking point-to-point communication

The Proposed Method 125

Algorithm 5: ith communication core, i ∈ [1,Mgpu]

input : { Cb, Rc, Rm, Mgpu}
1 Bi ← ∅;
2 while Receive flag of finish do

/* Communicate with the execution core */

3 if emigrations arrive from the ith execution core (mpi Iprobe() = 1 and it is sent
from execution core) then

4 EM← Receive emigrations;
5 IM← Select the first Rm ∗Ns immigrations in Bi;

6 Non-blocking send IM to ith execution core using mpi Isend();
7 r← randomly select Rc ∗ (Mgpu − 1) recipient islands;

8 end

/* Communicate with other communication cores */

9 if immigrations arrive from other communication cores (mpi Iprobe() = 1 and and
it is sent from other communication cores) then

10 IM← Receive immigrations from communicators using mpi Rend();
11 Bi ← Update the buffer by diversity preserving described at Algorithm 1 in

Chapter 4;

12 end
13 while Communication system is available and r is not empty do
14 Send EM to the first island in r using mpi Isend();
15 Delete the first island from r;

16 end

17 end

functions MPI Isend() and MPI Iprobe() are used to send emigrants and check incoming im-

migrants, respectively. The blocking MPI Recv() is employed to receive immigrants once

MPI Iprobe() indicates any immigrant arrives.

7.2.2.3 Implementation of parallel EA on GPU

The SPEOHPCgpu accepts most GPU-based parallel EAs as the specific implementation to

evolve each island. Here, a GPU-based implementation of DE is employed and the detailed

implementation of GPU-based DE is presented at Figure 7.3 and is introduced as follows:

kernel(I) initializes the population in the searching space and writes it into the global

memory. This kernel utilizes uniform random numbers generated by the cuRAND library.

The Proposed Method 126

Initialise Kernel(I)
Initialise

Kernel(MC)
Mutation &
Crossover

Kernel(E)
Evaluate

Termination?

G
lo

b
al

 M
em

or
y

No

Pass emigrants to ith
comm. core

Start

End

Yes

Execution core GPU

Obtain immigrants from ith

comm. core and perform
dynamic regrouping

Kernel(E)
Evaluate

Kernel(R)
Replacement

read
write

read
write

read
write

read
write

read
write

read

write

read

Figure 7.3: Implementation of parallel DE on GPU. I represents the interval for active migra-
tion and G is the current generation.

kernel(E) is employed to evaluate the quality of population. This kernel calculates the

objective function values of the individuals and writes them into the global memory. The

objective function is defined according to the problem being solved and thus has varying com-

plexity. Since the benchmark functions contain the addition and/or multiplication operations

on all elements of a population member, we employed the parallel reduction to make the sum

and production calculations. It is worth of noting that the objective function evaluation could

Experiments 127

be the most time-consuming, especially when the problem and population size grow. There-

fore, the effective parallelization of this part on GPU may lead to remarkable computational

speedup. In addition to the global memory, kernel(E) also uses the shared memory to store

the data that needs to be frequently used.

kernel(MC) perform crossover and mutation of DE algorithm to generates trial vectors for

each individual using its respective DE strategy, CR and F values. As a stochastic searching

algorithm, GPU-based DE employs cuRAND library as the RNG to generate trial vectors.

The generated trial vectors are stored at the global memory of GPU. In order to generate trial

vectors based on the dynamic regrouping strategy, kernel(MC) selects random and differential

vectors based on the group size S. Specifically, for any target vector, its random and differential

vectors are always located in the same group with the target vector.

kernel(R) compares each member in the current population with its corresponding trial

vector generated by kernel(MC) in terms of their objective function values, and writes the

fitter one and its corresponding objective function value into the global memory.

The block size and number of all the kernels are configured exactly the same. Specifically,

the blockDim.x of all kernels isD(dim), whereD(dim) = 2p, 2p−1 < dim < 2p. The blockDim.y

is max(1, bmaxTread
D(dim) c), where maxThread is the maximum number of resident threads per block

which is typically of 1024. The number of block is dNP ∗ b D(dim)
maxTreadce.

Here, all genetic operations including initialisation, crossover, mutation, evaluation and re-

placement are implemented with CUDA-C. The correctness of these kernel function is carefully

verified based on the guidelines proposed in Chapter 6. All kernel functions are launched by

the execution core that can be observed at Algorithm 4.

7.3 Experiments

In this section, the performance of the proposed SPEOHPCgpu is examined in the following

aspects:

• Whether the proposed SPEOHPCgpu is scalable with increasing GPU devices in terms of

the computational speed and the solution quality.

Experiments 128

Table 7.1: Configurations of SPEOHPCgpu .

Parameter Notation Value

Island size Ns 64, 128 . . . , 2048, 4096

Number of GPUs Mgpu 2, 4, 8, 16, 32, 64

Migration interval I 100

Connection rate Rc 25%

Migration rate Rm 5%

Buffer capacity Cb Ns

Minimal group size Smin 4

Evolutionary algorithm DE rand / 1 / bin, CR / F=0.9 / 0.5

• Whether the dual control mode improves the computational efficiency of SPEOHPCgpu .

• Whether the dynamic regrouping strategy improves the solution quality when a large

island size is employed.

• Whether SPEOHPCgpu outperforms the SPEOHPCcpu and the state-of-the-art CloudDE

with the same computational budgets.

7.3.1 Test Problems

To examine the performance of SPEOHPCgpu , 8 difficult test functions (complex composition

function f23−f30 from CEC2014 [88] benchmarks) which are briefly introduced at Chapter 3.2.1

are selected as our test problems. In this chapter, we only test the largest dimension D = 100

to demonstrate the potential of SPEOHPCgpu on solving complex and difficult problems. Each

dimension is bounded within [-100, 100]. 8 test problems are implemented with CUDA-C to

efficiently execute on GPUs.

Experiments 129

7.3.2 Experimental settings

7.3.2.1 Configurations

Table 7.1 presents the configurations of SPEOHPCgpu . In order to avoid losing generality, DE is

configured with standard settings: rand/1/bin, CR = 0.9 and F = 0.5 according to the work

[47]. Since DE/rand/1/bin requires at least 3 individuals to reproduce offspring, the minimal

group size is set as Smin = 4 to guarantee the island size divisible by Smin. The island size is

configured from small (64) to large (4096) to investigate its influence on performance. Other

parameters are set based on the work of SPEOHPCcpu .

Since SPEOHPCgpu will be performed with a very large population, a normally maximal FEs

is no longer sufficient for convergence. Moreover, achieving an excessively FEs in a reasonable

time is now available for SPEOHPCgpu because it runs far faster than traditional sequential or

parallel EAs based on CPU. Therefore, the total FEs are set as D ∗ 107 = 109 in this work.

7.3.2.2 Computing platform

All experiments are conducted on NCI GPU node. Each NCI GPU node is comprised by 4

Nvidia Tesla K80 GPUs and each K80 is comprised by 2 GPUs (2496 CUDA cores per GPU).

Despite that each GPU node has 8 GPU cards. it has two Intel CPUs that are Haswell E5-

2670v3 with 12 CPU cores or Broadwell E5-2690v4 CPUs with 14 CPU cores. Since NCI forces

users to allocating 3 CPU cores for for each GPU, the dual control mode only uses two of them

for each GPU, and leave the rest one core vacant. In this work, up to 64 GPU are utilised to

comprehensively investigate the performance of our SPEOHPCgpu .

7.3.2.3 Evaluations

The same as evaluation criterion of SPEOHPCcpu , the solution quality is measured by the FEVs

[88]. The computational efficiency is measured by the speedups of the parallel implementation

of the algorithm executed on the GPU-enabled HPC computing platform against its sequential

counterpart executed on the single CPU core. The definition of speedup is given as

speedup =
Ts

Tngpu

Experiments 130

Table 7.2: Average computational time (hh:mm:ss) of SPEOHPCgpu on 8 test problems
with increasing GPUs (Mgpu = 2, 4, 8, 16, 32 and 64) and various island sizes (Ns =
64, 128, 256, 512, 1024, 2048 and 4096). Total FEs are D ∗ 107 = 109.

Ns 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs 64 GPUs

64 01:33:36 00:46:06 00:23:04 00:11:29 00:05:46 00:02:53

128 00:47:49 00:23:28 00:11:42 00:05:55 00:02:55 00:01:29

256 00:25:21 00:12:23 00:06:11 00:03:10 00:01:33 00:00:47

512 00:16:31 00:08:05 00:04:06 00:02:01 00:00:58 00:00:30

1024 00:11:39 00:06:04 00:03:00 00:01:26 00:00:43 00:00:22

2048 00:09:07 00:04:55 00:02:24 00:01:09 00:00:35 00:00:18

4096 00:08:14 00:04:14 00:02:08 00:01:03 00:00:30 00:00:15

where Ts and Tngpu are the average execution time of the sequential and the GPU-based

implementations over n GPUs on all test problems, respectively.

7.3.3 Scalability Analysis

Weak scaling test [230, 231] in parallel computing allows us to look at the capability of an

algorithm to solve larger or more complicated problems in conjunction with the use of more

resources. Based on this definition, Liu [69] extended the weak scaling test to demonstrate

how the execution time varies with the increasing number of devices when the population size

per device is fixed. Therefore, we use an increasing number of GPUs and fix the island size

to examine the improvements of the proposed framework in terms of speedup and solution

quality. Since the island size has a great impact on the performance of GPU-based EAs, the

weak scaling test is repeatedly conducted using various island sizes ranging from small (64) to

large (4096).

7.3.3.1 Computational time

Table 7.2 presents the average computational time of SPEOHPCgpu on 8 test problems with an

increasing number of GPUs ranging from 2 to 64, and various island sizes ranging from small

(Ns = 64) to large (Ns = 4096). Figure 7.4a and 7.4b present the speedups of SPEOHPCgpu

Experiments 131

2 4 8 16 32 64
#GPUs (Mgpu)

0

500

1000

1500

2000

2500

3000

Sp
ee

du
ps

Ns = 64
Ns = 128
Ns = 256
Ns = 512
Ns = 1024
Ns = 2048
Ns = 4096

(a) Speedups on increasing GPUs versus its sequential
counterpart on a single CPU core

64 512 1024 2048 4096
island size (Ns)

0

500

1000

1500

2000

2500

3000

Sp
ee

du
ps

2 GPUs
4 GPUs
8 GPUs
16 GPUs
32 GPUs
64 GPUs

(b) Speedups with increasing island sizes versus its se-
quential counterpart on a single core

Figure 7.4: Scalability test of SPEOHPCgpu with different island sizes on increasing GPUs.

compared to its sequential counterpart. Based on these results, three major observations are

as follows:

• According to Table 7.2, the computing time highly depends on the number of GPUs and

the island size. Specifically, if SPEOHPCgpu is executed on 2 GPUs with a small island

size Ns = 64, it requires more than 1 hours and 33 minutes. However, it can be reduced

to less than 9 minutes (Ns = 4096, 2 GPUs) or less than 3 minutes (Ns = 64, 64 GPUs).

• According to Figure 7.4a, SPEOHPCgpu can achieve significant speedups compared to

its sequential counterpart which requires about 12.7 hours on a single CPU core. For

example, SPEOHPCgpu with a 4096 island size achieves approximate 3,000x speedup on

64 GPUs.

• For a given island size, demanding more GPUs brings an approximately linear speedup

which indicates the good scalability of the proposed SPEOHPCgpu with increasing com-

puting resources.

For a given amount of the total FEs, the number of main loops decreases when a larger global

population size (Ns∗Mgpu) is employed. As a result, demanding more GPUs manyfold increases

Experiments 132

Table 7.3: Comparisons of mean FEVs with different island sizes on 64 GPUs. Significantly
better value is typed in bold.

func Ns = 64 Ns = 128 Ns = 256 Ns = 512 Ns = 1024 Ns = 2048 Ns = 4096

f23 348.235 348.235 348.235 348.235 348.235 348.235 348.235

f24 393.692 382.746 377.446 373.711 370.998 367.527 365.487

f25 260.997 230.939 200.0 200.0 200.0 200.0 200.0

f26 123.906 103.275 103.237 103.223 103.226 103.226 103.232

f27 1462.154 1052.882 761.607 548.478 429.253 361.635 343.048

f28 2473.947 2164.827 2230.905 2212.475 2191.477 2172.795 2160.542

f29 987.252 902.647 758.817 742.37 734.014 728.071 779.0

f30 6302.503 5231.051 4881.949 4237.765 3830.2 3315.001 3280.476

the data volume (a.k.a. the global population size) processed in parallel.

On the other hand, Figure 7.4a and 7.4b both indicate that increasing the island size can

improve the efficiency. It is because a larger island size can better utilise thousands of CUDA

cores belonging to a single GPU. However, increasing the island size can not always bring

significant improvement of the computing speed. For example, if the island size increases from

64 to 1024, speedups on 64 GPUs increase from 10 to 2,000; if the island size continuously

increases to 4096, the speedup reaches 3,000 and the upward trend flattens out. It is because

thousands of GPU cores are fully occupied and further increasing the volume of data results

in the queue of data processing which prevents the further improvement of computing speed.

7.3.3.2 Solution quality

Before investigating the solution quality of SPEOHPCgpu with an increasing number of GPUs,

we study the impacts of different island sizes on the solution quality at Table 7.3. It presents

FEVs of SPEOHPCgpu on 64 GPUs with island sizes ranging from small (Ns = 64) to large (Ns =

4096). The bold values in the table are statistically better than the normal values while all bold

values are statistically similar with each other. According to Table 7.3, it can be observed that

a large island size significantly improves the solution quality compared to the smaller island

sizes. Therefore, Ns = 4096 is an ideal island size and is set as the default in the following

experiments because it can achieve the best computing speed as well as the best solution quality.

Experiments 133

Table 7.4: Comparisons of mean FEVs on different GPUs (2 GPUs to 64 GPUs) with a fixed
island size Ns = 4096. Mgpu = 2 and Ns = 64 is also shown to represent DE with a normal
population size. Significantly better value is typed in bold.

func 2 GPUs1 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs 64 GPUs

f23 348.235 348.235 348.235 348.235 348.235 348.235 348.235

f24 391.251 373.979 370.465 369.63 367.54 366.085 365.487

f25 267.856 208.433 200.0 200.0 200.0 200.0 200.0

f26 190.294 103.178 103.215 103.205 103.223 103.214 103.232

f27 1995.648 506.214 404.393 365.149 362.978 345.038 343.048

f28 3025.781 2328.381 2213.391 2173.701 2177.396 2153.362 2160.542

f29 1225.65 729.282 723.627 722.521 720.991 724.798 779.0

f30 7863.298 4248.766 4014.23 3594.463 3481.64 3246.239 3280.476

1 island size Ns = 64.

The results of scalability test of SPEOHPCgpu is shown at Table 7.4 which compares the FEVs

of SPEOHPCgpu on up to 64 GPUs. Results indicates that demanding more GPUs significantly

improves the solution quality. The reason could be the diverse searching behavior on different

GPUs which results in a better diversity of the global population. Moreover, we also show the

solution quality of SPEOHPCgpu with a normal population size (Ns = 64 over 2 GPUs, total

population size NP = 128). The results demonstrate that SPEOHPCgpu with a large population

can achieve significantly better solutions when compared to a normal population size.

In conclusion, the proposed SPEOHPCgpu has an excellent scalability considering the fact

that demanding more GPUs can not only remarkably improve the computing speed but also

find better solutions.

7.3.4 Performance Analysis on Dual Control Mode

The dual control mode demands one more CPU core for each GPU to separate the communica-

tion and GPU launch tasks. In order to show that the extra core indeed improves the efficiency

of SPEOHPCgpu , we compare computing time of SPEOHPCgpu to its variant with the single con-

trol mode (denoted as Single-SPEOHPCgpu). It assigns only a single CPU core for each GPU

to process GPU kernel launch tasks and manage communication tasks. Table 7.5 presents the

average computing time (T), communication cost (comm.%), the relative speedup (
Tsingle

Tdual
) and

Experiments 134

Table 7.5: Comparison of computing time (T) and communication cost (comm.%) between
SPEOHPCgpu and its variant with the single control mode (denoted as Single-SPEOHPCgpu).
Aggregative statistical tests (+/≈/-) indicate SPEOHPCgpu performs statistically better, similar
and worse than Single-SPEOHPCgpu .

#GPUs
SPEOHPCgpu Single-SPEOHPCgpu Tsingle

Tdual
+/ ≈ /−

Tdual comm.% Tsingle comm.%

2 00:08:14 6.00% 00:22:00 56.2% 2.67 1 / 6 / 1

4 00:04:14 7.02% 00:13:37 61.5% 3.45 0 / 8 / 0

8 00:02:08 7.14% 00:07:31 64.9% 3.83 1 / 6 / 1

16 00:01:03 7.43% 00:04:12 66.0% 4.31 1 / 7 / 1

32 00:00:30 7.97% 00:02:16 67.2% 4.86 3 / 4 / 1

64 00:00:15 8.45% 00:01:15 68.8% 5.33 0 / 8 / 0

the aggregative statistical results of FEVs by SPEOHPCgpu and Single-SPEOHPCgpu on up to

64 GPUs. The communication cost is calculated based on the percentage of total computing

time that is spent on the communication tasks by the execution core of SPEOHPCgpu and the

single core of Single-SPEOHPCgpu , respectively. Three main observations are follows:

• Single-SPEOHPCgpu increases the communication cost from 56.2% on 2 GPUs to 68.8%

on 64 GPUs. It can be inferred that Single-SPEOHPCgpu utilises the GPUs inefficiently

because it wastes the most of computing time on communication and can not launch

GPU in time when the GPU is vacant for new computing tasks. On the contrary, the

communication cost of SPEOHPCgpu is steady at around 6.0%-9.0%. It indicates that the

execution core will not spend more time on communication tasks even more GPUs are

utilised; instead, it is always ready to launch GPU kernel functions once the GPU can

undertake new computing tasks.

• SPEOHPCgpu achieves much larger computational efficiency compared to Single-SPEOHPCgpu

because SPEOHPCgpu achieves up to 5.33 relative speedups. It is worth to employ dual

control mode with the extra CPU cores because demanding an extra CPU core for each

GPU is much easier and cheaper than demanding more GPUs on commercial computing

platforms, let alone the fact that most commercial platforms provide several free CPU

Experiments 135

Table 7.6: Comparisons of mean FEVs of SPEOHPCgpu with its variant without dynamic re-
grouping (denoted as Static-SPEOHPCgpu). They are executed on 64 GPUs with three island
sizes (Ns = 1024, 2048 and 4096). Statistical tests (+/≈/-) indicate Static-SPEOHPCgpu per-
forms significantly better (+), similarly (≈), or worse (-) than SPEOHPCgpu .

func
Ns = 1024 Ns = 2048 Ns = 4096

SPEOHPCgpu Static-SPEOHPCgpu SPEOHPCgpu Static-SPEOHPCgpu SPEOHPCgpu Static-SPEOHPCgpu

f23 348.235 348.235 (≈) 348.235 348.326 (−) 348.235 354.931 (−)

f24 370.998 365.725 (+) 367.527 398.084 (−) 365.487 466.652 (−)

f25 200.0 302.069 (−) 200.0 362.304 (−) 200.0 399.229 (−)

f26 103.226 103.56 (−) 103.226 103.635 (−) 103.232 103.664 (−)

f27 429.253 317.448 (+) 361.635 1580.608 (−) 343.048 3401.997 (−)

f28 2191.477 2201.395 (≈) 2172.795 3022.791 (−) 2160.542 3342.343 (−)

f29 734.014 835.183 (−) 728.071 8191.131 (−) 779.0 158781.8 (−)

f30 3830.2 6290.104 (−) 3315.001 13266.051 (−) 3280.476 45954.35 (−)

+/ ≈ /− - 2 / 2 / 4 - 0 / 0 / 8 - 0 / 0 / 8

cores for each GPU.

• According to the aggregative results of statistical analysis, SPEOHPCgpu achieves signifi-

cantly better computing speed than Single-SPEOHPCgpu without sacrificing the solution

quality. It shows that the dual control mode does not bring any side effects on solution

quality.

7.3.5 Performance Analysis on Dynamic Regrouping Strategy

In order to investigate whether the dynamic regrouping strategy can improve the solution qual-

ity of SPEOHPCgpu , we implement a variant of SPEOHPCgpu with a static single group (denoted

as Static-SPEOHPCgpu), in which the dynamic regrouping is disabled and all individuals in

the island interact with each other as traditional EAs. Table 7.6 presents the comparisons of

FEVs obtained by SPEOHPCgpu and Static-SPEOHPCgpu on 64 GPUs with three large island

sizes (Ns = 1024, 2048 and 4096). The statistical results indicate that the regrouping strat-

egy significantly improves the solution quality of SPEOHPCgpu especially with a larger island

size. For example, when island size is 1024, SPEOHPCgpu outperforms on 4 test problems and

Experiments 136

Table 7.7: Unit price and maximal computing time with different budgets (1, 10, 50 and 100
USD) on AWS EC2.

#Device Price / hour
Execution Time

1 USD 10 USD 50 USD 100 USD

2 GPUs 1.80 USD 00:33:20 05:33:20 27:46:40 55:33:20
16 GPUs 14.4 USD 00:04:10 00:41:40 03:28:20 06:56:40
64 GPUs 57.6 USD 00:01:02 00:10:25 00:52:05 01:44:10

32 CPU cores 1.36 USD 00:44:07 07:21:10 36:45:50 73:31:40
128 CPU cores 5.44 USD 00:11:01 01:50:10 09:10:50 18:21:40
512 CPU cores 21.76 USD 00:02:45 00:27:30 02:17:30 04:35:00

performs similarly at 2 problems; while SPEOHPCgpu outperforms Static-SPEOHPCgpu on all 8

test problems if the island size increases to 2048 or 4096.

An interesting phenomenon also can be observed that Static-SPEOHPCgpu achieves much

worse solution with a larger island size, while SPEOHPCgpu achieves better solution quality even

with an increasing island size. For example, Static-SPEOHPCgpu achieves the FEVs of f29 is

835.183 when island size is 1024, but it reaches to 8191.131 and 158781.8 when the island size

increases to 2048 and 4096, respectively. It could be due to the fact that a larger population

requires more FEs to converge despite that it has a better exploration ability.

In conclusion, the dynamic regrouping strategy plays a vital role on guaranteeing the ade-

quate search behavior. Moreover, it also contributes to the better computational efficiency by

getting rid of worries of weak convergence by a large island size.

7.3.6 Discussion on Cost-effectiveness

Although SPEOHPCgpu can achieve significant speedups, it is true that GPU is charged more

expensively than traditional CPU-based computing devices on commercial or academic par-

allel computing facilities. Table 7.7 presents the unit price and total runtime based on the

pricing policy of CPU (C5 instance) and GPU (Nvidia k80 at g2 instance) on Amazon EC2.

In order to demonstrate the excellent cost-effectiveness of the proposed SPEOHPCgpu , we com-

pare SPEOHPCgpu with its CPU counterpart SPEOHPCcpu and the state-of-the-art CPU-based

CloudDE using the same computing budget. Specifically, the stop criterion is no longer a fixed

Experiments 137

number of FEs, instead, they stop when a fixed computing budget runs out. As a result, the

cost-effectiveness can be fairly evaluated because the more powerful and expensive device is

only allowed a shorter runtime. For example, as the computing budget is equally assigned to

8 test functions with 15 independent runs, 64 GPUs with 100 USD only allows 01:44:10 (6250

seconds) total runtime and 52.08 seconds (62508∗15 = 52.08) for each run; however, 32 CPU cores

with 100 USD can allow 73:31:40 (264700 seconds) total runtime and thus 2205.83 seconds for

each run.

The SPEOHPCgpu is executed on NCI with default configurations presented at Table 7.1

using the island size Ns = 4096, SPEOHPCcpu is configured based on Chapter 4 using the global

population size NP = 8192 and CloudDE is configured with default values at work [36] using

the global population size NP = 8192. Table 7.8, 7.9, 7.10 and 7.11 show the solution quality

obtained by three algorithms with four budgets of 1, 10, 50 and 100 USD. Here, the proposed

SPEOHPCgpu is executed on 2, 16 and 64 GPUs, the SPEOHPCcpu and CloudDE are executed

on up to 512 CPU cores. According to these tables, we can have following observations:

• Given any budget, SPEOHPCgpu always achieves better solutions than SPEOHPCcpu and

CloudDE. It verifies the effectiveness of the proposed algorithm because it achieves sig-

nificantly better solutions than CPU-based parallel EAs. Moreover, its efficiency is also

proven since SPEOHPCgpu always require less computing time according to Table 7.7.

It is because the SPEOHPCgpu runs significant faster and achieves far more FEs than

two CPU-based parallel EAs even a shorter time is provided. As a result, SPEOHPCgpu

acquires significantly better solutions in a shorter time.

• Given a small budget, SPEOHPCgpu performs better on a small number of GPUs than it

on a large number of GPUs. For example, SPEOHPCgpu on 2 GPUs performs the best

when budget is 1 USD. The reason is that SPEOHPCgpu on 64 GPUs has a very large

global population and can not converge with insufficient FEs.

• Given a sufficient budget, a large number of GPUs benefit more to SPEOHPCgpu . For

example, SPEOHPCgpu on 64 GPUs performs best when budget is 10, 50 or 100 USD.

Conclusions 138

Table 7.8: Comparison of mean FEVs of SPEOHPCgpu (2, 16 and 64 GPUs) with SPEOHPCcpu

(32, 128 and 512 cores) and CloudDE (32 cores) with 1 USD budget.

func
SPEOHPCgpu SPEOHPCcpu CloudDE

2 GPUs 16 GPUs 64 GPUs 32 cores 128 cores 512 cores 32 cores

f23 348.235 348.236 352.562 509.602 629.001 1573.255 348.243

f24 373.604 369.117 391.502 390.091 397.11 578.667 382.395

f25 200.0 200.013 238.057 248.206 242.034 374.876 293.687

f26 103.28 103.267 103.327 195.266 205.974 333.87 186.774

f27 420.978 582.972 1841.231 2332.742 3594.973 4626.359 2321.961

f28 2248.018 2299.403 3362.088 4567.029 10270.642 20214.3 2529.755

f29 734.964 2184.698 36578.001 1829360.0 4.37∗107 1.54∗109 5678.327

f30 4477.952 6740.112 58968.664 134219.18 616908.933 1.24∗107 38471.967

It is because a large number of GPUs have a larger global population as well as better

diversity, thus it requires a larger budget to converge.

• Given an increasing budget, SPEOHPCgpu only improves slightly especially when the

budget is increased from 50 to 100 USD. On the contrary, SPEOHPCcpu and CloudDE

can achieve remarkable improvements on solution quality. The reason is that SPEOHPCcpu

and CloudDE run slowly and require more time to achieve sufficient FEs to converge,

while SPEOHPCgpu converges much more quickly by acquiring sufficient FEs early due to

the fast speed. Therefore, SPEOHPCgpu is ideal to execute parallel EAs when the budget

is very limited.

7.4 Conclusions

This chapter extends the SPEOHPCcpu to the SPEOHPCgpu which works efficiently on GPU-

enabled HPC. In this work, we design a dual control mode to increase the GPU utilisation. We

then implement the SPEOHPCgpu with a GPU-based DE with a dynamic regrouping strategy

over up to 64 GPUs. The results demonstrate that SPEOHPCgpu outperforms SPEOHPCcpu and

a state-of-the-art EA in terms of solution quality, computational speed and cost-effectiveness.

Conclusions 139

Table 7.9: Comparison of mean FEVs of SPEOHPCgpu (2, 16 and 64 GPUs) with SPEOHPCcpu

(32, 128 and 512 cores) and CloudDE (32 cores) with 10 USD budget.

func
SPEOHPCgpu SPEOHPCcpu CloudDE

2 GPUs 16 GPUs 64 GPUs 32 cores 128 cores 512 cores 32 cores

f23 348.235 348.235 348.235 424.284 356.557 442.171 348.235

f24 373.604 367.528 365.197 385.395 366.73 360.771 379.055

f25 200.0 200.0 200.0 244.376 211.692 219.001 257.911

f26 103.223 103.216 103.223 200.94 193.75 188.849 211.588

f27 420.753 372.25 344.849 1819.561 1334.734 2895.289 1381.57

f28 2247.955 2179.033 2132.26 3631.716 2630.76 4921.191 2231.881

f29 734.222 720.857 754.16 541127.82 5528.651 497951.533 3698.155

f30 4477.158 3329.362 3125.927 73007.427 27309.407 58203.967 20796.233

Table 7.10: Comparison of mean FEVs of SPEOHPCgpu (2, 16 and 64 GPUs) with SPEOHPCcpu

(32, 128 and 512 cores) and CloudDE (32 cores) with 50 USD budget.

func
SPEOHPCgpu SPEOHPCcpu CloudDE

2 GPUs 16 GPUs 64 GPUs 32 cores 128 cores 512 cores 32 cores

f23 348.235 348.235 348.235 395.74 348.239 348.684 348.235

f24 373.604 367.528 365.197 385.238 364.394 358.602 381.523

f25 200.0 200.0 200.0 237.197 201.943 200.339 244.519

f26 103.147 103.165 103.189 200.769 200.207 186.886 192.577

f27 420.753 372.25 339.205 1763.089 1133.897 1063.009 948.358

f28 2247.955 2179.033 2126.238 3375.887 2662.148 2342.093 2197.535

f29 734.222 720.671 719.431 448958.551 1491.095 1912.43 3178.194

f30 4477.158 3329.28 2949.839 54375.767 13847.883 13153.736 15614.813

Conclusions 140

Table 7.11: Comparison of mean FEVs of SPEOHPCgpu (2, 16 and 64 GPUs) with SPEOHPCcpu

(32, 128 and 512 cores) and CloudDE (32 cores) with 100 USD budget.

func
SPEOHPCgpu SPEOHPCcpu CloudDE

2 GPUs 16 GPUs 64 GPUs 32 cores 128 cores 512 cores 32 cores

f23 348.235 348.235 348.235 381.157 348.236 348.236 348.235

f24 373.604 367.528 365.197 386.933 365.787 359.423 379.418

f25 200.0 200.0 200.0 235.756 201.924 200.0 241.656

f26 103.117 103.15 103.168 194.042 200.152 186.855 198.016

f27 420.753 372.25 339.205 1685.643 1192.022 987.043 1011.66

f28 2247.955 2179.033 2126.237 3514.614 2464.135 2277.12 2221.516

f29 734.222 720.671 719.418 387996.721 1380.203 1511.169 3826.463

f30 4477.158 3329.28 2949.733 52409.16 9505.127 9073.679 13940.613

Chapter 8

Conclusions and Future Work

8.1 Conclusions

The increasingly complex and large-scale problems bring a rapidly rising searching space and

quickly exceeds the searching capabilities of traditional EAs. In recent years, large populations

enter people’s view and are increasingly employed to solve difficult real-world problems. Thus,

the needed computational budget for large populations in this scenario may get prohibitive

such that most of the existing EAs implemented in a sequential way would become incompetent

given practically reasonable computational budget.

In this thesis, we experimentally study the performance of EAs with a large population on

solving complex and complicated problems in terms of solution quality. Specifically, we apply

two state-of-the-art algorithms and three generic EAs on eight difficult composition problems

to investigate the ability to search good solutions of EAs with a large population. Experiments

show that EAs with a large population can achieve significantly better solutions than those of

EAs with a small population, as well as better speedups when implemented in parallel.

We also propose the SPEOHPCcpu framework based on CPU-only HPC. This framework

employ a buffer-based asynchronous migration strategy to improve the scalability of the pro-

posed framework. We then implement this framework with a standard DE algorithm and an

improved dynamic topology for information exchange on up to 512 CPU cores. The results

present that SPEOHPCcpu not only increases the computational efficiency but also improves the

141

Future Work 142

solution quality when compared to a state-of-the-art island-based parallel EA.

Inspired by the extensive historical information produced by the parallel DE implemented

based on SPEOHPCcpu , we propose the LES-CDE which can use historical search information

to improve the searching capability. Specifically, we design an ensemble of several neighbouring

local models that are trained by OS-ELM to guide the generation of promising trial vectors.

We also implement the LES-CDE in parallel based on the SPEOHPCcpu framework. Results

demonstrate that LES-CDE can significantly improve the search behavour of crowding DE and

can be remarkably accelerated when it is implemented in parallel.

Motivated by the significant computing power of GPU, this thesis studies how to verify the

correctness of implementations of GPU-based EAs on a single GPU. Specifically, we present an

example that indicates the significance of correctness verification for GPU-based EAs. Then

some GPU-inherent issues, which influence the output of GPU-based EAs including the library

functions, the numerical precision, and the race condition, are discussed one by one. To cope

with the issues mentioned above, a set of guidance is proposed to verify the correctness of the

GPU-based EAs. An working example is presented in this chapter to examine the effectiveness

of guidelines.

As a single GPU offers limited scalability, we further design the SPEOHPCgpu which works

efficiently on on-demand GPU devices at GPU-enabled HPC. In this work, we design a dual

control mode to improve the scalability when increasing number of GPUs are demanded. We

then implement the SPEOHPCgpu with a GPU-based DE on up to 64 GPUs. The results

demonstrate that SPEOHPCgpu outperforms SPEOHPCcpu and a state-of-the-art EA in terms of

solution quality, computational speed and cost-effectiveness.

8.2 Future Work

There are much future work can be done to improve the research of this thesis. Some possible

improvements are suggested as follows:

• The benefits of a large population can be examined on other difficult problems including

some real engineering optimisation or benchmark functions. Moreover, some other famous

Future Work 143

or state-of-the-art algorithms can be selected as the test algorithms. On the other hand,

the relationship between the population size and reasonable FEs is also worth to be

investigated. Such findings could be very important for researchers to decide how many

parallel computing resources are necessary for specific large population size.

• The SPEOHPCcpu framework employs a dynamic migration topology which randomly

selects recipients among all islands. Thus, one improvement is to design a self-adaptive

topology to further improve the information exchange between islands. The expected

self-adaptive topology can select recipient islands based on their current status. For

example, if a donor island finds a new solution that is very promising and unique, it will

broadcast this solution to all other islands; if it always generates similar or bad solutions,

the export of this island will be suppressed to avoid the occupancy of the communication

system until some good solutions are found.

• As a simple and representative EA, the DE algorithm is mostly employed in this thesis

to implement the SPEOHPCcpu and SPEOHPCgpu frameworks. Thus, one further improve-

ment is to select some novel and state-of-the-art algorithms to examine the effectiveness

of the two proposed frameworks. Another possible improvement is the employment of

different EA operators and/or parameters for different islands simultaneously, so that

complex optimisation problems can be better solved by various search patterns of differ-

ent islands.

• The proposed parallel LES-CDE utilises one CPU core for each island to perform EA

operations and train surrogate models. Consequently, this CPU core is easily occupied

by the training tasks and the EA operations have to queue most of the time. Thus,

one further improvement is to allocate some extra CPU cores to train surrogate models

separately with the EA operations. In this way, computing resources can be allocated

in a more flexible and efficient way; for example, more CPU cores can be assigned to

perform training tasks which are usually more time-consuming than EA operations.

• The proposed SPEOHPCgpu does not consider any direct communication between GPUs.

However, using PCI-E system interconnect to solve large problems may be limited by the

Future Work 144

bandwidth of PCI-E which increasingly becomes the bottleneck at the multi-GPU system

level and drives the need for a faster and more scalable multiprocessor interconnect.

Recently, Nvidia NVLink technology addresses this interconnect issue by providing higher

bandwidth, more links, and improved scalability for multi-GPU and multi-GPU/CPU

system configurations. Thus, one further improvement is to improve the framework to

take advantage of this state-of-the-art technique and to improve communication efficiency.

• The GPU-enabled HPC utilised in this thesis comprises Nvidia Tesla K80 which was

released in 2014. In these years, GPU devices develop rapidly, and four generations of

GPU architectures (Maxwell, Pascal, Volta and Turing) are proposed since 2014. Thus,

the performance of the proposed SPEOHPCgpu framework can be better evaluated if it

can be implemented and executed on various GPU-enabled HPC platforms with different

GPUs.

Bibliography

[1] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Handbook of evolutionary

computation. CRC Press, 1997.

[2] Christian Blum and Xiaodong Li. Swarm intelligence in optimization. Springer, 2008.

[3] Kenneth A De Jong. Evolutionary computation: a unified approach. MIT press, 2006.

[4] James Kennedy, James F Kennedy, Russell C Eberhart, and Yuhui Shi. Swarm intelli-

gence. Morgan Kaufmann, 2001.

[5] Carlos Groba, Antonio Sartal, and Xosé H Vázquez. Solving the dynamic traveling

salesman problem using a genetic algorithm with trajectory prediction: An application

to fish aggregating devices. Computers & Operations Research, 56:22–32, 2015.

[6] Runliang Dou, Chao Zong, and Minqiang Li. An interactive genetic algorithm with the

interval arithmetic based on hesitation and its application to achieve customer collabo-

rative product configuration design. Applied Soft Computing, 38:384–394, 2016.

[7] Enying Li and Hu Wang. An alternative adaptive differential evolutionary algorithm

assisted by expected improvement criterion and cut-hdmr expansion and its application

in time-based sheet forming design. Advances in Engineering Software, 97:96–107, 2016.

[8] Anton Bouter, Tanja Alderliesten, Arjan Bel, Cees Witteveen, and Peter AN Bosman.

Large-scale parallelization of partial evaluations in evolutionary algorithms for real-world

problems. In Proceedings of the Genetic and Evolutionary Computation Conference,

pages 1199–1206. ACM, 2018.

145

BIBLIOGRAPHY 146

[9] Roberto Santana, Pedro Larrañaga, and Jose A Lozano. Protein folding in simplified

models with estimation of distribution algorithms. IEEE transactions on Evolutionary

Computation, 12(4):418–438, 2008.

[10] Chen Jin, Yan-bo Zhu, Jing Fang, and Yi-tong Li. An improved methodology for arn

crossing waypoints location problem. In Digital Avionics Systems Conference (DASC),

2012 IEEE/AIAA 31st, pages 4A5–1. IEEE, 2012.

[11] Heinz Mühlenbein, M Schomisch, and Joachim Born. The parallel genetic algorithm as

function optimizer. Parallel computing, 17(6-7):619–632, 1991.

[12] Heinz Mühlenbein. Evolution in time and space–the parallel genetic algorithm. In Foun-

dations of genetic algorithms, volume 1, pages 316–337. Elsevier, 1991.

[13] Heinz Mühlenbein, Martina Gorges-Schleuter, and Ottmar Krämer. Evolution algorithms

in combinatorial optimization. Parallel computing, 7(1):65–85, 1988.

[14] Heinz Mühlenbein. Parallel genetic algorithms, population genetics and combinatorial

optimization. In Workshop on Parallel Processing: Logic, Organization, and Technology,

pages 398–406. Springer, 1989.

[15] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu Zhang, and

Jing-Jing Li. Distributed evolutionary algorithms and their models: A survey of the

state-of-the-art. Applied Soft Computing, 34:286–300, 2015.

[16] Yang Wang, Yangyang Li, Zhenghan Chen, and Yu Xue. Cooperative particle swarm

optimization using mapreduce. Soft Computing, 21(22):6593–6603, 2017.

[17] Kumar Utkarsh, Anupam Trivedi, Dipti Srinivasan, and Thomas Reindl. A consensus-

based distributed computational intelligence technique for real-time optimal control in

smart distribution grids. IEEE Transactions on Emerging Topics in Computational In-

telligence, 1(1):51–60, 2017.

BIBLIOGRAPHY 147

[18] O Tolga Altinoz and Kalyanmoy Deb. Late parallelization and feedback approaches for

distributed computation of evolutionary multi-objective optimization algorithms. Neural

Computing and Applications, 30(3):723–733, 2018.

[19] Erick Cantu-Paz. Designing efficient master-slave parallel genetic algorithms. 1997.

[20] Enrique Alba. Parallel metaheuristics: a new class of algorithms, volume 47. John Wiley

& Sons, 2005.

[21] Sanaz Mostaghim, Jurgen Branke, Andrew Lewis, and Hartmut Schmeck. Parallel multi-

objective optimization using master-slave model on heterogeneous resources. In Evolu-

tionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intel-

ligence). IEEE Congress on, pages 1981–1987. IEEE, 2008.

[22] Marc Dubreuil, Christian Gagné, and Marc Parizeau. Analysis of a master-slave archi-

tecture for distributed evolutionary computations. IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, 36(1):229–235, 2006.

[23] Darrell Whitley. An overview of evolutionary algorithms: practical issues and common

pitfalls. Information and software technology, 43(14):817–831, 2001.

[24] Lourdes Araujo and Juan Julián Merelo. Diversity through multiculturality: Assessing

migrant choice policies in an island model. IEEE Transactions on Evolutionary Compu-

tation, 15(4):456–469, 2011.

[25] Zbigniew Skolicki. An analysis of island models in evolutionary computation. In Pro-

ceedings of the 7th annual workshop on Genetic and evolutionary computation, pages

386–389. ACM, 2005.

[26] Enrique Alba and Bernabé Dorronsoro. Cellular genetic algorithms, volume 42. Springer

Science & Business Media, 2009.

[27] Enrique Alba and Marco Tomassini. Parallelism and evolutionary algorithms. IEEE

transactions on evolutionary computation, 6(5):443–462, 2002.

BIBLIOGRAPHY 148

[28] Antonio J Nebro, Juan J Durillo, Francisco Luna, Bernabé Dorronsoro, and Enrique

Alba. Mocell: A cellular genetic algorithm for multiobjective optimization. International

Journal of Intelligent Systems, 24(7):726–746, 2009.

[29] Enrique Alba and Bernabé Dorronsoro. The exploration/exploitation tradeoff in dynamic

cellular genetic algorithms. IEEE transactions on evolutionary computation, 9(2):126–

142, 2005.

[30] Mitchell A Potter and Kenneth A De Jong. A cooperative coevolutionary approach to

function optimization. In International Conference on Parallel Problem Solving from

Nature, pages 249–257. Springer, 1994.

[31] Zhenyu Yang, Ke Tang, and Xin Yao. Large scale evolutionary optimization using coop-

erative coevolution. Information Sciences, 178(15):2985–2999, 2008.

[32] Kay Chen Tan, YJ Yang, and Chi Keong Goh. A distributed cooperative coevolutionary

algorithm for multiobjective optimization. IEEE Transactions on Evolutionary Compu-

tation, 10(5):527–549, 2006.

[33] Yong Liu, Xin Yao, Qiangfu Zhao, and Tetsuya Higuchi. Scaling up fast evolutionary

programming with cooperative coevolution. In Evolutionary Computation, 2001. Pro-

ceedings of the 2001 Congress on, volume 2, pages 1101–1108. Ieee, 2001.

[34] Jinwoo Kim, Minyoung Kim, Mark-Oliver Stehr, Hyunok Oh, and Soonhoi Ha. A parallel

and distributed meta-heuristic framework based on partially ordered knowledge sharing.

Journal of Parallel and Distributed Computing, 72(4):564–578, 2012.

[35] Yan Y Liu, Wendy K Tam Cho, and Shaowen Wang. Pear: a massively parallel evolution-

ary computation approach for political redistricting optimization and analysis. Swarm

and Evolutionary Computation, 30:78–92, 2016.

[36] Zhi-Hui Zhan, Xiao-Fang Liu, Huaxiang Zhang, Zhengtao Yu, Jian Weng, Yun Li, Tian-

long Gu, and Jun Zhang. Cloudde: A heterogeneous differential evolution algorithm and

BIBLIOGRAPHY 149

its distributed cloud version. IEEE Transactions on Parallel and Distributed Systems,

28(3):704–716, 2017.

[37] César Manuel Vargas Beńıtez and Heitor Silvério Lopes. A parallel genetic algorithm for

protein folding prediction using the 3d-hp side chain model. In Evolutionary Computa-

tion, 2009. CEC’09. IEEE Congress on, pages 1297–1304. IEEE, 2009.

[38] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu,

Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. arXiv preprint

arXiv:1703.01041, 2017.

[39] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a

scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[40] Daniel Leal Souza, Glauber Duarte Monteiro, Tiago Carvalho Martins, Victor Alexan-

drovich Dmitriev, and Otávio Noura Teixeira. Pso-gpu: accelerating particle swarm

optimization in cuda-based graphics processing units. In Proceedings of the 13th annual

conference companion on Genetic and evolutionary computation, pages 837–838. ACM,

2011.

[41] Luca Mussi, Fabio Daolio, and Stefano Cagnoni. Evaluation of parallel particle swarm

optimization algorithms within the cuda? architecture. Information Sciences, 181(20):

4642–4657, 2011.

[42] Laurence Dawson and Iain Stewart. Improving ant colony optimization performance on

the gpu using cuda. In Evolutionary Computation (CEC), 2013 IEEE Congress on, pages

1901–1908. IEEE, 2013.

[43] You Zhou and Ying Tan. Particle swarm optimization with triggered mutation and its

implementation based on gpu. In Proceedings of the 12th annual conference on Genetic

and evolutionary computation, pages 1–8. ACM, 2010.

[44] You Zhou and Ying Tan. Gpu-based parallel particle swarm optimization. In Evolutionary

Computation, 2009. CEC’09. IEEE Congress on, pages 1493–1500. IEEE, 2009.

BIBLIOGRAPHY 150

[45] Ying Tan and Ke Ding. A survey on gpu-based implementation of swarm intelligence

algorithms. IEEE transactions on cybernetics, 46(9):2028–2041, 2016.

[46] Kenneth A De Jong and William M Spears. An analysis of the interacting roles of

population size and crossover in genetic algorithms. In International Conference on

Parallel Problem Solving from Nature, pages 38–47. Springer, 1990.

[47] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces. Journal of global optimization, 11(4):

341–359, 1997.

[48] Maurice Clerc and James Kennedy. The particle swarm-explosion, stability, and conver-

gence in a multidimensional complex space. IEEE transactions on Evolutionary Compu-

tation, 6(1):58–73, 2002.

[49] S Ivvan Valdez, Arturo Hernández, and Salvador Botello. A boltzmann based estimation

of distribution algorithm. Information Sciences, 236:126–137, 2013.

[50] Xianneng Li, Shingo Mabu, and Kotaro Hirasawa. A novel graph-based estimation of

the distribution algorithm and its extension using reinforcement learning. IEEE Trans.

Evolutionary Computation, 18(1):98–113, 2014.

[51] H-G Beyer and Bernhard Sendhoff. Evolution strategies for robust optimization. In Evo-

lutionary Computation, 2006. CEC 2006. IEEE Congress on, pages 1346–1353. Citeseer,

2006.

[52] Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer. Parameter setting

for multicore cma-es with large populations. In International Conference on Artificial

Evolution (Evolution Artificielle), pages 109–122. Springer, 2015.

[53] Nikolaus Hansen and Stefan Kern. Evaluating the cma evolution strategy on multimodal

test functions. In International Conference on Parallel Problem Solving from Nature,

pages 282–291. Springer, 2004.

BIBLIOGRAPHY 151

[54] Chang Wook Ahn and Rudrapatna S Ramakrishna. A genetic algorithm for shortest

path routing problem and the sizing of populations. IEEE transactions on evolutionary

computation, 6(6):566–579, 2002.

[55] Francisco Fernández de Vega, Erick Cantu-Paz, Jose I Lopez, and Tomas Manzano.

Saving resources with plagues in genetic algorithms. In PPSN, pages 272–281. Springer,

2004.

[56] George Harik, Erick Cantú-Paz, David E Goldberg, and Brad L Miller. The gambler’s

ruin problem, genetic algorithms, and the sizing of populations. Evolutionary Computa-

tion, 7(3):231–253, 1999.

[57] Tobias Storch and Ingo Wegener. Real royal road functions for constant population size.

Theoretical Computer Science, 320(1):123–134, 2004.

[58] Thomas Weise, Yuezhong Wu, Raymond Chiong, Ke Tang, and Jörg Lässig. Global versus

local search: the impact of population sizes on evolutionary algorithm performance.

Journal of Global Optimization, 66(3):511–534, 2016.

[59] Carsten Witt. Population size versus runtime of a simple evolutionary algorithm. Theo-

retical Computer Science, 403(1):104–120, 2008.

[60] Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. A large population size can be

unhelpful in evolutionary algorithms. Theoretical Computer Science, 436:54–70, 2012.

[61] Jens Jagerskupper and Tobias Storch. When the plus strategy outperforms the comma

strategyand when not. In Foundations of Computational Intelligence, 2007. FOCI 2007.

IEEE Symposium on, pages 25–32. IEEE, 2007.

[62] Dawei Li and Li Wang. A study on the optimal population size of genetic algorithm.

world congress on intelligent control and automation, 4:3019–3021, 2002.

[63] Yiyuan Gong and Alex Fukunaga. Distributed island-model genetic algorithms using

heterogeneous parameter settings. In Evolutionary Computation (CEC), 2011 IEEE

Congress on, pages 820–827. IEEE, 2011.

BIBLIOGRAPHY 152

[64] L Johan Berntsson and Maolin Tang. A convergence model for asynchronous parallel

genetic algorithms. 2003.

[65] Andrea Mambrini and Dario Izzo. Pade: A parallel algorithm based on the moea/d

framework and the island model. In International Conference on Parallel Problem Solving

from Nature, pages 711–720. Springer, 2014.

[66] Marek Ruciński, Dario Izzo, and Francesco Biscani. On the impact of the migration

topology on the island model. Parallel Computing, 36(10-11):555–571, 2010.

[67] G. Folino, C. Pizzuti, and G. Spezzano. A scalable cellular implementation of parallel

genetic programming. IEEE Transactions on Evolutionary Computation, 7(1):37–53, Feb

2003. ISSN 1089-778X. doi: 10.1109/TEVC.2002.806168.

[68] Pu Liu, Francis Lau, Michael J Lewis, and Cho-li Wang. A new asynchronous parallel

evolutionary algorithm for function optimization. In International Conference on Parallel

Problem Solving from Nature, pages 401–410. Springer, 2002.

[69] Yan Y Liu and Shaowen Wang. A scalable parallel genetic algorithm for the generalized

assignment problem. Parallel Computing, 46:98–119, 2015.

[70] Irma R Andalon-Garcia and Arturo Chavoya. Performance comparison of three topolo-

gies of the island model of a parallel genetic algorithm implementation on a cluster

platform. In Electrical Communications and Computers (CONIELECOMP), 2012 22nd

International Conference on, pages 1–6. IEEE, 2012.

[71] Erick Cantu-Paz. Efficient and accurate parallel genetic algorithms, volume 1. Springer

Science & Business Media, 2000.

[72] Markus Schwehm. Parallel population models for genetic algorithms. Universität

Erlangen-Nürnberg, pages 2–8, 1996.

[73] Weihang Zhu. Massively parallel differential evolution—pattern search optimization with

graphics hardware acceleration: an investigation on bound constrained optimization

problems. Journal of Global Optimization, 50(3):417–437, 2011.

BIBLIOGRAPHY 153

[74] Lucas de P Veronese and Renato A Krohling. Differential evolution algorithm on the

gpu with c-cuda. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pages

1–7. IEEE, 2010.

[75] Mikhail Rabinovich, Phillip Kainga, David Johnson, Brandon Shafer, Jaehwan John

Lee, and Rusell Eberhart. Particle swarm optimization on a gpu. In Electro/Information

Technology (EIT), 2012 IEEE International Conference on, pages 1–6. IEEE, 2012.

[76] Vincent Roberge, Mohammed Tarbouchi, and Francis Okou. Strategies to accelerate har-

monic minimization in multilevel inverters using a parallel genetic algorithm on graphical

processing unit. IEEE Trans. Power Electron, 29(10):5087–5090, 2014.

[77] Shigeyoshi Tsutsui and Noriyuki Fujimoto. Aco with tabu search on a gpu for solving

qaps using move-cost adjusted thread assignment. In Proceedings of the 13th annual

conference on Genetic and evolutionary computation, pages 1547–1554. ACM, 2011.

[78] Yi Zhou, Fazhi He, and Yimin Qiu. Dynamic strategy based parallel ant colony opti-

mization on gpus for tsps. Science China Information Sciences, 60(6):068102, 2017.

[79] Tsz Ho Wong, A Kai Qin, Shengchun Wang, and Yuhui Shi. cusade: A cuda-based

parallel self-adaptive differential evolution algorithm. In Proceedings of the 18th Asia

Pacific Symposium on Intelligent and Evolutionary Systems-Volume 2, pages 375–388.

Springer, 2015.

[80] Miguel Lastra, Daniel Molina, and José M. Beńıtez. A high performance memetic algo-

rithm for extremely high-dimensional problems. Information Sciences, 293:35–58, 2015.

ISSN 00200255. doi: 10.1016/j.ins.2014.09.018. URL http://linkinghub.elsevier.com/

retrieve/pii/S0020025514009244.

[81] Vijay Kalivarapu and Eliot Winer. A study of graphics hardware accelerated particle

swarm optimization with digital pheromones. Structural and Multidisciplinary Optimiza-

tion, 51(6):1281–1304, 2015.

http://linkinghub.elsevier.com/retrieve/pii/S0020025514009244
http://linkinghub.elsevier.com/retrieve/pii/S0020025514009244

BIBLIOGRAPHY 154

[82] José M Cecilia, José M Garćıa, Andy Nisbet, Martyn Amos, and Manuel Ujaldón. En-

hancing data parallelism for ant colony optimization on gpus. Journal of Parallel and

Distributed Computing, 73(1):42–51, 2013.

[83] Pablo Vidal and Enrique Alba. A multi-gpu implementation of a cellular genetic algo-

rithm. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1–7. IEEE,

2010.

[84] Shigeyoshi Tsutsui and Noriyuki Fujimoto. On the effect of using multiple gpus in solving

qaps with cuda. In Proceedings of the 14th annual conference companion on Genetic and

evolutionary computation, pages 629–630. ACM, 2012.

[85] Tomáš Ježowicz, Petr Buček, Jan Platoš, and Václav Snášel. Evolutionary algorithms

for fast parallel classification. In Proceedings of the 9th International Conference on

Computer Recognition Systems CORES 2015, pages 659–670. Springer, 2016.

[86] Jiri Jaros. Multi-gpu island-based genetic algorithm for solving the knapsack problem.

In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages 1–8. IEEE, 2012.

[87] Sungjoo Ha and Byung-Ro Moon. Fast knowledge discovery in time series with gpgpu

on genetic programming. In Proceedings of the 2015 Annual Conference on Genetic and

Evolutionary Computation, pages 1159–1166. ACM, 2015.

[88] JJ Liang, BY Qu, and PN Suganthan. Problem definitions and evaluation criteria for

the cec 2014 special session and competition on single objective real-parameter numerical

optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou

China and Technical Report, Nanyang Technological University, Singapore, 2013.

[89] James Kennedy. Particle swarm optimization. In Encyclopedia of machine learning,

pages 760–766. Springer, 2011.

[90] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

[91] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential evolution: a prac-

tical approach to global optimization. Springer Science & Business Media, 2006.

BIBLIOGRAPHY 155

[92] Kelly Fleetwood. An introduction to differential evolution. In Proceedings of Mathematics

and Statistics of Complex Systems (MASCOS) One Day Symposium, 26th November,

Brisbane, Australia, pages 785–791, 2004.

[93] Kenneth V Price. Differential evolution: a fast and simple numerical optimizer. In Fuzzy

Information Processing Society, 1996. NAFIPS., 1996 Biennial Conference of the North

American, pages 524–527. IEEE, 1996.

[94] Jakob Vesterstrom and Rene Thomsen. A comparative study of differential evolution,

particle swarm optimization, and evolutionary algorithms on numerical benchmark prob-

lems. In IEEE Congress on Evolutionary Computation, volume 2, pages 1980–1987, 2004.

[95] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential evolution: a survey

of the state-of-the-art. IEEE transactions on evolutionary computation, 15(1):4–31, 2011.

[96] Vitaliy Feoktistov. Differential evolution. Springer, 2006.

[97] Rainer Storn. On the usage of differential evolution for function optimization. In Biennial

conference of the North American fuzzy information processing society (NAFIPS), volume

519. IEEE Berkeley, 1996.

[98] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. Differential evolution

algorithm with strategy adaptation for global numerical optimization. IEEE transactions

on Evolutionary Computation, 13(2):398–417, 2009.

[99] Jingqiao Zhang and Arthur C Sanderson. Jade: adaptive differential evolution with

optional external archive. IEEE Transactions on evolutionary computation, 13(5):945–

958, 2009.

[100] A Kai Qin and Ponnuthurai N Suganthan. Self-adaptive differential evolution algo-

rithm for numerical optimization. In Evolutionary Computation, 2005. The 2005 IEEE

Congress on, volume 2, pages 1785–1791. IEEE, 2005.

[101] Efrñn Mezura-Montes, Jesús Velázquez-Reyes, and Carlos A Coello Coello. A compara-

tive study of differential evolution variants for global optimization. In Proceedings of the

BIBLIOGRAPHY 156

8th annual conference on Genetic and evolutionary computation, pages 485–492. ACM,

2006.

[102] Yuhui Shi and Russell C Eberhart. Empirical study of particle swarm optimization. In

Evolutionary computation, 1999. CEC 99. Proceedings of the 1999 congress on, volume 3,

pages 1945–1950. IEEE, 1999.

[103] Russell Eberhart and James Kennedy. A new optimizer using particle swarm theory. In

Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth Interna-

tional Symposium on, pages 39–43. IEEE, 1995.

[104] Yuhui Shi and Russell C Eberhart. Parameter selection in particle swarm optimization.

In International conference on evolutionary programming, pages 591–600. Springer, 1998.

[105] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization. Swarm

intelligence, 1(1):33–57, 2007.

[106] Russ C Eberhart and Yuhui Shi. Comparing inertia weights and constriction factors

in particle swarm optimization. In Evolutionary Computation, 2000. Proceedings of the

2000 Congress on, volume 1, pages 84–88. IEEE, 2000.

[107] Ioan Cristian Trelea. The particle swarm optimization algorithm: convergence analysis

and parameter selection. Information processing letters, 85(6):317–325, 2003.

[108] Russell C Eberhart and Yuhui Shi. Comparison between genetic algorithms and particle

swarm optimization. In International conference on evolutionary programming, pages

611–616. Springer, 1998.

[109] Peter J Angeline. Evolutionary optimization versus particle swarm optimization: Phi-

losophy and performance differences. In International Conference on Evolutionary Pro-

gramming, pages 601–610. Springer, 1998.

[110] Maurice Clerc. Particle swarm optimization, volume 93. John Wiley & Sons, 2010.

BIBLIOGRAPHY 157

[111] Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. In Evolutionary

Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence.,

The 1998 IEEE International Conference on, pages 69–73. IEEE, 1998.

[112] Lawrence Davis. Handbook of genetic algorithms. 1991.

[113] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

[114] SN Sivanandam and SN Deepa. Genetic algorithm optimization problems. In Introduction

to Genetic Algorithms, pages 165–209. Springer, 2008.

[115] Christopher R Houck, Jeff Joines, and Michael G Kay. A genetic algorithm for function

optimization: a matlab implementation. Ncsu-ie tr, 95(09):1–10, 1995.

[116] Michael D Vose. The simple genetic algorithm: foundations and theory, volume 12. MIT

press, 1999.

[117] David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes

used in genetic algorithms. In Foundations of genetic algorithms, volume 1, pages 69–93.

Elsevier, 1991.

[118] Mandavilli Srinivas and Lalit M Patnaik. Genetic algorithms: A survey. computer, 27

(6):17–26, 1994.

[119] Aki Sorsa, Riikka Peltokangas, and Kauko Leiviska. Real-coded genetic algorithms and

nonlinear parameter identification. In Intelligent Systems, 2008. IS’08. 4th International

IEEE Conference, volume 2, pages 10–42. IEEE, 2008.

[120] Yuhui Shi. Brain storm optimization algorithm. IEEE Congress on Evolutionary Com-

putation, 6728(CEC):1–14, 2011.

[121] Zhihui Zhan, Jun Zhang, Yuhui Shi, and Hailin Liu. A modified brain storm optimization.

pages 1–8, 2012.

BIBLIOGRAPHY 158

[122] José Ignacio Hidalgo and Francisco Fernández. Balancing the computation effort in

genetic algorithms. In Evolutionary Computation, 2005. The 2005 IEEE Congress on,

volume 2, pages 1645–1652. IEEE, 2005.

[123] Anne Auger and Nikolaus Hansen. A restart cma evolution strategy with increasing pop-

ulation size. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 2,

pages 1769–1776. IEEE, 2005.

[124] Karin Zielinski, Shyam Vudathu, and Rainer Laur. Influence of different deviations

allowed for equality constraints on particle swarm optimization and differential evolution.

Nature Inspired Cooperative Strategies for Optimization (NICSO 2007), pages 249–259,

2008.

[125] David E Goldberg, Kalyanmoy Deb, and James H Clark. Genetic algorithms, noise, and

the sizing of populations. Urbana, 51:61801, 1991.

[126] David E Goldberg. The design of innovation: Lessons from and for competent genetic

algorithms, volume 7. Springer Science & Business Media, 2013.

[127] Thomas Jansen, Kenneth A De Jong, and Ingo Wegener. On the choice of the offspring

population size in evolutionary algorithms. Evolutionary Computation, 13(4):413–440,

2005.

[128] Jonathan E Rowe and Dirk Sudholt. The choice of the offspring population size in the

(1, λ) ea. In Proceedings of the 14th annual conference on Genetic and evolutionary

computation, pages 1349–1356. ACM, 2012.

[129] Christian Gießen and Carsten Witt. The interplay of population size and mutation

probability in the (1+lambda) ea on onemax. Algorithmica, 78(2):587–609, 2017.

[130] Xiaofeng Qi and Francesco Palmieri. Theoretical analysis of evolutionary algorithms with

an infinite population size in continuous space. part i: Basic properties of selection and

mutation. IEEE Transactions on Neural Networks, 5(1):102–119, 1994.

BIBLIOGRAPHY 159

[131] Joao Carlos Costa, Rui Tavares, and Agostinho Rosa. An experimental study on dy-

namic random variation of population size. In IEEE SMC’99 Conference Proceed-

ings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.

99CH37028), volume 1, pages 607–612. IEEE, 1999.

[132] Ting Hu and Wolfgang Banzhaf. Nonsynonymous to synonymous substitution ratio

ka/ks: Measurement for rate of evolution in evolutionary computation. In International

Conference on Parallel Problem Solving from Nature, pages 448–457. Springer, 2008.

[133] Yu-Fan Tung and Tian-Li Yu. Theoretical perspective of convergence complexity of

evolutionary algorithms adopting optimal mixing. In Proceedings of the 2015 Annual

Conference on Genetic and Evolutionary Computation, GECCO ’15, pages 535–542, New

York, NY, USA, 2015. ISBN 978-1-4503-3472-3. doi: 10.1145/2739480.2754685.

[134] Tobias Friedrich, Pietro S. Oliveto, Dirk Sudholt, and Carsten Witt. Analysis of diversity-

preserving mechanisms for global exploration*. Evol. Comput., 17(4):455–476, December

2009. ISSN 1063-6560.

[135] Kenneth A. De Jong and William M. Spears. An analysis of the interacting roles of

population size and crossover in genetic algorithms. In Parallel Problem Solving from

Nature, pages 38–47, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

[136] Y. Zhang, M. Sakamoto, and H. Furutani. Effects of population size and mutation rate

on results of genetic algorithm. In 2008 Fourth International Conference on Natural

Computation, volume 1, pages 70–75, Oct 2008. doi: 10.1109/ICNC.2008.345.

[137] R. Mallipeddi and P. N. Suganthan. Empirical study on the effect of population size on

differential evolution algorithm. In 2008 IEEE Congress on Evolutionary Computation

(IEEE World Congress on Computational Intelligence), pages 3663–3670, June 2008.

[138] Admir Barolli, Tetsuya Oda, Evjola Spaho, Leonard Barolli, Fatos Xhafa, and Makoto

Takizawa. Impact of population size and number of generations on the performance of

dense wmns. 2012 Seventh International Conference on Broadband, Wireless Computing,

Communication and Applications, pages 523–528, 2012.

BIBLIOGRAPHY 160

[139] R. A. Sarker and M. F. A. Kazi. Population size, search space and quality of solution:

an experimental study. In The 2003 Congress on Evolutionary Computation, 2003. CEC

’03., volume 3, pages 2011–2018 Vol.3, Dec 2003.

[140] Adam P. Piotrowski. Review of differential evolution population size. Swarm and Evo-

lutionary Computation, 32:1 – 24, 2017. ISSN 2210-6502.

[141] G. Zhang, Xiao-Xia Liu, and T. Zhang. The impact of population size on the performance

of ga. In 2009 International Conference on Machine Learning and Cybernetics, volume 4,

pages 1866–1870, July 2009.

[142] A. Hernandez-Aguirre, B. P. Buckles, and A. Martinez-Alcantara. The probably ap-

proximately correct (pac) population size of a genetic algorithm. In Proceedings 12th

IEEE Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000, pages

199–202, Nov 2000. doi: 10.1109/TAI.2000.889870.

[143] E. Belmont-Moreno. The role of mutation and population size in genetic algorithms

applied to physics problems. International Journal of Modern Physics C, 12(09):1345–

1355, 2001.

[144] Weishan Dong and Xin Yao. Unified eigen analysis on multivariate gaussian based esti-

mation of distribution algorithms. Information Sciences, 178(15):3000–3023, 2008. ISSN

0020-0255. Nature Inspired Problem-Solving.

[145] Tomoaki Tatsukawa, Takeshi Watanabe, and Akira Oyama. Evolutionary computation

for many-objective optimization problems using massive population sizes on the k super-

computer. In Evolutionary Computation (CEC), 2016 IEEE Congress on, pages 1139–

1148. IEEE, 2016.

[146] G. Roy, H. Lee, J. L. Welch, Y. Zhao, V. Pandey, and D. Thurston. A distributed pool ar-

chitecture for genetic algorithms. In 2009 IEEE Congress on Evolutionary Computation,

pages 1177–1184, May 2009. doi: 10.1109/CEC.2009.4983079.

BIBLIOGRAPHY 161

[147] T. Desell, D. P. Anderson, M. Magdon-Ismail, H. Newberg, B. K. Szymanski, and C. A.

Varela. An analysis of massively distributed evolutionary algorithms. In IEEE Congress

on Evolutionary Computation, pages 1–8, July 2010.

[148] Gabriel Luque, Enrique Alba, and Bernabé Dorronsoro. An asynchronous parallel imple-

mentation of a cellular genetic algorithm for combinatorial optimization. In Proceedings

of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09,

pages 1395–1402, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-325-9. doi:

10.1145/1569901.1570088. URL http://doi.acm.org/10.1145/1569901.1570088.

[149] Juan Carlos Fuentes Cabrera and Carlos A. Coello Coello. Micro-MOPSO: A Multi-

Objective Particle Swarm Optimizer That Uses a Very Small Population Size, pages

83–104. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[150] Yi Hong, Sam Kwong, Qingsheng Ren, and Xiong Wang. Over-selection: An attempt

to boost eda under small population size. In 2007 IEEE Congress on Evolutionary

Computation, pages 1075–1082, Sep. 2007. doi: 10.1109/CEC.2007.4424589.

[151] W. Ashlock. Using very small population sizes in genetic programming. In 2006 IEEE

International Conference on Evolutionary Computation, pages 319–326, July 2006. doi:

10.1109/CEC.2006.1688325.

[152] Jiandong Mao and Juan Li. Dust particle size distribution inversion based on the multi

population genetic algorithm. Terrestrial, Atmospheric and Oceanic Sciences, 25:791, 12

2014. doi: 10.3319/TAO.2014.06.12.01(A).

[153] K. Y. Kok, P. Rajendran, R. Rainis, and W. M. M. Wan Ibrahim. Investigation on selec-

tion schemes and population sizes for genetic algorithm in unmanned aerial vehicle path

planning. In 2015 International Symposium on Technology Management and Emerging

Technologies (ISTMET), pages 6–10, Aug 2015. doi: 10.1109/ISTMET.2015.7358990.

[154] Jarmo Alander. On optimal population size of genetic algorithms. pages 65 – 70, 06

1992. ISBN 0-8186-2760-3. doi: 10.1109/CMPEUR.1992.218485.

http://doi.acm.org/10.1145/1569901.1570088

BIBLIOGRAPHY 162

[155] Randy Haupt. Optimum population size and mutation rate for a simple real genetic

algorithm that optimizes array factors. volume 15, pages 1034 – 1037 vol.2, 02 2000.

ISBN 0-7803-6369-8. doi: 10.1109/APS.2000.875398.

[156] Daniel Mora-Meliá, P Iglesias-Rey, F Martinez-Solano, and P Ballesteros-Pérez. Effi-

ciency of evolutionary algorithms in water network pipe sizing. Water Resources Man-

agement, 08 2015. doi: 10.1007/s11269-015-1092-x.

[157] Ali Nodehi, Mohamad Tayarani, and Fariborz Mahmoudi. A novel functional sized

population quantum evolutionary algorithm for fractal image compression. 2009 14th

International CSI Computer Conference, pages 564–569, 2009.

[158] N. Allias, M. N. M. M. Noor, M. N. Ismail, and K. d. Silva. A hybrid gini pso-svm

feature selection: An empirical study of population sizes on different classifier. In 2013

1st International Conference on Artificial Intelligence, Modelling and Simulation, pages

107–110, Dec 2013.

[159] Jingrui Zhang, Qinghui Tang, Yalin Chen, and Shuang Lin. A hybrid particle swarm

optimization with small population size to solve the optimal short-term hydro-thermal

unit commitment problem. Energy, 109:765 – 780, 2016. ISSN 0360-5442.

[160] Zbigniew Skolicki and Kenneth De Jong. The influence of migration sizes and intervals on

island models. In Proceedings of the 7th annual conference on Genetic and evolutionary

computation, pages 1295–1302. ACM, 2005.

[161] Darrell Whitley, Soraya Rana, and Robert B Heckendorn. Island model genetic algo-

rithms and linearly separable problems. In AISB International Workshop on Evolution-

ary Computing, pages 109–125. Springer, 1997.

[162] Erick Cantú-Paz. Migration policies, selection pressure, and parallel evolutionary algo-

rithms. Journal of heuristics, 7(4):311–334, 2001.

[163] Jing Tang, Meng-Hiot Lim, Yew-Soon Ong, and Meng Joo Er. Study of migration topol-

ogy in island model parallel hybrid-ga for large scale quadratic assignment problems. In

BIBLIOGRAPHY 163

Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th, vol-

ume 3, pages 2286–2291. IEEE, 2004.

[164] René Michel and Martin Middendorf. An island model based ant system with lookahead

for the shortest supersequence problem. In International Conference on Parallel Problem

Solving from Nature, pages 692–701. Springer, 1998.

[165] Douglas Antony Louis Piriyakumar and Paul Levi. A new approach to exploiting paral-

lelism in ant colony optimization. In Micromechatronics and Human Science, 2002. MHS

2002. Proceedings of 2002 International Symposium on, pages 237–243. IEEE, 2002.

[166] Chunmei Zhang, Jie Chen, and Bin Xin. Distributed memetic differential evolution

with the synergy of lamarckian and baldwinian learning. Applied Soft Computing, 13(5):

2947–2959, 2013.

[167] G Galeano, F Femdndez, M Tomassini, and L Vanneschi. Studying the influence of

synchronous and asynchronous parallel gp on programs length evolution. In Evolutionary

Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, volume 2, pages 1727–

1732. IEEE, 2002.

[168] Enrique Alba and José M Troya. Analyzing synchronous and asynchronous parallel

distributed genetic algorithms. Future Generation Computer Systems, 17(4):451–465,

2001.

[169] Marcus Märtens and Dario Izzo. The asynchronous island model and nsga-ii: study of a

new migration operator and its performance. In Proceedings of the 15th annual conference

on Genetic and evolutionary computation, pages 1173–1180. ACM, 2013.

[170] Shingo Kurose, Kunihito Yamamori, Masaru Aikawa, and Ikuo Yoshihara. Asynchronous

migration for parallel genetic programming on a computer cluster with multi-core pro-

cessors. Artificial Life and Robotics, 16(4):533–536, 2012.

BIBLIOGRAPHY 164

[171] Dario Izzo, Marek Rucinski, and Christos Ampatzis. Parallel global optimisation meta-

heuristics using an asynchronous island-model. In Evolutionary Computation, 2009.

CEC’09. IEEE Congress on, pages 2301–2308. IEEE, 2009.

[172] Weihang Zhu and Yaohang Li. Gpu-accelerated differential evolutionary markov chain

monte carlo method for multi-objective optimization over continuous space. In Proceed-

ings of the 2nd workshop on Bio-inspired algorithms for distributed systems, pages 1–8.

ACM, 2010.

[173] Pavel Krömer, Václav Sn̊ašel, Jan Platoš, and Ajith Abraham. Many-threaded imple-

mentation of differential evolution for the cuda platform. In Proceedings of the 13th

annual conference on Genetic and evolutionary computation, pages 1595–1602. ACM,

2011.

[174] A Kai Qin, Federico Raimondo, Florence Forbes, and Yew Soon Ong. An improved

cuda-based implementation of differential evolution on gpu. In Proceedings of the 14th

annual conference on Genetic and evolutionary computation, pages 991–998. ACM, 2012.

[175] Pavel Krömer, Jan Platoš, Václav Snášel, and Ajith Abraham. A comparison of many-

threaded differential evolution and genetic algorithms on cuda. In Nature and Biologically

Inspired Computing (NaBIC), 2011 Third World Congress on, pages 509–514. IEEE,

2011.

[176] Jaros law Arabas, Ogier Maitre, and Pierre Collet. Parade: a massively parallel differen-

tial evolution template for easea. In Swarm and Evolutionary Computation, pages 12–20.

Springer, 2012.

[177] Vincent Roberge and Mohammed Tarbouchi. Parallel particle swarm optimization on

graphical processing unit for pose estimation. WSEAS Trans. Comput, 11(6):170–179,

2012.

[178] Javier Reguera-Salgado and Julio Mart́ın-Herrero. High performance gcp-based particle

swarm optimization of orthorectification of airborne pushbroom imagery. In Geoscience

BIBLIOGRAPHY 165

and Remote Sensing Symposium (IGARSS), 2012 IEEE International, pages 4086–4089.

IEEE, 2012.

[179] Jan Platos, Vaclav Snasel, Tomas Jezowicz, Pavel Kromer, and Ajith Abraham. A pso-

based document classification algorithm accelerated by the cuda platform. In Systems,

Man, and Cybernetics (SMC), 2012 IEEE International Conference on, pages 1936–1941.

IEEE, 2012.

[180] Zheng Zhang, Hock Soon Seah, Chee Kwang Quah, and Jixiang Sun. Gpu-accelerated

real-time tracking of full-body motion with multi-layer search. IEEE Transactions on

Multimedia, 15(1):106–119, 2013.

[181] Marco S Nobile, Daniela Besozzi, Paolo Cazzaniga, Giancarlo Mauri, and Dario Pescini.

A gpu-based multi-swarm pso method for parameter estimation in stochastic biological

systems exploiting discrete-time target series. In European Conference on Evolution-

ary Computation, Machine Learning and Data Mining in Bioinformatics, pages 74–85.

Springer, 2012.

[182] Bhanu Sharma, Ruppa K Thulasiram, and Parimala Thulasiraman. Portfolio manage-

ment using particle swarm optimization on gpu. In Parallel and Distributed Processing

with Applications (ISPA), 2012 IEEE 10th International Symposium on, pages 103–110.

IEEE, 2012.

[183] Ray-Bing Chen, Dai-Ni Hsieh, Ying Hung, and Weichung Wang. Optimizing latin hy-

percube designs by particle swarm. Statistics and computing, 23(5):663–676, 2013.

[184] MP Wachowiak and AE Lambe Foster. Gpu-based asynchronous global optimization with

particle swarm. In Journal of Physics: Conference Series, volume 385, page 012012. IOP

Publishing, 2012.

[185] Shigeyoshi Tsutsui and Noriyuki Fujimoto. Solving quadratic assignment problems by

genetic algorithms with gpu computation: a case study. In Proceedings of the 11th

Annual Conference Companion on Genetic and Evolutionary Computation Conference:

Late Breaking Papers, pages 2523–2530. ACM, 2009.

BIBLIOGRAPHY 166

[186] Laurence Dawson and Iain A Stewart. Accelerating ant colony optimization-based edge

detection on the gpu using cuda. IEEE, 2014.

[187] Darren M Chitty. Improving the performance of gpu-based genetic programming through

exploitation of on-chip memory. Soft Computing, 20(2):661–680, 2016.

[188] Mehdi Goli, John McCall, Christopher Brown, Vladimir Janjic, and Kevin Hammond.

Mapping parallel programs to heterogeneous cpu/gpu architectures using a monte carlo

tree search. In 2013 IEEE Congress on Evolutionary Computation, pages 2932–2939.

IEEE, 2013.

[189] Pablo Vidal and Enrique Alba. Cellular genetic algorithm on graphic processing units. In

Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pages 223–232.

Springer, 2010.

[190] Keith R Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas Cholia,

John Shalf, Harvey J Wasserman, and Nicholas J Wright. Performance analysis of high

performance computing applications on the amazon web services cloud. In 2nd IEEE in-

ternational conference on cloud computing technology and science, pages 159–168. IEEE,

2010.

[191] Rajkumar Buyya et al. High performance cluster computing: Architectures and systems

(volume 1). Prentice Hall, Upper SaddleRiver, NJ, USA, 1:999, 1999.

[192] Georg Hager and Gerhard Wellein. Introduction to high performance computing for

scientists and engineers. CRC Press, 2010.

[193] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn, Lois McInnes,

Steve Parker, and Brent Smolinski. Toward a common component architecture for high-

performance scientific computing. In High Performance Distributed Computing, 1999.

Proceedings. The Eighth International Symposium on, pages 115–124. IEEE, 1999.

[194] Gordon Bell and Jim Gray. What’s next in high-performance computing? Communica-

tions of the ACM, 45(2):91–95, 2002.

BIBLIOGRAPHY 167

[195] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack

Dongarra. From cuda to opencl: Towards a performance-portable solution for multi-

platform gpu programming. Parallel Computing, 38(8):391–407, 2012.

[196] Aaftab Munshi. The opencl specification. In Hot Chips 21 Symposium (HCS), 2009

IEEE, pages 1–314. IEEE, 2009.

[197] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming stan-

dard for heterogeneous computing systems. Computing in science & engineering, 12(3):

66–73, 2010.

[198] Benedict Gaster, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa. Hetero-

geneous computing with openCL: revised openCL 1. Newnes, 2012.

[199] Kamran Karimi, Neil G Dickson, and Firas Hamze. A performance comparison of cuda

and opencl. arXiv preprint arXiv:1005.2581, 2010.

[200] CUDA Nvidia. Nvidia cuda c programming guide. Nvidia Corporation, 120(18):8, 2011.

[201] CUDA Nvidia. Compute unified device architecture programming guide. 2007.

[202] C Cuda. Best practices guide. Nvidia Corporation, 2012.

[203] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to general-

purpose GPU programming. Addison-Wesley Professional, 2010.

[204] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-

gramming with cuda. In ACM SIGGRAPH 2008 classes, page 16. ACM, 2008.

[205] Shane Cook. CUDA programming: a developer’s guide to parallel computing with GPUs.

Newnes, 2012.

[206] David Luebke. Cuda: Scalable parallel programming for high-performance scientific

computing. In Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE

International Symposium on, pages 836–838. IEEE, 2008.

BIBLIOGRAPHY 168

[207] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hardwick, Scott

Morton, Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel computing experiences

with cuda. IEEE micro, (4):13–27, 2008.

[208] David Kirk et al. Nvidia cuda software and gpu parallel computing architecture. In

ISMM, volume 7, pages 103–104, 2007.

[209] Tianyi David Han and Tarek S Abdelrahman. hi cuda: a high-level directive-based

language for gpu programming. In Proceedings of 2nd Workshop on General Purpose

Processing on Graphics Processing Units, pages 52–61. ACM, 2009.

[210] Mugdha A Rane. Fast morphological image processing on gpu using cuda. Pune: De-

partment of Computer Engineering and Information Technology, College of Engineering,

2013.

[211] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. Gpu cluster for high

performance computing. In Proceedings of the 2004 ACM/IEEE conference on Super-

computing, page 47. IEEE Computer Society, 2004.

[212] John Nickolls and William J Dally. The gpu computing era. IEEE micro, 30(2), 2010.

[213] Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland, and David

Glasco. Gpus and the future of parallel computing. IEEE Micro, (5):7–17, 2011.

[214] Jack Dongarra and Michael A Heroux. Toward a new metric for ranking high performance

computing systems. Sandia Report, SAND2013-4744, 312:150, 2013.

[215] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng Andrew.

Deep learning with cots hpc systems. In International Conference on Machine Learning,

pages 1337–1345, 2013.

[216] Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-

box optimization benchmarking 2010: Experimental setup. PhD thesis, INRIA, 2010.

BIBLIOGRAPHY 169

[217] Jane-Jing Liang, Ponnuthurai Nagaratnam Suganthan, and Kalyanmoy Deb. Novel com-

position test functions for numerical global optimization. In Swarm Intelligence Sympo-

sium, 2005. SIS 2005. Proceedings 2005 IEEE, pages 68–75. IEEE, 2005.

[218] Ryoji Tanabe and Alex S Fukunaga. Improving the search performance of shade us-

ing linear population size reduction. In Evolutionary Computation (CEC), 2014 IEEE

Congress on, pages 1658–1665. IEEE, 2014.

[219] Janez Brest, Mirjam Sepesy Maučec, and Borko Bošković. Single objective real-parameter

optimization: algorithm jso. In Evolutionary Computation (CEC), 2017 IEEE Congress

on, pages 1311–1318. IEEE, 2017.

[220] Jason E Cook and Daniel R Tauritz. An exploration into dynamic population sizing.

In Proceedings of the 12th annual conference on Genetic and evolutionary computation,

pages 807–814. ACM, 2010.

[221] Fernando G Lobo and Cláudio F Lima. Revisiting evolutionary algorithms with on-the-

fly population size adjustment. In Proceedings of the 8th annual conference on Genetic

and evolutionary computation, pages 1241–1248. ACM, 2006.

[222] Jason Teo. Exploring dynamic self-adaptive populations in differential evolution. Soft

Computing-A Fusion of Foundations, Methodologies and Applications, 10(8):673–686,

2006.

[223] Janez Brest and Mirjam Sepesy Maučec. Population size reduction for the differential

evolution algorithm. Applied Intelligence, 29(3):228–247, 2008.

[224] Brad L Miller, David E Goldberg, et al. Genetic algorithms, tournament selection, and

the effects of noise. Complex systems, 9(3):193–212, 1995.

[225] Dinabandhu Bhandari, CA Murthy, and Sankar K Pal. Genetic algorithm with elitist

model and its convergence. International Journal of Pattern Recognition and Artificial

Intelligence, 10(06):731–747, 1996.

BIBLIOGRAPHY 170

[226] Kenneth Alan De Jong. Analysis of the behavior of a class of genetic adaptive systems.

1975.

[227] Salvador Garca, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study on

the use of non-parametric tests for analyzing the evolutionary algorithms behavior a

case study on the cec2005 special session on real parameter optimization. Journal of

Heuristics, 15(6):617, 2009.

[228] Ronald W Morrison and Kenneth A De Jong. Measurement of population diversity. In

Artificial Evolution, volume 2310, pages 31–41. Springer, 2001.

[229] David W Walker and Jack J Dongarra. Mpi: A standard message passing interface.

Supercomputer, 12:56–68, 1996.

[230] Jack Dongarra, Dennis Gannon, Geoffrey Fox, and Ken Kennedy. The impact of multicore

on computational science software. CTWatch Quarterly, 3(1):1–10, 2007.

[231] Jonathan R Clausen, Daniel A Reasor Jr, and Cyrus K Aidun. Parallel performance

of a lattice-boltzmann/finite element cellular blood flow solver on the ibm blue gene/p

architecture. Computer Physics Communications, 181(6):1013–1020, 2010.

[232] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine:

theory and applications. Neurocomputing, 70(1-3):489–501, 2006.

[233] Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew, et al. Extreme learning machine: a

new learning scheme of feedforward neural networks. Neural networks, 2:985–990, 2004.

[234] Nan-Ying Liang, Guang-Bin Huang, Paramasivan Saratchandran, and Narasimhan Sun-

dararajan. A fast and accurate online sequential learning algorithm for feedforward

networks. IEEE Transactions on neural networks, 17(6):1411–1423, 2006.

[235] Salvador Garćıa, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study on

the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a

case study on the cec’2005 special session on real parameter optimization. Journal of

Heuristics, 15(6):617, 2009.

BIBLIOGRAPHY 171

[236] Joaqúın Derrac, Salvador Garćıa, Daniel Molina, and Francisco Herrera. A practical

tutorial on the use of nonparametric statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation,

1(1):3–18, 2011.

[237] Phillipe Pereira, Higo Albuquerque, Hendrio Marques, Isabela Silva, Celso Carvalho,

Lucas Cordeiro, Vanessa Santos, and Ricardo Ferreira. Verifying cuda programs using

smt-based context-bounded model checking. In Proceedings of the 31st Annual ACM

Symposium on Applied Computing, pages 1648–1653. ACM, 2016.

[238] Guodong Li and Ganesh Gopalakrishnan. Scalable smt-based verification of gpu kernel

functions. In Proceedings of the eighteenth ACM SIGSOFT international symposium on

Foundations of software engineering, pages 187–196. ACM, 2010.

[239] Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala, and Sorin

Lerner. Verifying gpu kernels by test amplification. In ACM SIGPLAN Notices, vol-

ume 47, pages 383–394. ACM, 2012.

[240] Jin Chen and A. K. Qin. A gpu-based implementation of brain storm optimization. In

Evolutionary Computation, 2017.

[241] Yuhui Shi et al. Particle swarm optimization: developments, applications and resources.

In evolutionary computation, 2001. Proceedings of the 2001 Congress on, volume 1, pages

81–86. IEEE, 2001.

[242] Carlos M Fonseca, Peter J Fleming, et al. Genetic algorithms for multiobjective opti-

mization: Formulationdiscussion and generalization. In Icga, volume 93, pages 416–423,

1993.

[243] Thomas Bäck and Frank Hoffmeister. Extended selection mechanisms in genetic algo-

rithms. 1991.

[244] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented library for cuda. GPU

computing gems Jade edition, 2:359–371, 2011.

BIBLIOGRAPHY 172

[245] Charles AR Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[246] Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, 1988.

[247] Marco Zagha and Guy E Blelloch. Radix sort for vector multiprocessors. In Proceedings

of the 1991 ACM/IEEE conference on Supercomputing, pages 712–721. ACM, 1991.

[248] Dan Zuras, Mike Cowlishaw, Alex Aiken, Matthew Applegate, David Bailey, Steve Bass,

Dileep Bhandarkar, Mahesh Bhat, David Bindel, Sylvie Boldo, et al. Ieee standard for

floating-point arithmetic. IEEE Std 754-2008, pages 1–70, 2008.

[249] Stephen H Unger. Hazards, critical races, and metastability. IEEE Transactions on

Computers, 44(6):754–768, 1995.

[250] Juan Rada-Vilela, Mengjie Zhang, and Winston Seah. A performance study on syn-

chronous and asynchronous updates in particle swarm optimization. In Proceedings of

the 13th annual conference on Genetic and evolutionary computation, pages 21–28. ACM,

2011.

[251] A Serani, M Diez, C Leotardi, D Peri, G Fasano, U Iemma, and Emilio F Campana. On

the use of synchronous and asynchronous single-objective deterministic particle swarm

optimization in ship design problems. In 1st International Conference on Engineering

and Applied Sciences Optimization, Kos, 2014.

	Declaration
	Acknowledgement
	Credits
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Scope
	Motivations
	Objectives
	Contributions
	Organisation of the Thesis

	Background and Literature Review
	Evolutionary Algorithms (EAs)
	Overview
	Representative EAs
	Brain Storm Optimisation

	Population Sizes in EAs
	EAs with a Large Population
	EAs with a Small Population

	Parallel EAs
	Overview
	Island Model
	GPU-based Parallel EAs

	Modern High Performance Computing (HPC)
	Overview
	CPU-only HPC
	GPU Computing
	GPU-enabled HPC

	Study on the Effect of Large Population Size in EAs
	Introduction
	Methodology
	Selection of Highly Complex Optimisation Problems
	Selection of Representative EAs

	Experimental Results
	Experimental Settings
	Effectiveness of EAs with a large population
	Efficiency of EAs with a large population

	Conclusions

	SPEO based on CPU-only HPC (SPEOHPCcpu)
	Introduction
	The Proposed Method
	Framework
	Implementation of SPEOHPCcpu

	Experimental Results
	Test Problems
	Experimental Settings
	Scalability Analysis
	Performance Analysis on Diversity Preserving Buffer
	Performance Analysis on Topology Density
	Performance Comparison with State-of-the-art Parallel EAs

	Conclusions

	Local Ensemble Surrogate Assisted Crowding DE and its Parallel Implementation based on the SPEOHPCcpu Framework
	Introduction
	Background
	Extreme Learning Machine (ELM)
	Online Sequentially Extreme Learning Machine (OS-ELM):

	The Proposed Method
	LES-CDE Algorithm
	Parallel Implementation of LES-CDE based on the SPEOHPCcpu Framework

	Experiments
	Experiments Setup
	Study on Parametric Sensitivity
	Performance Comparison of Solution Quality with CDE
	Performance Comparison of Computing Speed
	Analysis on Chunk and Volume of Online Training Data

	Conclusions

	Correctness Verification for Implementing Parallel EAs based on a Single GPU
	Introduction
	Issues and Analysis
	Build-in Functions and Libraries
	Numerical Precision of Floating Point
	Race Condition

	The Proposed Guidelines
	Obtaining Correct CPU-based EAs as the Reference
	Unifying GPU-inherent Issues
	Collecting Results
	Evaluating Correctness

	A Working Example: Implement and Verify GPU-based MBSO
	Implementation of GPU-based MBSO
	Numerical Analysis

	Conclusions

	SPEO based on Multiple GPUs at GPU-enabled HPC (SPEOHPCgpu)
	Introduction
	The Proposed Method
	Framework
	Implementation of SPEOHPCgpu

	Experiments
	Test Problems
	Experimental settings
	Scalability Analysis
	Performance Analysis on Dual Control Mode
	Performance Analysis on Dynamic Regrouping Strategy
	Discussion on Cost-effectiveness

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

