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ABSTRACT   

Numerical reservoir simulation models are the basis for many decisions in regard to 

predicting, optimising, and improving production performance of oil and gas reservoirs. 

History matching is required to calibrate models to the dynamic behaviour of the 

reservoir, due to the existence of uncertainty in model parameters. Finally a set of 

history matched models are used for reservoir performance prediction and economic 

and risk assessment of different development scenarios. 

Various algorithms are employed to search and sample parameter space in history 

matching and uncertainty quantification problems. The algorithm choice and 

implementation, as done through a number of control parameters, have a significant 

impact on effectiveness and efficiency of the algorithm and thus, the quality of results 

and the speed of the process. This thesis is concerned with investigation, development, 

and implementation of improved and adaptive algorithms for reservoir history matching 

and uncertainty quantification problems.  

A set of evolutionary algorithms are considered and applied to history matching. The 

shared characteristic of applied algorithms is adaptation by balancing exploration and 

exploitation of the search space, which can lead to improved convergence and diversity. 

This includes the use of estimation of distribution algorithms, which implicitly adapt 

their search mechanism to the characteristics of the problem. Hybridising them with 

genetic algorithms, multiobjective sorting algorithms, and real-coded, multi-model and 

multivariate Gaussian-based models can help these algorithms to adapt even more and 

improve their performance. Finally diversity measures are used to develop an explicit, 

adaptive algorithm and control the algorithm’s performance, based on the structure of 

the problem. 

Uncertainty quantification in a Bayesian framework can be carried out by resampling of 

the search space using Markov chain Monte-Carlo sampling algorithms. Common 

critiques of these are low efficiency and their need for control parameter tuning. A 

Metropolis-Hastings sampling algorithm with an adaptive multivariate Gaussian 

proposal distribution and a K-nearest neighbour approximation has been developed and 

applied.  
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CHAPTER 1:  

INTRODUCTION 

 

 

 

1.1 Background 

Reservoir simulation models are widely used in the upstream oil and gas industry for 

multi-million dollar development and operational decision making, such as reservoir 

performance forecasting, development optimisation plans and well placement problems. 

A reservoir simulation model is a numerical model based on the discretisation of the 

reservoir in space and time. It is built from initial uncertain parameters then validated 

and tuned through a process known as history matching. The calibrated reservoir model 

is then used for predictions and uncertainty quantification in reservoir management. 

Figure 1.1 shows the principal workflow in reservoir simulation. 

                     

Figure 1.1: Principal workflow in reservoir simulation. 
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History matching is the process of calibrating the uncertain parameters of a reservoir 

model to available noisy observation data of the reservoir. History matching is usually a 

high-dimensional problem, since many model input parameters are uncertain. It is a 

very complex, non-linear problem, as there is strong non-linearity between production 

response and reservoir model parameters. It is an inverse problem, i.e. instead of using 

reservoir models to predict reservoir performance, observed reservoir behaviours are 

used to estimate reservoir model parameters. It is an ill-posed problem with non-unique 

solutions, as many possible reservoir models can have a similar production response 

that matches the observation data.  

History matching, to be done manually or automatically, is a time and resource 

consuming process which requires experience and expertise. A structured approach is 

required, which involves a team approach and close collaboration between geoscientists 

and engineers. The process is started by examining the sensitivity of the reservoir to the 

model parameters, based on performing a procedure of the consequent runs. Based on 

the results of the sensitivity study, uncertainty parameter ranges are defined. The next 

step is to define match points and levels of tolerance for the difference between the 

historical and simulated data. Then simulation runs are scoped with a reservoir 

simulator in an iterative loop to obtain as many as possible informative and quality 

match runs at an affordable computational cost. Finally, these models conditioned to the 

historical data are used for decision making in reservoir management. 

Reservoir uncertainty quantification is carried out using statistical and probabilistic 

methods on the result of a history matching. The result of assisted history matching is a 

set of model realisations that match observation data. These models may produce 

different results, in other words a range of results, in the prediction phase when we let 

the model predict future reservoir performance.  

The uncertainty in prediction must be quantified to better and more reliably assess the 

risk in investment decisions. If correctly sampled, the ensemble of realisations obtained 

in history matching represents the posterior distribution, which provides an assessment 

of the uncertainty of the model parameters. Moreover, using these realisations for 
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predicting the future performance the reservoir, the uncertainty in prediction can be 

obtained. Finally, results can be shown using statistical properties such as the credible 

intervals (i.e. P10, P50 and P90). 

The main challenges in the process of history matching and uncertainty quantification 

are a high number of uncertainty parameters, the presence of local minima in the 

parameter search space, and high computational complexity of the simulation runs. A 

review of the literature reveals that a variety of evolutionary algorithms are applied to 

history matching. In addition, there are several sampling algorithms, which are applied 

to uncertainty quantification. 

The main critique of these algorithms in history matching and uncertainty quantification 

is that they have a rigid mechanism, so that, firstly, the user must carry out tuning of 

their control parameters and secondly, they cannot adapt to changes in condition or the 

circumstances of the problem. 

The work carried out in this thesis has focussed on the development and application of 

algorithms for history matching and uncertainty quantification which adapt to the 

structure of the problems. An adaptive algorithm uses a set of implicit or explicit 

instructions and guidelines in its mechanism to adapt to the structure of the problem or 

changes in the circumstances or environment of the problem. Hence, adaptive 

algorithms are able to adjust intelligently their mechanism to achieve the best possible 

outcome.  

1.2 Research objectives 

The main theme of this thesis is to develop and apply adaptive algorithms for history 

matching and uncertainty quantification. The objective is not to develop and implement 

a single algorithm that can handle adaptation of all the major elements of evolutionary 

algorithms (EAs) in history matching or Markov chain Monte-Carlo (MCMC) sampling 

algorithms in uncertainty quantification. Instead we aim to develop different algorithms 

that can each address adaptation of one or more elements, resulting in more robust and 

efficient algorithms which are able to balance the search or sampling based on the 

structure of the problems. 
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The thesis firstly involves development and application of adaptive and flexible 

evolutionary search algorithms for different history matching problems to efficiently 

obtain a diverse set (ensemble) of good fitting-to-history models in the parameter search 

space. Secondly, we aim to develop and apply an ensemble-based adaptive MCMC 

method for efficient sampling of the posterior probability, as approximated by the 

ensemble of obtained history-matched models, to achieve probability distribution of the 

predictive parameters.  

1.3 Structure of the thesis 

The rest of this thesis will be structured around four parts: 

 In the first part (Chapter 2), the literature is reviewed for reservoir simulation, 

history matching and uncertainty quantification, as well as evolutionary 

algorithms and clustering techniques. 

 In the second part (Chapters 3-7), a diverse set of flexible and adaptive 

algorithms are developed and applied to optimisation problems in history 

matching:   

o Chapter 3 reviews estimation of distribution algorithms (EDAs), a set of 

implicitly adaptive evolutionary algorithms. It describes the application 

of three selected EDAs to history matching of a synthetic and a real 

North Sea reservoir model. The results are compared with results 

reported in the literature using other evolutionary algorithms. 

o Chapter 4 reviews adaptation of objective function in history matching 

by using multiobjective optimisation algorithms. It implements a 

multiobjective sorting mechanism in EDAs and applies it to selected 

optimisation and history matching problems. The results are compared to 

results of single objective optimisation for the same problems. 

o Chapter 5 reviews hybridisation of evolutionary algorithms as a way of 

adapting the search mechanism. First, it describes a simulated binary 

genetic algorithm for real-coded optimisation problems. Then, it presents 

a histogram-based EDA equipped with an incremental learning 

mechanism and finally develops a hybrid algorithm that combines the 
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advantages of the two algorithms. Finally, comparative study of these 

algorithms is carried out based on results obtained for history matching 

of selected synthetic and real examples. 

o Chapter 6 presents a set of Gaussian-based EDAs which can adapt to 

multivariety and multi-modality in continuous parameter spaces. It 

reviews Gaussian distribution as the probability model in EDAs for 

continuous history matching and presents the results of application on 

selected test functions and reservoir models. 

o Chapter 7 reviews different diversity measures and describes a diversity-

based, explicitly adaptive EDA for history matching. The adaptive 

algorithm maintains the balance between the diversity and convergence 

throughout the search. The results of the algorithm have been compared 

with the tuned EDA. 

 In the third part (chapter 8), an adaptive MCMC sampling will be developed for 

uncertainty quantification. The developed algorithm uses an adaptive Gaussian 

proposal distribution for sampling, k-nearest neighbours approximation to avoid 

forward simulations of numerous resampled models, and probabilistic-distance 

clustering to obtain the starting points of multiple walks. The new algorithm is 

demonstrated through several applications.  

 In the fourth part (chapter 9), a summary of the chapters and general conclusions 

of the research are presented. The outstanding research contributions are 

summarised and, finally, recommendations for future work in the direction of 

this research are provided. 
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CHAPTER 2:  

A LITERATURE REVIEW ON 

RESERVOIR HISTORY MATCHING AND 

UNCERTAINTY QUANTIFICATION AND 

ALGORITHMS USED  

 

 

2.1 Introduction 

Soft computing differs from traditional (hard) computing as it is tolerant of imprecision, 

uncertainty, and partial truth. It is also tractable, robust, efficient and affordable. Soft 

computing, nowadays, plays a vital role in modern reservoir management using 

techniques for intelligent reservoir characterization, engineering, and prediction. It helps 

to make sound reservoir decisions and improves the asset value of the oil and gas 

companies. 

The ultimate outcome of reservoir management is a reservoir model with realistic 

tolerance for imprecision and uncertainty. Intelligent techniques of soft computing such 

as Evolutionary Algorithms (EAs) are being used for uncertainty analysis, risk 

assessment, optimization, and history matching of reservoir models.  
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History matching in reservoir simulation is calibration or conditioning a reservoir 

simulation model to historical production data. This technique is essential to prove an 

initial model created for a reservoir before using the model as a true representation of 

the reservoir for predicting its future performance. 

An important goal in history matching is to calibrate a reservoir model for use in 

production forecasting and optimisation. History matching is well-known to be a time-

consuming and non-unique task; for these reasons, quantifying the uncertainty in 

predictions is also essential, as it affects many critical decisions.  

This chapter reviews reservoir simulation, history matching and uncertainty 

quantification and the algorithms used. The chapter is organized as follows. First a 

review of the reservoir modelling and simulation is provided.  Then common practices 

for history matching are discussed, followed by a review of the methods used for 

uncertainty quantification. Finally, clustering techniques, which are used throughout this 

thesis as way of discovering patterns and regularities, are reviewed.  

2.2 Reservoir modelling and simulation  

In general, simulation is the replica of some real thing, state of affairs, or process. The 

act of simulating something entails representing certain key characteristics or 

behaviours of a selected physical or abstract system. Nowadays, simulation is widely 

used in reservoir engineering to model hydrocarbon reservoirs in order to gain insights 

into the reservoir’s response, test and choose between alternative production and 

development plans, and forecast performance and future state of the reservoirs. 

The reservoir simulation process starts with the collection of valid source data 

representing key characteristics and behaviours. Static data are time-invariant direct or 

indirect measurements of the reservoir properties, such as seismic data, core 

measurement, fluid analysis, and well logs. These data will be integrated using 

traditional geo-statistical algorithms, and with the use of simplification in 

approximating and making assumptions within reservoirs, a reservoir dynamic model 

will be created based on three physical concepts of conservation of mass, isothermal 
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fluid phase behaviour, and the Darcy law for fluid flow through porous media. This is 

the case in traditional finite difference simulators; the fourth element, conservation of 

energy is added to this list by thermal simulators, mostly used by heavy-oil reservoirs, 

allowing temperatures to change within the reservoir. 

Dynamic data are time variant measurements and observation data of the flow response 

that are related to the created static model through flow equations. Integration of data 

into the model involves an inverse problem and requires repetitive solution of the flow 

equation in the model, which is a time-consuming and tedious process, referred to as 

‘history matching’. 

Depending on the decisions to be made, following modelling types are used: 

2.2.1 Analytical Modelling (Material Balance) 

Classical analytical modelling of a reservoir, also known as the material balance, is one 

of the fundamental tools in reservoir engineering. For the first time, Schilthuis (1936) 

derived material balance equations based on the basic mass balance of the fluids in the 

reservoir. The material balance is a simple possible model we can take for analysis of 

reservoir behaviour, especially in the early stages of the reservoir development. A 

classic reference for material balance is Katz (1936). 

Material balance is a valuable tool to obtain a high level of understanding of the 

reservoir from available data. In addition to fluid injection and production, it includes 

fluid and rock expansion/compression effects, but it does not consider fluid flow inside 

the reservoir. It assumes the reservoir as a single or multiple tanks; then pressure 

measurements over time are used to identify the dominant production mechanism and 

determine the hydrocarbon in place and the recovery factor. 

This analytical modelling can be particularly useful where compartmentalisation within 

the reservoir is a predominant feature. In such cases, it analyses reservoir tanks, inter-

tank transmissibility and connections and provides the amount of reserves, the recovery 

factor, the volume (geometry and structure), compartments (sectors) and the connection 

between them and across faults, the drive mechanism and flooding pattern, aquifer size 

and strength, and the original gas cap volume.  



Chapter 2: 

A literature review on Reservoir History matching and Uncertainty Quantification 

and Algorithms Used 

 

 

99 
 

2.2.2 Well Models 

Wells are treated as source sinks in reservoir simulations. Two main tasks in the 

reservoir simulation which require specific considerations are calculating bottom-hole 

flowing pressure (BHP) from the pressure of the block containing well when the well 

flow rate is given, and well flow rate, when BHP is specified. 

Representing and handling wells in reservoir simulation entails specific considerations. 

The reason for this is, firstly, reservoir model blocks are large in size compared to wells, 

and thus the average pressure computed by the reservoir simulator for the block is not 

necessarily representative of well pressure. Secondly, there are usually complex 

interactions between the reservoir and wellbore, which must be modelled explicitly for 

both production and injection wells.  

Peaceman (1978) introduced the first analytical well model by assuming a well at the 

centre of a uniform square grid and a steady-state flow between the block and its 

neighbouring blocks. His method defined an equivalent well-block radius, at which the 

steady-state flowing pressure in the reservoir is equal to the numerically calculated 

pressure of the block containing the well. Chappelear & Williamson (1981) and Abou-

Kassem & Aziz (1985) generalised this model for random block geometry, well location 

within the block, and reservoir boundaries. 

Since reservoir simulation was introduced in the petroleum engineering community, 

numerical single well models have been used to study well performance in general and 

well productivity specifically (e.g. Sonier & Ombret 1973). These models incorporate 

all relevant geological and reservoir engineering data affecting the performance of the 

well. Hence, in a single well model, the well is treated as an isolated system.  

However, compared to the entire reservoir, saturation and pressure changes are 

enormous around the well, and the flow is radial. Unlike the well test model which 

assumes a single flow system, the single well model uses a multi-phase flow system. 

Numerical single well models are used for production enhancement by studying 

different completion strategies, water coning / gas cusping behaviour, and pseudo 

relative permeability functions (Ezuka et al 2004). 
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2.2.3 Streamline Simulation 

In streamline-based flow simulation, fluids are transported over a time-step along 

streamlines, rather than from cell-to-cell, as in conventional finite difference methods. 

Thus, streamlines represent an image of the instantaneous velocity field. Therefore, 

anything assumed to move with the total velocity field will follow the streamlines until 

the velocity field is updated to account for its changing behaviour in time. The spatial 

distribution of the static and petrophysical properties of the reservoir yields the 

geometry of the streamlines and the velocity at which components travel along an 

individual streamline. Examples of these static parameters are permeability, porosity, 

and relative permeability, along with produced or injected volumes at the wells  

The strengths of streamline simulation are efficiency in both computational speed and 

memory (Thiele et al., 2010), since fluid transport is solved along 1D streamlines and 

updated at user-defined time-steps only. Thus, it can be significantly faster than finite 

difference simulations: for example, it could be efficiently applied in simulation of fine-

grid detailed geological models. Apart from computational performance, there are 

certain reservoir systems that could be modelled more effectively by streamline 

simulation: examples are slightly compressible convective-dominant systems such as 

water or miscible gas injection to a resident oil reservoir, which are difficult to model 

with conventional finite difference simulation. 

The drawbacks of streamline simulation come from its two features of a dual static 

Eulerian - dynamic Lagrangian grid and the independent streamlines assumption, which 

make it not efficient for diffusion, gravity, capillarity, compressibility, and thermal 

dominant systems such as gas expansion and capillary pressure driving reservoirs, since 

there is no well-defined flow direction. However, these problems are effectively and 

efficiently handled by conventional finite difference simulation. Most of the real 

reservoir engineering cases are hybrid cases, where, in the primary phase, production 

starts by natural depletion that creates a gas cap, followed by the secondary phase where 

a repressurisation scenario, e.g. water injection, is performed to keep pressure high 

enough for production. 
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Where connectivity is a serious issue in fluid flow simulation, streamline simulation can 

be used. An example of this is flood surveillance by pattern analysis, to quantify the 

volumetric flux between the pair of producer-injector. This is done by determining the 

well-rate allocation factors to associate produced and injected volumes, which does not 

involve flow simulation. Streamline simulation could also be used for flow simulation, 

where fluid transport is modelled along the streamline. 

For problems involving connectivity, streamline simulation can effectively simulate the 

model in practical runtime. History matching and uncertainty quantification, given the 

large uncertainties in reservoir model parameters, involves a large number of full-field 

simulation models, which could be computationally too expensive using full-physics 

finite difference simulation.  

2.2.4 Full-field Simulation 

As mentioned earlier, material balance can be used to predict the volume in place or 

recovery factors. However, it cannot address questions about why the pressures in two 

sectors of the reservoir are different. Streamlines can help to understand connectivity, 

but never replace full-physics finite difference simulation. Full-field simulation models 

are irreplaceable, and the only choice in many situations. 

Reservoir simulation models are widely used for multi-million dollar development and 

making operational decisions such as reservoir performance forecasting, development 

optimisation plans and well placement problems in the upstream oil and gas industry.  

A reservoir simulation model is a numerical model based on the discretisation of the 

reservoir in space and time. It is built from initial uncertain parameters, then validated 

and tuned through a process known as history matching. The model involves and 

incorporates a variety of data, such as reservoir fluids’ pressure, volume, and 

temperature properties (PVT), reservoir properties (e.g. porosities, permeabilities) and 

their spatial distribution, rock and fluid/rock properties, dynamic data and 

production/injection phasing and controls. 

The main steps to build a reservoir simulation model are:  
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 Data collection: to collect input data outlined above and implement quality 

control of the collected data. 

 Build the reservoir grid: to choose reservoir grid features and build the grid from 

the geological and geophysical data. Upscale the model if required, for the 

efficiency of the simulation time.  

 Define reservoir properties, PVT model and rock/fluid properties. 

 Set up equilibrium data: define equilibrium regions and fluid contacts. 

 Setup production schedule: set up production and injection scenarios and field 

and well controls such as injection rates, bottomhole pressure. 

 Define outputs: choose the output variables, the frequency of and type of 

outputting (map, plot …). 

Typical reservoir simulation outputs are average field pressure, field fluid (water, oil 

and gas) production and injection rates, gridblock pressure and saturations (water, oil 

and gas) and individual well pressures and saturations, all as a function of time. 

A reservoir performance study is a central part of many reservoir management 

activities. The study involves three stages: creating a reservoir simulation model, history 

matching, and uncertainty quantification using history matched models. 

2.3 History matching 

History matching is the process of calibrating uncertain parameters of a reservoir model 

to available observation data of the reservoir. This matching process is a very complex 

non-linear problem as there is strong non-linearity between production response and 

reservoir model parameters.  

History matching is also a difficult task because it is an inverse problem, i.e. instead of 

using reservoir models to predict reservoir performance, the observed reservoir 

behaviours are used to estimate reservoir model parameters. It is an ill-posed problem 

with non-unique solutions, since many possible reservoir models can have similar 

production responses that match observation data. Observation data are often noisy and 
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are assumed to be randomly distributed and thus have Gaussian distribution with mean 

zero and a standard deviation (Oliver et al., 2008). Sample and measurement bias is 

expected to be corrected in quality control phase and it is not considered as tolerance for 

in history matching. 

A variety of model input parameters are uncertain (unknown or less precisely known). 

This uncertainty is a result of reservoir heterogeneity, scarcity and limited accuracy of 

measurements. The main sources of the uncertainty in reservoir models are the 

geometry of the reservoir (e.g. porosity and permeability), the spatial distribution of 

rock properties, and reservoir-fluid properties (e.g. gravity, viscosity, and wettability). 

The process of history matching involves changing the uncertain reservoir model input 

parameters until the model predictions agree closely enough with the observed data. 

This task is either carried out manually by an engineer editing the reservoir model input 

deck and adjusting parameters, based on experience and intuition, or automatically, 

using either research and public domain or proprietary and commercial codes.   

2.3.1 Manual history matching 

Manual history matching is a trial and error process that requires user experience.  It is 

usually done by experienced reservoir engineers who have experience and prior 

information from the previous studies, the reservoir history and analogue fields, which 

allow them to know the forecasting behaviour of reservoir model to some extent.  

Nevertheless, manual history matching can be a hugely time-consuming process. For 

large fields, it may take many months to yield a single acceptably matched model. It 

often merely results in the best practical solution within the decision time, and may 

eventually provide a reservoir description that may be impractical and inconsistent with 

the geologic interpretation. 

The process of manual history matching is summarised in the following sections. In 

addition, a practical approach for model calibration is provided, which involves 

modification of uncertainty parameters of reservoir model in a particular sequence of 

scale and reservoir response parameters. 
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2.3.1.1 The procedure of manual history matching 

The procedure of manual history matching involves modifying and adjusting reservoir 

model parameters from one simulation run to the following by trial and error, to obtain 

simulation results that fit to observed pressure and production data. It is a way of 

integrating production observation data into reservoir models.  

Observation data are usually measurements of pressure, flow rates (water, oil, gas, or 

liquid), or ratios of different flow rates, made in wells (producer or injector). 

Observation data are usually measured at well locations which are quite limited in 

number, and consequently represent an extremely small percentage of the reservoir. On 

the other hand, the number of measurements can be extremely high especially for a field 

with a large number of wells and long period of history. For a summary on observation 

data and measurement types used in history matching, refer to Oliver et al. (2008). 

After data gathering, quality control on available observation data which is usually 

measured from tubing communication, reallocation, and metering is required, before 

initiating the manual history-match. Williams et al. (1998) proposed a procedure for 

manual history matching which is now the basis for many history matching studies. The 

procedure is summarised in Table 2.1. 

2.3.1.2 Adjusting model parameters 

A reservoir simulation model consists of several parameters, of which many are the 

source of uncertainty. The degree of variation in reservoir properties with change in 

location within the reservoir is one the greatest uncertainties. This involves a scale up 

degree for degree of variation for representing variation in reservoir properties in the 

reservoir description and simulation, from pores and cores to different reservoirs in a 

field. These degrees of variation are defined as reservoir heterogeneity.  
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Table 2.1: The manual-history matching procedure 
 

1  Gather data RFT and MDT measurements 

 Bottom-Hole Pressure data 

 Allocated Production and Injection data 

 Well Test data 

 Tracer data 

 Interference Tests data 

 4D Seismic 

2  Quality-Control  Errors from tubing communication 

  Data reallocation errors 

  Metering errors 

3  Prepare tools  Prepare analysis tools 

  Observation plots 

  Observation maps 

4  Identify key wells Wells completed in only one flow unit. 

 Wells have RFT for pressure match. 

 Wells with pulsed neutron logs. 

 Newer wells with open-hole log for water match. 

5  Interpret 

reservoir  

RFT and spatial pressure gradient maps for pressure match. 

 Water front maps and water occurrence coming from vertical rise. 

 Lateral fingering, coning for water match. 

6  Repeat matching until acceptable model matched to history is achieved. 

6.1 Run the model Initially controlled by total reservoir voidage for pressure 

match. 

 Thereafter controlled by oil rate for saturation match 

(validation). 

  Constrained by minimum BHFP and maximum fluid and gas 

rates. 

6.2 Compare model Compare model results to observed and interpreted data. 

6.3 Adjust the model Adjust model parameters (See following table for details). 

 

From the nature of the underground rock formations, it could be easily concluded that 

all the reservoirs are heterogeneous with a particular degree of heterogeneity. The scales 

of heterogeneities are defined at four levels of complexity, as shown in Table 2.2 

(Kelkar, 2002). 
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Table 2.2: Levels of Reservoir Heterogeneities 

 

 Scale Measurements Effect on Performance 

Pore Level 10–100 μm Pore Distribution Displacement Efficiency (Trapped 

Oil) 

  Throat Distribution  

  Throat Openings  

  Rock Lithology  

  Grain Shape and Size  

Core Level 1-100 cm  Permeability  

  Porosity Sweep Efficiency (Bypassed Oil) 

  Rock Wettability  

  Capillary Pressure  

  Fluid Saturation  

Grid Level 10-100 m Log Properties Sweep Efficiency (Bypassed Oil) 

  Fluid Contacts  

  Pinch-outs, Discontinuity  

  Permeability Trends  

  Compartmentalization  

Reservoir Level >1000 m Well and Inter-Well Tests Extraction Efficiency (Untrapped 

Oil) 

  Depositional Description  

  Tectonic Activity  

 

Common sources of uncertainty are usually taken as the history-match parameters. 

These data come from different sources. Key uncertainties are summarised in Table 2.3 

(Kelkar, 2002).  

Adjustment of model parameters to match observation data is done in a sequence of the 

scale and observation data type. We usually start history-match with the deepest zones 

(bottom-up approach) for water drive reservoirs or top-down for free gas reservoirs. In 

addition, we match pressure before saturations. The sequence for adjusting model 

parameters based on Williams et al. (1998) is described in  

Table 2.4. 
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Table 2.3: Common uncertainty parameters 

 

Data Type Data Source 

Pore volumes Volume  

 Net-to-Gross (NTG)  

 Porosity  

Permeabilities or 

transmissibilities  

Horizontal (for field areal gradient pressure 

match) 

 

 Vertical  

Relative 

permeabilities 

Curves Special Core Analysis, Well 

Test 

 End-points Special Core Analysis 

Capillary 

Pressure 

 Special Core Analysis, Well 

Log 

   

Contacts Gas-Oil (GOC)  

 Water-Oil (WOC)  

Compartments Gas-Oil (GOC)  

 Water-Oil (WOC)  

Fault  Location  

 Transmissibility  

Rock  Compressibility  

   

 Irreducible Water Saturation  

 Oil Residual Saturations  

Aquifer Size (Pore Volume)  

 Strength (Permeability)  

 

2.3.2 Assisted history matching 

Recently, with the availability of modern computer hardware and software, history 

matching has been done automatically, although it is not fully automated yet. There has 

been some resistance to the idea of a fully automated process - the engineers want to 

feel that they can have a role in the procedure. In this thesis, the terms automatic history 

matching and assisted history matching are used interchangeably.  

Assisted/automatic history matching employs optimisation techniques, where the 

objective function is largely the discrepancy between the observed data and simulation 

results which is to be minimised. A standard least squares value is usually used to 

measure this discrepancy, which is referred to as the ‘misfit’ throughout this thesis. 
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Table 2.4: The sequence of adjusting model parameters and history matching 

 

1. Match Pressure Where How 

1.1. Global  

 

Field Adjust Pore volumes, Aquifer strength, 

permeabilities, fault transmissibility, WOC, 

Rock Compressibility (not adjusted if free gas 

available). 

1.2. Regional  

 

Flow units, layers 

groups, and 

individual layers 

Adjust Lateral permeability, vertical 

transmissibility (Start with the deepest zones, 

bottom-up, in water-drive and top-down for 

free gas reservoirs). 

1.3. Individual Wells Well cell or 

surrounding cells 

Change layer allocations (Well Conductivity). 

 

 

2. Match Saturation Where How 

2.1. Global  

 

Field Water-cut Only if all wells or flow-units are 

experiencing similar behaviour: change 

relative permeability, inter-sector 

connections, WOC, fault transmissibility, 

vertical transmissibility, and layer PI. 

2.2. Regional  

 

Flow units, layers 

groups, and 

individual layers 

Water-cut (If different Water BT times seen 

from different zones): adjust rel-perms, layer 

or zone separation based on facies variation. 

2.3. Individual Wells Well cell or 

surrounding cells 

Water-cut (adjust layers fluid allocations (PI) 

may ruin pressure match! Change inter-

sector connections, WOC, relative 

permeability). 

GOR (Significant measurement inaccuracies 

and inclusion of gas-lift gas in reported gas). 

 

Computer assisted history matching using probabilistic approaches has become part of 

today’s Reservoir Engineering job. Nowadays, instead of a single deterministic 

realisation of the reservoir model, mostly referred as the base case, Reservoir Engineers 

look for a set of models above a certain level of fit quality to historical data, which 

represent reservoir’s uncertain nature.  

An example of a comparison between manual and assisted history matching is the 

comparative study of assisted and manual history matching of a large, mature reservoir 

carried out by Gruenwalder et al. (2007). Their results showed that assisted history 

matching results in as good as or better global matches for saturations and pressures 
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than manual history matching. Furthermore, assisted history matching gives a range of 

predictions which can be used to quantify reservoir uncertainty. 

2.3.2.1 History matching in a Bayesian framework 

As we search the parameter space, history matching is converted into an optimization 

problem, with the objective of minimising deviation from the historical data. History 

matching is an inverse problem, and just like any other inverse problem has non-unique 

solutions. The inverse problem is dealt with in a Bayesian framework.  

The Bayesian framework is used in history matching to find models with maximum 

degree of likelihood to observed data. The ensemble of these models obtained in history 

matching allows us to quantify uncertainty in model parameters, and hence, model 

predictions. Figure 2.1 shows a general framework of history matching in a Bayesian 

framework. 

 
Figure 2.1: History matching in Bayesian inference. 

The Bayesian solution of an inverse problem (e.g. history matching) will be the 

posterior distribution of model M conditioned on the observation data D which 

is       . The posterior distribution is expressed using the Bayes theorem: 

       
           

∫(           )   
 (2.1) 

where the denominator is a normalizing factor, since a probability value        should 

be between 0 and 1. 
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     is the prior probability, which describes the uncertainty about the model M, and it 

is represented with the model uncertain parameters and usually referred to as the 

parameterization. 

       is the likelihood of model M, which tells us how likely the observation data D 

is to fit the model M. The expression of the likelihood function depends on assumptions 

about modelling errors and measurement errors of the observation data. A challenge of 

Bayes theorem for uncertainty quantification is a proper definition of the likelihood 

function. A common expression for the likelihood function is equation (2.2), where 

underlying assumption is normal distribution for the errors. 

                 
(2.2) 

where        function is a measure of how the observation data fit the model response 

and is usually expressed by Sum of Squares or Root Mean Square functions.  

2.3.2.2 Uncertainty Parameterization 

Uncertainty is result of the reservoir heterogeneity and the scarcity and limited accuracy 

of measurements.  The main sources of the uncertainty in the reservoir are the geometry 

of the reservoir, the spatial distribution of rock properties, and reservoir fluid. 

One of the first studies on the use of parameterization was carried out by Coats et al. 

(1970), who studied the use of porosity and permeability as uncertainty parameters. 

They also separated the reservoir into regions of constant porosity and permeability 

parameters, to allow for variation around the reservoir. They observed a strong 

correlation between two parameters; therefore it was not necessary to estimate both 

parameters simultaneously. 

2.3.2.3 Objective Function Definition 

Coats et al. (1970) took a linear form of the objective function, which minimises the 

absolute difference between the observation and the simulation values, as follows: 
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       ∑        

  

   

 (2.3) 

where Misfit is the misfit function, Np is the number of observations.   is the 

observation and    is the simulation data for point  . 

Thomas et al. (1971) used a non-linear objective function definition, which improved 

the results for automatic history matching performed by Coates et al. (1970). Their 

objective function definition led to fewer costly simulation runs than the objective 

function used by Coats et al. (1970), for the same accuracy. 

       ∑[         ] 
 

  

   

 (2.4) 

where    is the weight factor of observation point  . Weight factors are chosen to reflect 

the importance of each measurement in history matching. They are commonly set to 

unity. 

The PUNQ project (Barker et al., 2001) used another form of the sum of squares, 

weighted for both the number of response variables and the number of observations for 

each response variable. They used the weighting factor to account for an unequal 

number of observations for response variables as follows.  

       
 

  
∑

 

  
∑    

       

 
  

  

   

  

   

 (2.5) 

where i  is the subscript running over the model response variables, j  is the subscript 

over observation data points at a reported time, NV  is the number of response variables, 

NP  is the number of observation data points, Oij  is the observed value of the response 

variable i at time j. Sij  is simulated value of the response variable i at time j. ij  is the 

standard deviation of errors for observed value of the response variable i at time j. Wij is 

an importance weight factor applied to the response variable i at time j. 
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2.3.2.4 Algorithm selection 

The field of optimisation has grown at an astonishing rate in recent years. This has 

happened with new developments in theory, algorithms, and the computational 

contributions of computer hardware to solve various problems in engineering and 

science.  

A wide range of assisted history matching models come based on the abundance of 

optimisation techniques and tools that have recently been applied in reservoir history 

matching. The choice of algorithms for automatic history matching is wide.   

Broadly speaking, they can be categorised as local or global algorithms. Local 

optimisation algorithms search and find a local optimum, but since most of the 

optimisation problems, as well as history matching, have more than one local optimum 

and local optimisation algorithms find a local optimum without a guarantee that this 

optimum is a global one. However, global optimisation algorithms, always reach the 

global optimal of the objective function if continued long enough. 

If categorised based on the mechanism of the search, optimisation algorithms used in 

history matching fall into one of three groups: deterministic methods, stochastic 

methods, and data assimilation.   

2.3.2.4.1 Deterministic methods 

Deterministic methods take advantage of the analytical properties of the problem to 

solve the optimisation problem. They are also called local optimization methods, since 

they always reach a local optimal of the objective function. Deterministic methods are 

divided into two subgroups: gradient-based and sensitivity-based methods.  

Gradient-based methods were the earliest deterministic optimisation methods used in 

automatic history matching. They are based on calculating the derivative of objective 

functions with respect to the model matching parameters in order to minimise the 

objective function, which is some measure of the discrepancy between observed and 

simulated points (Jahns 1966; Coats et al., 1970; Thomas et al., 1971). Gradient 

Algorithms are fast and efficient, but in some cases, these methods might be trapped in 
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local minima or may not converge at all. More disappointingly, they find only one 

single good solution, rather than a range of the good solutions.  

Sensitivity-based methods, such as Gauss-Newton and Sparse Equations and Least 

Squares (LSQR), are another type of deterministic methods. In these methods, 

sensitivity coefficients are computed, which are simply partial derivatives that define 

the change in production response due to small changes in reservoir parameters. The 

sensitivities define the relationship between reservoir properties and production 

response. For a review of sensitivity-based optimisation methods used in history 

matching, refer to Oliver et al. (2008). 

For calculation of sensitivity coefficients one of the following four methods is usually 

used (Oliver et al., 2008): 

 The Perturbation method: This is a deterministic method in which sensitivities 

are estimated simply by perturbing the model parameters one at a time by a 

small amount and then computing the corresponding production response. This 

requires N+1 forward simulations for N parameters. 

 Direct Methods: In these methods, the flow and transport are differentiated to 

obtain expressions for the sensitivity coefficients. This involves only one 

equation per parameter.  

 Gradient Simulator Method: This is a variation of the Direct Method that uses 

the discretized version of the flow equation. The coefficient matrix will not 

change for all parameters and will need to be decomposed only once; thus, a 

matrix/vector multiplication is required for each parameter to compute 

sensitivity. For a large number of parameters, this method could be 

computationally expensive. 

 Adjoint-State Method: This method requires derivation and solution of adjoint 

equations, which for a multi-phase flow equation could be quite hard. In addition 

to the number of phases, adjoint solutions depend on the amount of production 

data. 
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Sensitivity-based methods are hard to perform by multi-phase flow simulators. 

However, streamline simulators are efficient tools for computing parameters’ sensitivity 

coefficients by single flow simulation (Thiele et al., 2010). 

2.3.2.4.2 Stochastic Methods 

Stochastic methods are based on gradient-free algorithms; their convergence rate is 

usually slower than that of gradient methods, although their implementation may be 

much easier. Such algorithms incorporate a random component and, by allowing the 

search to move towards worse solutions occasionally, gain the ability to seek out the 

global optimum.   

There are many stochastic algorithms that have been used for history matching in 

reservoir engineering. Stochastic algorithms vary in sophistication and complexity, 

ranging from random search to hill-climbing and population-based evolutionary 

algorithms.   

In the last two decades, many population-based stochastic algorithms have been 

employed in history matching and uncertainty quantification problems. These methods 

provide a flexible framework, in which exploration of the search space for a diverse set 

of solutions, followed by local search in previously found regions (exploitation) results 

in an effective search. Simulated Annealing (Sultan et al., 1994), Scatter Search (April 

et al., 2003), Tabu Search (Yang et al,. 2007), Genetic Algorithm (Romero et al., 2000; 

Erbas & Christie, 2007), Neighbourhood Algorithm (Subbey et al., 2003), Evolutionary 

Strategy (Schulze-Riegert et al., 2001), Population-Based Incremental Learning (PBIL) 

(Petrovska, 2009), Particle Swarm Optimization (Mohamed et al., 2010), Differential 

Evolution (Hajizadeh et al., 2009) and Ant-Colony Optimization (Hajizadeh, 2010) are 

among the stochastic optimization algorithms that have been applied to history 

matching  and uncertainty quantification problems. 

Experimental Design with Response Surface modelling is another stochastic method 

used for parameter estimation and propagating the uncertainties. Examples of this 

method in the literature are by Damsleth et al., (1994) and Manceau et al., (2001). 



Chapter 2: 

A literature review on Reservoir History matching and Uncertainty Quantification 

and Algorithms Used 

 

 

2525 
 

2.3.2.4.3 Data assimilation methods 

The final type of assisted history matching algorithm is data assimilation. In data 

assimilation methods, a sequential calibration of the model parameters to observation 

data is done in a series over the time. Ensemble Kalman Filter (EnKF) is a well-known 

data assimilation method applied to the history matching problem (Evensen et al., 

2007). Many combinations of the gradient methods, evolutionary algorithms, and data 

assimilation methods have also been used in history matching (Schulze-Riegert et al., 

2009; Mantica et al., 2002; Gómez et al., 2000). 

EnKF has a simple formulation and can be easily implemented to history match 

problems. Liu and Oliver (2005) showed that EnKF is very efficient and robust 

compared to gradient-based methods. However it has two problems of overshooting and 

filter divergence, especially if initial ensemble members do not represent the true field 

well (Nævdal et al. 2005).  

2.4 Evolutionary Algorithms 

Evolutionary algorithm is an umbrella term used to describe computer-based 

computational algorithms which are inspired by biological process of evolution and use   

key evolutionary elements in their design and implementation. 

Evolutionary algorithms (EAs), as defined by Michalewicz (1996), are a class of 

stochastic search algorithms that simultaneously navigate several regions in the search 

space, and explore the search space stochastically to avoid getting trapped in local 

minima, as many other search algorithms do. EAs do not make any assumption about 

the underlying fitness landscape in optimisation problems; thus, they are typically used 

to provide good approximate solutions to problems that cannot be solved easily using 

other techniques.  

EAs maintain a population of structures, create an implicit distribution model base on 

the rule of selection, then evolve and generate new candidate solutions using created 

model defined by one or more variation operators, such as crossover and mutation in 

genetic algorithms. 
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EAs are implemented by control parameters which determine different components of 

the algorithm. To define a particular EA, a set of components must be specified. In the 

following sections, we briefly describe the most important components of EAs. 

2.4.1 Solution representation 

In order to solve an optimization problem using an EA, objects, usually in the form of 

vectors which form possible solutions to an optimisation problem, are referred to as 

phenotypes, while their encoding, i.e. the individual solution within the EA, is called the 

genotype. Thus, the genotype is an individual’s genetic coding, which is represented in 

different forms, while the phenotype is the behavioural manifestation or response to that 

genetic information. 

In history matching and uncertainty quantification, the phenotype is usually a vector of 

the variables and the genotypes are the bit string or a range of bins for each variable. 

The link between the problem and the algorithm where optimization will take place is 

created by a mapping from the phenotype to a set of genotypes, which is called 

representation. Traditional bit strings (binary) representation may suit some uncertainty 

parameters (optimization variables). However, permutation vectors and some other 

complex data structures may be required for other types of of uncertainty parameters. 

Choosing an appropriate solution representation is particularly important and sensitive 

issue and can have a massive impact on the performance of the algorithm (Eiben and 

Smith, 2003). 

2.4.2 Population 

The evolution process on EAs is done on an individual or a population. A population is 

a set of possible candidate solutions which forms the unit of evaluation in any EA by 

rules of changing and adapting. Population is a unit of evolution in any evolutionary 

algorithm and EAs involving evaluation of population called Population-based EAs 

(PBEAs). 

Population size is a critical control parameter in any evolutionary algorithm. A large 

population size implies a slow convergence and vice-versa. In most evolutionary 
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algorithms, population size is determined heuristically and is kept constant throughout 

the evolution process. 

The diversity of the population is a measure of the number of different solutions 

present; here different means dissimilarity of solutions, which for example can be 

defined using distance measures. A good evolutionary algorithm should keep a balance 

between diversity of population and convergence towards the global optimal point. 

2.4.3 Population initialisation 

Population initialization is an essential part of any evolutionary algorithm because it can 

directly affect the convergence behaviour of the algorithm and the quality of the 

obtained solutions. If no information about the solution is available, which is the case in 

many optimisation algorithms, a random initialisation is used to generate new solutions 

in the initial population.  

2.4.4 Evaluation function 

The evaluation function is used as the criteria for evaluating the candidate solutions. 

Thus, it is the basis for selection and a requirement for adaptation in the algorithm. The 

evaluation function is also called the fitness function in EA or the objective function in 

optimization problems.  

In history matching and uncertainty quantification problems, the terms misfit or 

mismatch are used interchangeably for the objective function and usually expressed as 

the sum of the weighted square root of the difference between observation and 

simulation data.   

2.4.5 Selection mechanism 

Selection is carried out to distinguish better solutions in the population based on their 

quality, represented by the objective function value. The selected solutions become the 

parents of the next generation to undergo the variation mechanism. The selection 

mechanism, together with a replacement strategy, ensures quality improvement in EAs.  

Selection is made based on a single objective function or multiple objective functions. 
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Promising solutions get a higher chance, while less promising solutions still get a 

positive but small chance to be selected as the parents of the next generation. 

2.4.6 Variation mechanism 

The variation mechanism is the main characteristic of an EA. It is performed by 

variation operators, by which new solutions are created from the selected solutions. 

Usually EAs are known and distinguishable by the type of variation mechanism they 

use in their evaluation process. Mutation and crossover are two well-known 

evolutionary variation operators used in genetic algorithms, the most common class of 

EAs. Estimation of distribution algorithms is another class of EAs that uses a 

probabilistic model for variation instead of crossover and mutation operators. This 

enables them to adapt their operators to the structure of the problem. In the next 

chapters, estimation of distribution algorithms are explained more in detail. 

2.4.7 Replacement strategies 

To ensure convergence and maintain a certain level of diversity in the population 

throughout the evolution, replacement policies are used in EAs. Therefore, we replace 

parents, or a certain number of solutions in the entire population, by the children in each 

generation. Elitism and diversity are two main concepts based on which the different 

replacement strategies are designed. 

Elitism is a concept that allows replacement of the solution in the population only with 

the children that are superior in terms of fitness function. In addition, duplication is not 

allowed and duplicate solutions are deleted from the population. There are different 

replacement strategies in the literature (e.g. Yu & Gen, 2010), which each use a 

different degree of elitism. The following are the most widely used replacement 

strategies: 

2.4.7.1 Truncation replacement 

In this type of replacement, the entire existing population is replaced by the best set 

among the current population and children. The size of the existing population is 
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maintained. In all the algorithms used in the current thesis, truncation replacement is 

used. 

2.4.7.2 Steady-state replacement 

In steady-state replacement, the children replace the least fit solutions in the existing 

population. This replacement is done even if those children are less fit than the solutions 

that they replace. 

2.4.7.3 Generational replacement 

Generational replacement policy replaces the entire existing population by the children.  

If the number of children is larger than the size of the existing population, children are 

truncated to the population size. A weak elitism may also be allowed, in which the best 

n solutions in the current population are allowed to survive if they are better than the 

worst solution in the children. 

2.4.7.4 Random replacement 

In random replacement, the children replace random members of the population, 

keeping the population size constant. A weak elitism is used, in which the best n 

solutions in the current population are maintained if they are better than the worst 

solution in the children. 

2.4.7.5 Comma replacement 

Comma replacement is another possible way of replacement, which means the entire 

existing population is replaced by a new population from the best solutions of the 

children. The number of children should be at least as large as the original population, 

otherwise, the population size will not be constant. 

2.4.8 Stopping criteria 

A stopping or termination criterion determines a stage in the evolution where the 

algorithm must end the search process. Commonly used criteria are a maximum allowed 

CPU time, a predefined number of generations or evaluation functions, a desired level 
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of the objective function value, a convergence status depicted by fitness improvement 

below a threshold, or when population diversity falls below a given threshold.  

If the problem has a known global optimum, reaching this global optimum with a given 

precision (ε>0) can be defined as the stopping criterion.  

2.5 Uncertainty Quantification 

After building a reservoir simulation model and calibrating the model to historical data, 

the third stage of a reservoir performance study is uncertainty quantification using an 

ensemble of history-matched models. 

The range of acceptably history-matched reservoir simulation models reflects the non-

unique nature of the history matching process, which leads to uncertainty in production 

prediction, which is, in turn, a critical factor in decision making in the hydrocarbon 

production business. It is crucial not only to have an acceptable history-matched 

reservoir simulation model, but also to perform quantification of uncertainty associated 

with that model when it is used for predicting the performance of the reservoir. 

Uncertainly in reservoir simulation comes from the lack knowledge about the reservoir. 

Three sources of uncertainty are the lack of data, error in measurement of input data, 

and complexity of subsurface system and resolution of the model, we build. Uncertainty 

cannot be removed but can be measured and quantified which contributes to better 

decision making. Uncertainty quantification is to quantify the uncertainties associated 

with reservoir performance simulation, where the term reservoir performance is defined 

as oil and gas production rates, gas-oil ratio, water-oil ratio, and cumulative oil 

production. 

Since the knowledge and information we have on the subsurface, in the form of field 

data, is uncertain, decision-making in reservoir management must be performed under a 

state of uncertainty. According to decision theory, in such a situation, a set of primitive 

outcomes with probability of occurrence give an expected value that can be used for 

optimal decision-making. Reservoir uncertainty quantification is an essential part of 
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reservoir management in which, history-matched reservoir models are used for 

production optimization and forecasting incorporated with estimation of the uncertainty. 

In order to visualize and quantitatively assess the impact of subsurface uncertainties, in 

reservoir history matching, uncertainty parameters need to be explored and multiple 

realizations in a Bayesian framework need to be created. Multiple acceptably history-

matched models allow us to account for uncertainty in the model parameters, and assess 

the uncertainty in prediction. 

2.5.1 A review of uncertainty quantification methods 

A single history-matched model is insufficient to be used as the basis for key decision 

making in reservoir planning and management. It does not allow accounting for 

uncertainty and estimation of risk. Tavasolli et al. (2004) showed that a single best 

history-matched model is not necessarily a good predictor model for future performance 

of the reservoir. 

The third stage of a reservoir performance study is uncertainty quantification, using an 

ensemble of history-matched models. If correctly sampled, the ensemble of realisations 

obtained in history matching represents the posterior distribution, which provides an 

assessment of the uncertainty of the model parameters. Moreover, using these 

realisations for predicting the future performance of the reservoir, the uncertainty in the 

prediction can be obtained, which is usually shown using statistical properties such as 

the cumulative distribution function (CDF) or the credible intervals (i.e. P10, P50, P90) 

(Figure 2.2). 
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Figure 2.2: History matching and uncertainty quantification; red squares show observation data in history 
phase, each coloured line shows a possible fitting model. The history matched models are used for making 

predictions and in the prediction phase and their results show uncertainty bounds.  

In last two decades, many techniques have been introduced for estimating posterior 

distribution, hence quantifying the uncertainty from an ensemble of models. These 

techniques can be classified as approximate or Monte Carlo sampling.  

In the approximate techniques, we try to approximate the posterior distribution with a 

limited number of simulations or objective function calculations. However, the credible 

interval obtained by approximate techniques may be too narrow and unrealistic (Baker 

& Cuypers 2000).  

Monte Carlo Sampling techniques, in which sampling of the parameter search space is 

done using Monte Carlo simulation, are particularly common. This would requires 

numerous forward simulation runs, which are computationally expensive. To work 

around this problem, proxy models instead of forward simulations can be used, but they 

may introduce significant modelling errors.  

Design of Experiments and Response Surface Methods are also widely used for 

uncertainty quantification (e.g. see Damsleth et al., 1994, Manceau et al., 2001, and 

Montgomery, 2001). These are statistical approaches, first to identify uncertainty 

parameters that most affect the response variables in a minimum number of simulations 

and secondly, to fit a surface, usually a linear or quadratic model, to the response 

variables, then use it as a proxy for the simulation runs when it is used in Monte Carlo 

sampling.  
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The PUNQ project (Floris et al., 1999) proposed several approximate and sampling 

methods for quantifying uncertainty. The first class of these methods is the Maximum 

Likelihood solution plus local characterisation of the likelihood function (ML+) or 

Maximum A Posteriori solution, plus local characterisation of the objective function 

(MAP+) when the prior term is included (Roggero, 1997). Another class is Multi-ML 

and Multi-MAP, depending on the objective function used. In these methods, it is 

assumed that the objective function is truly multimodal and different history-matched 

models located at the distinct optima show the uncertainty. Multi-ML+ and Multi-

MAP+ form another class and are a combination of the two previous classes, i.e. local 

characterisation of the objective function around distinct local optima is used. Floris et 

al., (1999) also present the results of Monte Carlo sampling of the full posterior 

distribution. The final approach in the PUNQ project is that of Oliver et al. (1996) 

which aims to estimate the complete posterior using an optimisation technique to 

sample both the prior and the observation data, and hence, to reduce the number of 

simulation runs needed. 

Another sampling method is the Markov Chain Monte Carlo (MCMC) which can be 

used to estimate the posterior distribution from the ensemble of models obtained in 

history matching. The challenge here is that the shape of the posterior distribution is 

very highly dimensional, non-Gaussian and multimodal. This makes the MCMC 

algorithm inefficient and ineffective if not implemented correctly. 

Subbey et al. (2003) used NA-Bayes (NAB) introduced by Sambridge (1999) for 

reservoir uncertainty quantification. NAB is a Gibbs sampler which samples full 

parameter search space by drawing random proposal samples from the marginal 

likelihood probability and accepting new samples with the probability of Bayes factor 

(likelihood ratio of proposed to the current sample). Thus, the sampling density is 

proportional to the likelihood probability multiplied by the volume of the cell 

approximated by the sample. In NAB, instead of running forward simulations for each 

sample, the likelihood function is approximated using nearest neighbour in the existing 

models of the ensemble. 
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Christie et al. (2006) proposed a method to improve the resolution of ensemble by using 

an Artificial Neural Network (ANN) interpolant. In their method, the ensemble is 

extended with new models for which the likelihood is interpolated from the models with 

forward simulation using ANN.  

Ma et al. (2008) used a two-stage MCMC for uncertainty quantification in history 

matching. Their approach, in the first stage, uses a fast streamline-based approximation 

of the dynamic data for the MCMC candidates. In the second stage, only those 

proposals that pass the first stage are assessed by full physics simulation. Thus, they 

claimed significant improvement of the computational cost without loss of accuracy 

compared to MCMC using full flow simulations. 

Mohamed et al. (2010a) used Hamiltonian Monte Carlo (HMC) for sampling the 

posterior probability over the uncertain parameters. HMC is an MCMC method that 

makes use of gradient information to speed up random walk in a continuous space. 

Polynomial chaos expansion (PCE) has been used for uncertainty quantification 

(Ghanem & Spanos, 1991). It is a non-sampling based method to determine evolution of 

uncertainty in a model, when there is probabilistic uncertainty in the model parameters.  

2.5.2 Bayesian inference 

An ensemble of n models (Mj; j=1, ..., n) with their corresponding misfits are the 

starting point for many uncertainty quantification techniques. For a reservoir model, M, 

with d uncertain input parameters (Xi; i=1, …, d), uncertainty can be expressed as a 

probability distribution. Bayesian inference with Monte Carlo sampling provides a 

general framework for the uncertainty quantification of reservoir models. 

In history matching, different realisations of the reservoir model will be likely to have 

different fitness values. This makes the use of Bayesian integrals necessary, as models 

in the ensemble are not equally probable. The Bayesian solution of the inverse problem 

will be the posterior distribution of model, M, conditioned on the observation data, D, 

which is       . The posterior distribution is expressed using the Bayes theorem as: 
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∫            
 (2.6) 

where the denominator is a normalizing factor, as the probability value        should 

be between 0 and 1.      is the prior probability which describes the uncertainty about 

the model M, and it is represented with the model uncertain parameters and usually 

referred to as the parameterization.        is the likelihood of the model M, which 

tells us how likely it is that the observation data D fit the model M.  

Any available prior information about the model parameters should be included in the 

prior distribution of the parameters for history matching and uncertainty quantification. 

It is common to update reservoir simulation models based on more current data, and the 

updated model is similar to a previous model; an informative prior can become the 

present model; hence, the posterior distribution of parameters from the previous model 

may be used as the prior distribution of parameters for the present model. 

The likelihood function or likelihood contains the available information provided by a 

sample of the model when conditioned to data. The expression of the likelihood 

function depends on assumptions about modelling errors and measurement errors of the 

observation data. A challenge of history matching and uncertainty quantification in 

Bayesian inference is the proper definition of the likelihood function. If Gaussian errors 

are assumed for the data, the measure of model fitness (Misfit) is related to likelihood, 

as follows:  

                
(2.7) 

The demonstration of this equation is given in the following paragraphs. Reservoir 

simulation models always include an error term which is assumed to be independent of 

model, M. So the true (theoretical) data can be expressed by this error term and an 

approximate model asfollows: 

          (2.8) 
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where   is the true data of model,      is approximate model, and   is the modelling 

error.  

On the other hand, production observation data,    is a component of data  , that can 

be measured and usually there is an error   associated with the measurement    so that: 

       (2.9) 

From (2.8) and (2.9), one can obtain a general error term   for observation data of   and 

approximate model     : 

{
      

        
 (2.10) 

It is usually assumed that   and   are independent and Gaussian, so that the compound 

error term of modelling and measurement is expressed with mean zero and covariance 

matrix of  :  

         (2.11) 

where    is the covariance of measurement errors,    is the covariance of modelling 

error. 

Thus for a given model   ,   is a random vector with mean vector      and 

covariance matrix   and its conditional probability density function (PDF) can be 

expressed as follows (Oliver et al., 2008): 

       
 

√     √   
   [ 

 

 
(      )

 
   (      )] (2.12) 

The maximum likelihood estimate is defined to be model  , which maximises the 

likelihood function in (2.12). It is usually more convenient to work with the log-

likelihood rather than likelihood itself and also to work with a minimisation problem 

instead of maximization, so the maximum estimate of (2.12) can be converted to 

minimisation of the following objective function: 
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            (2.13) 

where        function is a measure of how the observation data fit the model response. 

If one assumes that components of error   in the equation (2.10) are independent and 

follow a random Gaussian distribution, the Misfit can be expressed as: 

        
 

 
∑ 

       

  
  

  

   

 (2.14) 

 where         is the k-th element of misfit (objective function), i is subscript running 

over observations, Nk is the number of observation for each element (dimension) of k, 

Oki is the observed value of response element k at observation i. Ski is simulated value of 

response element k at observation i. k is the standard deviation of errors for observed 

value of response element k at observation i. This equation is a form of weighted least 

square estimate. 

2.5.3 Bayesian model averaging 

Bayesian model averaging (BMA) is an approach to summarise the uncertainty in the 

model after observing the data. Leamer (1978) introduced the basic paradigm for BMA 

and pointed out that the only way that his implementation of BMA accounts for the 

uncertainty is through its model selection procedure. Madigan & Raftery (1995) 

reviewed BMA and proposed a way of introducing uncertainties into BMA. 

The posterior probability can be used simply to select the best model for prediction, 

which is usually the one with highest posterior probability or, in case of uniform priors, 

the one with the highest likelihood probability (maximum-likelihood prediction).  

However, if the posterior mass is not strongly concentrated on a particular model, the 

uncertainty in the model is considerable, and it would not be wise to leave out all other 

models. In such situations, BMA helps to quantify uncertainty by mixing it over models, 

using the posterior probabilities as weights. If a uniform set of sampled models is 

available, the expected value of a model’s predictive quantity ( ) can be obtained by 

mixing the inference from the individual models, i.e. 
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       ∑ (    )         

 

   

 (2.15) 

       represents the weighted expected value of   across all the models uniformly 

sampled and supported by the observation data  , to some extent. Subscript   iterates 

over number of models,  .  (    )  is the posterior probability of model    when 

conditioned to data  , and           represents the expected value of   for model   . 

With uniform prior probabilities in equation (2.6), equation (2.15) becomes: 

       
 

 ∑  (    )
 
   

∑ (    )         

 

   

 (2.16) 

where  (    ) represents the likelihood of model   . 

2.5.4 Monte Carlo integration and uniform sampling 

The model space in Bayesian inference can be extremely large, which makes the 

summation in equation (2.15) an exhaustive computation. Monte Carlo methods can be 

used to deal with very large model spaces. 

A formal definition of Monte Carlo methods was given by Halton (1970). He defined a 

Monte Carlo method as “representing the solution of a problem as a parameter of a 

hypothetical population, and using a random sequence of numbers to construct a sample 

of the population, from which statistical estimates of the parameter can be obtained”. 

An example of Monte Carlo methods includes Monte Carlo integration, which is a 

technique for numerical integration using random numbers, particularly for higher 

dimensions. In uncertainty quantification, it is extensively used to generate samples 

from a given probability distribution and then to estimate expectations of functions 

under this distribution.  

One can randomly choose a large number of independent and identically distributed 

(i.i.d.) model realisations from the prior distribution and do forward simulation of each 

model. In the unlikely event that  all of the sampled realisations are equally probable 
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(i.e. all samples have the same fitness value) and a uniform sampling is done over the 

parameter space, one can obtain predictive distribution of the reservoir model by 

averaging predictions from all the sampled models (Kalos & Whitlock 1986). 

      
 

 
∑  

 

   

 (2.17) 

where      is an estimate of predicted value  , N is the number of independent sampled 

models (a large number),    is the predicted value of sample j.  

The main drawback of the Monte Carlo methods in general was that they used to be 

extremely expensive to carry out as they involve lots of sampling and simulations. With 

the advance of digital computers, this has been changed dramatically and many physical 

and statistical random experiments which were difficult to perform have now become 

routine methods. 

2.5.5 Acceptance-Rejection Monte Carlo sampling 

Classical simulation techniques generate independent samples; hence, the successive 

observations can be said to be statistically independent. Therefore, they can be used in a 

Monte Carlo sampling for integration purposes. von Neumann (1951) pioneered an 

Acceptance-Rejection method based on the region under the density graph of a 

distribution.  

Acceptance-Rejection Monte Carlo (ARMC) sampling is a method which generates 

samples from an arbitrary probability distribution function         by using an 

instrumental distribution function         which is easier to sample from, so that 

           where c is a known constant where      . The algorithm for 

implementing ARMC sampling is as follows: 

1) Generate a candidate sample from        and draw normal random deviate    

from the standard normal distribution       . 

2) Check if         [     ]: 
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a. If True accept   as a realisation of      , 

b. Else reject   and repeat sampling from the step 1. 

An illustration of the ARMC method is shown in Figure 2.3. The acceptance ratio is the 

proportion of proposed samples accepted. Hence, if c is low, fewer samples are rejected, 

and the required number of samples for the target distribution      is obtained more 

quickly and sampling becomes more efficient. 

 
Figure 2.3: Illustration of the ARMC sampling method. Random points are chosen inside the dash-dot rectangle, 

cg(x), and rejected if they exceed the target distribution, f(x).  

 

2.5.6 Markov Chain Monte Carlo sampling 

Ordinary Monte Carlo is very powerful method for approximating the distributions and 

hence quantifying the uncertainty in predictions. However, it is limited to simulating 

independent realisations of high-dimensional model parameters. Markov chain Monte 

Carlo (MCMC) is a general methodology and a class of algorithms for sampling from a 

distribution that enables us to sample not only independent realisations but a Markov 

chain X1,X2, ...with transition probabilities and a stationary distribution.  

MCMC sampling in conjunction with the Bayesian inference enables us to create a 

random walk that has        as its stationary distribution. The random walk should be 

long enough so that the resulting samples closely approximate samples from        . 

The quality of the samples improves as the number of random steps in the walk 
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increases. These samples can be used directly for parameter inference and prediction. 

The Monte Carlo integration estimate for a future prediction f becomes:  

       
 

 
∑  ́

 

 ́  

 (2.18) 

The sample size, N, should be large enough. Subscript  ́ iterates over drawn samples. 

There are numerous MCMC algorithms. In this work, we consider two main types of 

MCMC, Metropolis-Hastings and Gibbs sampling algorithms. The general feature of 

these algorithms is to move around the stationary distribution in random walks. 

Unfortunately, it can take a long time to explore a high-dimensional parameter space, 

especially when parameters are correlated. There is no guarantee that the walker will not 

search already explored regions. 

Another problem of MCMC methods is that samples from the beginning of the chain, 

what is called the burn-in period, may not accurately represent the desired distribution. 

There is always some effect of the starting point of the random walk. This is why the 

samples taken in the burn-in period are not going to be counted towards the final set of 

samples and they must be thrown away. In addition, sampling using multiple walks 

from different starting points is a good strategy to minimise this effect. 

2.5.6.1 Metropolis-Hastings algorithm 

The Metropolis-Hastings algorithm (M-H) is a MCMC method to generate a sequence 

of random samples from a probability distribution through performing a random walk in 

parameter space and using a proposal density and a method for rejecting/accepting 

proposed moves. The M-H method was first introduced by Metropolis et al. (1953), and 

then generalised by Hastings (1970). For a review and introduction of the M-H method, 

see Chib and Greenberg (1995). 

In the M-H algorithm, instead of an instrumental distribution function in the ARMC 

method, a Markov transition density matrix   is used to go from state     to  . To 

sample from a probability distribution function      , it needs to be initialised with 
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some    for which         . Then for each state               one can execute 

following steps:  

1) At the current state   , generate          , 

2) Generate a normal random deviate          and then calculate: 

     {
                  
                       

 

where           {  
          

          
} is called the acceptance probability. 

(2.19) 

Thus, one can obtain a M-H Markov chain of                    in which     is 

approximately distributed according to     , for large  . 

If the proposal function        does not depend on    , i.e.              , the 

acceptance probability becomes            {  
        

        
}, and hence the algorithm 

here referred to as independence sampler. The independence sampler is similar to the 

ARMC method, but, differently, it generates dependent samples.  

The original algorithm was introduced (Metropolis et al., 1953) for symmetric proposal 

functions, i.e.                and            {  
    

    
} . The algorithm with 

symmetric proposal functions is referred as random walk sampler. Hastings (1970) 

modified the algorithm for non-symmetric proposal functions, hence the algorithm is 

named the Metropolis-Hastings algorithm. 

2.5.6.2 Gibbs sampling 

Gibbs sampling is another common MCMC method.  It is a particular case of the 

Metropolis-Hastings algorithm in which conditional distributions of multivariate 

distribution are sampled instead of joint probability distribution. This is useful when 

direct sampling of the joint distribution is difficult. In addition, the acceptance 

probability is always 1.0, so that all the proposed samples are accepted. 
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Gibbs sampling is a popular method because it has no tuning parameters, but it is 

restricted to sampling problems, for which, samples can be generated from the 

conditional distributions (e.g. marginal probabilities). 

In the general case of a system with D parameters, a single iteration involves sampling 

one parameter at a time from the marginal probability distribution  (           . The 

algorithm for the Gibbs sampler becomes as follows: 

1) Initialise   at    , i.e.     
      

        
    . 

2) At current time  , generate D samples as follows: 

 draw   
     

 from        
      

        
    , 

 draw   
     

 from        
        

        
   

), 

 draw   
     

 from        
        

          
    , 

 ... 

 draw   
     

 from        
        

            
       

3) Set       and continue from the step 2, until the number of desired samples 

is achieved. 

The algorithm was first introduced and used by Geman and Geman (1984) and they 

named it the Gibbs sampler. The first application of the algorithm for solving problems 

in Bayesian inference was carried out by Gelfand et al. (1990). 

2.6 Clustering 

Throughout this thesis, we refer to a model as a realisation of a reservoir model with a 

set of uncertainty parameters. Later in this thesis, we use clustering techniques to group 

a set of models in such a way that models in the same group are more similar.  

Classification and clustering are two types of machine learning techniques. Unlike data 

classification, data clustering is an unsupervised learning technique, i.e. labelled data 

sets are not required as training data, and generally the performance of data clustering is 
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often poorer than data classification. A labelled data set is often difficult, expensive, and 

sometimes (e.g. in reservoir uncertainty quantification) impossible to obtain. 

In many machine learning problems, there is little prior information available about the 

data. This is the case in uncertainty quantification, where one cannot easily obtain 

statistical models of the data. In such situations, the decision-makers make few 

assumptions about the data (e.g. underlying distribution of the data). Clustering is an 

appropriate technique for exploration of possible relationships between the data 

elements and their structure. 

Clustering is the process of grouping a set of data elements (e.g. points, objects, etc.) 

into classes of similar data elements. In the application of the clustering for uncertainty 

quantification, data elements are reservoir models represented by a vector of their 

uncertain parameters. Uncertainty parameters serve as the features of the data elements; 

we only use quantitative continuous parameters, which are normalised between (0, 1).  

Similarity of models is quantified using a metric on the parameter space. Depending on 

the nature of the data and the aim of clustering, different measures of similarity may be 

used. Two main distance measures are Euclidean and Mahalanobis distance. In the 

current work, we use Euclidean distance for clustering. 

The Euclidean distance measure is one of the most widely used similarity measures. It 

works well for the compact or isolated clusters, which have spherical, Gaussian shape 

(Mao & Jain, 1996). Linear correlation among parameters can be problematic for this 

distance measure. Euclidean distance measure is expressed as follows: 

       √∑        
 

   

 ‖   ‖  (2.20) 

where X and Y are two models represented by row vectors of total D parameters. 

In the case of linear correlation among the parameters, one must use the squared 

Mahalanobis distance (Mahalanobis 1936). This distance assigns different weights to 

different parameters, based on their variances and pairwise linear correlations: 
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            ∑
  

     
 
 (2.21) 

where ∑ is the sample covariance matrix of the parameters. 

The aim in clustering is to maximize within cluster similarity while minimizing between 

cluster similarity, regardless of the type of similarity measure. These objectives form a 

combinatorial optimisation problem for which it is difficult to find the exact solution 

and the optimum clustering is commonly found using an iterative approach. 

There are two types of clustering: hard clustering and soft clustering. In hard clustering, 

each point will be assigned to one and only one data cluster, i.e. partial membership is 

not allowed, and clusters are partitions of the data. In soft clustering (also referred to as 

fuzzy clustering), each data element has a probability of membership to several clusters. 

Thus, data elements can belong to more than one cluster, with different levels of 

membership. In this thesis, two hard clustering techniques, K‐means and agglomerative, 

and one soft clustering technique, probabilistic distance, are used. 

Clustering techniques are also classified into flat and hierarchical techniques. A flat 

technique creates a single partition of the data without resorting to the hierarchical 

procedure, while hierarchical clustering generates nested clusters. K‐means and 

probabilistic distance are flat techniques while agglomerative is a hierarchical 

technique. 

In this thesis, we use three clustering techniques as follows: 

2.6.1 K-mean clustering  

K-mean Clustering (KMC), first presented by MacQueen (1967), is the most widely 

used hard clustering algorithm. The KMC procedure follows a straightforward and easy 

way to classify a given data set through a certain number of clusters. KMC is carried out 

in the following steps:  

1. Select k random models as initial cluster centres c.  

2. For each model m: 
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2.1. for each cluster centre ck: 

2.1.1. Compute the sum of squares of the Euclidean distance, equation (2.20), 

between m and ck. 

2.2. Assign m to its closest cluster centre ck.  

3. Move each centre c to the mean of its assigned models. 

4. Go to step 2 and repeat (i+=1) until the algorithm converges. The convergence time 

is when cluster centres do not change. 

KMC is efficient in terms of computational time, with time complexity of O(IKND), 

where D is the number of parameters, N is the number of models, K is the number of 

clusters, and I is the number of iterations needed for convergence. In addition, KMC 

always converges quickly, although the global optimum is not guaranteed. 

KMC is highly sensitive to initialization, as it is a stochastic algorithm and initial cluster 

centres are chosen randomly; thus one must perform the algorithm several times with 

different starting models. KMC is also sensitive to outlier models. Another problem 

with KMC is the assumption that clusters are spherical and may have a problem with 

non-convex shape; in addition, it is sensitive to variations in sizes and densities of 

clusters. 

2.6.2 Hierarchical Agglomerative Clustering  

Hierarchical Agglomerative Clustering (HAC) (Manning et al., 2008) is common non-

flat hard clustering technique, outputs a hierarchy which does not result in distinct 

clusters and a discrimination criterion should be used to determine the number of 

clusters. HAC forms a dendrogram and clusters of different granularity can be created 

by stopping at different levels of this dendrogram.  

Hierarchical clustering algorithms are either top-down or bottom-up. Bottom-up 

(agglomerative) algorithms take each model as a cluster, in the first place, and then 

successively agglomerate pairs of clusters until all clusters have been merged into a 
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single cluster. Top-down algorithms start from all the models in single clusters, then 

split the clusters recursively until each contains only a single model. 

HAC uses the Euclidian distance between two clusters as the measure of similarity, 

based on the one of the following linkage type (Figure 2.4): 

 Single link: the minimum of the distances between all pairs of models taken 

from two clusters. It tends to produce straggly or elongated clusters. 

 Complete link: the maximum of the distances between all pairs of models 

taken from two clusters. It produces tightly bound or compact clusters. 

 Centroids link: Two clusters with the closest centroids are merged. 

 Average link: Two clusters with the average of all the pairwise distances 

from two clusters are merged. 

     

      

Figure 2.4: Link types for two clusters (A and B) in HAC; single link (top-left), complete link (top-right), 
centroids link (bottom-left), and average link (bottom-right). 



Chapter 2: 

A literature review on Reservoir History matching and Uncertainty Quantification 

and Algorithms Used 

 

 

4848 
 

 

A simple process for the HAC algorithm is as follows: 

1. Start with each model in a separate cluster (K=N). 

2. Calculate (if K=N) or update (if K≠N) distance between clusters. 

3. Join the closest pair of clusters, based on selected link type. 

4. Go to step 2 and continue until there is only one cluster (K=1). 

HAC could be computationally expensive as it has time complexity of O(N
3
D), where D 

is the number of dimensions, N is the number of models.  

2.6.3 Probabilistic Distance Clustering  

Probabilistic Distance Clustering (PDC) (Ben-Israel. 2006, Iyigun & Ben-Israel, 2008) 

is a flat soft clustering technique, which like KMC, uses the sum of squares of 

Euclidean distance from the cluster centres as the similarity measure. In PDC, each data 

point is associated with a probability of membership to the cluster centres.  The 

governing principle for PDC is that this probability is inversely proportional to the 

distance, i.e. for each model m and for each cluster with centre ck, following relation is 

true: 

                                      
(2.22) 

Thus, the closer the data point to the cluster centre, the more probable cluster 

membership. The procedure to perform PDC is as follows: 

1. Select K random models as initial cluster centres, ck = c1, c2 …, cK,  

2. For each model mi of total N models, mi = m1, m2 …, mN: 

2.1. For each cluster centre ck: 
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2.1.1. Compute the sum of the squares of Euclidean distance between model mi 

and cluster k centre ck:   

         √∑          
 

   

 (2.23) 

where D is the number of dimensions (parameters). 

2.2. Assign probability of mi belongs to cluster k: 

        
∏         

 
   

∑ ∏         
 
   

 
   

 (2.24) 

3. Compute new cluster centres (c k
 *

) using computed probabilities: 

  
  ∑ (

      

∑   (  )
 
   

)    

 

   

 

  

              
      

 

        
 

(2.25) 

4. Go to step 2 and repeat until the algorithm converges. Convergence happens when 

the shift in cluster centres is less than a predefined cutoff ratio ε: 

∑ ∑(   
     )

 
 

   

 
 

 ⁄

 

   

   (2.26) 

The performance of PDC can be sensitive to probability cut-off. In addition, sometimes 

it struggles to converge, in which case the time complexity may get large. 

Although PDC uses initial random cluster centres, unlike KMC, it is less sensitive to 

both initialization and outliers. 
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2.6.4 Clustering of the Iris dataset 

The Iris data set introduced by Fisher (1936) is the standard multivariate data set for 

clustering techniques. It consists of 50 samples from each of three species of the Iris 

flower: Iris setosa, Iris virginica and Iris versicolor. For each sample, four features were 

measured: the length and the width of the sepals and petals. Clustering of the samples is 

then carried out based on the combination of these four features. 

In the present research, clustering of the Iris samples was performed using each of the 

three algorithms for a fixed number of clusters, here equal to three. The experiments 

were repeated 10 times with different random seeds, due to the stochastic nature of the 

KMC and PDC. The results (Figure 2.5) show PDC outperforms KMC and HAC, as it 

better matches the truth case. 

  

Figure 2.5: Results of Iris data set clustering as carried out in the current research; PDC results in closer 
clusters to truth case for all three species (left) and  outperforms KMC and HAC in obtaining clusters with more 

samples matched with truth case (right). 

 

2.7 Discussion 

The ‘No free lunch’ theorem presented by Wolpert (1995) states that there is no single 

optimisation algorithm that is better than all the other rival algorithms on all the 

problems. There is a data set that an algorithm works well on and another on which it 

does not. Every history matching is a different optimisation problem; therefore, for each 
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history matching, the right algorithm should be selected. If we had plenty of 

computational resources, we could test multiple algorithms and control the parameters 

for each problem.  

With limited computational resources, the main question is whether a selected algorithm 

uses a flexible mechanism or not, in other words, how it adapts to the structure of the 

problem so that it can be employed in different problems in a reliable way and with an 

acceptable performance. There are several important factors that affect the performance 

of the algorithm in general and in history matching or uncertainty quantification 

problems as specific. These factors are briefly discussed below. 

The way that we convert the history matching to an optimisation problem has a 

significant impact on the results. This includes two main steps, the uncertainty 

parameterisation and misfit definition. When parameterising the reservoir model for 

history matching it is necessary to capture and consider all the key sources of 

uncertainty, using a sensitivity study. Pre-processing and quality control of the historical 

data are required for an effective misfit definition. If required, the quality of the match 

(misfit) could be expressed using multiple components, and then a multiobjective 

optimisation can be used instead of a single objective (overall misfit) optimisation. 

The choice of the algorithm and the way that it adapts to the structure of the problem are 

other influential factors. The parameter space could be continuous or discrete. The 

number of search parameters could be extremely high, and they could have an unknown 

form of relationship with each other. The misfit landscape changes between different 

history matching problems, and hence the algorithm is required to perform a search 

which spans all the regions of the parameter space. It also should be able to give enough 

degree of refinement in possible regions of the minimum misfit. As mentioned earlier, 

such a quality search should be achieved with minimum possible algorithm testing and 

parameter tuning. The use of search algorithms with implicit and explicit adaptive 

mechanisms is a way forward for this problem. 

Bayesian methodology is used in uncertainty quantification to obtain the posterior 

probability of prediction from an ensemble of history-matched models. The 

methodology involves identifying uncertainties of the model and integrating them in the 
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simulation representation, propagating them through the history matching framework, and 

finally quantifying the uncertainties in the model prediction. MCMC methods can be used 

to sample the posterior distribution. Simple MCMC variants are prohibitively expensive, 

due to slow mixing and convergence of the random walk, making it difficult to use in 

practical applications. Later in this thesis, we introduce a new uncertainty quantification 

method, based on the MCMC sampling in a Bayesian framework.  
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CHAPTER 3:  

ESTIMATION OF DISTRIBUTION 

ALGORITHMS  

 

 

3.1 Introduction 

Since the knowledge and information we have on the subsurface, in the form of field 

data, is uncertain, decision-making in reservoir management must be performed under 

uncertainty. According to decision theory, in such a situation, a set of primitive 

outcomes with probability of occurrence provide an expected value that can be used for 

optimal decision-making. Therefore, in order to get better development decisions under 

subsurface uncertainty, one requires this uncertainty to be quantified. Reservoir 

uncertainty quantification is an essential part of reservoir management, in which 

history-matched reservoir models are used for production optimization and forecasting, 

incorporated with estimation of the uncertainty. 

In order to visualize and quantitatively assess the impact of subsurface uncertainties, 

uncertainty parameters need to be explored and multiple realizations in a Bayesian 

framework need to be created. As we search parameter space, history matching is 

converted to an optimization problem with the objective of minimizing deviation from 

the historical data. As pointed out above, history matching is an inverse problem, and 
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just like any other inverse problem has non-unique solutions. Nevertheless, multiple, 

acceptably history-matched models allow us to account for uncertainty in the model 

parameters, and estimate the uncertainty in prediction.  

As discussed in Chapter Two, the exploration of parameter space and the generation of 

multiple model realizations in history matching are performed by three overlapping 

groups of algorithms: deterministic, stochastic, and data assimilation.  Deterministic 

approaches are typically gradient-based methods, making use of the derivative of 

objective function with respect to reservoir parameters (Jahns, 1966; Coats et al., 1970; 

Thomas et al. 1971). In such approaches, uncertainty is usually estimated based on the 

local Hessian. However, given the reliance of these algorithms on the local gradient, 

there is always a significant chance of the algorithm becoming trapped in a local 

minimum.  

Stochastic approaches incorporate probabilistic elements that allow the algorithm to 

escape from local minima, and hence find better minima elsewhere in the search space. 

Furthermore, this makes the algorithm less sensitive to modelling errors. Stochastic 

approaches differ in terms of maturity and sophistication, from uncomplicated random 

search to local search based methods such as simulated annealing and tabu search, and 

finally, to evolutionary population-based algorithms that aim to exploit interaction 

between different solutions to improve the quality of the search.  

Stochastic search algorithms, such as genetic and evolutionary algorithms, exploit 

knowledge of the distribution of good solutions, amongst those already visited, in order 

to select wisely new points in the search space to evaluate. In the case of genetic 

algorithms, this information is stored implicitly in the current population. It is exploited 

through the application of variation operators, such as crossover and mutation in genetic 

algorithms, to the solutions in this population, which, it is hoped, lead to the generation 

of improved solutions. 

The success of genetic algorithms is sometimes attributed to the building block 

hypothesis (Goldberg, 1989), whereby it is conjectured that the genetic algorithm 

efficiently identifies and recombines building blocks, i.e. solution components, or 

schemata, with above average fitness. However, in practice, genetic operators often 
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break such partial solutions, especially when these schemata are large, spread widely 

across the solution or when operators such as uniform crossover are used. 

This raises the possibility of an alternative approach: one can try to understand 

explicitly high quality building blocks and integrate these solution components when 

generating new solutions. This approach would prevent the destruction of high quality 

schemata by the crossover operators and is the underlying concept behind Estimation of 

Distribution Algorithms, or EDAs.  EDAs create an explicit model of the distribution of 

good solutions found so far that can, hopefully, be used to generate improved solutions 

in the future. Therefore, instead of manipulating solutions from some population, new 

solutions are generated using the model. As the search proceeds, the model is updated 

or adapted as new solutions are evaluated. 

EDAs as population-based evolutionary stochastic algorithms are natural and attractive 

alternatives to genetic algorithms. Unlike genetic algorithms, EDAs do not require 

multiple tuning parameters; provide an underlying model that is transparent and 

expressive. EDAs use a probabilistic model to guide the search process, which is learnt 

from the promising solutions in each population and subsequently used to generate new 

solutions.  

Many EDAs have been developed, differing in the complexity of the models generated, 

the degree to which interactions between variables can be modelled, the style of 

learning used (gradual adaptation vs. recalculation of the model) and the type of 

problem to which they can be applied (discrete vs. real valued). Of many EDA variants 

in existence, Petrovska & Carter (2006) applied the Population-Based Incremental 

Learning (PBIL) algorithm to the history matching problem. They showed that their 

selected EDA (PBIL) better suited to the subsurface uncertainty application than genetic 

algorithms and yielded robust results. 

In this chapter, we introduce and explore the application of Estimation of Distribution 

Algorithms (EDAs) to uncertainty quantification. We describe three EDA Algorithms, 

underlining the nature and complexity of the probabilistic model of each EDA variant. 

Then we apply EDAs to the uncertainty quantification problem of the PUNQ-S3 

synthetic model and the history matching problem of a full-field model of a North Sea 
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oilfield, emphasizing the EDA paradigm's potential for further research in history 

matching and uncertainty quantification. 

 

3.2 Estimation of Distribution Algorithms 

As explained above, the success of genetic algorithms is usually attributed to the 

building block hypothesis, wherein it is hypothesized that a genetic algorithm preserves 

and combines the building blocks that are found in good solutions to create still better 

solutions. Here, a building block is some part of the solution, for example, a sequence of 

bits in a bit string representation. This hypothesis might be true when considering small 

building blocks, such as individual bits in a bit string. If good solutions tend to have a 1 

in position 4 in a bit string, then via the elimination of poor quality solutions and the 

selection of high quality parents, a 1 in this position will appear more frequently in the 

generated children. However, larger building blocks or blocks consisting of widely 

separated parts of the solution tend to be disrupted by the application of the mutation 

and crossover operations. 

A natural alternative to the genetic algorithm approach is to attempt to detect the 

building blocks that make high quality solutions. In other words, we attempt to 

determine explicitly what makes a good solution. This knowledge can then be used 

intelligently to generate new solutions that combine building blocks with minimal 

disruption. This approach is the basis of Estimation of Distribution Algorithms. 

A large number of Estimation of Distribution Algorithms (EDAs) are reported in the 

literature, differing to lesser or greater extent in the details of implementation. However, 

they each share a similar overall structure, involving the selection of a set of good 

solutions (and possibly a set of bad solutions), the fitting or adaptation of a model to the 

solutions selected and the generation of new solutions using the model. 

3.2.1 Structure of EDAs 

Like any other population-based EA, to solve an optimisation problem using an EDA, 

the problem is described using a number of design variables (parameters) thus a vector 



Chapter 3: 

Estimation of Distribution Algorithms 

 

 

5959 
 

of parameter values represents a solution for the problem. In EDAs, we create a set of N 

different parameter vectors (solutions) and consider it as a population of solutions. The 

quantity N is called the population size. All the solutions in the population are evaluated 

for their performance, and the quality of the solution is expressed in terms of a scalar 

valued objective function. Solutions with the lower or greater objective functions 

respectively, in a minimisation or a maximisation problem, are considered promising.  

The algorithm proceeds to select the P, for which P<N, promising solutions out of the 

population to become the parents of the next generation according to the principle of 

natural selection, survival of the fittest. The algorithm then constructs a probabilistic 

model for each parameter out of the P promising solutions and generates a set of C new 

child solutions (children) by sampling the constructed probabilistic model. The total 

population is updated by adding the new child solutions and replacing some of the old 

ones and discarding unpromising solutions (truncation). The process is continued to the 

next generation until the stopping criterion is met. A stopping (or termination) rule 

could be a specified total number of generations or total number of function evaluations, 

a desired optimum value for the objective function, or a convergence situation where no 

improvement is made to fitness value in two successive generations.  

Figure 3.1 shows the general structure of the EDAs. The shared element in all EDAs is 

that the true probability distribution of solutions is unknown, and one requires 

probabilistic models that are able to estimate the probability distribution of promising 

solutions effectively. New child solutions can then be generated using the estimated 

distribution model. Because of this model-building feature, EDAs are also called 

Probabilistic Model Building Genetic Algorithms (PMBGAs) (Pelikan et al., 1999). 



Chapter 3: 

Estimation of Distribution Algorithms 

 

 

6060 
 

 

 
Figure 3.1: The structure of a typical EDA.  

3.2.2 Classification of EDAs 

A large number of EDAs are reported in the literature, differing to a lesser or greater 

extent in the details of implementation. Different variants of EDAs have specific 

characteristics which enable us choose and implement an appropriate EDA to deal with 

a particular optimisation problem. 

Probabilistic models used by EDAs vary from discrete to real-coded problems; they 

may consider no interaction, pairwise interactions, or multivariate interactions between 

parameters; they may use basic probability models, such as histograms, or more 

sophisticated graphical models, such as Bayesian networks. 

Here we classify EDAs according to three features: the solution representation and type 

of the problem to which they can be applied, the complexity of the probabilistic model 

used, and the extent to which the relationships between the variables are captured. 
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3.2.2.1 Solution representation  

EDAs can be designed for different representation types of the individuals in the 

problem: binary, discrete or real-coded (Pelikan et al. 2012).  There are many EDAs 

which are designed for and work with discrete representations of the solutions. One way 

of handling continuous domains is to discretise the range of the parameter to a limited 

number of bins, then use discrete EDAs. Continuous domains can also be modelled 

using real-coded EDAs, which generally assumes a distribution function. 

In history matching, most of the variables are encoded in the continuous domain. 

Examples are different multipliers used to adjust the original values in the model. 

Discrete variables are also possible in history matching, typically representing a 

situation in the reservoir model such as a fault is closed or not, a rock-type or PVT 

model, etc. 

In current chapter, we introduce and use histogram-based EDAs for history matching, 

which are natively working with discrete variables. In the next chapter, we describe a 

class of real-valued EDAs, Gaussian-based EDAs, and apply them to history matching. 

3.2.2.2 Computational cost 

One criterion could be the complexity of the probabilistic models used, and therefore 

the trade-off between the expressiveness of the probabilistic model and the 

computational cost of storing and learning the model. Simple models require less 

storage and computational resources, but are less capable of representing higher order 

interactions between variables. On the other hand, complex EDA models require 

learning algorithms that are costly in terms of storage and computation efficiency.  

However, in history matching and uncertainty quantification, since the evaluation of 

solutions (reservoir simulations) already has a high computational cost, the additional 

cost of the sophisticated algorithms is unlikely to concern us. 

3.2.2.3 Interaction between variables  

Information about the interactions of the problem variables can increase the efficiency 

and the efficacy of the EDA if properly used. This information can be obtained by 

learning probabilistic dependencies in a set of realisations.  Knowledge about the 
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problem may include the prior information about the interactions (e.g. see Baluja, 

2006). Perturbation methods are deterministic and stochastic methods, which work by 

examining fitness differences by perturbations on variables, thus detecting sets of 

variables that are linked (e.g. see Munetomo & Goldberg, 1999). These approaches are 

ways of collecting information about the interaction between variables, and then 

choosing and employing an EDA according to the learnt information and adapting it to 

the dependency structure. 

The extent to which the relationships between the variables are captured is another 

factor in designing and implementing EDAs. Therefore, EDA algorithms can be divided 

into different approaches depending on the degree of the interaction and dependency 

between variables that they take into account. In general, the following three levels of 

dependency can be defined: 

3.2.2.3.1 No dependencies 

Univariate EDAs such as Univariate Marginal Distribution Algorithm (UMDA), 

(Mühlenbein & Paaß, 1996), compact Genetic Algorithm (cGA) (Harik et al., 1999) and 

Population-Based Incremental Learning (PBIL) (Baluja, 1994) are the simplest EDA 

algorithms, as they do not assume interactions between the variables. They consider 

only the individual variables by factorizing the joint probability distribution of the 

selected solutions as a product of univariate marginal probabilities, as shown in 

equation (3.1). Only these marginal probabilities are used in the learning process: no 

other structural learning is needed. Thus, it is assumed that n-dimensional joint 

probability distribution is factorised as: 

               ∏     

 

 

 (3.1) 

Therefore, only marginal probabilities are used in the learning process, and no other 

structural learning is needed. Univariate EDAs have been shown to be effective 

optimizers on some problems with no or weak interactions between the variables. 

However, they are typically applied to problems with discrete variables. One way to 

deal with real parameters is to try to fit a certain probability distribution to the selected 

solutions. For example, Stochastic Hill Climbing with Learning by Vectors of Normal 
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Distributions (SHCLVND) fits normal distributions to each variable. In the next 

chapters, we will introduce and use a univariate Gaussian-based EDA which uses 

Gaussian (Normal) distribution. 

Histogram-based models are able to model multi-modal, non-normal distributions. In 

this chapter, we introduce and apply two of the histogram based models: the Basic 

Histogram Model and the Equal Area Histogram Model. 

3.2.2.3.2 Bivariate dependencies 

There is another set of EDAs, designed to consider bivariate dependencies to solve the 

problems with pairwise interaction between variables. Among these EDAs are the 

Mutual Information Maximizing Input Clustering (MIMIC) Algorithm (De Bonet et al., 

1997), Combining Optimizers with Mutual Information Tress (COMIT) (Baluja & 

Davies, 1997) and the Bivariate Marginal Distribution Algorithm (BMDA) (Pelikan & 

Mühlenbein, 1999).  

3.2.2.3.3 Multivariate dependencies 

In many real world optimisation problems multiple interactions occur. Multivariate 

EDAs, such as the Factorized Distribution Algorithm (FDA) (Mühlenbein et al., 1999), 

EBNA (Etxeberria & Larrañaga, 1999), the Bayesian Optimization Algorithm (BOA) 

(Pelikan et al., 1999) and the Estimation of Bayesian Network Algorithm (EBNA) 

(Larrañaga et al.,  2000), take into account higher orders of the dependencies between 

variables. They factorize the joint probability distribution using statistics of order 

greater than two; therefore, the complexity of the probabilistic structure increases. As a 

result, the more complex learning process in these algorithms results in higher 

computations. However, by modelling the interactions between the variables, such 

algorithms can explicitly detect and preserve building blocks that cannot be handled by 

UMDAs or genetic algorithms. From multivariate EDAs, in current chapter, we 

describe and employ BOA and in Chapter 6, we will discuss and apply multivariate 

Gaussian-based EDA for history matching. 

3.2.3 Basic Histogram Model (BH) 

The Basic Histogram Model is used for strings of real values. The permitted range for 

each variable is split into equal sized bins, and a marginal probability value is stored for 



Chapter 3: 

Estimation of Distribution Algorithms 

 

 

6464 
 

each bin for each variable. Initially, these values are set to 1/c where c is the number of 

bins. After selecting good solutions, the probability for bin b, variable i, is set to nib/n, 

where nib is the number of solutions with a value for variable i that occurs in bin b and n 

is the total number of solutions.  

New solutions are generated by selecting a bin for each variable according to the stored 

probability values. A value for each variable is selected at random within the range of 

the bin. Figure 3.2 illustrates how the basic histogram approach for a single variable 

models the marginal probability distribution over the selected solutions. The graph plots 

probability density against variable value, while above the graph are the probabilities 

for selecting each bin. This shows the histogram that would be generated given a 

variable that is permitted to take values in the range [1.4, 2.4] when, for example, 100 

solutions are selected, 25 occurring in the first bin, 16 in the second and so on. 

 

Figure 3.2: Basic Histogram Model; variable range is split into equal sized bins. 
 

3.2.4 Equal Area Histogram Model (EAH) 

The Equal Area Histogram Model is also used for real-valued strings and uses the 

approach of partitioning the valid variable ranges into bins. However, the probability of 

selecting a bin is kept fixed at 1/c. Having selected n good solutions, the boundaries of 

bins are placed so that precisely n/c solutions occur in each bin. The first and the last 

boundaries are placed at the lower and upper bounds for the variable, while the internal 

boundaries are placed equidistant between the last solution before the boundary and the 

first one after it. This approach allows the model to focus on a small part of the 



Chapter 3: 

Estimation of Distribution Algorithms 

 

 

6565 
 

allowable range, for example, if the allowable range has been set unrealistically wide. 

Figure 3.3 shows the distribution of one of the variables for 20 good solutions at the top. 

The lines demarcate the ten bins generated, while the graph shows the resulting 

probability density. Note that each bar is of equal area, providing the name of this 

model type. 

 
Figure 3.3: Equal Area Histogram Model; variable range is split into equal area bins. 

 

 

3.2.5 Bayesian Optimization Algorithm (BOA)  

BOA uses the Bayesian network for modelling. We will first describe a generation of a 

solution consisting of five bits (Figure 3.4). The network consists of a node for each bit 

in the solution representation and edges that represent relationships between the bits. 

For example, in Figure 3.4, the arrow from node 2 to node 3 indicates that the 

probability that bit 3 should be set depends on whether bit 2 is set. Associated with each 

node is the probability that the corresponding bit should be set, given the values of the 

bits associated with the parent nodes. As a whole, the network encodes the joint 

probability distribution for the values of all the bits in the solution representation. 

Solutions are constructed from the network one bit at a time. Nodes in the network are 

visited in a sequence that ensures that parent nodes are visited before child nodes. On 

visiting a node, the associated bit is set according to the probability provided by the 

node and the values of the bits associated with any parent nodes.  
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Figure 3.4: A simple Bayesian network for a five-bit problem. 

 

For example, the nodes in Figure 3.4 may be visited in the sequence 1, 0, 2, 3, 4. 

Suppose we have already visited node 1 and set bit 1 to zero. Then, on visiting node 0, 

we look up the probability that bit 0 should be set to one, given that bit 1 has already 

been set to zero, giving us a probability of 0.9. The value of bit 0 is set accordingly, and 

we proceed to the next node in the sequence. 

Note that this implies a constraint on the structure of the network: it is essential that the 

network be acyclic. In addition, the user specifies an upper bound on the number of 

parent nodes that any node in the network may have. This controls the complexity of the 

network and places a user-defined limit on the amount of inter-variable interaction 

modelled by the network. 

Creating the network consists of two steps: learning the network structure and assigning 

the probability values. Once the network structure has been determined, probability 

values are assigned in much the same way as in univariate EDAs. For example, given 

the network structure in Figure 3.4, the probability that b0 should be set to one, given 

that b1 is set to zero, is determined by considering the subset of the good solutions that 

have b1 set to zero. The frequency with which b0 is set to one within this subset provides 

the new probability value for the model. Therefore, if 95% of this subset of solutions 

has b1 set to one, the probability value is set to 0.95. 
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Determining network structure is treated as an optimization problem. Network quality 

can be measured using the Bayesian Dirichlet metric, which combines the prior 

knowledge about the problem, and the statistical data from a given data set in the form 

of the posterior probability,        with the Bayes theorem. The higher the       , 

the more likely it is that the network B is a correct model of the data set D; i.e. the 

posterior probability should be maximized. The Bayes theorem is expressed as follows: 

       
           

    
 (3.2) 

Denominator      is the probability for Data  , which is neglected, as it is constant for 

all the networks that we compare. The prior probability for network       , is set to 

1.0 for all networks in this work, i.e. no network is favoured by having a larger prior. 

The likelihood, term       , is approximated with the Dirichlet distribution: 

       ∏∏
 (  (   
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)   (      
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 (  (      
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 (3.3) 

The term  (   
) is a count of instances in the data   where the variables    

 (the 

parents of   ) are instantiated to the values    
, while  (      

) is the number of 

instances where    is set to    and variables    
 are set to    

. (If    
 is empty, it is 

assumed to one possible value, with all   items of data in   having    
 instantiated to 

this value.) The terms   (      
)  and   (    

)  encode prior information about the 

number of instances with    set to    and    
 set to    

. In this work, each   (      
) 

is set to 1, implying that   (    
) should be set to the number of possible values for   , 

i.e. 2, in the case of a bit string representation. 

As mentioned earlier, the optimization of the network structure is performed subject to 

two constraints. First, the network must be acyclic. Second, the number of parent nodes 

of any node in the network is constrained to be less than a user specified parameter  . 

This allows a balance to be struck between the expressiveness of the resulting network 

and the cost of finding the optimal network. 
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It is known that for values of   greater than one, the problem of determining the best 

network structure is NP-hard (Heckerman et al., 1994). However, since the optimization 

of the network structure must be performed in each generation of BOA, the amount of 

optimization that can be performed is limited. Typically, a basic local search based 

method is used. Here, we perform a steepest ascent local search, starting from the empty 

network and only permitting edge additions (see Pelikan et al., 2000). At each step, each 

candidate for a new network edge is considered. If an edge results in a cycle or breaks 

the constraint on the number of parent nodes, then the edge is discarded. Otherwise, the 

addition is evaluated according to the Bayesian Dirichlet metric. The edge that 

maximizes this metric while satisfying the constraints is added. 

A number of techniques are used to improve the performance of the optimization of the 

network structure (e.g. see Heckerman et al. 1994). Firstly, the factorials in the Bayesian 

Dirichlet metric can lead to numerical issues. Hence, the algorithm optimizes the 

logarithm of this metric. Secondly, it is possible to calculate the change in the metric 

upon the addition of a candidate edge, rather than calculate the entire Bayesian Dirichlet 

metric from scratch. Finally, whenever an edge is added to the network, the algorithm 

can update the cost changes associated with each remaining candidate edge, noting that 

the cost change associated with many edges will not be affected. 

Determining suitable parameters for BOA is, to a degree, a matter for experimentation. 

However, the experimental result showed that the quality of the optimization depends 

more on the value of promising solutions (P) than on the new population (N) and child 

solutions (C). A smaller value for C results in Bayesian networks being generated more 

frequently, so that new high quality solutions have a more immediate effect on the 

search. If the evaluation of a solution is computationally expensive, a small value of C 

may be appropriate, although the overall search trajectory is not changed substantially. 

Similarly, provided N is greater than P, the only effect of a large value of N is to delay 

the generation of the first Bayesian network. However, P has a significant effect on the 

convergence rate of the algorithm. Smaller values of P result in the Bayesian network 

being fitted to a smaller set of data. The result tends to be over-fitting and faster 

convergence of the algorithm, with the resultant lack of sufficient exploration of the 

search space. Details of the parameter settings used follow in the results sections.  
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One weakness of BOA is that the optimization of the Bayesian network in each 

generation means that the algorithm is not particularly efficient. However, given the 

cost of the evaluation of a solution when performing history matching, this is not a 

serious concern. Another potential weakness is that the design of the algorithm 

emphasizes exploitation of knowledge of the location of high quality solutions at the 

expense of exploration of the search space. Once the algorithm converges on a small 

region of the search space, it will continue to generate other similar solutions in the 

same region. Combined with possible overfitting due to use of the Bayesian Dirichlet 

metric, this can result in premature convergence. Possible methods for counteracting 

this tendency to converge prematurely, such as the use of less elitist methods for 

selecting solutions, are a matter for further research.  

Note that the BOA is designed to work with discrete solution representations, rather 

than strings of real values. Therefore, each real parameter is converted into a bit string. 

The first bit indicates whether the real value should be in the first half of the permitted 

range or the second half. The second bit further subdivides these halves, and so on. The 

number of bits used to represent each variable becomes a parameter of the algorithm. 

3.3 Application 1: Uncertainty Quantification of the 

PUNQ-S3 Case 

The three EDAs, i.e. EDA using basic histogram model (BHEDA), EDA using equal-

area histogram model (EAHEDA), and BOA were applied to the PUNQ-S3 case study 

(PUNQ-S3 Test Case 2010). The objective was to compare the quantification of 

uncertainty obtained by EDAs with ones published for PUNQ-S3 in the literature. 

3.3.1 PUNQ-S3 description 

The PUNQ-S3 case is a synthetic reservoir developed for the EU-sponsored PUNQ 

project (Production forecasting with UNcertainty Quantification); it is based on a real 

field operated by Elf Exploration Production, with changes made to the petrophysical 

data.  

The original PUNQ problem objective was to quantify uncertainty (Floris et al., 2001) 

in reservoir performance predictions, given some geologic information on the reservoir, 
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including hard data at well gridblocks and synthetic production history of the first 8 

years. As the first stage, the PUNQ project partners were asked to predict cumulative oil 

production after 16.5 years, including uncertainty in this prediction. Porosity and 

permeability fields are uncertain in PUNQ-S. Each of the partners in the project used 

their own workflow to infer these fields. For the truth case, the cumulative oil 

production after 16.5 years is 3.87×10
6
 Sm

3
.
 
In the second stage, 5 incremental wells 

were defined, and the partners were asked to forecast the incremental recovery 

including uncertainty. In this study, we only deal with the first stage objective. 

3.3.1.1 Reservoir model specifications 

The simulation model of PUNQ-S3 contains 19×28×5 (2660) grid blocks, of which 

1761 blocks are active. The grid is created using corner-point geometry with dimensions 

of 180m × 180m. The field is structurally bounded to the east and south by a fault, while 

linked to a strong aquifer to the north and west. No injection is needed, since the field 

gets sufficient pressure support from the aquifer. The field initially has a small gas cap 

at the centre of the structure, and production wells are located around the gas oil 

contact. The top structure map and well locations are shown in Figure 3.5. 

 
 

Figure 3.5: Top surface map and well locations in PUNQ-S3. 

Only a brief geological description of the field, along with porosities and directional 

permeabilities at well locations, is given (Table 3.1). Well porosities and permeabilities 

include noise, to account for measurement errors. The porosity and permeability fields 
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for the ‘truth case’ are generated with a Gaussian Random Fields model and the well 

porosities and permeabilities are extracted from this truth case.  

Table 3.1: Brief summary of PUNQ geological description including expected sedimentary facies with estimates 
for width and spacing of major flow units for each layer. 

 

Layer Facies Width (m) Spacing (km) 

1 Channel Fill 800 2-5  

2 Lagoonal Shale — — 

3 Channel Fill 1000 2-5  

4 Mouthbar 500-5000 10 

5 Channel Fill 2000 4-10 

The production period commences with one year extended well testing, followed by a 

three year shut-in period and 12.5 years production, of which 2 weeks each year is 

allocated to well testing. The field has a PVT, relative permeability and Carter-Tracy 

aquifer dataset taken from an original field data but it has no capillary function. 

Production is constrained by a well oil rate target of 150 sm
3
/d and a BHP constraint of 

120 bars. 

3.3.1.2 PUNQ-S3 objective function  

The objective function defined in the original study for PUNQ-S3 is to minimize the 

misfit function (Barker et al., 2001).  

  
 

  
∑

 

  
 ∑(   

       

   
)

   

   

  

   

 (3.4) 

  

The observation data include BHP, WCT, and GOR for each of the 6 producer wells, 

resulting in Nv = 18 measurements at each of Np points in time. Subscript i indicates the 

time of the measurement while subscript j indicates the particular measurement made. 

The other variables are as follows: 

 M  is the misfit function, 

 Oij  is the observed value of measurement j at the time i. 

 Sij  is the simulated value of measurement  j at the time i. 

 ij  is the standard deviation of measurement  j at the time i. 
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 Wij is the weight factor applied to measurement j at the time i. 

Observation data for the synthetic PUNQ-S3 case study is generated via simulation of 

the reservoir, followed by the addition of Gaussian noise with zero mean, to account for 

measurement errors (Table 3.2). 

Table 3.2: Measurement errors in observation data 
Data Type Added Noise Comments 

BHP 
1 bar for the shut-

in 
3 bars for production 

Shut-in values are more accurate 

than production ones. 

GOR 
10% before gas-

breakthrough 

25% after gas-

breakthrough 

Accounting for the source of 

produced gas. 

WCT 

2% before the 

water-

breakthrough 

5% after water-

breakthrough 

Accounting for the breakthrough 

time. 

   

3.3.1.3 Uncertainty parameterization 

As described by Floris et al., (2001), the uncertain parameters in the PUNQ-S3 model 

are porosity, horizontal permeability, and vertical permeability. Taking all of the 1761 

active grid blocks as the uncertainty parameters is the most general approach for 

parameterization of the PUNQ-S3. This approach neither considers the given brief 

geological knowledge, nor the spatial connectivity available in reservoir models. In 

addition to this, it results in a larger number of uncertainty variables, which can be 

expected to increase the computational cost of optimization. One way to avoid this is to 

use homogenous regions in each layer of the reservoir to reduce the number of 

uncertainty variables. These regions are selected based on the given stratigraphic and 

geological concepts. Although the boundaries between the regions and homogeneity 

within each region may not be justified, the regions approach is common in manual 

history matching and sensitivity studies.  

In this chapter, we use the parameterization of PUNQ-S3 described by Hajizadeh et al. 

(2010), which includes distinct porosity values for 9 homogenous regions for each of 5 

layers, totalling 45 unknown values with prior range from the noise adjusted well 

porosities. Directional permeabilities are then computed from the following correlations 

extracted from least square fitting of the well porosity/permeability cross-plots (Boss, 

1999).  
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                 (3.5) 

 

The prior ranges for the resulted porosity, horizontal permeability and vertical 

permeability of the each of the 5 layers are shown in Table 3.3. 

Table 3.3: Initial ranges for PUNQ-S3 uncertainty parameters. 

Layer Porosity 
Horizontal 

Permeability (md) 
Vertical 

permeability (md) 

1 0.15-0.3 133-3013 44-925 

2 0.05-0.15 16-133 8-44 

3 0.15-0.3 133-3013 44-925 

4 0.1-0.2 47-376 17-118 

5 0.15-0.3 133-3013 44-925 

 

3.3.2 PUNQ-S3 Results 

In the PUNQ-S3 experiments, we used three previously described EDAs (, BHEDA, 

EAHEDA and BOA) for generation of the multiple history-matched models. After 

optimization, the next step is to use the NAB sampler (Sambridge, 1999) to estimate the 

uncertainty of the production prediction of the multiple models generated by the EDA.  

3.3.2.1 Algorithm set-up 

Different algorithms have different parameters that need to be tuned before any 

performance study. Therefore, we carried out sensitivity study around the parameter set-

up of each algorithm. The required parameters and the best parameter set-ups of each 

EDA are described in Table 3.4. We fixed the total number of simulation runs in each 

experiment to 3000 runs with each generation of the algorithms, after initialization, 

consisting of 50 runs (This is determined by the ‘number of children’ parameter of the 

EDAs).  Pelikan et al. (2000) propose population size of O(n) to O(n
1.05

) for BOA; in 

the PUNQ-S3 case, with n equal to 45, 50 falls between these two numbers (45 and 54). 

They also propose a range of O(n
0.5

) to O(n) for the number of generations, although by 

fixing total number of simulation runs in each experiment to 3000, we took a larger 

number, 57. 
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The experimental results show that the EDAs are primarily sensitive to the number of 

parent solutions. This parameter influences the trade-off between the exploration and 

the exploitation behaviour of the algorithm in the parameter space.  

Table 3.4: EDA set-up parameters. 

Set-up 
Parameter 

Algorithm(s) Description Best value 
obtained 

Initial population 
size 

BH, EAH, and 
BOA 

Solutions in the initial population size are generated randomly 
from the parameter space. 

150 

Number of 
Parents  

BH, EAH, and 
BOA 

Number of ‘parent’ solutions selected from the best of the current 
population, and used to generate the probability model (e.g. 
Bayesian network in BOA). 

100 for BOA 
and 50 for 

other EDAs 

Number of 
Children 

BH, EAH, and 
BOA 

Number of ‘child’ solutions created by the probability model (e.g. 
Bayesian network in BOA) in each generation. 

50 

Maximum 
Parents 

BOA Maximum number of ‘parent’ nodes permitted within the 
Bayesian network. 

6 

Precision BOA The number of bits used to represent parameters. 8 

Number of Bins BH, EAH Number of bins to represent each parameter in the model. 10 

3.3.2.2 Computational resources 

The computational resources used by a simulation run of PUNQ-S3 model is shown in 

Table 3.5. The number of active gridblocks in the model is the most important factor 

determining the required RAM size, which is not considerable in PUNQ-S3 model. 

Each RAM is shared between 8 CPUs. An iteration of the PUNQ-S3 model runs in 

about 19 minutes, which is still practical for performing tuning of the algorithms’ 

control parameters. 

Table 3.5: Computational resources available and used by PUNQ-S3 model. 

RAM Total RAM size 16 Gbyte 

Number of total gridblocks 2,660 

Number of active gridblocks 1,761 

Required RAM size ~ 5 Mbyte 

CPU CPU clockspeed 2.9 GHz 

Runtime for a single run using single CPU 15 seconds 

Number of runs in assisted history match 3,000 

Runtime for an iteration of EDAs using single CPU ~ 12.5 hours 

Number of CPUs available for this study 40 

Runtime for an iteration of EDAs using 40 CPUs ~ 19 minutes 

3.3.2.3 Convergence results 

We looked at the history matching convergence results of the algorithms. By varying 

two of the parameters, namely the initial population size and the number of parent 

solutions, we produced two set-ups for each algorithm, one more exploitative and the 

other more explorative. In the exploitative set-up, both parameters are set to 50, while in 
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explorative set-up the initial population size is set to 150 and the number of parent 

solutions set to 100. The rest of parameters are set as in Table 3.4. 

In order to eliminate the effect of the initial population on the quality of the resulting 

search, each algorithm was initialized with the same initial population in both set-ups. 

Figure 3.6 to Figure 3.8 show performance of the EDAs in obtaining models with lower 

misfits. Convergence occurs for all algorithms. The histogram based algorithms (BH 

and EAH) are relatively effective in finding best misfit models in the search space when 

using the exploitative set-up while the BOA is preferred for the explorative set-up. 

 
Figure 3.6: Minimum misfits over generations for 3 EDAs, for exploitative set-up (left) and explorative set-up 

(right); histogram-based algorithms, EAH (green) and BH (purple), show lower minimum misfit than BOA (red) 
in exploitative set-up, while in explorative setup BOA (red) resulted in best minimum misfit. 

 
Figure 3.7: Generational misfits for 3 different EDAs, for exploitative set-up; BOA (red), perhaps because of 

premature convergence, seems to be trapped in a local minima; while EAH (green) and BH (purple) show better 
performance over the period of the search. 
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Figure 3.8: Generational misfits for 3 different EDAs, for explorative set-up; BOA (red) outperforms EAH (green) 

and BH (purple) in convergence speed. 

 

3.3.2.4 Forecast uncertainty for PUNQ-S3 

The multiple models generated by different EDAs in the history matching stage were 

used by the NAB posterior probability sampler to estimate the uncertainty around the 

ultimate recovery after 16.5 years of production in PUNQ-S3. NAB (acronym for 

neighbourhood Algorithm in Bayesian framework) is a MCMC technique for 

calculating Posterior Probability Distribution function using a Gibbs sampler. It 

constructs Voronoi cells in the search space and interpolates the likelihood of unknown 

points in the search space (Sambridge, 1999).  

To study the redundancy and impact of the NAB sampler on the prediction results, we 

repeated posterior sampling and calculation of the credible interval on a fixed ensemble 

of models. In all the repeated cases, the starting point of the sampling process is the best 

misfit model. As NAB uses random walks in the sampling process, 5 NAB runs with the 

same random seeds and 5 runs with different seeds were carried out. The results (Figure 

3.9) show that the impact of the NAB sampler is negligible; therefore, the EDA used for 

sampling parameter search space plays the main role in history matching and the 

uncertainty quantification framework. 
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Figure 3.9: Comparison of PUNQ-S3 uncertainty intervals obtained for 5 trials of an ensemble sampled by NAB. 

Same seed number in NAB yields exactly same results (left), and different seed number (right) yields results 
with highly negligible difference. 

Using NAB we sampled 500,000 solutions from original 3,000 forward simulation runs 

generated by each of the 3 EDAs in two different set-ups. As shown in Figure 3.10, the 

credible intervals obtained by EDAs a in both explorative and exploitative set-ups are 

very close to truth case. In general, EDAs allows a more diverse sampling of the 

parameter space, leading to a global optimization and a prediction remarkably close to 

the truth case. 

  
Figure 3.10: Box-plot of oil recovery obtained by 5 different EDAs, for explorative set-up (right) and exploitative 
set-up (left); both histogram-based algorithms (EAH and BH) and BOA predicted oil recovery with P50 (middle 
mark of the boxes) closer to truth case (red-dot line), lower P10 and P90 variation (top and bottom marks of the 
boxes), and narrower Maximum  and Minimum range (top and bottom of the bars); BOA for explorative set-up 

and BH for exploitative set-up provides best prediction. 

Predicted credible intervals (P10, P50, and P90) of the oil recovery after 16.5 years in 

PUNQ-S3 by BH (our best predictor model in the exploitative set-up) and BOA (our 

best predictor model in the explorative set-up) are compared to the original results 

published by the PUNQ project (Floris et al., 2001), and later results published by 

Demyanov et al. (2004), Mohamed et al.(2009),  Hajizadeh (2010), and Hajizadeh et al. 

(2010) (Figure 3.11). The results show better estimation of the uncertainty than in the 
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original PUNQ study, and competitive results to other modern algorithms using the 

same uncertainty parameterisation. 

 

 
Figure 3.11: Uncertainty interval obtained for PUNQ-S3 by BH and BOA in this study, when compared with 

results in original PUNQ-S3 study (top), shows better estimation of uncertainty, and when compared to other 
algorithms in the group (bottom) shows EDAs are competitive. 

3.4 Application 2: History matching of a real North Sea 

field (Koma) 

In the second application, we apply one of the EDAs (BOA) to the history matching 

problem of a real, North Sea, turbidite field with multiple wells and we show 
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genetic algorithm (GA). Throughout this thesis, the field will be referred to as Koma for 

reasons of anonymity. 

3.4.1 Field and development description 

The Koma reservoir is composed of massive oil-bearing turbidite sands with 25-35% 

porosity, 200-1200mD permeability, in a shale background. The reservoir container is a 

combination of up-dip fault seal, dip closure, and pinch-out traps. Figure 3.12 shows a 

Net-to-Gross (NTG) map created for the entire reservoir based on the seismic net pay 

calibrated with well values. The field has two main reservoir compartments, defined as 

equilibrium regions, each associated with a PVT, WOC and GOC data.   

 

Figure 3.12: Reservoir simulation grid with NTG values, and location of the producers (green) and injectors 
(blue). 

Koma now has three oil production wells and three water injectors. These were brought 

on-stream as three successive well-pairs. The present study covers the first ten years of 

operation; a further history period has been reserved for a future predictability study. 

3.4.1.1 Reservoir model specifications 

The business purpose of the original history-match study was assessing reservoir 

development and management opportunities of the field. This was to involve 

performing a history matching study yielding a base reservoir model, plus an ensemble 

of additional models that have acceptable match. 
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The model consists of some 32×103 grid blocks in 57 layers, with typical block 

dimensions of 50×50×3 metres. The underlying geological model is composed of sand 

bodies picked by seismic interpretation, with associated NTG, porosity, and 

permeabilities. A constant porosity-depth function is used for modelling porosity. The 

permeability definition comes from a porosity-permeability cross-plot yielded by rock-

typing. 

3.4.1.2 Key Uncertainties 

Despite calibration, the difference between NTG calculated by seismic and NTG 

measured at wells pose a substantial uncertainty in the initial in-place volumes. Previous 

sensitivity studies have shown that uncertainty in permeabilities needs to be handled by 

using multipliers in the model. The main challenge in the Koma field is the vertical and 

horizontal communication between different sand bodies. Effect of these 

communications is seen in dynamic behaviour, reflected in the production data, RFT, 

and 4D-seismic data. The production is controlled by the total liquid rate (oil plus 

water) in the wells, with a backup BHP constraint. 

3.4.2 Misfit definition and objective function  

An objective function similar to that in the PUNQ-S3 case is used, as in equation (2.5). 

The misfit definition, including the observation datatypes and measurement error, is 

taken from the original genetic algorithm study. No further quality control and data 

analysis are done to allow like-to-like comparison of the two algorithms. Available 

historical data and the associated error model are shown in Table 3.6. 

Table 3.6: History-match data and error model. 

Parameter Parameter abbr. Error definition 

Bottomhole pressure BHP 50 psi  

Near-well average pressure Pave 50 psi 

Oil flowrate  QOP 5% of historical value  

Water flowrate QWP 7% of historical value 

Gas flowrate QGP 30% of historical value 

3.4.3 Uncertainty parameterization 

From the sensitivity study and manual history matching, 54 uncertainty parameters were 

identified; these parameters include 16 pore volume multipliers (porosity and NTG), 8 
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permeability multipliers, 21 inter-region transmissibility multipliers, 8 fault 

transmissibility multipliers, and 1 aquifer volume multiplier. Descriptions and prior 

ranges of these parameters are given in Table 3.7.  

Table 3.7: Koma uncertainty parameter types, with typical base value and prior ranges (downside and upside 
values). 

Parameter type Number 

Typical 
base 
value 

Typical 
downside 

Typical 
upside 

Pore Volume 16 0.5 0 1 

Permeability multiplier 8 1.5 0 3 

Inter-region transmissibility 
multiplier 

21 0.01 0 1 

Fault transmissibility multiplier 8 0 0 1 

Aquifer pore volume multiplier 1 3.6 1 5 

Sum 54 
   

 

3.4.4 Computational resources 

The computational resources available to and used by a simulation run of Koma field 

are shown in Table 3.8. An iteration of Koma field assisted history matching requires 

1,000 simulation runs, which take approximately 17 hours using 40 CPUs of the Heriot-

Watt’s HPC cluster. Thus, in real field application is not practical to perform a full 

control parameter tuning of the algorithms, which involves performing dozen of 

iterations.   

Table 3.8: Computational resources available and used by Koma field. 

RAM Total RAM size 16 Gbyte 

Number of total gridblocks 187,872 

Number of active gridblocks 32,303 

Required RAM size ~ 100 Mbyte 

CPU CPU clockspeed 2.9 GHz 

Runtime for a single run using single CPU 40 minutes 

Number of runs in an EDA’s iteration 1,000 

Runtime for an iteration of EDAs using single 
CPU 

~ 667 hours 

Number of CPUs available for this study 40 

Runtime for an iteration of EDAs using 40 
CPUs 

~ 17 hours 

3.4.5 History matching results 

History matching of the Koma field was performed with the BOA algorithm to be 

compared with a history-match already obtained with GA by the asset team. To perform 



Chapter 3: 

Estimation of Distribution Algorithms 

 

 

8282 
 

a like-for-like comparison, the same misfit definition, uncertainty parameterisation and 

initial random population are used for both algorithms. The stopping criterion is defined 

to be 1000 simulation runs for each algorithm; the number of solutions per generation is 

also fixed to 50, resulting in a total of 20 generations. A cut-off criterion of 40 minutes 

CPU time is defined for possible simulation runs that may experience convergence 

problems; a large misfit value is allocated to any such runs. To avoid dependence of the 

results on the initial random starting population, we repeated each experiment for both 

algorithms 5 times and averaged the results.  The GA has been tuned for optimal 

performance over many field studies.  

We used tuned PUNQ-S3 control parameters for BOA. i.e. each history-match 

parameter was divided into 8 bits and the Bayesian network consists of a node for each 

bit in the solution (precision: 8). The best 100 solutions so far were selected as parents, 

resulting in 100×8 = 800 nodes in the Bayesian network (number of parents: 100); 

maximum 6 edges were allowed to each node (maximum number of parent nodes: 6) to 

generate 50 child solutions in each generation (number of children: 50). 

3.4.6 Results  

In this section, we report the results of BOA and GA applied to Koma history matching. 

Figure 3.13 shows the minimum misfit reached after 1000 simulations with identical 

random starting conditions for 5 separate experiments comparing BOA with GA.  In 

each case, BOA has obtained a lower misfit than GA. In Figure 3.14, we plot the 

minimum generational misfit, averaged over the 5 experiments shown in Figure 3.13, 

against generation.  The misfit found by the BOA at each generation is always lower 

than that found by the GA.  When we compare the number of function evaluations that 

BOA takes to reach the minimum found by the GA after 1000 simulations, we can see 

that BOA is almost 1.5 times faster to achieve a given misfit than the GA.  If we 

examine the box plots of generational misfit shown in Figure 3.14, we see that these 

conclusions also apply to average misfit and are robust. 
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Figure 3.13: Minimum misfit of 5 experiments in GA and BOA (left) and convergence speed for the average of 
the best misfit of generations in 5 trials of the BOA and GA (right); BOA resulted in a lower minimum misfit in 

all 5 trials and about 1.5 times speed-up in convergence. 

 

Figure 3.14: Box-plot of generational misfits from GA (left) and BOA (right); BOA results in lower average 
(middle mark of the boxes) and variation (top and bottom marks of the boxes), and range (top and bottom of the 

bars) for misfit in different generations. 

The numbers shown in Figure 3.13 and Figure 3.14 are the total misfit and represent a 

sum of all the match quality components over wells and data types.  Table 3.9 shows a 

comparison of the performance of BOA against GA for the 3 wells and 5 datatypes, 

bottom-hole pressure (BHP), average pressure (PAVE), oil production rate (QOP), gas 

production rate (QGP), and water-oil ratio (WCT).  Out of 15 match quality 

components, 11 are better matched by BOA and only 4 by GA.  In 7 of the quantities, 

the BOA match is much better, whereas GA is only much better for 2 quantities, in 

Well_02. 

Figure 3.15 to Figure 3.19 show the matches for selected wells and match quality 

components, comparing GA and EDA in detail.  The wells and match quality 

components were selected to give examples of each of the categories in Table 3.9. 

Table 3.9: Summary of the GA and BOA match quality comparison. 
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Figure 3.15: Observation and Simulation BHP of Well_01 for GA (left) BOA (right); BOA resulted in much better 

match. 

 
Figure 3.16: Observation and Simulation WCT of Well_03 for GA (left) BOA (right); BOA resulted in much better 

match. 
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Figure 3.17: Observation and Simulation QGP of Well_01 for GA (left) BOA (right). BOA resulted in slightly 

better match. 

 
Figure 3.18: Observation and Simulation Pave of Well_02 for GA (left) BOA (right); GA resulted in slightly better 

match. 

 
Figure 3.19: Observation and Simulation QOP of Well_02 for GA (left) BOA (right); GA resulted in much better 

match. 
 

3.5 Discussion 

In current chapter, we introduced and applied two univariate and one multivariate EDA 

to two history matching problems. The univariate EDAs use a simple bin-based 
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discretization for representing the continuous variables and marginal histogram models 

for the probabilistic modeling. Thus, they are not able to consider the interaction 

between the variables or the bins of variables.  

However the multivariate EDA, BOA, uses bit-string representation for the continuous 

variables and Bayesian networks for the probabilistic modeling. In result, as in standard 

binary GA, BOA is able to model complex interactions between the variables in terms 

of the relationships between the pairs of bit-strings from two variables. Such complex 

relationships may not be common in history matching problems and well-understood by 

the reservoir engineers, but if present, BOA can discover those relationships and take 

the advantage of them in building the new solutions, which in turn, improves the search 

in terms of convergence and quality of solutions. 

Through the results in the PUNQ-S3 application, we observed that univariate EDAs 

perform better than a BOA under smaller population size. This is because BOA exploits 

linkage information, and in problems with no or weak interactions among parameters, 

such as PUNQ-S3, it is more likely to become trapped in local minima, as it assigns part 

of its decision weight to relationships which might not be significant enough. One can 

argue that driving interactions between large numbers of parameters requires a larger 

number of solutions in the parent population. Thus in the exploitative set-up of 

algorithms, univariate models have better performance. Increasing the parent population 

size, however, improved performance of BOA, as observed in the explorative set-up. 

To predict uncertainty bounds from the ensemble obtained in multimodal history 

matching problems, a diverse population of solutions is needed, where a global 

optimum and possibly multiple local optima are present. Sampling from a population 

created by an algorithm set-up that has prematurely converged will yield a bias in the 

predicted uncertainty bounds, since the posterior sampler samples too many solutions 

around the local optimum. A sufficiently explorative set-up of BOA ensures 

convergence toward the global optimum. However univariate EDAs are more likely to 

get trapped in local minima.  

PUNQ-S3 parameterized using 45 distinct porosity regions is an example of separable 

problems where both univariate and multivariate EDAs perform well. Histogram-based 
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models (BH and EAH) have an intrinsic multimodality characteristic, which makes 

them convenient to approximate the solution distribution of complex and multimodal 

continuous problems. In PUNQ-S3, BH and EAH algorithms perform well, since the 

problem is sufficiently independent to be unaffected by correlations.  In more 

complicated, non-separable problems with strong linkage information, misfit is based 

on the nonlinear combination of various parameters, so univariate EDAs fail to estimate 

joint probability distribution function properly, and in such cases BOA will perform 

better.  

In the Koma history matching application, we saw that BOA outperformed a binary GA 

in terms of convergence speed and robustness of the history matching results. The 

reason is, it prevents the destruction of high quality schemata that occur when crossover 

is applied in GA, allowing BOA to find better quality matches in fewer simulation runs 

than GA. Although BOA tends to be more exploitative than explorative in nature, with 

the use of less elitist methods in the selection process, a better balance between 

exploration and exploitation can be achieved. Another possible weakness of BOA is the 

high computational complexity (seconds or few minutes) of the optimization of the 

Bayesian network in each generation. However, given the computational expense of 

function evaluations in history matching (usually hours and days), this is not a serious 

concern. 
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CHAPTER 4:  

HISTORY MATCHING USING MULTI-

OBJECTIVE OPTIMISATION 

 

 

4.1 Introduction  

Multiobjective evolutionary algorithm (MOEA) refers to EAs designed to find optimal 

solutions to problems having multiple objectives. Using multiple objectives almost 

invariably means that the optimal solution is not unique. Instead, a set of optimal 

solutions can be found, with different trade-offs between the objectives. An MOEA 

searches for this set of solutions, known as Pareto-optimal solutions, instead of a single 

optimum. Many real-world search and optimisation problems are expressed in terms of 

multiple objectives, for example, maximising predicted returns while minimising risk or 

maximising strength while minimising weight. In multiobjective optimisation, 

objectives are conflicting, i.e. the optimum solution according to one objective is not 

optimal according to another, whenever the optimal set of parameters for one objective 

is not as optimal for the other. Even for the problems that are not truly multiobjective, 

there are attempts in the literature to multiobjectivate the single objective to take the 

benefit of multiobjective optimisation (e.g. Knowles et al. 2001) 

The first published work on multiobjective evolutionary optimisation was by Schaffner 

(1984). Schaffner, in a method called Vector Evaluated Genetic Algorithm (VEGA), 
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used proportional selection, according to each objective in turn, to create a number of 

sub-populations. Horn et al. (1994) proposed a new multiobjective selection scheme 

(NPGA) based on a Pareto domination tournament and equivalence class sharing. 

Subsequently Fonseca & Fleming (1995) introduced MOGA in which Pareto 

domination, rank-based fitness assignment and Niche-formation methods are used to 

sort solutions. In another novel technique, Zitzler and Thiele (1999) proposed the 

Strength Pareto Evolutionary Algorithm (SPEA) with the combination of elitism and the 

concept of non-domination. Knowles & Corne (2000) introduced the Pareto Archived 

Evolution Strategy (PAES). Another popular technique is Srinivas and Deb’s Non-

dominated Sorting Genetic Algorithm (NSGA) (1995), in which, all solutions are 

classified into a level of non-domination. For a complete review of the most popular 

multiobjective selection methods for evolutionary algorithms refer to Ghosh & Dehuri 

(2005). 

Attempts to use these types of algorithms in multi-objective history matching are 

reported in the literature. For example, Schulze-Riegert et al. (2007) used the Strength 

Pareto Evolutionary Algorithm (SPEA). Ferraro and Verga (2009) applied the multi-

objective genetic algorithm and evolution strategies for history matching and 

uncertainty quantification of the PUNQ-S3 synthetic case. In another application, 

Hajizadeh et al. (2011) used Differential Evolution for Multiobjective Optimisation 

based on MOGA Pareto Ranking (DEMOPR) for history matching of the PUNQ-S3 

synthetic case. Mohamed et al. (2011) used Multi-Objective Particle Swarm 

Optimisation (MOPSO) based on NSGA2 ranking technique for history matching of the 

IC Fault model. However, no attempt is reported in the literature to use multiobjective 

EDAs for history matching. 

The rest of this chapter is organised as follows: first, the methodology section discusses 

multiobjective optimisation, and introduces a common multiobjective sorting algorithm: 

the elitist Non-dominated Sorting Genetic Algorithm (NSGA2). The strategy for the 

comparison of the different algorithms is then described. This is followed by results of 

two case studies, the first study applies multiobjective Bayesian optimisation algorithm 

(MBOA) to the history matching problem of the PUNQ-S3 synthetic case. The second 

study presents and analyses the experimental results of MBOA when used for history 
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matching of the Koma, a real North Sea field. The generality and validity of results is 

discussed in the discussion section. 

4.2 Methodology 

As we discussed in the previous chapters, EDAs are a class of population based EAs. 

Like any other population-based EA, to solve an optimisation problem using an EDA, 

the problem is described using a vector of parameter values which represents a solution 

for the problem. As in other population-based algorithms, a set of N solutions are 

created and considered as a population. All the solutions in the population are evaluated 

for their performance expressed in terms of an objective function. Solutions with lower 

or greater objective functions respectively in a minimisation or a maximisation problem 

are considered promising. The algorithm proceeds to select a set of promising solutions 

out of the population using the sorting algorithm to become the parents of the next 

generation. 

Evolutionary algorithms typically incorporate two forms of selection: selection of 

parent solutions from the population, from which child solutions are generated; 

selection of the solutions that survive to form the population in the next generation of 

the algorithm. In older algorithms, child solutions would often replace the old 

population in this survival phase. However, it is now commonplace for old solutions to 

be permitted to survive within the population for many generations, provided they are of 

sufficient quality. This elitism can be particularly useful in multiobjective algorithms, 

providing added selection pressure and encouraging the production of better solutions 

rather than merely a more diverse set of solutions. 

In this chapter, we describe two sorting and selection mechanism for BOAs, single and 

multiobjective. A BOA is a multivariate EDA, discussed in Chapter 3 (see Pelikan et al. 

2000). Both forms are highly elitist; i.e. solutions are first sorted in order of solution 

quality and then the best solutions are taken, both during parent selection and during the 

selection for survival. However, the two mechanisms differ in the method of sorting of 

the population. In single objective optimisation, the population is simply sorted 

according to the single objective function: fitness. In multiobjective optimisation, more 

sophisticated methods are required, since the dominance relation imposes ordering on 
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the population. The sorting algorithm used for selection in multiobjective BOA 

(MBOA) is that introduced in the elitist non-dominated sorting genetic algorithm 

(NSGA2), described in the next section.  

4.2.1 Multiobjective Evolutionary Algorithms (MOEAs) 

Multiobjective Evolutionary Algorithms have been employed for the past four decades; 

they are used to solve multiobjective optimisation problems where there is no single 

well-defined optimal solution and, in the presence of several objectives, several equally 

good solutions are available. These multiple optimal solutions are called non-dominated 

or Pareto optimal solutions. The general formulation of minimisation of a 

multiobjective problem is: 

{

   
 

{                 }

            
              

   
(4.1) 

where             is the vector of decision variables, and             is the 

vector of objective functions. A multiobjective optimisation problem may have one or 

more constraint functions (g, h) which constrain the search space to a set of feasible 

solutions. s.t. stands for subject to. 

4.2.1.1 Dominance concept 

In multiobjective optimisation problems, we try to find multiple optimal solutions using 

dominance or the so-called Pareto optimality concept. If we wish to minimize each 

objective, a solution   is dominated by  ̅ if: 

{
          ̅         

        ̅ 
   (4.2) 

In simple words, solution  ̅ dominates solution   if, first,  ̅ is no worse that   in all 

objectives and, second,  ̅ is strictly better than   in at least one objective. If either of the 

two above conditions is violated, the solution  ̅  does not dominate solution  . 

Given a set of solutions, any solution that is not dominated by any other in the set may 

be described as being non-dominated with respect to that set. If this set is the set of all 
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feasible solutions, then such solutions are Pareto optimal. Note that, in the absence of 

additional information, none of the Pareto optimal solutions can be said to be better than 

any other. Figure 4.1 demonstrates the concept of dominance and Pareto optimality in a 

bi-objective optimisation problem.  

 

 

Figure 4.1: The concept of Pareto dominance for a bi-objective space (f1, f2) of a minimisation problem.  
The grey area shows the feasible search space. All the solutions in the dashed area (e.g. 4, 5, and 6) are 

dominated by solution 1; 2 does not dominate 3 and 3 does not dominate 2 since 3 is better than 2 with respect 

to objective f2 and 2 is better than 3 with respect to objective f1. All the solutions on the red line (e.g. 1, 2, and 

3) are non-dominated Pareto optimal solutions. 

The term Pareto front describes the image of all the Pareto optimal solutions in the 

objective space and is illustrated by the red line in Figure 4.1. Note that we do not 

expect a multiobjective EA to discover all, or indeed any of the Pareto-front, any more 

than we can guarantee that a single objective EA will discover the optimal solution. 

Rather, we hope that a search algorithm will approximate the Pareto front, both by 

obtaining solutions close to (or on) the front, and by obtaining a range of solutions 

across the front. Different multiobjective algorithms will have different performance, 

with regards to both of these aims. 

The concepts of Pareto front and dominance are the basis of many of the sorting 

algorithms applied to multiobjective optimisation problems. The first attempt to use 

Pareto-based information in EAs was made by Goldberg (1989). More sophisticated 

approaches (e.g. NSGA and SPEA) sort solutions by, first, selecting solutions from the 
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non-dominated set and, then, if these solutions are not sufficient, selecting from the 

dominated solutions, using other approaches. 

4.2.1.2 Elitist Fast Non-dominated Sorting Genetic Algorithm (NSGA2) 

Since EAs work with a population of solutions, a simple EA can relatively easily be 

extended to search for a diverse set of solutions, such as the set of Pareto-optimal 

solutions. With an emphasis on moving toward the true Pareto-optimal region, an EA 

can be used to find multiple Pareto-optimal solutions. 

The non-dominated sorting genetic algorithm (NSGA) was developed by Srinivas and 

Deb (1995) on the basis of the non-dominance fronts and sharing strategy between 

solutions. Criticisms of NSGA centred on high computational complexity, lack of 

elitism, and need for specifying the sharing parameter. To address all these problems, 

Deb et al. (2001) introduced an improved version of NSGA, called Elitist NSGA or 

NSGA2. In NSGA2, the sharing function approach was replaced by a crowding-

distance comparison, which does not require any user defined parameter for maintaining 

the diversity. The non-dominated sorting algorithm of NSGA 2, used in MBOA, is as 

follows: 

1. Assign a rank to each solution in the population equal to level of the non-dominated 

front, as follows: 

1.1. Initialise j = 1, 

1.2. Find non-dominated solutions in the population and assign them to front level j, 

1.3. Temporarily remove non-dominated solutions from the population, 

1.4. Increment j and continue from step 1.2 until all solutions have been assigned to 

a front. 

1.5. For each solution, i, in the current non-dominated front, compute a crowding 

distance measure in the fitness space based on the surrounding solutions, 

according to (see Figure 4.2): 

   ∑       
         

 

 

   

 (4.3) 
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where    is the crowding distance measure and m is the number of objectives. f
k
before is 

the objective function value of objective k for the solution that comes before solution i, 

after the front is sorted according to object/+ive k, while f
k
after indicates the objective 

value for objective k for the solution that comes after i. Solutions with lowest and 

largest objective function values are assigned an infinite crowding distance. Objective 

function values must be normalised before these calculations. 

2. Compare solutions in the entire population for the two attributes, rank and crowding 

distance, as follows: 

1.1. Between two solutions with different non-dominated ranks, solution with 

the lower (better) rank is preferred. 

1.2. Between two solutions belonging to the same front (same rank), solution 

with higher crowding distance (least crowded) is preferred. 

 

 
Figure 4.2: Crowding distance calculation for a bi-objective space (f1, f2) of a minimisation problem. Filled 

square points represent solutions of the same rank (here rank 1). 

 

4.2.2 Strategy for Comparison Study of the Algorithms  

In this chapter, we evaluate performance of the algorithms based on two factors: misfit 

convergence and diversity. For each of these, we use a related plot for the comparison 

study of different algorithms/experiments. 

4.2.2.1 Misfit Convergence 

As the primary goal in history matching using optimisation algorithms is to obtain 

solutions (reservoir simulation models) with the lowest value of misfit, we initially look 
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at the minimum misfit convergence plot for performance comparison of the different 

algorithms. For the multiobjective scheme a single value obtained for misfit which is 

the sum of the objective functions. We repeat the experiments for a number of trials and 

then average the results due to the stochastic nature of the evolutionary algorithms used 

here. Generational misfit, minimum misfit of a single solution obtained by the algorithm 

with 95% significance level t-test standard error as error bars, and boxplots (P25, P50, 

and P75 quartiles) of the misfit versus generation are reported in the results section. 

4.2.2.2 Diversity Measure 

Population diversity is a key measurement in population-based evolutionary algorithms. 

Diversity is an estimate of the levels and types of variety of individuals in a population. 

A diversity measure helps us to compare the diversity/convergence performance of the 

population based evolutionary algorithms in history matching. To study the diversity of 

solutions in the population we use an inertia based diversity measure (Morrison and 

Jong 2002). For this measure, first, the centroid of the population is calculated for all 

equally weighted parameters of the solutions in the population; then the moment of the 

inertia based diversity measure of these solutions about the calculated centroid is given 

by: 

      
∑ ∑         

  
   

 
   

 
           

 

 
∑   

 

   

 
(4.4)  

where: 

     is the inertia based diversity measure, 

 i is the subscript for the variables number in solution x, 

 N is the total number of variables in solution x, 

 x is the variable value, 

 ci is the centroid of the variable, 

 j is the subscript for the solution number in the population, 

 P is the total number of solutions in the population. 
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It is worth pointing out that this measure shows the diversity of all the solutions in the 

current child population, not necessarily diversity of the good solutions with acceptable 

objective function value. One must use this diversity, along with the convergence plots, 

to infer the diversity of good solutions. 

4.3 Application 1: History Matching of PUNQ-S3 Synthetic 

Case  

We initially applied BOA and MBOA to the history matching problem of the PUNQ-S3 

reservoir. For field description, uncertainty parameterisation, and misfit definition of 

PUNQ-S3 refer to Section 3.3 of Chapter 3. The objective here was to study the 

convergence performance and diversity of the single-/multi-objective scheme of BOA 

on a well-known synthetic case for history matching. 

Multiple objectives in history matching can be defined by summing a sub-group of the 

misfit components instead of defining a single objective by summing all the misfit 

components. A misfit component can be defined as a data-type (e.g. oil rate, water-cur 

ratio, etc.), a data-level (e.g. well, field, region, etc.), or individual data-levels (e.g. well 

#1, well # 2, region #1, etc). 

4.3.1 Revisited PUNQ-S3 parameterisation 

In this chapter, we used a slightly different parameterization for PUNQ-S3 compared to 

that used in the previous chapter. The previous parameterisation (Hajizadeh et al. 2010) 

had not considered northwest-southeast orientation of the channels as given in the 

geological description. In addition, it had not considered the uncertainty in 

permeability-porosity correlations. 

We took 38 unknown variables, using the given geological description and channel 

properties. We parameterized the porosity, using 8 homogenous regions for layers 1 and 

2 and 6 homogenous regions for each of the layers 3 to 5, giving in total 34 porosity 

parameters (Figure 4.3). The number of regions is taken according to the width of the 

channels (see Table 3.1) and the dimensions of the reservoir. The first two top layers 

have a wider extension of the top structure map, so that they have one more region. 

Figure 4.4 shows how these regions match the porosity map of the truth case. It should 
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be noticed than no tuning was done for this match, and the figure is just given for 

confirmation of the parameterisation. As explained in the previous chapter, prior ranges 

for the porosities were calculated from the noise adjusted well porosities (Table 4.1).  

 

Table 4.1: Porosity ranges for PUNQ-S3 layers. 

Layer Porosity 

1 0.15 - 0.3 

2 0.05 - 0.15 

3 0.15 - 0.3 

4 0.1 - 0.2 

5 0.15 - 0.3 

 

 

Figure 4.3: Distinct porosity regions for layers 1 and 2 (left) and layers 3, 4, and 5 (right), based on the width 
and spacing of the channels in revisited PUNQ-S3 parameterisation. 
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Figure 4.4: Chosen distinct porosity regions for layers 1 and 2 (left) and layers 3, 4, and 5 (right) match the truth 
case of PUNQ-S3. 

Directional permeabilities are computed from the least square fitting of the well 

porosity/permeability cross-plots (Boss 1999):  

{
              
          

 (4.5)   

Since these cross-plots are built only from the well values, the permeability fields are 

unknown, and hence we took two coefficients of the porosity / horizontal permeability 

correlation and two coefficients of the horizontal / vertical permeability correlation as 

uncertainty variables, with the prior ranges shown in Table 4.2. 

Table 4.2: Prior ranges for the uncertainty variables related to the permeability correlations. 

Parameter Base value Range 

bh 0.77 0.5 – 1.0 

ah 9.03 6.0 – 12.0 

bv 3.124 1.0 – 5.0 

av 0.306 0.1 – 0.4 
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4.3.2 Evolution of uncertain parameters in assisted history 

matching 

An assisted history matching study starts by creating the initial reservoir model and 

parameterisation of the uncertain variables of the model. In this section we summarise 

the parameterisation of the PUNQ-S3 model, as discussed above: 

1. Take the given data in PUNQ-S3 model including the grid geometry, 

channels description, and porosity and directional permeabilities at the 

well locations. 

2. Create a simulation model from the given G&G and dynamic data with 

porosity and directional permeabilities initialised to zero. 

3. Divide the grid in each layer to North-West / South-East regions based 

on the channel width, length and spacing (Table ‎3.1 and Figure ‎4.3). 

4. Take the porosity of each region as an uncertain variable (32 variables) 

and obtain the prior probability distribution (here uniform ranges) for 

porosity of each region based on the well values and the estimated level 

of measurement/interpretation errors (Table ‎4.1). 

5. Consider the coefficients of the porosity-permeability correlations at the 

wells, equation (4.5), as uncertain variables (4 variables) and define their 

prior ranges based on the well values and the estimated level of 

measurement/interpretation errors (Table 4.2). 

Now we take one of the uncertain variables (V1) as an example and show how the 

probability distribution of the selected uncertain variable (the histogram model in 

BHEDA) changes and evolves from the prior to the posterior distribution during the 

history matching process. 

The initial population is a random generation of 120 solutions from the uniform prior 

distribution of P1. The variable range is discretised into 20 bins and each bin gets an 

equal probability of 1/3. Therefore the histogram model is flat (Figure 4.5).  
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Figure 4.5: Histogram model of parameter V1 in initial generation. The population is created by random 
sampling of 120 values from the uniform prior range of V1. 

In next generation (generation 1), top 40 solutions (in terms of lower values of match 

quality) out of the 120 solutions in initial generation are selected as the parents, and a 

histogram model is created out of them (Figure 4.6). The histogram was used to 

generate 40 new solutions (children). 

 

Figure 4.6: Histogram model of parents, top 40 solutions, for V1 in generation 1. The range is no longer random 
and some areas of the variable range have larger probabilities. This histogram model is used to sample 40 

children. 

This process is continued in the later generations. i.e. in each generation, top 40 

solutions of the solutions created so far are selected as parents and a histogram model is 

fitted. Then 40 child solutions are sampled from the histogram model. Figure 4.7, 

Figure 4.8, Figure 4.9, and Figure 4.10 show the histogram model of the parents 

respectively in generations 5, 20, 45, and 72. As the figures show, the histogram model 
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of the parents and therefore the search is gradually converging to specific areas of the 

variable V1 range, which yield solutions with good match quality. 

 

Figure 4.7: Histogram model of parents, top 40 solutions, for V1 in generation 5. A new histogram model is 
created in each generation. 

 

 

Figure 4.8: Histogram model of parents for V1 in generation 20. The search is more converged to specific areas 
of the search space. 
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Figure 4.9: Histogram model of parents for V1 in generation 45. The search is more converged. 

 

Figure 4.10: Histogram model of parents for V1 in generation 72. The search is finally converged to few regions. 

 

4.3.3 PUNQ-S3 Results 

For performance comparison of BOA and MBOA ten trials with the following control 

parameters were used: 60 solutions in the initial population, 40 parents and 20 children 

in each generation, maximum number of parents of each node in the Bayesian network 

equal to 6 and 10 bins, for discretising parameter values. The stopping criterion was set 

as the total number of 47 generations (1,000 function evaluations).  

Initially we carried out a sensitivity study on different objective setups for MBOA. Four 

different setups for multiple objectives were considered and examined in PUNQ-S3 

application as in Table 4.3. 
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Table 4.3: Grouping of wells for the objective function setups in PUNQ-S3. 

Experiment No. Of 
objectives 

Wells Comment 

G1 2 Objective 1: Wells 5 & 12 

Objective 2: Wells 1, 4, 11, 
15 

Two reservoir regions: 
north-west and centre-
south 

G2 2 Objective 1: Wells 1, 4, 5 

Objective 2: Wells 11, 12, 15 

No particular regions (as 
in Hajizadeh et al,. 
2011) 

G3 2 Objective 1: Wells 4, 5, 12 

Objective 2: Wells 1, 11, 12 

Two reservoir regions: 
north and south 

G4 3 Objective 1: Wells 5 & 12 

Objective 2: Wells 1 & 11 

Objective 3: Wells 4 & 15 

Three reservoir regions: 
north, centre, and south 

Figure 4.11 shows the generational misfit convergence for the multiple objectives 

setups shown in the above table. Multiobjective optimisation using three objectives 

(G4) has not converged, since the Pareto front for three objectives in history matching 

becomes too complicated and two objectives is the maximum number of objectives that 

a multiobjective sorting algorithm can deal with in history matching. Between the two-

objective setups, the grouping of wells to north and centre-south (G1), gives slightly 

better results than other two, perhaps because of maximum separation from other wells, 

based on the maximum distance between neighbouring wells. Thus G1 setup was taken 

for the future experiments. Figure 4.12 shows the inertia diversity of four settings. All 

four settings did indeed maintain diversity as they have not touched or become very 

close to the horizontal axis, which shows zero diversity. 

 
Figure 4.11: Average of minimum misfit found in each generation (left), zoomed for misfits under 10 (middle), 

and inertia diversity (right) for 10 trials of MBOA with four different multiple objective setups.  
G1 has slightly better convergence while G4 has not converged. 
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Figure 4.12: Diversity of different multiple objective setups for MBOA of PUNQ-S3. 

 All four setups have maintained sufficient level of diversity. 

Figure 4.13 shows the misfit convergence of BOA and MBOA with untuned control 

parameters; the figure shows that MBOA outperforms BOA for the minimum misfit. 

However MBOA produces too many low quality models. Figure 4.14 shows the 

diversity of the BOA and MBOA with tuned control parameters. As can be seen, 

untuned BOA suffers from an extensive loss of diversity, but MBOA better maintained 

diversity in the later generations. 

 

 
Figure 4.13: Average of minimum misfit found in 10 trials with 95% t-test standard error (top-left ), average of 

minimum misfit found in each generation for 10 trials (top-right), boxplot of averaged misfit per generation for 
BOA (lower-left) and MBOA (lower-right-) with untuned control parameters for PUNQ-S3 model.  

MBOA outperforms BOA for the minimum misfit; MBOA produces too many low quality models as shown by 

the boxplot of misfit. 
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Figure 4.14: Diversity comparison of BOA and MBOA with untuned control parameters; BOA suffers from the 

extensive loss of diversity and MBOA better maintained the diversity from generation 18. 

 

After tuning the BOA control parameters, we repeated the experiments for BOA and 

MBOA again, with 10 trials with different seed numbers. Tuned control parameters are: 

150 solutions in the initial population, 100 parents and 50 children in each generation, 

maximum number of parents of each node in the Bayesian network equal to 6, and 20 

bins for discretising parameter values. The stopping criterion was set as the total 

number of 47 generations, resulting in a total of 3,000 function evaluations.  

Figure 4.15 shows the misfit convergence of BOA and MBOA with tuned control 

parameters; it shows that the misfit convergence improvement of the MBOA over BOA 

in this case is not significant. Figure 4.16 shows the diversity of the BOA and MBOA 

with tuned control parameters, where the diversity of both BOA and MBOA is 

improved compared to the untuned setup. Both BOA and MBOA maintained diversity 

throughout the evolution. 

For multiobjective problems, it is common to compare non-dominated fronts obtained 

by the algorithm.  Convergence of this front with the generation is a performance 

measure of these multiobjective optimisation algorithms. Thus, we looked at the non-

dominated front generated by each setup of the objective function used for MBOA. As 

Figure 4.17 shows, the G1 setup results in the best non-dominated front, where more 

solutions form the front. 

 

0

0.5

1

1.5

2

0 10 20 30 40

Generation 

Inertia Diversity 

BOA MBOA



Chapter 4: 

History matching using Multi-Objective Optimisation 

 

 

107107 
 

 

 
Figure 4.15: Average of minimum misfit found in 10 trials with 95% t-test standard error (top-left), average of 

minimum misfit found in each generation for 10 trials (top-right), boxplot of averaged misfit per generation for 
BOA (lower-left) and MBOA (lower-right) with tuned control parameters for the PUNQ-S3 model.  

The misfit convergence improvement of the MBOA over BOA is not significant; MBOA produces models with a 

broader range of misfits. 

 

 
Figure 4.16: Diversity of BOA and MBOA with tuned control parameters; Diversity of BOA and MBOA is 

improved compared to the untuned setup. Both BOA and MBOA maintained diversity throughout the evolution. 
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Figure 4.17: Solutions obtained by bi-objective setups of MBOA in PUNQ-S3 (blue diamonds) and finally formed 

non-dominated fronts (red line). 
 G1 shows the non-dominated front with the greatest number of solutions on the front, so best setup in terms 

of multiobjective criteria. 

 

4.4 Application 2: History Matching of Koma Field 

After PUNQ-S3 application, MBOA was applied to the Koma model (real North Sea 

full-field). In the previous chapter, we applied single objective BOA to history match 

the Koma field and showed that performance improvement was achieved by using BOA 

when compared with results achieved by a commercial GA for history matching. Unlike 

GA, BOA (a multivariate EDA) implicitly adapts the search mechanism to the structure 

of the problem by updating the search mechanism in each generation.   

In current chapter, we evaluate the performance of MBOA in real world conditions and 

compare its results with the results obtained by the single objective BOA in terms of 

misfit convergence and diversity preservation. As discussed earlier, by using 

multiobjective sorting algorithm instead of sorting based on the overall misfit, we aim 

to use the benefits of multiobjectivisation and trade-offs between the misfit components. 

Thus we could possibly improve the diversity and convergence in the search process. 

4.4.1 Uncertainty parameterisation 

In the previous chapter, we used an uncertainty parameterisation for Koma which was 

similar to the original uncertainty study performed by the asset team. We also used a 

misfit definition similar to that in the PUNQ-S3 case, with the same misfit components 

used by the asset team. No further observation data analysis or tuning of the uncertainty 

variables was carried out. 
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In this chapter, we revisited Koma uncertainty parameterisation and misfit definition, so 

one could expect even better history matching in the results of applying the algorithms. 

In a sensitivity study and analysis of the 54 model parameters taken in the previous 

chapter, we reduced the number to 49 uncertainty parameters by removing 5 non-

sensitive and low impact parameters. The final parameters included 14 pore volume 

multipliers (porosity and NTG), 6 permeability multipliers, 21 inter-region 

transmissibility multipliers, 7 fault transmissibility multipliers, and 1 aquifer volume 

multiplier. 

4.4.2 Data analysis  

We also performed a quality control study on the observation data to refine the misfit 

definition function. Koma observation data includes reliable bottom-hole flowing 

pressure and average gridblock pressures, as well as not particularly reliable allocated 

oil, gas, and water rates. Therefore, following data analysis was conducted: 

4.4.2.1 Water-cut analysis 

In a standard misfit function definition, usually the mismatch between the observation 

and simulation data for water-cut and gas-oil ratios or water, oil, and gas rates is 

considered, regardless of the shape of the curves. Water and gas breakthrough times 

play an important role in the response of the model, and hence two models with the 

same misfit values but different breakthrough time behave differently in terms of the 

prediction performance. Small amounts of water sometimes exist in the production 

rates, even before the breakthrough time. Yortsos et al. (1999) developed an approach to 

identifying the correct breakthrough time in waterflooding. Their approach involves 

plotting the water-cut ratio in log-log scale and finding the time at which the slope of 

the curve starts to increase from about 1 to a very steep slope (m>>1).  

For the Koma field, a complete set of well-test data (including bottom-hole well 

pressure, average reservoir pressure from extended build-up pressure tests, and well 

rates from production log tests) was available, which are more accurate than the 

allocated rates. Well-test water rates are zero for times before the breakthrough. 

Although the frequency of the well-test data is not as high as the allocated weekly rates, 
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they were frequent enough to be taken into the misfit calculations. Therefore, for the 

Koma field, we used well-test data instead of allocated data for water and gas rates. 

 
Figure 4.18: Water Breakthrough Time to be included in the Misfit definition. 

 

4.4.2.2 Allocated water and oil rates 

A common source of the error in observation data is human/machine error in the 

allocated water and oil rates. Oil and water rates are usually reported for a group of 

wells, segments, or even the entire reservoir. These reported rates are then allocated to 

individual wells by a production engineer, based on the well test measurements. A way 

of testing for this error is to look at the fractions of the cumulative oil for different 

wells. Basically, these fractions should stay constant during the production, although 

there are more complex situations, e.g. a shared platform by more than two fields in 

which these fractions could change. Figure 4.19 shows the fraction of allocated oil rates 

for three wells of the Koma field. In the current Koma application, since we decided to 

use well-test data instead of allocated data, this is no longer an issue. 
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Figure 4.19: Allocation ratios of the wells versus time. These fractions should be constant, but here they vary. 

 This could be an indication of an error in the allocated data, in particular when the platform is shared by two or 

more fields. 

4.4.2.3 BHP constraint 

In Koma field, the simulation model is initially controlled by the total liquid rate; a 

second constraint is set for the bottomhole pressure (BHP). Data analysis showed that 

when simulation models reached BHP constraint, the simulated produced/injected liquid 

rates did not honour the historical figures (e.g. Figure 4.20). These models required to 

be fixed, to honour the history. Since many of them suffer from this problem, it is not 

practical to fix them all manually. Instead, we used a function to penalise these models 

and reduce their likelihood.  

The applied penalty function is in the form of two new misfit components, liquid 

production rate and water injection rate, with a small tolerance for difference (standard 

deviation). The tolerances were set by a trial and error process, so that, the penalty 

function does not dominate the total misfit value while it sufficiently penalises the 

models reaching BHP constraint. 
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Figure 4.20: Discrepancies in liquid production rate of Well 1 in observation and simulation data.  

 The model has reached the BHP constraint in between ~1500 to 2500 days.  

 

4.4.3 Modified misfit function 

In addition to a refined set of uncertainty parameters, the misfit definition was revisited 

and modified for Koma field, based on data quality control and analysis. We removed 

oil production rates from the objective function since the model was controlled by total 

liquid rate and the objective function included all three rates (oil, water and gas), which 

imposed a bias in the misfit definition. This is because if two of the rates are matched, 

the third will be matched too. For simplicity we used water-cut instead of water rates 

and gas-oil ratio instead of gas rates.  

Data quality control showed that allocated production and injection rates are erroneous. 

Since Koma field had a relatively large set of well tests, we used well-test rates in the 

misfit function instead of allocated rates. Finally, as discussed earlier, to account for the 

discrepancy in simulated production and injection liquid rates in a model controlled by 

total liquid, we treated production liquid rate and water injection rates as new two misfit 

components. The final set of misfit components with their assumed Gaussian 

measurement error is shown in Table 4.4.  

 

 

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500 3000

ST
B

 

Date 

Well 1: QLP 

Sim

Obs



Chapter 4: 

History matching using Multi-Objective Optimisation 

 

 

113113 
 

Table 4.4: History-match data and error model in revisited Koma. 

Parameter Parameter 

abbr. 

Error definition 

Bottomhole pressure BHP 50 psi  

Near-well average pressure Pave 50 psi 

Water-cut WCT 5% 

Gas-oil ratio GOR 50 SCF/STB 

Liquid production rate QLP 2% 

Water injection rate QWI 1% 

 

4.4.4 Results of Koma field History Matching 

We used both single and multiobjective BOAs for the history matching problem of the 

Koma field. Based on the finding of the objectives selection study on PUNQ-S3, two 

reservoir compartments in the south and north of the field were taken as the basis for the 

two objective functions in the MBOA; i.e. the sum of the misfit components of the two 

wells in the north was taken as the first objective and the sum of the misfit components 

of the well in the south was taken as the second objective. 

In both single and multiobjective optimisations, BOA parameters are used as in the 

previous chapter, i.e. 150 solutions in the initial population, 100 parents and 50 children 

in each generation, maximum number of parents to be taken for each solution in the 

Bayesian network equal to 6, and 8 bins for representing parameter values. The stopping 

criterion was set as the total number of 17 generations (1,000 function evaluations). 

To minimise the effect of randomness in the results, we ran 5 trials of the BOA and 

MBOA with the same initial random population. Results averaged for 5 trials and the 

sum of the objectives in the multiobjective experiment were compared to the single 

misfit in the single objective experiment. Figure 4.21 shows the average of the 

minimum misfits found in each trial, the average of the generational minimum misfit, 

and a boxplot of the misfit found for BOA and MBOA respectively. As the figure 

shows, the minimum misfit convergence is very similar for the two but as expected, the 

MBOA produced broader boxplot of misfit values. This is because the MBOA 

converges toward a Pareto front in a two-objective space. 
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Figure 4.21: Average of minimum misfit found in 5 trials (top-left), average of minimum misfit found in each 

generation for 5 trials (top-right), boxplot of misfit per generation for BOA (lower-left) and MBOA (lower-right) 
for Koma field 1,000 simulations. BOA and MBOA show similar minimum misfit convergence, but different 

boxplot of misfits. 

We also looked at inertia diversity per generation for BOA and MBOA. As Figure 4.22 

shows, MBOA has maintained diversity among the solutions in the population better 

than BOA throughout the evolution.   

 

 
Figure 4.22: Average of inertia diversity for BOA and MBOA. MBOA experiment shows a larger diversity. 

 

The Pareto front obtained by a selected trial of the MBOA is shown in Figure 4.23. The 

figure shows that Well 2 contributes more to the overall misfit, and that matching Well 

2 is more difficult than Well 1 and 3 with the selected parameterisation model.    
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Figure 4.23: Non-dominated front (red line) obtained by MBOA.  

As most of the non-dominated solutions are laid closely parallel to misfit of the Well 2 axis, Well 2 is more 

challenging to match with current parameterisation of the model. 

4.5 Discussion 

History matching uses optimisation algorithms to minimise the discrepancy (misfit) 

between simulation results of the reservoir model and the observation data available for 

the reservoir. Some attempts to take and solve history matching by splitting the total 

misfit function into two or more objectives are reported in the petroleum literature. If 

the aim in assisted/automatic history matching is to minimise the misfit, then one can 

argue that history matching is not a multiobjective problem by nature. Thus, one cannot 

expect multiobjective sorting algorithms to improve the history matching and the 

convergence speed of the algorithm considerably. This statement is supported by both 

field applications in this chapter.  

Maintaining population diversity high enough is crucial to avoid premature convergence 

and achieve a better match quality by use of EAs. The reason behind premature 

convergence is that the individuals in the gene pool are too alike, thus the algorithm has 

not been able to extract new information that can lead the search towards the global 

optimum. Even though history matching is not a multiobjective problem by nature, 

multiobjectivisation of the overall misfit can provide EAs with more freedom to explore 

multiobjective space, which results inless likelihood of becoming trapped. In the 

PUNQ-S3 application, we showed that the untuned BOA experienced a premature 

convergence while the unturned MBOA exhibited its normal convergence. Thus, 

MBOA is less sensitive to parameter tuning. It is worth pointing out that, although 
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multi-objective EAs can improve the diversity of solutions in the population, other 

methods could be used to improve the diversity in a single objective EA, without using 

multiple objectives. 

Multiobjective optimisation for history matching can have other added benefits 

wherever the user truly wishes to find a set of trade-off solutions. One example is 

trading off misfits for different parts of the reservoir, another situation would be to 

analyse how different components of the overall misfit fight for match. 

If different parts of the reservoir fight for better match,  multiobjective optimisation can 

potentially improve misfit of the selected parts in comparison with single objective 

history matching. In this case, the reservoir energy and as a result, global pressure 

match is not balanced and one can match only one or a limited part of the reservoir with 

the existing energy.  

The trade-off between different components of the overall misfit can show how 

challenging it will be to match each component and one cannot match all the 

components simultaneously. Thus reservoir engineer may trade-off the match quality of 

some components. Nevertheless, better solution is to modify the model, so that, it 

provides enough flexibility to match all the components simultaneously. 
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CHAPTER 5:  

HYBRID EVOLUTIONARY 

ALGORITHMS FOR HISTORY 

MATCHING 

 

 

5.1 Introduction 

Stochastic search algorithms, such as genetic and evolutionary algorithms, exploit 

knowledge of the distribution of good solutions amongst those already visited, to select 

wisely new points in the search space to evaluate. In the case of genetic algorithms, this 

knowledge is stored implicitly in the current population. It is exploited through the 

application of crossover and mutation operators (discussed below) to the solutions in 

this population, which, it is hoped, will lead to a generation of improved solutions. 

The Genetic Algorithm (GA) is the most common Evolutionary Algorithm (Holland, 

1975; Goldberg, 1989). GAs are widely used in history matching; There are several 

applications of GAs in the petroleum literature: Romero et al. (2000), Williams et al. 

(2004), Castellini et al. (2005), and Erbas & Christie (2007). Real-coded GAs have also 

been applied to history matching; Carter and Ballester (2004) used a real-coded GA for 
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history matching of a real field. Carter et al. (2006) applied the same algorithm to 

history matching of the IC Fault model. 

As discussed in Chapter 3, the success of genetic algorithms is sometimes attributed to 

the building block hypothesis (Goldberg, 1989), whereby it is conjectured that the 

genetic algorithm efficiently identifies and recombines building blocks, i.e. solution 

components, or schemata, with above average fitness. In practice, genetic operators 

often break such partial solutions, especially when these schemata are large, spread 

widely across the solution or when operators such as uniform crossover are used. 

As we discussed in chapters 3 and 4, EDAs create an explicit model of the location of 

good solutions found so far that can, hopefully, be used to generate improved solutions 

in the future. Therefore, instead of manipulating solutions from genes of solutions in a 

population, new solutions are generated using the model. As the search proceeds, the 

model is updated or adapted as new solutions are evaluated. This is the underlying 

concept behind EDAs. 

In recent years, hybrid algorithms have been applied to many practical or academic 

history matching problems. Leitão and Schiozer (1999) used a hybrid algorithm 

combining a gradient method and direct methods (Polytope and Hooke & Jeeves), while 

Gómez et al. (1999) proposed a hybrid gradient and global optimisation method called 

Tunnelling for history matching and Mantica et al. (2002) used a combination of 

chaotic-based global and gradient-based local optimization techniques for history 

matching, using production and seismic data. More recently, Castellini et al. (2006) 

combined GA with Experimental Design and Response Surface Methodology, Schulze-

Riegert et al. (2009) introduced a hybrid GA and Ensemble Kalman Filter from data 

assimilation techniques to history matching and finally Reynolds et al. (2011) used a 

hybrid EDA-PSO algorithm for history matching. However, no attempt is reported in 

the literature to hybridise GA and EDA algorithms for history matching. 

In this chapter, we apply a simulated binary genetic algorithm (SBGA) and an 

incremental histogram-based estimation of distribution algorithms (iHEDA). Then we 

propose a new hybrid algorithm, which combines SBGA and iHEDA and apply these 

algorithms to optimisation of a test function and history matching of two reservoir 
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models, IC-Fault and Teal South. We aim to improve the quality and diversity of the 

search using the exploitation and exploration power of both algorithms.  Experimental 

results indicate that SBGA/iHEDA can outperform both SBGA and iHEDA for specific 

problems. Furthermore, the control parameters of the proposed hybrid algorithm are 

also experimentally studied in this chapter. 

5.2 Genetic Algorithms 

As discussed in earlier chapters, in GAs, knowledge of the distribution of good 

solutions is stored implicitly in the current population and exploited by applying 

selection, crossover, and mutation operators to solutions in the population. Selection is 

the process of choosing the most promising solutions with regard to the fitness function 

value in the current generation (parents). The crossover operator generates two new 

solutions (children) by recombining the information from two parents; in addition, the 

random mutation of some gene values in a promising solution is sometimes used to 

generate children.  

Here SBGA, a real-coded GA is used which employs polynomial simulated binary 

crossover and mutation operators. An outline of the SBGA employed in the present 

work consists of the following steps: 

1. Randomly generates a population of N solutions. 

2. Select a set of P promising solutions from the population. 

3. Repeat until C new solutions are generated: 

3.1. Select two random parent solutions (p1, p2) from P 

3.2. Apply the crossover operator to the parent pair (p1, p2) to generate a new pair 

of child solutions (cx1 and cx2). 

3.3. Apply the mutation operator to created child solutions (cx1 and cx2) to 

generate the final new pair of child solutions (c1 and c2).  

3.4. Merge new pair (c1 and c2) with child solutions C. 

4. Update population with C new solutions by merging the children with the previous 

population and discarding unpromising solutions. 

5. Go to step 2 and continue until the stopping criterion is reached. 
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SBGA uses the simulated binary crossover (SBX) and the simulated binary mutation 

(SBM) for generating new child solutions from the parent solutions. Both of these 

operators are adaptive in the sense that the range of the possible child solutions depends 

on the distance between the parents. As the population converges, this distance 

decreases and the generated children more resemble the parents. 

5.2.1 SBX operator 

In a GA, the choice of crossover operator depends on the parameter representation. In a 

binary-coded GA, parameters are represented by discrete variables and a one or multi-

point binary crossover is used; while in real-coded GAs, two types of crossover are 

commonly used in the literature, Simulated Binary Crossover (SBX) (Deb and Agrawal, 

1995) and Parent-centric Normal crossover (PNX) (Deb et al., 2001). Ballester and 

Carter (2004) applied these two crossovers to different test functions and a history 

matching problem. In the current thesis, the SBX is used, which simulates the one-point 

crossover properties in a binary-coded GA. We use SBX to crossover two parent 

solutions, according to the following procedure: 

1. First, we need to simulate the shape of the probability distribution function of 

the binary-coded crossover, according to: 

{

                   

             
 

    
    

 (5.1) 

where β is spread factor and n is a non-negative number, usually between 2 and 5, 

which determines the tendency to generate  near-parent (higher n) or far-from-

parents (lower n) solutions. Lower values of n, e.g. equal to 2, lead to 

performing a more exploratory search. 

2. A uniform random number u between 0 and 1 is generated for each variable. 

3. From the simulated probability distribution function (Figure 5.1), we get a β 

value that makes the area under the curve equal to u. 

4. Then variable values for child solutions (cx1 and cx2) are calculated from: 
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[                 ]

 

    
 

 
[                 ]

 (5.2) 

where p1 and p2 are parameter values of the parent pair and β is the obtained spread 

factor. 

 

 
Figure 5.1: Spread factor for SBX; spread factor β corresponds to the random number u in a polynomial 

probability distribution function, which simulates one-point binary crossover. 

 

5.2.2 SBX mutation operator 

The mutation operator is applied to variables with a random probability of pm. The 

polynomial mutation operator (Deb, 2001) is one of the most widely used mutation 

operators for real-coded GAs. The mutation operator used in the current work performs 

real polynomial mutation. The procedure for performing mutation on a single solution 

is: 

1. For each variable do: 

2. Generate a uniform random number um between (0, 1). 

3. If um < pm, then perform mutation as follows: 

3.1. Generate another uniform random number r between (0, 1). 
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3.2. Simulate the shape of the probability distribution function of the binary-

coded mutation according to: 

 

{
     

 
            

           
 

          

 (5.3) 

where Δ is delta factor, r is generated random number, and nm is a non-negative number, 

which determines the tendency to generate  near-parent (higher nm) or far-from-parents 

(lower nm) solutions. Similarly to the n factor in simulated binary crossover, a low value 

of nm, e.g. 2, implies a more explorative search. 

3.3. Then update the variable value for child solution (c) from: 

 
              

(5.4) 

where p is the variable value of the solution, pu and pl are upper and lower limits of the 

variable respectively, and Δ is the obtained delta factor. 

5.3 Incremental Histogram-based EDA 

In the previous chapters, we introduced Estimation of distribution algorithms (EDAs) 

and demonstrated the structure of EDAs in general and two histogram-based EDAs (BH 

and EAH) and the Bayesian optimisation algorithm (BOA) in particular.  

In this chapter, we reconsider the basic histogram model (HEDA) and to include two 

new features: Laplace correction for initial optimisation and an incremental learning 

mechanism for the probabilistic model.  

5.3.1 Structure of HEDA 

As we discussed earlier, HEDA uses the histogram model as the probabilistic model for 

generating new solutions and, as a univariate EDA, it considers dependency between 

variables. The histogram model natively supports discrete problems in which each value 
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is represented by a bin. For continuous problems, the permitted range for each variable 

is split into equal sized bins. 

Therefore a marginal probability value is stored in each bin for each variable. Initially 

these values are set to 1/c where c is the number of bins. After selecting good solutions, 

for each bin, the probability is calculated as follows:  

       
∑    

 
             

         

 
 (5.5) 

where l is the generation number, subscripts i iterate over the number of bins, subscript j 

iterates over the number of parents,     
         is the set of N selected solutions (parents),  

             
          =1 if the j

th
 of the selected individual’s i

th
 bin is xi and 0 

otherwise. 

New solutions are generated by selecting a bin for each variable, according to the stored 

probability values. A value for each variable is selected at random within the range of 

the bin. Figure 5.2 illustrates how the basic histogram approach models the marginal 

probability distribution over the selected solutions for a single variable. The graph plots 

probability density on the vertical axis against variable value on the horizontal axis. 

0.25

0.16

0.05

0

0.03

0.09

0.22

0.15

0.05

0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P
ro

b
a

b
il

it
y

Bin Parameter Values
 

Figure 5.2: Basic histogram model in HEDA; for a continuous variable in the range [0,1), the variable range is 
split into equally sized bins; probability is calculated for each bin based on the frequency of the parameter 

values in the promising solutions of the population. 
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5.3.2 Laplace correction for HEDA 

As in many evolutionary algorithms, in the first generation of HEDA, the solutions are 

created randomly. In the event that all the selected solutions in the first generation 

happen to have one of their bin probabilities as zero, then all the children will have it as 

zero too. As the joint probability in HEDA is the product of the marginals, the joint 

probability distribution becomes zero and HEDA sometimes may not visit a global 

optimum. To resolve this issue, Gonzalez et al. (2001) proposed a Laplace correction as 

follows: 

       
∑    

 
        |    

        )   

    
 (5.6) 

where ri is the number of distinct values that Xi may take. This correction leaves a small 

probability for the bins happening to have their probability zero in the initial random 

population. 

5.3.3 Incremental learning mechanism for HEDA 

In EDAs, the probabilistic model used for sampling a new solution can be either fully 

regenerated from the promising solutions in the current generation or updated from the 

previous generation by integrating a new model from the current generation. In the 

latter, the algorithm is incrementally learning.  

HEDA with incremental learning (iHEDA) is equivalent to PBIL, introduced by Baluja 

(1994) which uses binary representation instead of splitting the parameter range to a 

number of bins. We applied following learning strategy in the building probabilistic 

model step of the EDA process (Mühlenbein, 1997): 

a. Construct a new histogram model (Ni) from the promising solutions P in the 

current generation, 

b. Update the histogram model (Hi) from the new model (Ni) and the histogram 

model in the previous generation (Hi
k-1

) according to the following equation 

(5.7): 
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(5.7) 

where α is the learning factor which determines the effect of the old model on the new 

model. 

5.4 Hybrid SBGA/iHEDA 

Combination of different algorithms is often done with the purpose of developing new 

search algorithms that combine the benefits of the original algorithms and thus 

achieving new algorithms that have better convergence speed and more reliability. 

Hybridising search algorithms can be done in different ways. A loose integration of two 

algorithms can be achieved by using one algorithm as the pre-optimiser for the initial 

population of the other one. Fully hybridised strategies maintain the integration of the 

two algorithms in the entire run. This means that the two algorithms perform a 

cooperative search, either in parallel or serially, in each generation of the evolution.   

As we know, the main difference between GA and EDA is how new solutions (children) 

are generated; thus addition of SBGA to iHEDA may benefit from both algorithms, i.e. 

handling complex interactions by GAs and preserving meaningful patterns and adaptive 

probability models in EDAs. Zhang et al. (2005) proposed a new operator, called guided 

mutation for the maximum clique problem by combining GA with EDA. Their guided 

mutation generates offspring through combination of global statistical information and 

the location information of solutions found so far. Santana et al. (2007) combined a GA 

with the univariate EDAs to build new algorithms that allow solution of problems with 

complex dependencies.  

Here a hybrid algorithm, referred to as SBGA/iHEDA, has been developed which 

performs a parallel, cooperative search mechanism using a combination of the SBGA 

and iHEDA algorithms. In the hybrid algorithm SBGA/iHEDA, generating new child 

solutions is done in parallel cooperatively between the two algorithms, i.e. some of the 

child solutions are generated in the GA mechanism, and the rest are generated by the 

EDA mechanism, i.e. by sampling from a probability model created by the EDA.  



Chapter 5: 

Hybrid Evolutionary Algorithms for History matching 

 

 

127127 
 

An additional control parameter appears for the SBGA/iHEDA, a ratio between 0 and 1, 

which controls how many solutions are created by each mechanism. We call this 

parameter the participation ratio (p). This parameter represents the extent to which each 

of the GA and EDA participate in the process. A simple outline for SBGA/iHEDA is: 

1. Randomly generate a population of N solutions. 

2. Select a set of P promising solutions from the population. 

3. Construct a probabilistic model from the promising solutions. 

4. Generate a set of C new child solutions according to the participation approach:  

4.1. Generate C1 new child solutions using genetic operators (crossover and 

mutation). 

4.2. Sample C2 new child solutions from the constructed probabilistic model. 

5. Update population with C (=C1+C2) new solutions by merging the children with the 

previous population and discarding unpromising solutions. 

6. Go to step 2 and continue until a stopping criterion has been met. 

A simple schema for the hybrid SBGA/iHEDA is shown in Figure 5.3. One can expect 

different ways of setting up this participating parameter. In this work, we employed two 

approaches for participating:  fixed participation and adaptive participation.  

 
Figure 5.3: A simple schema for hybrid SBGA/iHEDA. The algorithm cycle starts from a population, and then 
GA and EDA both contribute to generation of new solution based on a fixed or adaptive participation ratio. 
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5.4.1 Fixed Participation 

The straightforward strategy is a fixed participation, in which the participation ratio (p) 

is fixed throughout the evolution. In this approach, the number of child solutions 

generated by each participating algorithm is: 

 SBGA: p×C 

 iHEDA: (1-p)×C 

where p is the participation ratio and C is the total number of children to be generated in 

each generation (both are control parameters of the hybrid algorithm SBGA/iHEDA). 

5.4.2 Adaptive Participation 

In the adaptive approach, the participation ratio will be increased towards the algorithm 

that generates more promising solutions in each generation. In this approach the number 

of child solutions generated by each algorithm is: 

 SBGA: XSBGA×C 

 iHEDA: XiHEDA×C 

where XSBGA is the participation ratio of SBGA, XiHEDA is the participation ratio of 

iHEDA, and C is the total number of children to be generated in each generation. We 

always have equation (5.8): 

             
(5.8) 

We start with a participation ratio of 0.5 for both algorithms, then in each generation, 

the number of best child solutions from SBGA and iHEDA are compared and the 

winning algorithm gets an incremental 5% of the participation ratio. The incremental 

5% is scaled by the relative difference between the two algorithms; this ensures the ratio 

remains between two algorithms. This adaptive mechanism provides SBGA/iHEDA 

with a contest-based adaptive function in which algorithms are competing to get higher 

ratios as they generate better solutions. 
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Although the wining algorithm in the first generation of adaptive SBGA/iHEDA will be 

treated more preferentially in the coming generation by contributing to 5% more to 

child generation, but base on the control parameters of the wining and loosing 

algorithms and the shape of the misfit landscape, it is always possible for the loosing 

algorithm to win the search race and be treated more preferentially. 

5.5 Rosenbrock function application 

The three algorithms (SBGA, iHEDA, and SBGA/iHEDA) were first applied to the 

Rosenbrock function. The aim was to investigate the performance of the algorithms on a 

well-known test function and to tune the algorithms and obtain an initial guess for the 

control parameters in history matching applications. 

5.5.1 Rosenbrock function description 

The Rosenbrock function, also known as the banana function, is a well-known test 

function for numerical optimization problems, introduced by De Jong (1975) to test the 

performance of GAs. It is highly nonlinear and symmetric around quite a long, narrow 

and parabolic-shaped flat valley, and the variables are strongly correlated (Figure 5.4). 

It is a minimization problem, and often serves as a test case for premature convergence 

of evolutionary algorithms. The function has its global optimum, f(xi) = 0, at xi = 1. No 

algorithm can easily discover the global optimum of the Rosenbrock function. 

     ∑ (   (       
 )

 
  (      )

 
)

 

   
 (5.9) 

where            ,              [          ] 
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Figure 5.4: A Rosenbrock function for two variables. 

5.5.2 Rosenbrock function results 

We ran a sensitivity study on tuning parameters of the algorithms to find the best value 

for each control parameter in terms of convergence performance. Three parameters of 

the algorithms were fixed in the experiments, including the number of function 

evaluations, at 20,000, the number of random initial solutions, at 200, and the number of 

child solutions to be generated in each generation, at 100. To minimise the effect of the 

random seed required by any stochastic algorithm, we predefined the initial random 

population in all the experiments and repeated each experiment 10 times. A summary of 

the results is shown in Table 5.1. 

Table 5.1: Summary of the results of sensitivity study on the algorithms’ control parameters based 
on the Rosenbrock function. 

Algorithm Parameter Tested values Best value  

iHEDA Number of parents 100, 150, 200, 300 200 

Number of bins 10, 15, 20, 25, 30 20 

Learning rate 0.05, 0.1, 0.3, 0.5, 0.7, 0.9 0.5 

SBGA Number of parents 100, 150, 200, 300 100 

Mutation probability 0.05, 0.1, 0.3, 0.5, 0.7, 0.9 0.5 

Simulated binary factor (n) 2, 3, 4, 5 2 

SBGA/iHEDA Participation ratio 0.1, 0.3, 0.5, 0.7, 0.9 0.5 
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Minimum fitness in 200 generations, inertia-based diversity, and the convergence 

performance of the three algorithms on the Rosenbrock function were compared (Figure 

5.5 and Figure 5.6). As Figure 5.5 shows, hybrid SBGA/iHEDA achieved better 

minimum fitness with all the participation ratios. The iHEDA and hybrid 

SBGA/iHEDA with adaptive participation rate (x) suffer from the loss of diversity after 

just 12 generations. When compared to SBGA, hybrid SBGA/iHEDA with different 

participation rates has converged better while it has also maintained some level of 

diversity. Figure 5.6 shows convergence of the different algorithms. SBGA/iHEDA 

with the participation ratios of 0.1, 0.3 and 0.5 have slightly better convergence 

compared to the other ratios.  

Given the fact that in real application, we are usually limited for the computational 

resources and 50 is usually the maximum number of generations that one can afford, the 

difference shown in the following figures on the convergence performance can be 

significant.   

  
Figure 5.5: Results of Rosenbrock function application for minimum fitness (left) and inertia-based diversity 

(right) for SBGA, iHEDA, and different participations of hybrid SBGA/iHEDA. Diversity curves show that iHEDA 
and adaptive participation ratio (x) suffer from loss of diversity. 

 

The Rosenbrock function application helped us to test all three algorithms for optimum 

convergence. We also tuned the individual and hybrid algorithms and found initial 

guesses for the control parameters in the field applications. Although these guesses are 

not guaranteed to work well in history-matching applications, they provide initial values 

to start with in parameter tuning. 
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Figure 5.6: Results of Rosenbrock function application for fitness convergence (right) and as zoomed for 

fitness under 10.0 (left). All three algorithms converged, but Hybrid algorithms with participation ratios of 0.1, 
0.3 and 0.5 (grey) show slightly better convergence than other ratios. 

  

 

5.6 IC-Fault - synthetic case application 

Following tuning on the Rosenbrock function, we applied SBGA, iHEDA and 

SBGA/iHEDA to a hard history-match problem, the IC Fault model. The aim of this 

study was firstly to evaluate the performance of the SBGA and iHEDA, and secondly to 

compare their performance to the hybrid algorithm SBGA/iHEDA. 

Carter et al. (2004) showed that the best history-matched model in the IC-Fault model 

does not give the best forecast. This proves the necessity of using ensemble-based 

history matching and uncertainty quantification algorithms introduced in this work 

instead of a single best history-matched model.  

In current chapter, we use the IC-Fault model as an example for difficult history 

matching problems. The difficulty is due to the presence of the steep minima resulted by 

interfacing the fault throw with alternating high and low permeable sand layers. This 

creates a complicated misfit landscape with numerous steep minima, which is very 

difficult to be fully discovered by optimisation and search algorithms. 

5.6.1 Field description  

The IC-Fault is a synthetic model, set up by Carter et al. (2004) at Imperial College, 

with a simple geological model consisting of six alternating high and low permeability 

sand layers, of which three high permeability layers have identical properties and three 
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low permeability layers have identical properties. The good and poor quality sands have 

constant porosities of 0.30 and 0.15, respectively. The thickness of the layers varies 

with an arithmetic progression from 12.5 feet at the top layer to 7.5 ft at the bottom 

layer; the total thickness is 60 ft. The model is 1000 ft in width and a simple fault at the 

mid-point offsets the layers. The fault throw is also considered unknown. 

The model has two wells, a water injector well at the left-hand edge, and an oil producer 

well on the right-hand edge. Both wells are completed on all layers, and operated at 

fixed bottomhole pressures and drilled to a depth of 8325–8385 ft. 

Each of the 6 geological layers are divided into two simulation layers with equal 

thicknesses, and each grid block is 10 ft wide, which results in a simulation model of 

100 x 12 grid blocks. The vertical positions of the wells in the simulation grid are kept 

constant and equal, even though fault throw varies. Figure 5.7 shows reservoir model of 

the IC Fault. 

 

Figure 5.7: IC Fault model. 
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5.6.2 Uncertainty parameterization 

The IC Fault model has three unknown parameters; all with uniform distribution, 

including high and low permeability and the fault throw (Table 5.2). Unlike the original 

IC Fault study, we assume homogenous good/poor quality sands in terms of porosity 

and permeability. The porosity and permeabilities in each grid block were randomly 

drawn from uniform distributions and no correlations between the two were assumed. 

Table 5.2: Unknown parameters for IC Fault model. 

Parameter Description Uniform Prior Range 

Kh Permeability of good sands  100 – 200 mD 

Kl Permeability of bad sands 1 – 2 mD 

h Fault throw 0 – 60 ft 

5.6.3 Misfit definition 

The misfit was defined using a standard least squares model, considering the 

discrepancy between simulated and observed oil and water production rates for the 3-

year history matching period, as follows: 

       
 

  
∑(

       

  
)
 

 
 

  
 ∑(

       

  
)
   

   

  

   

 (5.10) 

where Misfit is the misfit function, i  the subscript running over observation data points 

at reported time, o the subscript for oil production rate observation, w the subscript for 

water production rate observation, No is the total number of oil production rate 

observations, Nw  is the total number of water production rate observations, Ooi  is 

observed oil production rate at time point i, Owi  is water production rate at time point i, 

Soi  is simulated value of oil production rate at time point i, Swi  is simulated value of 

water production rate at time point i, oi  is the standard deviation of the oil rate 

observations, and wi  is the standard deviation of the water rate observations. Figure 5.8 

shows the observation data for history matching of the IC-Fault model. 
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Figure 5.8:  Available observation data for IC-Fault, field oil production rates (green diamonds) and field water 
production rate (blue squares). 

The observation data are obtained from an Eclipse simulation case with heterogeneous 

reservoir properties, as shown in Table 5.3. A random Gaussian noise, with mean zero 

and standard deviation of 3% of the observed data was added to each measured point.  

Table 5.3: True parameter values for IC Fault. 

Parameter Value 

Kh 131.6 mD 

Kl 1.3 mD 

h 10.3 ft 

5.6.4 Computational resources 

IC-Fault is a small 2D model, which does not require huge computational resources (see 

Table 5.4). 40 CPU of the Heriot-Watt’s HPC cluster, were available to this study. An 

iteration of EAs with the total 1,000 simulations runs in 3 minutes. Thus, the control 

parameter tuning of the algorithms can be done in a reasonable time.  

Table 5.4: Computational resources available and used by Koma field. 

RAM Total RAM size 16 Gbyte 

Number of total gridblocks 187,872 

Number of active gridblocks 32,303 

Required RAM size ~ 100 Mbyte 

CPU CPU clockspeed 2.9 GHz 

Runtime for a single run using single CPU 7 seconds 

Number of runs in an EDA’s iteration 1,000 

Runtime for an iteration of EDAs using single CPU ~ 2 hours 

Number of CPUs available for this study 40 

Runtime for an iteration of algorithms using 40 CPUs ~ 3 minutes 
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5.6.5 IC-Fault results 

Initially, we ran a sensitivity study using different combinations of control parameters 

for each algorithm. In each trial, one control parameter was varied while all other 

parameters were kept constant and different values were tested for the varying 

parameter. This allowed achieving an initial value for each control parameter. In all 

three algorithms, three parameters were fixed, including the number of function 

evaluations at 500, the number of random initial solutions at 20, and the number of child 

solutions to be generated in each generation at 10. To minimise the effect of the random 

seed, we used the same initial random population in all the experiments. A summary of 

the results is shown in Table 5.5. 

 

Table 5.5: Summary of the sensitivity study on the algorithms’ control parameters, based on the IC-
Fault results. 

Algorithm Parameter Tested values Best value 
found 

iHEDA Number of parents 10, 15, 20, 25, 30 20 

Number of bins 10, 15, 20, 25, 30 20 

Learning rate 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 0.7 

SBGA Number of parents 10, 15, 20, 25, 30 10 

Mutation probability 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 0.1 

Simulated binary factor (n) 2, 3, 4, 5 2 

SBGA/iHEDA Participation ratio 0.1, 0.3, 0.5, 0.7, 0.9 0.1 

 

As shown in the Table 5.5, for iHEDA, we tuned the number of parent solutions in each 

generation, learning rate from the previous generation, and the number of bins used for 

variable ranges. Figure 5.9 shows the outcomes of the sensitivity study of the learning 

rate on minimum misfit and convergence speed. As the figure shows, a learning rate of 

0.7 is preferred, due to lower minimum misfit and better convergence. 
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Figure 5.9: Lowest misfit found at entire evolution (left) and minimum misfit per generation (right) for different 

values of the learning rate. Learning rate 0.7 (green) is preferred due to lower minimum misfit and better 
convergence. 

For the SBGA, we performed the sensitivity study around the number of parent 

solutions in each generation, mutation probability and simulated binary factor (n). 

Figure 5.10 shows the results of the sensitivity study on mutation probability. A 

mutation probability of 0.1 is preferred, due to slightly better convergence than for other 

probabilities. 

 
Figure 5.10: Lowest misfit found at entire evolution (left) and minimum misfit per generation (right) for different 

values of the mutation probability. Mutation probabilities of 0.1 and 0.5 result in better minimum misfit and 
convergence. Probability of 0.1 (green) is preferred due to slightly better convergence than for other 

probabilities. 

SBGA, iHEDA, and SBGA/iHEDA are all stochastic algorithms and one cannot expect 

the same results in two trials of the algorithm, even with the same control parameters. 

To minimize the impact of randomness in the experiments, we repeated each tuned 

algorithm 10 times and then averaged the minimum misfit and inertia diversity (Figure 

5.11) and generational minimum misfits (Figure 5.12). The hybrid algorithm with the 

participation ratios of 0.7, x (adaptive scheme) and 0.5 give better minimum misfit, 

diversity and convergence speed than both SBGA and iHEDA. 
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Figure 5.11: Lowest misfit found for the entire evolution (left) and inertia diversity measure per generation 

(right) for SBGA, iHEDA, and different participation ratios of hybrid SBGA/iHEDA. Hybrid algorithm with 

participation ratio of 0.7 achieved the best misfit followed by the adaptive scheme (x). Diversity measure shows 

that all algorithms converged and maintained some level of diversity. 

 

  

Figure 5.12: Minimum misfit per generation (left) and as zoomed for misfits under 10.0 (right) for SBGA, iHEDA 
and different participation ratios of hybrid SBGA/iHEDA. Hybrid SBGA/iHEDA with participation ratio of 0.7 

shows the best performance. 

We also analysed the history match quality of the oil and water production rates of the 

producer well for the best fitting model obtained by iHEDA, SBGA, and different 

participation ratios of SBGA/iHEDA. Figure 5.13 shows that acceptable matches are 

achieved for both oil and water rates using all the algorithms.  
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Figure 5.13:  Match quality of oil production rate (top-right) and as zoomed for marked area (top-left), water 

production rate (bottom-right) and as zoomed for marked area (bottom -left), for best fitting models of iHEDA, 

SBGA, and different participation ratios of SBGA/iHEDA. Acceptable match is achieved with all the algorithms. 

Red dots show observations. 

 

5.7 Teal South Reservoir 

The IC Fault case study suggested that SBGA/iHEDA outperforms iHEDA and SBGA 

for a problem with steep local minima. In this section, these three algorithms were 

applied to history matching of a real field model to assess the generality of the IC Fault 

results. Thus, we evaluated and compared the performance of the algorithms in another 

history matching problem. 

5.7.1 Field description 

The Teal South reservoir is located near Eugene Island in the central Gulf of Mexico, 

southwest of New Orleans, in a water depth of 279-295 ft (Figure 5.14). This reservoir 

was originally developed by Mobil Oil in the mid 1980’s and is currently being 

operated by Apache. Two exploration wells were drilled in 1994, which were followed 

by 17 more wells. The geological model of the reservoir is composed of the 4500 ft 
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sands, which are over-pressured, highly laminated channels that generally extend in the 

north-south direction.  

We used segment 2 of the Teal South reservoir, containing only one horizontal well, 

which came into production in 1996. The production history of the reservoir consists of 

oil, gas and water rates for 1247 days. High flow rates of production for a small 

reservoir volume resulted in rapid depletion of the reservoir and thus a reduction in 

production rates after 180 days (Figure 5.15). The simulation model is constructed in 

11×11×5 corner-point geometry, with uniform properties for each of the five geological 

layers in the model (Figure 5.14). Porosity is assumed to be fixed at 28% throughout the 

reservoir and permeabilities are unknown. In addition, rock compressibility in the model 

is unknown, and there is an aquifer with an unknown amount of pressure support. 

 
Figure 5.14: Location map (left), top structure and simulation model (right) of Teal South reservoir. 

 
 

 
Figure 5.15: Production history of Teal South. 
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the five layers, a single value for each of the vertical to horizontal permeability ratio, 

rock compressibility, and aquifer strength respectively. A uniform prior range was taken 

as the parameter search space for each of these parameters (Table 5.6).  

Table 5.6: Uncertainty parameters for Teal South reservoir. 

Parameter Uniform prior range 

Horizontal permeability (Kh) 10 - 10
3
 mD 

Ratio of vertical to horizontal 
permeability (Kv /Kh) 

10
-4
 – 10

-1
 

Rock compressibility  5x10
-6 

– 1x10
-4 

psi
-1
 

Aquifer strength  10
7
 – 10

9
 MMSTB 

 

5.7.3 Misfit definition 

In the Teal South application, misfit was defined using a standard least squares model 

using the discrepancy between simulated and observed field oil production rates for the 

1247 days of history (Figure 5.15).  Random Gaussian noise was added to each 

measured point, with mean zero and standard deviation of 100 STB/d of the observed 

data. The misfit function is as follows: 

       
 

 
∑(

     

 
)
 

  

   

 (5.11) 

where: 

 Misfit  is the misfit function, 

 i   subscript running over observation data points at reported time, 

 Np  is the number of observation points, 

 Oi  is observed oil rate measurement at time point i, 

 Si  is simulated value of oil production rate at time point i, 

   is the standard deviation of the oil rate measurement, equal to 100 STB/d of 

the oil rate. 

5.7.4 Teal South results 

We applied all three algorithms to Teal South model. Again, three control parameters 

were fixed for all three algorithms: the number of function evaluations at 1000, the 
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number of random initial solutions at 40, and the number of child solutions to be 

generated in each generation at 20. Other parameters, which are specific to the 

algorithms, are listed in Table 5.7. An identical initial random population was used in 

all of the experiments. 

Table 5.7: Control parameters for Teal South case. 

Algorithm Parameter Value 

iHEDA Number of parents 30 

Number of bins 20 

Learning rate 0.7 

SBGA Number of parents 20 

Mutation probability 0.1 

Simulated binary factor (n) 2 

SBGA/iHEDA Participation ratio 0.1, 0.3, 0.5, 0.7, 0.9 

We looked at the minimum misfit, diversity, and convergence speed of the SBGA, 

iHEDA and the SBGA/iHEDA with different participation ratios. All three algorithms 

obtained very simillar minimum misfit (Figure 5.16 left), maintained some level of 

diversity (Figure 5.16 right), and converged to minimum misfit of around 9 (Figure 

5.17). SBGA converges better than iHEDA and the hybrid algorithm, particularly in the 

early generations. After SBGA, the SBGA/iHEDA with fixed 70/30, 50/50 and adaptive 

participation ratios results in better performance. iHEDA has the worst convergence 

speed, especially at the later stage of the search.   

  
Figure 5.16: Lowest misfit found at entire evolution (left) and inertia diversity measure per generation (right) for 

SBGA, iHEDA, and different participation ratios of hybrid SBGA/iHEDA in the Teal South application. 
All algorithms obtained very similar minimum misfits. The diversity measure shows that all algorithms 

converged and maintained some level of diversity. 
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Figure 5.17: Generational misfit for SBGA, iHEDA and their hybrid algorithm with different participation ratios 
(right) and as zoomed for misfits under 12.0 (left). SBGA (dark red) has the best performance. Hybrid scheme 
improved iHEDA (purple); between the participation ratios fixed participation ratio of 0.9 (green) has the best 

performance.  

We looked at the match for the quality of field oil production rate for the best fitting 

model obtained by each of iHEDA, SBGA, and different participation ratios of the 

SBGA/iHEDA. As Figure 5.18 shows, acceptable matches are achieved with all the 

algorithms.  

 
Figure 5.18: Match quality of field oil production rate for best misfit models of iHEDA, SBGA, and different 

participation ratios of SBGA/iHEDA. Acceptable match is achieved with all the algorithms. Red dots show the 
observations. 

 

5.8 Discussion  

When applied to IC Fault model, all three algorithms were able to find several minima 

with small enough misfit value and all converged to lower values of the misfit. When 
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SBGA seems to be more appropriate than iHEDA for solving steep local minima 

problems, such as the IC Fault model.  

The hybrid algorithm, with participation ratio of 0.7, outperformed both SBGA and 

iHEDA. The Rosenbrock and IC-Fault applications showed that hybridising can 

improve the performance of the SBGA by providing more exploitation and that of the 

iHEDA by providing more exploration properties of the search algorithm. 

Good match quality was achieved by all three algorithms when applied to the Teal 

South reservoir. However, SBGA slightly outperformed iHEDA and the hybrid 

algorithm for the convergence speed. 

In principle, combining the global search capability of GAs and early convergence 

advantage of EDAs can improve the performance of evolutionary algorithms for 

specific problems. Tests on different test functions have shown good results using a 

hybrid algorithm, GA/EDA (Robles et al., 2005) when compared to a pure GA and 

EDA. This was also shown by the three applications in this chapter. 
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CHAPTER 6:  

GAUSSIAN-BASED ESTIMATION OF 

DISTRIBUTION ALGORITHMS 

 

 

6.1 Introduction 

In history matching, most of the optimisation variables, e.g. porosity and permeabilities 

are real-valued. The EDAs that so far have been applied to history matching normally 

work with discrete variables and one must discretise the variable search space into a 

number of bins when these algorithms are used for the real-valued problems. The 

discretisation can be potentially impractical, as some values close to each other in the 

parameter’s continuous domain may become far away in the discrete domain.  

Another problem is that discretisation does not reflect the evolution process. Some 

regions of the parameter space are searched thoroughly and will be densely covered 

with high quality solutions whereas others contain mostly low quality solutions. 

Although some efforts have been made to adapt representation of continuous domains 

and split bins into two (e.g. Chen et al., 2006), the intuitive approach is to use EDAs 

that work directly with a population of real-valued vectors. 

While the EDAs described in this study so far can be adapted to handle larger alphabets, 

adapting them to handle real-valued problems is more difficult. Although univariate 

EDAs exist (see for example Rudlof & Koppen, 1996) and others have been created 
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during this thesis, creating a true multivariate real-valued EDA capable of handling 

multi-modal search spaces is implemented in the current chapter.  

This chapter introduces four Gaussian-based EDAs for history matching. For modelling 

and sampling, the first algorithm uses single univariate Gaussian distribution, the 

second algorithm uses a single multivariate Gaussian model, the third uses multiple 

univariate Gaussian models (or univariate Gaussian mixture models), and the fourth 

uses multiple multivariate Gaussian models. We use these real-valued EDAs for the 

history matching problem of a synthetic model, PUNQ-S3. 

The chapter is organised as follows: the Methodology section introduces the basic EDA 

procedure and gives a description of the four Gaussian-based EDAs used in this work. 

The Application section presents the result of test function applications, introduces the 

field description and history matching problems and presents the results of this history 

matching application. In the discussion section, we investigate the results and discuss 

the generality of the findings. 

6.2 Gaussian-based EDAs 

A discussed earlier e.g. see Chapters 3 and 4), a large number of EDAs have been 

introduced and used for optimisation problems (e.g., see Pelikan et al., 2000). These 

algorithms primarily differ in the type of probabilistic model they use. Gaussian models 

are the most popular choice of probability distribution. In this chapter, we use three 

Gaussian-based algorithms which allow direct representation of real-valued problems. 

The central assumption for all these algorithms is that the misfit landscape is normally 

distributed. Gaussian-based algorithms are described in the following sections: 

6.2.1 Incremental Single Univariate Gaussian Estimation of 

Distribution Algorithm 

The Incremental Univariate Single Gaussian Estimation of Distribution Algorithm 

(iSUGEDA) extends the concept of incremental learning for univariate marginal 

estimation of distribution to real-valued problems by representing variables of 

optimisation problems using a single Gaussian distribution. Thus, the algorithm borrows 

ideas from three algorithms: PBILc of Sebag and Ducoulombier (1998), the incremental 
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univariate marginal distribution algorithm (iUMDA) of Mühlenbein (1997), and the 

univariate marginal distribution algorithms for continuous domains (UMDAc) of 

Larrañaga et al. (1999).  

Univariate Gaussian distribution uses a normal (Gaussian) function for expressing a 

distribution in one dimension. According to the central limit theorem, the average of 

identically distributed random parameters is approximately normally distributed, 

regardless of their original distributions. This makes the Gaussian distribution one of the 

most common probability distributions. The univariate Gaussian distribution has the 

following probability density function: 

   ̅      
 

√    

 
 
 
 
 
    ̅ 
  

  
  (6.1)   

where              is the vector of n parameters and subscript i iterates over 

parameters, and   is the Gaussian distribution function represented by the mean value 

 ̅  and the standard deviation    of each parameter.   

Sebag and Ducoulombier (1998) were the first to introduce a univariate EDA based on 

the Gaussian distribution. They extended PBIL to real-valued spaces by using a single 

Gaussian model for the distribution of the population and named their algorithms 

PBILc.  Larrañaga et al. (1999) extended the univariate marginal distribution algorithm 

(UMDA) to continuous domains by replacing the basic histogram model with a single 

Gaussian distribution model. Thus, both PBILc and HEDAc evolve the following joint 

distribution, which is used in iSUGEDA: 

       ∏   ̅     

 

   

 (6.2) 

For sampling new solutions from a univariate Gaussian distribution with mean  ̅ and 

standard deviation   , one can first sample from an independent univariate normal 

deviate,         , then transform the samples to the desired distribution: 

   ̅     
(6.3) 
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where X is the vector of samples. The samples that are within the allowed bound for the 

parameters need to be checked.  

In each generation, unlike HEDAc, PBILc uses an incremental learning mechanism to 

update the parameters ( ̅  and   ) of the univariate Gaussian model for each parameter 

as follows: 

      

  ̅ 
         ̅ 

         
        

        
       

   
          

       √
∑    

 
  ̅  

  
   

 
  

(6.4) 

where superscript t represents current generation, superscript best1, best2, and worst are 

respectively first best, second best, and worst solutions in the set of P selected solutions. 

Superscript j iterates over these solutions. In the equation, standard deviation      is 

updated using the spread of solutions    is the learning factor between 0.0 and 1.0 and 

determined after a tuning study. 

In iSUGEDA, we used the same equation as (6.4)  for updating standard deviation, but 

the mean is updated using the incremental learning mechanism of iUMDA (Mühlenbein 

1997) as: 

  ̅ 
         ̅ 

        ̅ 
   

(6.5) 

where  ̅ 
  is the mean of parameter i in the set of P selected solutions. 

iSUGEDA is a straightforward and efficient EDA for real-valued problem, but it has a 

serious deficiency for multimodal problems: like PBILc, it uses only a single normal 

distribution for each variable and it is only able to capture distributions accurately that 

are all centred around a single point in the search space. Many history matching 

applications have a potential problem with the single Gaussianity assumption. In 

addition, like PBILc and iHEDA, which is not able to model interaction between 

parameters, since sampling from the joint probability distribution assumes that all the 

parameters are independent. 
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6.2.2 Single Multivariate Gaussian Estimation of Distribution 

Algorithm  

One can use a multivariate Gaussian distribution as the probabilistic model of EDA to 

get around the problem of not considering the interaction between parameters in 

iSUGEDA. By using a multivariate Gaussian distribution, we will be able to estimate 

the means and covariance matrices of the parameters from the selected promising 

solutions of the population and use them to generate new child solutions. A covariance 

matrix is able to explain the shape of the learnt distribution. 

The multivariate Gaussian distribution is a generalisation of the univariate Gaussian 

distribution to higher dimensions. It describes a set of possibly correlated real-valued 

random variables, each of which clusters around a mean value. The multivariate 

Gaussian distribution has the following density function: 

    ̅     
 

√     √   
  

 
 
     ̅  

         ̅    (6.6) 

where   is the covariance matrix of the multivariate Gaussian distribution and it must 

be symmetric and positive definite,     is the determinant of the covariance matrix, 

superscript T represents transpose matrix function, and     is the inverse of the 

covariance matrix. Thus, if we assume the joint probability distribution of parameters is 

a multivariate Gaussian distribution, we will have: 

       ∏   ̅    

 

   

 (6.7) 

The estimation of the Gaussian networks algorithm (EGNA) (Larrañaga, Etxeberria, 

Lozano, & Pena, 1999) was one of the first attempts to create an EDA for a continuous 

domain, based on multivariate Gaussian distribution. EGNA uses a Gaussian network to 

model the interactions between variables in the selected population of solutions in each 

generation. The Gaussian network structure is learnt by using a separate local search 

with the objective of optimising the Bayesian-Dirichlet score.  

Real-coded Estimation of Distribution Algorithm (RECEDA) is another multivariate 

Gaussian-based EDA that uses Cholesky decomposition for sampling from the 
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multivariate Gaussian distribution. In RECEDA, first the mean vector (  ̅  and 

covariance matrix (   of parameters are calculated from the selected solutions, and 

then, if the covariance matrix is real, symmetric and positive definite, it can be 

decomposed using Cholesky decomposition to get a lower triangular matrix with strictly 

positive diagonal entries, L, so that       . Finally, new solutions are created by 

transforming an independent univariate normal deviate,         : 

   ̅      
(6.8) 

where X is the vector of samples and L is a lower triangular matrix obtained from the 

Cholesky decomposition of the covariance matrix.  Again, new samples need to be 

checked that are within the allowed bound for the parameters. 

We introduce the Single Multivariate Gaussian Estimation of Distribution Algorithm 

(SMGEDA). SMGEDA uses Eigendecomposition for sampling from the multivariate 

Gaussian distribution. In each generation similarly to in RECEDA, we obtain the mean 

vector and covariance matrix of the parameter values in the selected solutions. Then we 

compute eigenvalues and eigenvectors of the covariance matrix such that       , 

where v is eigenvector and   is a scalar, eigenvalue of matrix  . Then we draw the 

desired number of samples from an independent univariate normal deviate    

      . Finally samples are transferred to multivariate Gaussian distribution using: 

   ̅     √      
(6.9) 

Although Cholesky decomposition is more computationally straightforward, the matrix 

L changes for different orderings of the elements of the random vector Z, while the 

Eigendecomposition approach gives matrices that are related by simple re-orderings. 

Another benefit of Eigendecomposition is that eigenvalues can be used to repair an ill-

posed covariance matrix, as discussed in the next section. 
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6.2.3 Multiple Univariate Gaussian Estimation of Distribution 

Algorithm 

The problem of single Gaussianity in iSUGEDA leads us to use a finite Gaussian 

mixture model as density estimator, instead of a single Gaussian model. This allows the 

univariate algorithms to deal with multimodal distributions and explore different 

regions of the search space simultaneously. A survey in the literature reveals the 

following two algorithms based on the mixture of Gaussian models. 

Gallagher et al. (1999) introduced the first EDA, which uses Gaussian mixtures. They 

extended PBIL to real-valued spaces by using an Adaptive Gaussian mixture model 

instead of a single probability vector. They used a mixture of Gaussian distribution 

models with a recursive update rule, i.e. models are modified and improved gradually as 

a new point is sampled.  

The mixed iterated density estimation evolutionary algorithm (mIDEA) (Bosman & 

Thierens, 2001) is another EDA that also uses mixtures of Gaussian distributions. The 

probabilistic model building in mIDEA starts by k-means clustering the parameters, 

then a probability distribution is fitted over each cluster for each parameter. Finally, a 

weighted sum over the individual distributions of each cluster is taken as the final 

probability distribution of the parameter. The weight factors are the ratio of the number 

of solutions in each cluster to the total number of solutions. Within the IDEA 

framework, Bosman & Thierens (2001) used joint normal kernel distribution, where a 

single Gaussian distribution is placed around each selected solution. 

Using a similar concept, we propose MUGEDA, in which, we use a mixture Gaussian 

probability distribution model based on the probabilistic distance clustering (Ben-Israel, 

2006; Iyigun & Ben-Israel, 2008) for each parameter. The final probability distribution 

is a weighted sum of multiple probability distributions. The weight factors must be 

positive and sum to 1 to ensure that mixture model is still a probability distribution. The 

joint probability distribution of parameters is expressed as: 

         ∏ ∑      ̅       

 

   

 

 

   

 (6.10) 
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where k iterates over the number of mixture models (K),    is the weight factor for 

mixture model k, such that      and  ∑   
 
     ,     ̅        is the Gaussian 

distribution model for model k , with mean  ̅   and standard deviation    . 

In each generation of MUGEDA, we perform clustering of the solutions in the 

population by probabilistic distance clustering of each parameter; a Gaussian 

probability distribution is fitted over each cluster using the mean and variance of the 

parameter in the solutions. Thus, each cluster represents a local probabilistic model and 

multiples of clusters create the mixture distribution model. Weight factors are calculated 

from the spread of clusters: 

   
  

∑   
 
   

       
 

  
∑∑(       )

 
 

   

  

   

 (6.11) 

where    is the spread of cluster k, and subscript i iterates over the number of solutions 

in cluster k,   . 

It is not possible to use incremental learning in Gaussian mixture-based EDAs, since the 

mixture models are created from scratch in each generation and no connection can be 

created between mixture models in two consecutive generations. The algorithm uses 

one-dimensional clustering for constructing mixture models and new solutions are 

sampled from univariate normal distribution of the variables: thus final joint probability 

distribution is the product of marginal probabilities and interactions between variables 

are not considered. 

6.2.4 Multiple Multivariate Gaussian Estimation of Distribution 

Algorithms 

There are two attempts reported in the literature in which a mixture of joint Gaussian 

probability distribution has been used as the probability model in EDAs. Larrañaga, 

Etxeberria, Lozano, & Pena (1999) extended EGNA to support multivariate Gaussian 

mixtures by creating a Gaussian network to model the interactions between variables in 

the selected population of solutions in each generation. Bosman & Thierens (2000) 

reported good results using mIDEA, when extended to use a mixture of joint normal 

distributions. 
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Using the full covariance matrix in multivariate Gaussian-based EDAs has a potentially 

serious problem. The computation error for the covariance matrix increases when 

sample size is relatively small in relation to problem size. In this case, the covariance 

matrix could not be a positive semi-definite and will have negative eigenvalues because 

of the finite precision and computational power of the computer. For univariate 

Gaussian-based EDAs, this is not a problem, as they only use diagonal elements of the 

covariance matrix (variances), which are always assured to be non-negative.  

We tried a multiple multivariate Gaussian EDA (MMGEDA) using a mean and 

covariance matrix of clusters obtained by Probabilistic Distance Clustering (PDC), (see 

section 2.6.3 of chapter 2), in the same way we used in the MUGEDA. We 

acknowledge that learning such a general probability distribution is quite difficult and a 

large number of samples is required for satisfactory accuracy. With a relatively small 

number of parent solutions in high dimensional history matching problems, clusters 

may get a very small number of solutions. In these situations, the covariance matrix 

repairing techniques may be required to be used as the covariance matrix is likely to 

become ill-posed, and sampling from an ill-posed covariance matrix is not possible.  

The covariance matrix repairing (CMR) technique can resolve the ill-posed covariance 

matrix problem for such EDAs. An ill-posed covariance matrix is a common problem in 

the statistical learning field, and is usually solved by regularisation techniques, e.g. 

adding a positive value to the diagonal of the matrix, or shrinking the covariance matrix 

towards an identity matrix.  In EDAs, such changes must ensure that they do not affect 

the distribution of solutions in the following generations. To make a covariance matrix 

positive and semi-definite, we used the CMR approach introduced by Dong & Yao 

(2007) as follows: 

1. In each generation, do clustering of the parents. 

2. For each cluster j: 

2.1. Compute mean  ̅  and covariance matrix    of solutions in the cluster. 

2.2. Obtain eigenvalues and eigenvectors of    using eigendecomposition, initialise 

k=1. 

2.3. Check for the minimum value of eigenvalues, (     , if      is negative, do 

following until      becomes positive: 
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2.3.1. Add an identity matrix with values of       .k to   . 

2.3.2. Increase k by a factor, e.g.          

2.3.3. Recalculate minimum eigenvalue of   . 

6.3 Applications 

6.3.1 Test Functions 

All of the four Gaussian-based algorithms were initially validated with three well-

known test functions: Sphere, Rastrigin, and Griewank functions. The aim was to apply 

and tune algorithms on three typical test functions for the objective function’s 

multimodality and dependency between variables. 

6.3.1.1 Sphere test function  

The sphere function, first used by De Jong (1975), is one of the simplest and most 

standard unimodal test functions for a convergence study of the numerical optimisation 

algorithms. The function is continuous and unimodal. In addition, it has no 

dependencies between variables, and is therefore a good test candidate for single 

univariate EDAs. The global minimum value for the Sphere test function obtained for 

any dimensionality is zero if all variables are set to zero. The function is as follows: 

 

     ∑   
 

 

   
 (6.12) 

 

where     [          ], and in this chapter we take n=5. 

 

6.3.1.2 Rastrigin function 

The Rastrigin function, the equation (6.13) and Figure 6.1, is based on the Sphere 

function with the addition of cosine modulation to generate frequent local minima. It 

was first proposed by Rastrigin (Törn & Zilinskas, 1989) in the form of a 2-dimensional 

function then generalised as an n-dimensional function. Variables are independent and it 

is a highly nonlinear and symmetric function, with many local minima in the form of 
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valleys. However, it has one global optimum, f(x)=0, at the centre point, x=[0, ..., 0]. 

Many optimisation algorithms, especially gradient-based methods, have difficulty with 

finding the global optimum in the Rastrigin function. We use this function as an 

example for problems with multimodal objective function landscape. 

        ∑    
               

 

   
 (6.13) 

where,            ,              [          ]. 

 
Figure 6.1: A Rastrigin function for two variables. 

 

6.3.1.3 Griewank function  

The Griewank function (Griewank 1981) is similar to the Rastrigin function, with many 

widespread, regularly distributed local minima. It has a product term that introduces 

interdependence among the variables. Thus, it can show the failure of the univariate 

algorithms. This function is given by: 

     
 

    
∑   

 
 

   
 ∏   (

  

√ 
)

 

   

   (6.14) 

where             [        ] . Again, the global optimum, f(x) =0, can be 

obtained, at centre point,           . 
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6.3.1.4 Test function results  

We tested Gaussian-based EDAs on these three test functions, using a total of 5,000 

function evaluations as the stopping criterion for the algorithms; we also fixed the total 

number of children to be generated in each generation to 100. Due to the stochastic 

nature of the algorithms, each experiment was repeated 10 times and the average of 10 

trials used for the comparison study. Table 6.1 shows a summary of the control 

parameter tuning. Best values found for control parameters of each algorithm when 

applied to each of the test functions are shown. Our criteria for the performance of the 

algorithms were minimum objective function values, with 95% significance level t-test 

standard error as error bars, and generational minimum objective function, representing 

the convergence speed of the algorithm. 

Table 6.1: Summary of algorithms’ tuning on test functions. Bold numbers show best values that are 
significantly better than other values. 

Algorithm Control parameter Tested values Best value 
on SP 

Best value 
on RR 

Best value 
on GW 

iSUGEDA Number of parents 100, 200, 300, 500 100 100 100 

Learning rate 0.3, 0.5, 0.7, 0.9, 0.95, 1.0 0.95 0.95 1.0 

SMGEDA Number of parents 100, 200, 300, 500 100 100 100 

Decomposition type CD and EV EV EV EV 

MUGEDA Number of parents 100, 200, 300, 500 100 100 100 

Number of clusters 2, 5, 10, 20 2 10 10 

MMGEDA Number of parents 100, 200, 300, 500 100 100 100 

Number of clusters 2, 5, 10, 20 2 10 10 

Figure 6.2 shows the average of the minimum objective function and objective function 

convergence for 10 trials of the Sphere test function. One can see that single Gaussian-

based algorithms (SUGEDA and SMGEDA) converge well and even marginally 

outperform multiple Gaussian-based algorithms. SUGEDA performs reasonably on SP, 

as no dependency between the variables exists. SUGEDA is a special case of SMGEDA 

where all non-diagonal elements of the covariance matrix are zero; thus, it is always 

expected that both algorithms produce similar results for a univariate problem, although 

SMGEDA involves more computations for the covariance matrix computation and 

decomposition. 
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Figure 6.2: Results of the objective function convergence for the sphere test function; the average minimum 
objective function (left) and generational minimum objective function (right) of 10 trials. 

Single models outperform mixture models. 

As discussed earlier, the Rastrigin test function is a test for multimodality. Figure 6.3 

shows results of 4 algorithms on the Rastrigin function. One can see that from the 

generation 20, multimodal-enabled models (MUGEDA and MMGEDA) outperform 

single models, in terms of convergence to minimum objective function value. 

 

Figure 6.3: Objective function convergence results for the Rastrigin test function. 
The average minimum objective function (left) is marginally improved while the generational minimum objective 

function (right) is significantly improved for the mixture models from generation 20. 

The final test function was the Griewank test function. Apart from multiple local 

minima, there is some level of interaction between variables in the Griewank test 

function. We hence used it as a test for multivariate Gaussian EDAs. As indicated in 

Figure 6.4, between the two multiple Gaussian-based models, MMGEDA can benefit 

from these interactions to improve the local optima and convergence speed.  
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Figure 6.4: Griewank function results using two multiple Gaussian-based models. MMGEDA outperforms 
MUGEDA for lowest objective function (left) and convergence speed (right). Results are averaged for 10 

independent trials. 
  

6.3.2 History Matching of PUNQ-S3  

Having tested and tuned Gaussian-based algorithms on selected test functions, we 

applied them to the history matching problem of the PUNQ-S3 reservoir (Floris et al., 

2001). Our aim was to study the convergence performance of different Gaussian-based 

EDAs on a well-known synthetic case for history matching.  

In Chapter 3, three EDAs were applied to PUNQ-S3 model, which naturally work with 

discrete variable ranges, thus one should discretise the continuous variables e.g. 

porosity and porosity/permeability correlation coefficients in PUNQ-S3 model to make 

them discrete. In current chapter, we use Gaussian-based EDAs for history matching 

PUNQ-S3 model, which naturally work with continuous variables in PUNQ-S3 model. 

Thus one can expect better performance of Gaussian-based EDAs compared to 

histogram-based and BOA EDAs in continuous (real-valued) applications. 

Initially, all four algorithms were tuned for their best control parameters. These 

algorithms are all stochastic: thus, we repeated each experiment 10 times and averaged 

the results for misfit to minimise the effect of randomness. In history matching, function 

evaluations (simulation runs) are generally highly expensive, thus one must use the 

lowest possible number of evaluations. Since the parameterisation used for PUNQ-S3 in 

this chapter includes 38 uncertainty parameters, the number of new solutions to be 

created in each generation was fixed at 50 (>38) to give the algorithms sufficient 

degrees of freedom. We also set the stopping criterion to be the total of 3,000 function 

evaluations; with 150 random solutions in the initial population, there will be 57 

generations in total. 
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6.3.2.1 Results of SUGEDA on PUNQ-S3 

The first algorithm tested and tuned on PUNQ-S3 was SUGEDA. By fixing the total 

number of generations and number of child solutions in each generation, SUGEDA still 

has two other control parameters that must be tuned: the number of parents in each 

generation and the learning rate for the incremental learning mechanism. 

Figure 6.5 shows averaged minimum misfit and misfit convergence of SUGEDA for 

three possible choices of the number of parents. As the figure shows, the setup of 50 

parents per generation gives best minimum misfit and generational misfit convergence.  

 

 
Figure 6.5: Averaged minimum misfit (left) and generational minimum misfit (right) for different numbers of 

parents in SUGEDA. 50 parents per generation gives the best misfit convergence. 

 

As SUGEDA uses an incremental learning mechanism, the second tuning parameter 

was the learning rate. We tested 6 different learning rates, 1.0, 0.95, 0.9, 0.7, 0.5, 0.3. A 

learning rate of 1.0 means that the algorithm does not consider the probabilistic model 

of the previous generation and only uses the model learnt from the parent solutions in 

the current generation. As  Figure 6.6 shows, SUGEDA is not very sensitive to the 

learning rate. However, a learning rate of 0.95 was slightly preferred.. 
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Figure 6.6: Averaged minimum misfit (left) and generational minimum misfit (right) for different values of the 

learning rate in SUGEDA. Although 0.95 yields slightly better misfit convergence, all higher values, 1.0, 0.95, 

and 0.9, give similar results.  

 

6.3.2.2 Results of SMGEDA on PUNQ-S3 

For SMGEDA, we tuned the number of parents in each generation and the sampling 

algorithm for the multivariate Gaussian distribution. Figure 6.7 shows the misfit 

convergence for three different values of the number of parents. As the figure shows, 

150 parents per generation setup yields the best convergence. From this figure, it is 

evident that a setup of 50 parents per generation suffers from the loss of diversity and 

seems to become trapped in local optima. 

 
Figure 6.7: Averaged minimum misfit (left) and generational minimum misfit (right) for different numbers of 

parents in SMGEDA. 150 parents per generation gives the best misfit convergence for the algorithm. Where 

using 50 parents per generation, the algorithm seems to be trapped in local minima due to the loss of diversity.  

 

We also tested two different decomposition methods for sampling from the multivariate 

Gaussian probability distribution: Cholesky and Eigendecomposition. Results obtained 

on PUNQ-S3 using both decomposition methods were very similar. 
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6.3.2.3 Results of MUGEDA on PUNQ-S3 

We tested and tuned MUGEDA on PUNQ-S3 model for its two control parameters: the 

number of parents and number of clusters (mixture models). Figure 6.8 shows minimum 

misfit and misfit convergence plots of SMGEDA for three different values for the 

number of parents. As the figure shows, the 150 parents per generation setup is a 

slightly better option, in terms of minimum misfit and misfit convergence. 

 

Figure 6.8: Averaged minimum misfit (left) and generational minimum misfit (right) for different numbers of 

parents in MUGEDA. 150 parents per generation gives slightly best misfit convergence for the algorithm, 

although the improvement is not significant.  

In MUGEDA, first, one-dimensional probabilistic distance clustering of the parent 

solutions was performed. Then, the spread, mean and standard deviation of the clusters 

were obtained and used to sample new child solutions. We tested three values for the 

number of clusters (mixture models): 3, 5, and 10.  The convergence result of 10 

clusters per generation was also just marginally better than the other two values, and the 

improvement was not significant, as shown by the error bars. 

6.3.2.4 Results of MMGEDA on PUNQ-S3 model 
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become unstable. Therefore, only parent size of 150 was considered. 

 

Figure 6.9 shows the minimum misfit and misfit convergence of MMGEDA for three 

different values for the number of clusters. From this figure, it is obvious that lower 

numbers of clusters are preferred. 

 

Figure 6.9: Averaged minimum misfit (left) and generational minimum misfit (right) for different numbers of 

clusters in MMGEDA. Here, 3 and 5 clusters of the parent solutions converge slightly better than 10 clusters. 

  

6.3.2.5 Comparative study of Gaussian-based EDAs on PUNQ-S3 

Having tuned the control parameters for all four Gaussian-based EDAs, in this section 

we present the comparative study of the algorithms on PUNQ-S3 model. Again, we 

used 3,000 function evaluations with 50 child solutions per generation for all three 

algorithms. For each algorithm, we took the best value of the tuned parameters. Figure 

6.10 shows the minimum misfit and misfit convergence plots of the algorithms. As the 

figure shows, MUGEDA outperforms other three Gaussian-based algorithms. 
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Figure 6.10: Comparison of four Gaussian-based EDAs for the minimum misfit (left) and generational minimum 
misfit (right) obtained by each algorithm; MUGEDA outperforms the other three algorithms.  

6.4 Discussion 

In this chapter, our goal was not to recommend a specific EDA that outperforms other 

EDAs in in an overall sense. Test function applications showed that it is possible to find 

problems which are most suitable to any given algorithm at hand and vice versa. The 

Gaussian distribution function can be used as a probability model in EDAs for unimodal 

continuous history matching problems or multimodal continuous problems, where a 

mixture of Gaussians is used. If the unimodel Gaussian-based EDA is preferred, 

independent component analysis can be used with univariate marginal EDA to tackle 

the interrelations among the variables (Zhang et al., 2000). 

Gaussian-based EDAs can handle multivariate problems. Multi-variety can be 

introduced to these models by computing the full covariance matrix and using it for 

sampling new solutions. Multivariate models need to be traded-off with the 

considerable increase in computational expenses they often demand. Another important 

issue that must be taken into consideration is that due to the very high computational 

requirements of the function evaluations in high-dimensional history matching 

problems, it is usually not possible to take large population sizes. Thus, when using 

mixture models, one should estimate the models using a minimal number of solutions. 

The resulting Gaussian models, especially in the multivariate case, will not be robust 

enough, even when a covariance matrix repair is used. This might explain the relatively 

poor results of multivariate EDAs on PUNQ-S3 (Figure 6.10), along with the fact that 

in the PUNQ-S3 case, there is not strong dependency between search variables. 
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Taking multiple Gaussian models for PUNQ-S3 improves diversity and makes the 

algorithm more explorative. Thus, it accelerates the convergence in the early stages of 

the search (Figure 6.10). However, due to the strongly elitist nature of the EDAs 

introduced in this chapter, this improvement is weakened in later stages, whereas a 

stronger pressure is put on the regions with the global optimum. One must be aware of 

possible overfitting when a large number of mixture models is used.   
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CHAPTER 7:  

DIVERSITY-BASED ADAPTIVE 

EVOLUTIONARY ALGORITHMS FOR 

HISTORY MATCHING 

 

 

7.1 Introduction 

The subject of performance assessment of the population-based evolutionary algorithms 

(PBEAs) has already developed into a new research topic in the Evolutionary 

Computation (EC) community, but not yet in history matching and uncertainty 

quantification.  

The notion of performance assessment involves two aspects: the quality of the solution 

and the time spent to find such a solution. The basic approach to deal with performance 

assessment of a PBEA in the EC community is to use quantitative performance 

measures and statistical analysis of these measures. The choice and the design of the 

appropriate performance measures are challenging topics in EC (e.g. Lacevic and 

Amaldi, 2010).  

Like any other optimisation algorithm, an EA is controlled by certain parameters which 

determine the performance of algorithm. For implementing an EA algorithm, it is 

necessary to specify how to represent the solution (reservoir model), how to represent 

the environment (misfit), how to select solutions fittest to the environment (selection), 
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how selected solutions (parents) will be changed to generate new solutions (children) 

and the condition in which the optimisation course will be terminated (stopping 

criteria). The value of these control parameters mainly determines the quality and the 

efficiency of the search (Eiben et al, 1999). 

As we saw in the previous chapters, choosing suitable parameters is essential for the 

performance of the algorithm.  The effectiveness, efficiency, and robustness of an 

algorithm are determined by the parameter choice, which is generally problem-

dependent and requires extensive user experience. Even an experienced user may not be 

able to determine optimal parameter values which would work well on different 

problems. One can set up these parameters for optimum performance of the algorithm in 

two ways: parameter tuning and parameter adaptation. Tuning is a process, in which, 

the user tries to find good values of the parameters, based on a common practice 

approach, before running the algorithm. Then the algorithm is tuned using these values, 

which remain fixed during the evolution.  

Parameter adaptation in evolutionary algorithms aims to tune and optimise the control 

parameters of the algorithms over the course of evolution. Eiben et al. (1999) classify 

parameter adaptations into three types: deterministic, in which parameters are changed 

according to a deterministic function, adaptive, in which parameters changed with 

feedback from the algorithm and self-adaptive, in which the adaptation method is 

encoded into the problem representation and treated as a problem parameter. 

There are many adaptive EAs introduced by the computer science community and tested 

on standard test functions. For a survey of diversity-based evolutionary algorithms refer 

to Gouvêa & Araújo (2010). Santana et al. (2008) presented a general framework for 

introducing adaptation in EDAs with the possibility of changing the probabilistic model 

during the evolution. Liu et al. (2007) introduced an entropy-driven parameter 

estimation mechanism for EAs. Rasmus (2002) introduced a diversity-guided 

evolutionary algorithm (DGEA) which uses well-known distance-to-average-point 

measure to alternate between phases of mutation and phases of recombination and 

selection in a genetic algorithm. 
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In last two decades, EAs have been extensively applied to history matching, but there is 

still a lack of knowledge on how to find reasonably good parameter values for these 

algorithms.  

In all reported history matching applications in which, although parameter tuning is 

used to set the control parameters, one cannot find a single set of control parameters that 

are suitable for different history matching problems. Furthermore, manual parameter 

tuning is time consuming, and since EAs are stochastic and usually run until a 

predefined stopping criterion, finding the optimum value of the control parameters is 

not guaranteed using the tuning. 

In this chapter, first we discuss the population diversity and different measures for it. 

Then, we present a comparative study of these measures. Finally we use one of the 

measures for the control parameter estimation of an evolutionary algorithm. For this 

purpose, we use a diversity-based adaptation mechanism for histogram-based estimation 

of distribution algorithm (HEDA).  

7.2 Diversity Measures 

Population diversity is a key measurement in population-based evolutionary algorithms 

such as genetic algorithm (GA) and estimation of distribution algorithm (EDA). 

Diversity is an estimate of the levels and types of variety of individuals in a population. 

Maintaining ahigh enough population diversity is essential to avoid premature 

convergence and achieve a better match quality (Burke et al., 2004). Often, the reason 

behind premature convergence is that the individuals in the gene pool are too alike, so 

the algorithm has not been able to extract new information, which can lead the search 

toward to a local optimum and prevent it from reaching the global optimum. 

Several methods have been introduced and used for estimating diversity measures. 

Wineberg and Oppacher (2003) showed that determining the distance between all 

possible pairs of genes/organism in the population is the basic method that underlies all 

of the diversity measures. The distance is calculated either in genotypic space or 

phenotypic space. Genotypic measures estimate the variation in the variable genomes, 

while phenotypic measures estimate variance in the fitness.  
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In real-coded optimisation problems, genotypic measures are more common. Genotypic 

diversity measures are either genome-based or gene-based. Genome-based measures 

treat the genome as a whole and usually estimate a distance using deterministic 

formulae to differentiate between two genomes. Gene-based measures evaluate one 

gene at a time and calculate the average of these values. The sum of the Hamming 

distance between all possible pairs of the population is a widely used genotypic 

diversity measure for binary variables (Horn, 1997). For real-valued variables, 

Euclidean distance (Lacevic and Amaldi, 2010) and distance to population centroid 

(Morrison and De Jong, 2002) are widely used. 

In EAs, identical genotypes produce the same fitness, and hence the genotype diversity 

is closely connected to the phenotype diversity. Phenotypic measures are preferred over 

genotypic measures for real-coded parameter optimisation problems because, in 

genotypic measures, all bitwise diversity is treated the same, but in fact, different bit 

positions can result in different phenotypic diversity. A popular phenotypic measure is 

the use of Shannon Entropy on fitness frequencies (Rosca 1995).  

The petroleum engineering community still widely uses visual and qualitative 

approaches for performance assessment of PBEAs in history matching and uncertainty 

quantification. Convergence time to a specific minimum misfit or minimum misfit after 

a certain number of function evaluations are common approaches for performance 

comparison studies of PBEAs in petroleum literature. Examining diversity just by 

looking at the population plots can lead to misinterpretations due to the possible 

unreliability of the human eye, and one must appreciate mathematical techniques for 

diversity/convergence interpretations.  

Diversity measures are defined and designed based on the concepts of exploration and 

exploitation. The goal in any search algorithm is to achieve a balance between the 

exploration and exploitation properties of the algorithm. A good search algorithm 

should be able to combine both tasks. Exploitation is required to ensure refinement of 

the current solution and finding the global optimum. Exploration is required because 

local minima are usually present, and every part of the parameter search space should be 

searched thoroughly to avoid becoming trapped in these local minima.  
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In this chapter, four diversity measures are used for real-coded PBEAs. These include 

two genotypic distance-based measures, the Pair-wise Hamming distance-based and 

moment of inertia-based diversity measures, and two phenotypic measures, the 

proportional entropy-based and crowding entropy-based measures. These measures are 

used to show the performance of different PBEAs when used for solving the 

minimisation problem of a test function and the history matching problem of a synthetic 

model, PUNQ-S3, and a real North Sea reservoir model, the Koma field. We visualize 

and analyse the convergence and diversity of applied algorithms. We aim the diversity 

measures to enable us, firstly, to conduct performance comparison of different PBEAs, 

and secondly, to control the performance of a PBEA by getting feedback about its 

behaviour and to use this information to improve the search in the next generations of 

the algorithm. 

7.2.1 Fitness-based Diversity Measures 

A common method for visualising the performance of the evolutionary algorithm is to 

plot fitness value as an indicator of the algorithm’s convergence throughout the 

evolution. In population-based evolutionary algorithms one can monitor statistical 

measures of the misfit, i.e. mean and standard deviation of misfit value of the solutions 

in the generation or box-plot, e.g. minimum, P10, P50, P90, and maximum values. 

7.2.2 Distance-based Diversity Measures 

The diversity concept is closely related to the concept of distance between individuals in 

the population. Two widely used distance functions for diversity measures are: 

Hamming distance and Euclidean distance.  

7.2.2.1 Pairwise Hamming Distance Measure (HDM) 

Hamming distance was originally used by Hamming (1950) for detection and correction 

of errors in digital communication. Pairwise Hamming distance is one of the first 

measures introduced for the population diversity. It is obtained by summing all pairwise 

distances between individuals (Horn, 1997). Pairwise Hamming distance for a 

population is defined as:  



Chapter 7: 

Diversity-based Adaptive EvolutionAry algorithms for history matching 

 

 

173173 
 

    ∑ ∑  ∑ |       |
 

   
 

 

     

   

   

 (7.1) 

where: 

 HDM is Pair-wise Hamming distance, 

 i is the subscript for the variables number in solution x, 

 N is the total number of variables in solution x, 

 j and k are the subscripts for the solution number in the population, 

 P is the total number of solutions in the population, 

 x is the variable value. 

When using HDM, it should be noticed that all variable ranges, xi, should be normalised 

to a number between 0 and 1. Another important issue with HDM is its relatively high 

computational demands; the computation of the measure is quadratic with the size of the 

population and it needs P(P-1)/2 calculations. 

7.2.2.2 Inertia based Diversity Measure (IDM) 

The concept of the moment of inertia is a measure of an object's resistance to changes to 

its rotation, which first was introduced by Leonhard Euler in 1765, in classical 

mechanics. Morrison and Jong (2002) used this concept for measurement of population 

diversity. For this measure, first, the centroid of the population is calculated for all 

equally weighted solutions in the population; then the moment of inertia based diversity 

measure of these solutions about the calculated centroid is given by: 
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 (7.2) 

where     is the inertia based diversity measure, i is the subscript for the number of 

variables number in solution x, N is the total number of variables in solution x, x is the 

variable value, ci is the centroids of the variable values in the solutions, j is the subscript 
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for the solution number in the population, P is the total number of solutions in the 

population.  

Like HDM, IDM needs equally weighted solution parameters and one must normalise 

all the parameters to a real number between 0 and 1. IDM has less computational 

requirements than HDM as the total computational time for the centroid and inertia-base 

measure calculations is 4(NP) + N calculations. 

7.2.3 Entropy-based Diversity Measures 

Entropy is a term to measure the amount of disorder of a system. Shannon entropy is a 

concept from information theory, used to quantify the uncertainty associated with a 

random variable. Shannon entropy of a random variable x with probability mass 

function p(x) can be used to measure the average information content that is missing 

when the value of x is unknown (Shannon, 1948). Shannon entropy for discrete 

variables is defined as: 

      ∑          

 

   

 (7.3) 

where H(X) is Shannon entropy, pi is the probability of observing value i for variable x, 

and we always have ∑ pi = 1, n is the number of bins for discrete variable x, ln is the 

natural logarithm, though logarithms in base 2 and 10 are also sometimes used. 

With this definition, a fair coin has entropy of one while a biased coin has an entropy 

lower than one. This is due to a higher probability of returning one side which makes 

prediction easier and reduces uncertainty. In a similar concept, an unknown variable 

with a large variety of different values will have higher Shannon entropy, compared to 

another unknown variable with fewer values. In this context, Shannon entropy can be 

used as a measure of diversity: the greater the Shannon entropy, the higher the diversity. 

7.2.3.1 Proportional Entropy-based Measure (PEM) 

Rosca (1995) used Shannon entropy as a population diversity measure by first placing 

fitness values in the population into fitness classes. Thus in the Shannon entropy 
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equation (7.3), n is the number of fitness classes, and pi is the ratio of number of fitness 

values in class i to total number of the fitness values in the population (P).  

Several methods have been introduced in the literature to determine different classes of 

the fitness. Liu et al. (2007) used a linear method to split the fitness values by dividing 

the range between the best and the worst fitness into n predefined number of classes. 

They also used Gaussian distribution to spread out the fitness class using the average 

and the standard deviation of the fitness values in the population. In the Gaussian 

method, the lower and upper bounds of the classes are obtained from average+/- 

i*standard deviation where i is an integer number equal to or less than the number of 

fitness values in the population.  

Liu et al. (2007) also introduced a proportional method, which does not require linear or 

Gaussian characteristics of the fitness function. In the current work, we used the 

proportional method to define the number of classes, so that fitness classes represent 

unique fitness values in the current population. If all solutions in the population have 

different fitness value, e.g. in a history matching problem, the number of fitness classes, 

n, is equal to the population size, P. Probability values in the Shannon entropy equation 

(7.3), pi, are calculated as: 

   
  

∑   
 
   

 (7.4) 

where i is the class number, fi is the fitness value of the solution and n is the total 

number of classes. For two or more solutions with the same fitness value, only one 

solution is kept as the fitness class and others are eliminated, as they do not contribute 

to the population’s diversity. 

7.2.3.2 Crowding Entropy-based Measure (CEM) 

Wang et al. (2010) proposed another entropy-based measure based on the concept of the 

crowding distance (Deb, 2001). The crowding distance is an estimation of the density of 

solutions obtained by calculating the average distance of two solutions on either side of 

a solution along the fitness function. The crowding distance is widely used for ranking 

of the solutions in multiobjective algorithms by estimating density along each of the 
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objectives in the objective function space. The crowding entropy of the population is 

defined as: 

    
 

          
∑[       (

  

     
)         (

  

     
)]

 

   

 (7.5) 

where CE is the crowding entropy,      is the maximum value of the fitness function in 

the population,      is the minimum value of the fitness function in the population, j is 

the subscript for the solution number in the population, P is the total number of 

solutions in the population, uj is the distance of solution j from its upper adjacent 

solution, and lj is the distance of solution j from its lower adjacent solution. 

To have equally weighted fitness values, each fitness value should be normalized before 

calculating the crowding entropy. 

7.2.4 Applications 

We applied four diversity measures to the optimisation problem of the Rosenbrock test 

function, the history matching problem of the PUNQ-S3 synthetic case, and the history 

matching of Koma field. 

7.2.4.1 Rosenbrock function results 

For the Rosenbrock test function, we used a GA with 5,000 function evaluations in 48 

generations and 200 solutions in an initial random population. In each generation, the 

best 100 solutions with the minimum fitness value were selected and a simulated binary 

crossover (SBX) was applied to the 50 random pairs of selected solutions, resulting in 

100 new child solutions. A simulated binary mutation operator was applied with a 

probability of 0.1 to all the generated solutions. The result was 100 new solutions in 

each generation. The algorithm stopped after 48 generations. The results for the 

different diversity measures were compared to the convergence of the algorithm for the 

minimum fitness value, the mean and standard deviation of the fitness values, and 25, 

50 and 75 quartiles.  

The results show that all four measures reflect the diversity/convergence in the search 

procedure (Figure 7.1). IDM from the distance based measures and CEM from the 
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entropy-based measures show similar convergence to the convergence of fitness values 

(Figure 7.2). 

 

 

Figure 7.1: Results of the fitness convergence for the Rosenbrock function application. 
The mean and standard deviation (top-left), box-plot of 25, 50, and 75 quartiles (top-right), and minimum fitness 

value (bottom) all show the convergence of the GA algorithm in generations 8 to 9. 

 

 

Figure 7.2: Results of the four diversity measures for the Rosenbrock function application; HDM (top-left), IDM 
(top-right), PEM (bottom-left), and CEM (bottom-right) all show loss of the diversity throughout the evolution. 
 The convergence estimated by HDM and PEM is at generation 13 while by IDM and CEM is at generation 9. 
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7.2.4.2 PUNQ-S3 model Results 

We applied all four previously described diversity measures for performance assessment 

of BHEDA, BOA, Particle Swarm Optimisation (PSO), and Hybrid Bayesian and 

Particle Swarm Optimisation Algorithm (BOA/PSO) to Reynolds et al. (2011) 

algorithms when used in history matching of PUNQ-S3 model (Boss 1999). All of these 

algorithms were tuned for their optimal control parameters discussed in the previous 

studies. We repeated each tuned algorithm 10 times and averaged for the misfit and 

diversity measures to minimize the effects of randomness. For more details on BHEDA 

and BOA, refer to Chapter 3 and on PSO and BOA/PSO. We used 3,000 function 

evaluations (simulation runs) in an initial generation of 150 solutions and 57 

generations of each 50 new solutions.  

Figure 7.3 shows the box-plot and the convergence points of the misfit for different 

algorithms. Unlike BOA and HEDA, the initial generation in PSO and hybrid 

BOA/PSO is not completely random. A random swarm of 25 solutions is used to 

generate another 125 solutions to complete the initial population, so that the box-plot of 

misfit is narrower in the first generation compared to BOA and HEDA. 

Figure 7.4 shows minimum misfit and mean misfit obtained by all four algorithms. The 

results for the diversity measures are given in Figure 7.5. As seen in Figure 7.5, hybrid 

BOA/PSO has converged at generation two, while all of the four measures show a flat 

curve above zero for the distance based measures and a flat curve at the same level as 

the other algorithms. This indicates a good characteristic for a PBEA, converging while 

maintaining the diversity. For the PSO box-plot, convergence is seen at generation 6, 

while HDM shows almost zero diversity and IDM drops to zero after the convergence 

stage.  

A similar response is shown by PEM for PSO, indicated by a lower level of entropy. 

CEM exhibits a sharp growth in the later stages of the evolution. All of these are 

indications of a strong loss of diversity and a premature convergence, which can also be 

seen from the minimum misfit chart. BOA and BHEDA have converged gently, with a 

gradual decline in distance based measures. They have maintained diversity until very 

late stage of the search, where an increase in the entropy based measures can be seen. 
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Figure 7.3: Box-plot (25, 50, and 75 quartiles) of the misfit convergence for the PUNQ-S3 achieved by BOA (top-

left), hybrid BOA/PSO (top-right), BHEDA (bottom-left), and PSO (bottom-right). In PSO and BOA/PSO initial 
population is not completely random as a random swarm of 25 solutions is used to generate another 125 

solutions to complete the initial population. For BOA convergence is at generation 4, for BOA/PSO at 
generation 1, for PSO at generation 6, and for BHEDA at generation 5. 

 

  
Figure 7.4: The minimum misfit (left) and the mean misfit (right) charts for the PUNQ-S3 achieved by different 

algorithms. From generation 10, PSO seems to be trapped in local minima. 
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Figure 7.5: Diversity measures obtained for the PUNQ-S3 by different algorithms;  

HDM (top-left), IDM (top-right), PEM (bottom-left), and CEM (bottom-right) all show loss of diversity and 

convergence, but at different generations. From generation 13, PSO suffers from extreme loss of diversity and 

appears to be trapped in local minima.  

7.2.4.3 Koma field Results 

We applied BOA and PSO to history matching of the Koma and recorded the results for 

all four previously described diversity measures. All the algorithms were tuned for the 

optimal control parameters and repeated 5 times, and then averaged for misfit and 

diversity measures. For more details of the PSO algorithm used in this application, see 

Reynolds et al. (2011). 

We used 1,000 simulation runs for the two algorithms. PSO was set up with swarm size 

of 50 and 20 generations. For BOA, we used an initial population of 150 random 

solutions. Then in each generation, 100 solutions were selected to generate 50 new 

solutions from the Bayesian network model. Maximum 6 edges were allowed for the 

network and parameter values were discretised using 8 bins.   

Figure 7.6 illustrates the misfit convergence for two algorithms, BOA and PSO, when 

applied to the Koma field. Both algorithms have converged to lower values of the 
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misfit, but we can see that, overall, PSO outperforms BOA in terms of minimum and 

mean misfit. Figure 7.7 shows results for different diversity measures. PSO achieved 

lower distance base measures than BOA, but similar a entropy-based measure. 

Combined with better misfit convergence, one can conclude that PSO has achieved a 

better balance between exploration and exploitation. 

 

 
Figure 7.6: The minimum misfit (top-left), the mean misfit (top-right), box-plot of the misfit convergence for the 

Koma field achieved by BOA (bottom-left) and hybrid PSO (bottom-right). PSO has better convergence than 

BOA.  

7.3 Diversity-based Adaptive EDA 

A good search algorithm should be able to achieve and maintain the balance between 

the exploration and exploitation properties of the search. Exploration is required since 

local minima are usually available in the parameter space and every region of the search 

space should be searched aggressively to avoid becoming trapped in possible local 

minima. Having explored all regions, the algorithm is required to perform exploitation 

to ensure refinement of the current solution and finding the global optimum.  
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Figure 7.7: HDM (top-left), IDM (top-right), PEM (bottom-left) and CEM (bottom-right) diversity measures of 

Koma field history matching. PSO has a lower amount of the distance-based measure than BOA. In Koma field, 

PSO yields a similar entropy-based measure to BOA.  

The balance between exploration and exploitation in each generation of the search is 

reflected in population diversity.  Loss of diversity shows an exploitative search that 

may lead the algorithm to a non-optimal result, that is the algorithm is converged to a 

local minimum. Moreover, extreme diversity indicates an overly explorative search, in 

which the convergence is insufficient. To keep the balance, it is crucial to monitor the 

diversity and keep it at acceptable levels. As discussed in the previous section, there are 

various measures that can be used to quantify diversity. We take the inertia-based 

diversity measure (IDM) to monitor the diversity and keep it at an acceptable level in an 

EDA search. The result is an adaptive EDA which adapts its search mechanism to 

balance convergence and diversity. 

For IDM parameter values of the solutions must be equally weighted first, then the 

centroid of the population is calculated; finally, the moment of inertia-based diversity 

measure is calculated, see equation (7.2).  
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variable value, cj is the centroid of the variable, i is the subscript for the number of 

solutions in the population, P is the total number of solutions in the population. 

In the current work, unlike the original definition by Morrison & Jong (2002), we 

weighted IDM with the number of variables and the number of solutions,. This is to 

obtain a measure that is independent of the number of solutions in the population or the 

number of variables in the solution. Figure 7.8 shows IDM for an ideal case, where four 

solutions are spread evenly across the search space. 

 

Figure 7.8: IDM for a population of 4 solutions (black dots, centroid is the blue dot) in a problem with two 

search variables (X and Y). Variable ranges are continuous and normalised [0,1), and hence IDM, when 

weighted for the number of solutions (4) and the number of variables (2), becomes 0.016. 

Taking IDM for the population diversity has advantages and some disadvantages, but 

usually, its advantages outweigh its disadvantages. As mentioned earlier, solution 

parameters need to be equally weighted, and one must normalise all the parameters to a 

real number between 0 and 1. Moreover, IDM has difficulty with specific problems in 

which the search converges to multiple, separate regions in the parameter space, for 

which, actual convergence may not be seen by only looking at IDM. As discussed 

earlier, IDM calculation requires less computational expense than HDM. 

7.3.1 Parameter adaptation  

Ursem (2002) used population diversity to guide the search with a genetic algorithm by 

alternating between phases of mutation and phases of recombination and selection. 

Here, we use a similar concept for parameter adaptation in HEDA; we use the IDM 

diversity measure to alternate between the exploring and exploiting behaviour of the 

algorithm.  
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The exploration and exploitation behaviours are set by choosing an appropriate number 

of parents in each generation. In the exploration mode, to ensure a global search, the 

parent population size is set equal to a number considerably larger than the number of 

children (here, the size of the initial population) while in the exploitation mode, it is set 

equal to a much smaller number (here, the number of children), which ensures better 

convergence.  

We call this adaptive AHEDA, which is indeed an HEDA with diversity-based 

parameter adaptation. In AHEDA, the search is started in exploit mode, and then in each 

generation, if IDM is less than a threshold value (Dl), diversity is increased by switching 

the search mode to explore so that the algorithm can escape from possible entrapment. 

Thereafter, whenever IDM is greater than another threshold value (Dh), the search is 

switched back to exploit mode to accelerate the convergence. This parent size 

adaptation is continued until the stopping criterion is met. The pseudo-code for AHEDA 

is as follows: 

1. Generate and evaluate initial (t = 0) random population P0, and set the search 

mode to exploit. 

2. Set the low and high threshold diversity values, respectively Dl and Dh. 

3. Select parents from the population, Pt. 

4. Build the histogram model and use it to generate the children. 

5. Evaluate the children and update the population with them. 

6. If IDM of the children is less than Dl , set the search mode as explore, 

7. Else, if IDM is greater than Dh, set the search mode to exploit. 

8. Continue from step 3 (t = t +1) until the termination condition is met. 

Threshold values for IDM (Dl and Dh) are respectively chosen equal to 10% and 50% of 

the IDM value in the initial random population. The initial random population is very 

diverse and has high IDM. The algorithm starts with the exploit mode, in which the 

number of parent solutions (selected in the selection and survival steps) is equal to the 

number of child solutions, generated using the histogram model. The algorithm 

converges and hence IDM decreases. When IDM falls by 90%, the algorithm is set to 

explore mode, in which much larger number of parent solutions are taken, and hence the 

IDM increases. In the unlikely event of IDM exceeding the 50% of IDM value of the 
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initial population, the algorithm is set back to exploit mode to accelerate the 

convergence and the process continues. 

7.3.2 Application 1:  test functions   

In the previous chapters, we used fit-to-purpose test functions. In Chapter 5, the 

Rosenbrock test function was used to test the ability of the algorithms to escape from 

the local optima. In Chapter 6, Rastrigin test function was used to test algorithms on 

problems with many local minima. 

We tested AHEDA initially on above test functions, Rosenbrock and Rastrigin, which 

are designed for testing of the optimisation algorithms on problems with local minima. 

If an algorithm is not tuned well or is not adaptive enough, it can easily get trapped in 

local minima of these functions.   

7.3.2.1 Rastrigin test function application   

A successful history matching aims to explore all possible local minima in the search 

space, along with the global minimum, which together represent the uncertainty in the 

reservoir model parameters. We applied HEDA and AHEDA to the Rastrigin function 

to test whether they are able to explore multiple minima, a common feature of history 

matching problems. For ease of plotting, we use a Rastrigin function with three decision 

variables, i.e.     in equation (6.13). We know that this function has many local 

minima and one global optimum, f(x)=0,  at the centre point, x=[0, 0, 0].  

In the Rastrigin function application, the stopping criterion is set as 2,000 function 

evaluations, with a fixed number of children in each generation, equal to 50. The initial 

population size was 300, so the number of parents could be chosen between as 50 and 

300. Another control parameter of these algorithms is the bin size, for which the 

algorithm was tuned and the best value found to be 25. The results of the two algorithms 

were compared for misfit convergence and parameter estimation in four stages of the 

evolution: generations 0, 11, 22, and 34. 

HEDA was run with three different values for the parent size (50, 150, and 300). 

AHEDA was run with two search modes: exploitative (parent size of 50) and 

explorative (parent size of 300). To minimise the effect of the seed on results, all four 
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experiments were forced to start from the same initial population of 300 random 

solutions. Our results for the Rosenbrock function application show that with parent size 

of 150 and 300, AHEDA is able to better converge to the global minimum than HEDA 

while it has maintained diversity and local minima up to the end of evolution (Figure 

7.9). 

 

 

 

 
Figure 7.9: Misfit convergence and parameter estimation results obtained by different parent sizes (50, 150, and 
300) of HEDA and AHEDA for the Rastrigin function application in four selected generations (0, 11, 22, and 34).  
The coloured bar shows boxplot misfits (minimum, P10, P50, P90, and maximum) and the green star shows the 

global optimum. AHEDA better converges to the global minimum compared to HEDA, with parent size of 150 

and 300, while it has also better maintained the diversity compared to the parent size of 50.  

7.3.2.2 Rosenbrock test function application 

A common problem of the evolutionary algorithms applied in history matching is 

premature convergence. We use the Rosenbrock function to test the ability of the 

algorithms to escape from the entrapment. The Rosenbrock function often serves as a 

test case for this situation, where the algorithms are easily trapped in the valley because 

of the function’s shape. Here, we use the Rosenbrock function with three decision 

variables. The function has its global optimum, f(xi) = 0, at xi = [1,1,1]. 
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Apart from the parent size, which largely controls the convergence and diversity of the 

algorithm, we used the same control parameters for HEDA and AHEDA. We repeated 

each experiment 10 times and averaged for minimum fitness and convergence speed. 

The results are shown in Figure 7.10 and Figure 7.11. Misfit convergence, diversity, and 

parameter estimation results in the figure show that AHEDA has better converged to the 

global minimum than HEDA regardless of the parent size. It can be seen that that 

AHEDA has also better maintained diversity compared to HEDA. 

 

 

 

 

Figure 7.10: Misfit convergence and parameter estimation results obtained by different parent sizes (50, 150, 
and 300) of HEDA and AHEDA in four selected generations (0, 11, 22, and 34) of the Rosenbrock function 

application.The coloured bar shows boxplot misfits (minimum, P10, P50, P90, and maximum) and the green star 
shows the global optimum. AHEDA has better converged to the global minimum than HEDA, with any parent 
size, while it has also better maintained the diversity. HEDA with parent size of 50 has become trapped in the 

local minimum, while AHEDA has found both local and global optimums. 
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Figure 7.11: Misfit convergence box-plots (minimum, P10, P50, P90, and maximum) for misfit under 200 for the 
average of 10 runs by different parent size (50, 150, and 300) HEDA and AHEDA in Rosenbrock application.  

Adaptive parent size has converged better than parent sizes 150 and 300, especially at the early stages. Ithas 

also maintained better diversity than parent size 50 at the later stages of the search. 

7.3.3 Experiment 2: History matching of the IC-Fault model 

Following analysis of the test function results, we applied AHEDA to the hard history-

match problem of the IC-Fault model (Carter et al., 2006). We aimed to evaluate the 

performance of the diversity-based adaptive mechanism for HEDA on a difficult history 

matching problem which has steep minima in its misfit landscape. History matching a 

problem with steep minima in misfit landscape requires strong explorative properties 

and high level of diversity.  

In Chapter 5, we applied incremental histogram-based EDA (iHEDA), simulated binary 

GA (SBGA) and a hybrid SBGA/iHEDA to history matching problem of IC-Fault 

model. The experimentation showed that SBGA can have difficulty of converging in 

early convergence, while iHEDA can suffer from low diversity. The hybrid algorithm 

was an attempt to achieve a better search mechanism by taking the advantages of two 

algorithms, so that it could improve the search performance.  

In current chapter, we aim to improve the convergence and diversity of search in IC-

Fault model by using the diversity-based adaptive EDA, instead of hybridisation in 
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Chapter 5. The adaptive mechanism is aimed to enable the algorithm to escape from the 

steep minima in IC-Fault model. 

In the IC-Fault application, we defined the stopping criterion as a total of 1,000 

simulation runs. This number is probably affordable in terms of the number of 

simulations in most assisted history matching problems. The number of bins in the 

histogram model was also fixed at 20, which allows precise enough discretisation of the 

parameter space. The initial population size was chosen as 120, which allows an 

adequate scanning of the search space in the initial generation. Another control 

parameter is the number of children, which in this case was fixed to 40, considerably 

larger than the number of bins. Therefore it leaves total of 22 generations, excluding the 

initial random generation.  

Our previous studies (Chapter 3) with histogram-based EDAs showed that using the 

same number of parent solutions as child solutions (a ratio of one) causes an 

exploitative search to be performed, while increasing the ratio to two or three, makes the 

search more explorative.  

AHEDA starts the search in exploitative mode, i.e. the number of parents is equal to the 

number of children (here 40). Then when the IDM is less than a threshold (here 0.01), it 

switches to the explorative mode by increasing the number of parents to initial 

population size (here 120).  As Figure 7.12 shows, in IC-Fault model application, 

AHEDA switches two times between exploitative and explorative search mode. The 

IDM thresholds here are 0.01 and 0.03 respectively for switching to explorative and 

exploitative modes. 
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Figure 7.12: IDM in AHEDA application on IC-Fault model. The algorithm switches two times between 
exploitative and explorative modes, as shown by the vertical arrows. 

Each experiment was run 10 times and results were averaged for the comparative study 

of HEDA and AHEDA. Figure 7.13 shows the minimum misfit and convergence speed 

of the algorithms. AHEDA is preferred due to lower minimum misfit and better 

convergence for an average of 10 trials. 

 

Figure 7.13: Minimum misfit found at entire evolution (left) and per generation (right) for different values of the 
number of parents in HEDA. AHEDA is preferred due to lower minimum misfit and better convergence.  

Misfit convergence and parameter estimation results for an average run of three 

different parent sizes (40, 80, and 120) in HEDA and AHEDA were studied in four 

selected generations (0, 7, 14, and 22) (Figure 7.14). The figure shows that AHEDA has 

better convergence to the global minimum than HEDA, with any parent size. It has also 

better maintained the population diversity at the later stages of the search. 
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Figure 7.14: Misfit convergence and parameter estimation results obtained by different parent sizes (40, 80, and 
120) of HEDA and Adaptive HEDA in four selected generations (0, 7, 14, and 22) of the Rosenbrock application.  
The coloured bar shows boxplot misfits (minimum, P10, P50, P90, and maximum) and the green star shows the 

truth case. AHEDA has obtained best convergence to the global minimum while it has also maintained the 

diversity by keeping search in three areas (clusters of the solutions). 

7.4 Discussion 

Distance is the most widely used concept to differentiate solutions in the search space 

and entropy represents the amount of disorder of the population. In principle, an 

increase in the distance or entropy represents an increase in the diversity. Diversity 

measures can show valuable information about the convergence and performance of the 

algorithms.  

7.4.1 Interpretation of the diversity measure curves 

An important issue regarding the use of diversity measures is how to interpret the 

diversity/convergence from the curves. Figure 7.15 shows typical situations in distance-

based and entropy-based measures. Convergence requires a reduction in the distance 

based measure, but the curve must not touch or become too close to the horizontal axis, 
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as this represents zero diversity and trapping in local minima. In an ideal search, the 

entropy-based measure (1/diversity) shows a slight decrease or constant entropy 

throughout the generations. When the search has fallen into an entrapment, the diversity 

decreases significantly, and the curve shows a sharp increase in entropy. 

 

Figure 7.15: Typical situations in distance-based measures (left) and entropy-based measures (right). For the 
distance-based measures, the yellow curve may indicate not enough convergence or convergence to multiple 
areas, the red curve shows an entrapment for the search, and the green curve shows the desired search. For 

the entropy-based measures, the green curve shows balanced convergence/diversity while the red curve 
shows loss of diversity. 

If the search converges to multiple regions around the search space, the distance-based 

measure may not properly show the convergence (yellow curve in Figure 7.15); 

however, the entropy-based measures will show convergence and hence should be used 

in conjunction with the distance-based measure.  

7.4.2 Choice of diversity measure for use in adaptation 

One important issue regarding the adaptation mechanism in AHEDA is the choice of 

diversity measure. Between the two groups of measures, the distance-based group is 

chosen, since these are easier to implement. The entropy-based measures show 

fluctuations, which need to be smoothed using smoothing techniques, such as moving 

average, if used for adaptation.  

Between the two distance-based measures, IDM was chosen for use in the adaptation 

mechanism, as its calculation is straightforward and only needs 4(NP) + N calculations, 

which is more efficient compared to the Hamming distance measure (HDM). It should 

be noted that the computational complexity of HDM is not considerable comparing to 

expensive reservoir simulation runs. 
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CHAPTER 8:  

ADAPTIVE ALGORITHMS FOR 

UNCERTAINTY QUANTIFICATION 

 

 

8.1 Introduction 

In reservoir engineering, uncertainty quantification of prediction parametersfuture 

reservoir behaviour involves determining the uncertainty of input variables and a 

simulation model which computes prediction parametersreservoir performancefor any 

given set of input variables. The uncertainty of input reservoir parameters is shown by a 

probability distribution function, which if sampled on a large enough scale, can be used 

to determine the probability distribution function of the prediction parameters. Figure 

8.1 illustrates a general framework for uncertainty quantification of a predictive 

parameter such as cumulative oil production.  

If a large number of uniform samples/realisations is available, one can use a regular 

Monte Carlo integration to obtain the probability distribution of prediction parameters 

and credible intervals (P10, P50, and P90) for decision.  
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Figure 8.1: A general framework for uncertainty quantification of prediction parameters. Many samples from the 
distribution function of the input parameters are sampled and simulated to obtain the distribution function of 
outputs (prediction parameters). The coloured circle, triangular and square coloured marks each represent a 

sample/realisation. 

In reservoir uncertainty quantification, samples are usually non-uniform and limited. 

Reservoir simulations are expensive, and a limited number of forward simulations can 

be done in an uncertainty quantification study. In addition, history matching using 

optimisation algorithms makes use of importance sampling, i.e. certain areas of the 

uncertainty parameter space are sampled more frequently.   

The Bayes factor is the posterior probability ratio of two models; for an ensemble of 

models obtained in history matching with optimisation algorithms, the prior probability 

and the denominator in equation (2.6) are alike and the Bayes factor of the two models 

(  and   ) is, in fact, the ratio of their likelihoods. 

   
       

       
 

       

       
 (8.1) 

 In some reservoir applications, e.g. reservoir development optimisation and planning, 

model selection is carried out when a limited number of model realisations must be 

selected. Although one can use the best history-matched model, which has a higher 

Bayes factor with regard to all other models, for reservoir forecasting and planning, a 

single model is insufficient to be used as the basis for important decision making in 

reservoir planning and management, as it does not allow uncertainty and estimation of 

risk to be taken into account. 
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The Bayesian model averaging is used for uncertainty quantification, in which the 

response quantity is estimated under each model, and then estimates are averaged 

according to their likelihood ratio. 

In the past two decades, various techniques have been introduced for estimating 

posterior distribution, hence quantifying the uncertainty as discussed in the following 

paragraphs. These techniques can be classified as approximate or Monte Carlo 

sampling. In these approximate techniques, we try to approximate the posterior 

distribution with a limited number of simulations or objective function calculations. The 

credible interval obtained by approximate techniques may be too narrow and unrealistic 

(Baker & Cuypers, 2000). Monte Carlo sampling techniques are more common for 

searching the parameter space. This would need numerous forward simulation runs, 

which are computationally expensive. To work around this problem, one can use proxy 

models instead of forward simulations, but these may introduce significant modelling 

errors.  

Design of Experiments and Response Surface Methods are also widely used for 

uncertainty quantification (e.g. see Damsleth et al., 1994, Manceau et al., 2001 and 

Montgomery, 2001). These statistical approaches are used, firstly, to identify uncertain 

parameters that most affect the response parameters, via a minimum number of 

simulations, secondly, to fit a surface, typically a linear or quadratic model, of response 

variables that can be used as input to a simple Monte Carlo sampling.  

The PUNQ project (Floris et al., 1999) proposed some types of approximate and 

sampling methods for quantifying uncertainty. The first class comprised Maximum 

Likelihood solution plus local characterisation of the likelihood function (ML+), or 

Maximum A Posteriori solution plus local characterisation of the objective function 

(MAP+), when the prior term is included (Roggero, 1997). Another class was Multi-ML 

and Multi-MAP, depending on which objective function is used,  for which it is 

assumed the objective function is truly multimodal and different history-matched 

models located at the distinct optima show the uncertainty. Multi-ML+ and Multi-

MAP+ forms another class and is a combination of the two previous class, i.e. local 

characterisation of the objective function around distinct local optima is used. Floris et 

al. (1999) also presented the results of Monte Carlo sampling of the full posterior 
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distribution. The final approach in the PUNQ project was Oliver et al. (1996), which 

aimed  to estimate the complete posterior using an optimisation technique to sample 

both the prior and the observation data, and hence, to reduce the number of simulation 

runs needed. 

Another sampling method is to use Markov Chain Monte Carlo (MCMC) to estimate 

the posterior distribution from the ensemble of models obtained in history matching. In 

this method, the full parameter search space is sampled, but instead of running forward 

simulations for each sample, the likelihood function is approximated from the existing 

ensemble of models (e.g. see Subbey et al., 2003). However, the shape of the posterior 

distribution is very high-dimensional, non-Gaussian and multimodal. Another issue with 

this approach is that the normalising constant (in equation 1) is unknown and evaluating 

this constant is not a trivial issue. 

The chapter is organized as follows. First, we discuss a Bayesian framework for history 

matching and uncertainty quantification, followed by a literature review of the methods 

used for model selection and uncertainty quantification. In the methodology section, we 

discuss clustering and describe three clustering techniques used in this work. In the 

application section, we present the results of field applications. Finally, in the discussion 

section, we discuss the results and make some concluding remarks.  

8.2 Methodology 

We introduce the methods and techniques used including k-nearest neighbours 

approximation, probabilistic distance clustering, the Neighbourhood Algorithm with 

Bayesian inference, and the Metropolis-Hasting algorithm with an adaptive multivariate 

Gaussian proposal. 

8.2.1 K-NN Approximation 

For inference from an ensemble, a continuous approximate distribution must be created 

from a finite ensemble of models. The approximate distribution could be used to 

approximate samples in an arbitrary position in the search space. In a high dimensional 

space such an approximation technique practically becomes an interpolation problem.  
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k-nearest neighbours (K-NN) approximation is a regression method to evaluate the 

features of a new datapoint  by simply examining the k closest datapoints in the 

parameter space to the new datapoint and assigning a value equal to the inverse-distance 

weighted average of these k neighbours’ feature values.  In this chapter, we use this 

approach to approximate a newly sampled model’s posterior probability (or misfit 

value) from its k-nearest neighbour models in the ensemble instead of forward 

simulation of the model. 

An important aspect of K-NN approximation is choosing an appropriate value for k. The 

most basic form takes k=1. However this yields a pretty unstable approximation (high 

variance and sensitive to the data) and the approximation can often be done more 

consistently by increasing k (Hand et al. 2001). However, increasing k may introduce 

bias, since it may include data points in the space which are not necessarily very close 

to the new data point, especially in high-dimensional space.  

We choose k using a data-adaptive strategy in K-NN approximation. We try various k 

values (usually 1 to 10) to approximate the misfit value of each model in the ensemble 

from that of its closest neighbours, and we measure the mean squared error (MSE) of 

the ensemble. Then we plot MSE, as the performance criterion of the approximation, 

against k. By increasing k, MSE drops to a minimum or, from a particular k value 

onwards, the drop is not significant. In other words, adding more complexity to 

approximation (increasing k) does not significantly improve the approximation. This k 

is selected as the best choice for K-NN approximation. 

Another aspect of K-NN approximation is to use an appropriate distance metric when 

measuring the closeness of the data points. Two main distance measures are Euclidean 

and Mahalanobis distance. In the current work, we use Euclidean distance, equation 

(2.20), which is one of the most widely used similarity measures. More details on this 

measure can be found in the Chapter 2. 

8.2.2 Adaptive clustering algorithms 

MCMC sampling is a time consuming process, especially if a single walk (or chain) is 

used, and the parameter space is high-dimensional and a large number of samples are 

going to be taken. Multiple independent walks can accelerate the sampling process by 
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an order of magnitude. These multiple walks can start from randomly selected points in 

the search space. An alternative to random starting points is to use a clustering 

algorithm to perform a clustering in the parameter space, and then start multiple walks 

from the best model (with lowest misfit) of each cluster.  

In Chapter 2, we reviewed clustering analysis and described three algorithms: k-mean 

clustering (KMC) (MacQueen, 1967), hierarchical agglomerative clustering (HAC) 

(Manning et al., 2008) and probabilistic-distance clustering (PDC) (Ben-Israel, 2006). 

Then we applied these three algorithms to the clustering problem of the Iris dataset and 

showed that PDC outperforms other two algorithms; it was therefore selected to be used 

in the present chapter.  

A difficult problem in clustering is the number of clusters, since we often have no idea 

of how many clusters exist. There is no general formula to find the optimal number of 

clusters applicable to any given data set. A rule of thumb is to use √
 

 
 as the number 

clusters, where N is the number of models. In the following section, we introduce a 

heuristic method to determine the number of clusters through the algorithm itself.  

PDC(Iyigun & Ben-Israel, 2008) starts from a predefined number of clusters. In the case 

of lack of prior information regarding the optimal number of clusters, one can do 

multiple runs of clustering, with different k numbers, then compare the results and 

choose the best number for k, based on a given criterion. A common criterion in PDC is 

the sum of the constant value in equation (2.22), for all models (Ben-Israel, 2006). This 

constant is called the joint distance function, denoted by JDF and expressed as follows. 

    ∑
∏         

 
   

∑ ∏         
 
   

 
   

 

   

 (8.2) 

We use an iterative procedure to determine the number of clusters in PDC; i.e. we start 

from k =2, calculate joint distance function, JDF and iterate (k+=1) until JDF drops to a 

significance level (e.g. 90%, in Figure 8.2). 
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Figure 8.2: Total Joint Distance Function used to determine the number of clusters in PDC. Here, a 90% drop in 
JDF is seen at k=21. 

8.2.3 Neighbourhood Algorithm with Bayesian inference  

The Neighbourhood Algorithm with Bayesian inference (NAB) is an MCMC-based 

uncertainty quantification method introduced by Sambridge (1999). In NAB, one can 

create a random walk using a Gibbs sampler that has the posterior probability        

as its stationary distribution. The random walk should be long enough so that the 

resulting samples closely approximate samples from         . The quality of the 

samples improves as a function of the number of random steps in the walk. These 

samples can be used directly for parameter inference and prediction.  

In NAB, a neighbourhood approximation based on splitting the space into Voronoi cells 

is used to avoid using forward simulation of the resampled models. NAB allocates the 

likelihood of each model in the ensemble to the points located in the Voronoi cell 

around the model. NAB accounts for the sampling density by taking a random deviate 

from the variable range and assigning the probability of the Voronoi cell which the 

sample falls into.  

Sambridge (1999) also proposed multiple independent random walks, each starting from 

a different point (e.g. better fitting models) in model space, to reduce the computation 

time. He also equipped NAB with a scaling mechanism of the parameter ranges in 

which a scale factor (e.g. max minus min value) is applied to the parameter values of the 
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ensemble before sampling. NAB has been used in many uncertainty quantification 

studies, among them Subbey et al. (2003) and Mohamed et al. (2010).  

8.2.4 Adaptive proposal 

In Chapter 2, we reviewed MCMC sampling algorithms and among them the 

Metropolis-Hastings (M-H) algorithm. If properly tuned and configured, this algorithm 

can perform a quick and flexible sampling for estimating posterior distributions in 

parameter estimation problems such as history matching and uncertainty quantification.  

In this chapter, we use a multivariate Gaussian probability function as the proposal 

distribution for sampling the unknown target distribution of uncertainty parameters, 

which is approximated by an ensemble of calibrated models obtained in history 

matching. As discussed in Chapter 2, the Metropolis algorithm refers to a special case 

of the M-H algorithm, in which a symmetrical proposal distribution is used. Since 

multivariate Gaussian distribution is symmetrical, the right term for our sampling 

algorithm is a Metropolis algorithm. 

The Metropolis algorithm (and M-H in general) is often used in situations where the 

target distribution is unknown, the prior knowledge is quite limited, or calculating the 

marginal distributions is a difficult task to undertake in Gibbs sampling (Gelfand & 

Smith, 1990). In such situations, the tuning of the proposal distribution is really crucial.  

The tuning of the proposal can be done offline or online; in the former mode, the best 

parameters for the proposal distribution are found using a trial and error procedure and 

applied to the problem; in the latter, an adaptive scheme can be used to tune the 

proposal distribution by utilising the information obtained during the sampling and, 

thus, automatically adapting the proposal distribution to the target distribution. This 

adaptive proposal strategy was first proposed by Haario et al. (1999). 

The proposal distribution is a multivariate Gaussian probability distribution, which has 

two control parameters, mean and covariance matrix. The mean is taken as the current 

sample, and the covariance matrix is either tuned with the initial value of ensemble, or 

adapted during the sampling, using an adaptive proposal strategy similar to the strategy 

proposed by Haario et al. (1999).  
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If a Gaussian proposal distribution is used, the covariance matrix is tuned during the 

burn-in period, by calculating the acceptance rate, which is the ratio of accepted 

samples to total proposed samples (accepted plus rejected). The desired acceptance rate 

varies for different target distributions; however, the ideal acceptance rate has been 

theoretically obtained to be around 50% for one dimensional Gaussian target 

distribution, reducing to about 23% for high-dimensional Gaussian target distributions 

(Roberts et al., 1997). 

The adaptive proposal of Haario et al. (1999) takes three setup parameters for adapting 

the covariance factor: an initial value for the covariance matrix, a memory parameter  , 

which is the number of previous samples that the covariance matrix is updated with, and 

a frequency parameter  , which is a certain number of samples after which the updating 

happens every   times. The proposal distribution of the new sample      is as follows: 

                      (8.3) 

where   is current sample,    is the covariance matrix of the last H samples (i.e. 

{                  }), and    is covariance scaling factor.  

Unlike in Haario et al. (1999), here the adaptation only takes place in the burn-in period, 

during which the samples are not collected and counted toward the final posterior 

distribution. After the burn-in period, the proposal distribution is fixed, and sampling is 

continued with the adapted covariance matrix. 

Gelman et al. (1996) used a heuristic approach to choose the initial scaling factor, 

supported by theoretical optimisation of mixing properties and empirical tests of the M-

H sampling when the target and proposal distributions are both Gaussian. Their 

approach relates the covariance factor    only to the number of dimensions   through: 

      
    

 
 (8.4) 

8.2.5 Adaptive Metropolis-Hasting with K-NN Approximation  

In this section, we introduce a procedure of uncertainty quantification based on adaptive 

Metropolis-Hasting sampling, which employs the multivariate Gaussian proposal 
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probability distribution with the mean of the current sample and covariance matrix, as 

adapted in the burn-in period. The algorithm is referred to as Adaptive Metropolis-

Hastings (AMH) throughout this thesis. 

The AHM is as fast as any other M-H algorithm, since in the acceptance/rejection step, 

as it collects the current sample for each rejected proposal. This makes the MCMC 

algorithm more efficient than NAB, a Gibbs sampler with a rejection step,  which 

collects only accepted proposals. 

Instead of simple neighbourhood approximation, as in NAB, AMH uses a more robust 

and sophisticated K-NN approximation, in which the posterior probability of an 

arbitrary sample in the search space is approximated by the weighted average of the k 

nearest neighbours’ posterior probabilities. The weight factors are the normalized 

inverse of a distance measure between the sample and its neighbours.  

AMH is also equipped with PD clustering, to select optimum starting points of the 

random walks.  If multiple independent walks are taken in parallel, a huge efficiency 

can be achieved in practice. The PD clustering of input ensemble is done in the 

normalized (scaled to 0-1 range) variable space and a random walk is initiated from the 

best fitting model of each cluster.  

The general workflow for AMH is as following: 

1. If multiple walks are chosen, perform PD clustering of the input ensemble in 

normalized variable space. 

2. Start multiple parallel random walks,    , from the best fitting model of each 

cluster,     , initialize the desired set of samples with zero probabilities   

                         . Assign probability 1.0 in set   to best fitting model of the 

cluster. 

3. Repeat the following steps in each walk with the current sample of      for a desired 

number of iterations, that is, the total number of desired samples divided by the 

number of clusters: 
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3.1. Draw a random sample,       , from the multivariate Gaussian distribution 

       with the mean of the current model,     , and covariance of the input 

ensemble,  ; i.e.: 

       
 

√     √   
  

 
 (      )

 
           

 (8.5) 

 Here, a fixed or an adaptive covariance matrix, as discussed in the earlier 

section, can be used. 

3.2. Accept sample        and assign probability of    to the indices of 

neighbours,     , in set  , if a uniform random deviate,         , satisfies the 

following (8.6) and walk is not in burn-in period, else repeat from step 3.1. 

  
 (      )

       
 (8.6) 

where      is the current sample; since the ratio of two posterior probabilities 

appears in (8.6), one can use the likelihood ratio instead; even further the log of 

likelihoods can be used to avoid numerical underflow errors in the computer, 

i.e.: 

           ( (      )   (    )) 
(8.7) 

With the likelihood model defined by equation (2.13), the negative log of 

likelihoods is equivalent to the misfit. The misfit of the drawn sample, 

 (      ), can be approximated using the K-NN approximation, in the form of 

weighted mean of misfits of the K nearest neighbours in the ensemble, where 

the weight factors are normalized inverse of distance, i.e.: 

 (      )  
 

 
∑    

 

   

(    )           

 
  

∑
 
  

 
   

 (8.8) 
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where   iterates over the number of nearest neighbours,    is a distance measure 

(here Euclidian) between sample        and its  -th neighbour in the ensemble, 

and  (    ) is the misfit of neighbour  . 

The burn-in period is a portion of the total samples (e.g. 50%) from the start, 

which are taken but not collected and counted toward the final set of samples. 

8.3 Applications  

In this section, we present the results of ensemble-based uncertainty quantification of 

three cases: a test function (a standard bivariate Gaussian distribution) and two field 

applications, the synthetic IC-Fault and PUNQ-S3 models.  

8.3.1 Bivariate Gaussian distribution application 

All the uncertainty quantification methods were initially applied to a bivariate Gaussian 

distribution function. The aim was to investigate the performance of the algorithms on a 

well-known distribution function for which the true probability distribution is known. 

8.3.1.1 Function description 

The multivariate Gaussian distribution is the statistical distribution with probability 

density function of: 

      ̅    
 

√     √   
  

 
 
    ̅         ̅   (8.9) 

where   is the vector of variables having the multivariate Gaussian distribution,  ̅ is the 

mean vector,   is the covariance matrix of the multivariate Gaussian distribution and it 

must be symmetric and positive definite;     is the determinant of the covariance 

matrix, superscript T represents transpose matrix function, and     is the inverse of the 

covariance matrix. 

If the mean and covariance matrix of the Gaussian probability distribution are unknown, 

the misfit (log likelihood) function for a single observation   would be: 
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    ̅         ̅  (8.10) 

where   is the number of variables. 

The bivariate Gaussian probability density function (PDF) has several useful and 

elegant properties and, for this reason, and as it is suitable for three dimensional 

visualisation, it is a commonly employed model in many statistical analyses. Here, a 2-

dimensional case was assumed, bivariate Gaussian distribution, where  ̅        

and   [
    

    
]. 

An ensemble of 3000 models (  vectors) have been generated using the same process 

normally used for history matching. i.e. two uniform variables were taken, both in the 

range of (-10,10); then a random initial population of 300 models was created and 

evaluated the models for their negative log likelihood value (i.e. misfit), as in equation 

(8.10). For the next generation, the best 200 solutions were selected and, using the 

chosen evolutionary algorithm (here HEDA), 100 new models were generated. The 

process was repeated for 27 generations so that a total of 3000 models were obtained. 

Figure 8.3 shows the inertia diversity and the convergence of the misfit boxplots for the 

ensemble. As the figure shows, after scanning the parameter space, the search algorithm 

has converged to a close neighbourhood of the global optimum (p1=0, p2=0). This is 

also shown by the 3d scatterplot and density map misfit/parameters (Figure 8.4). 

  
Figure 8.3: Inertia diversity (left) and boxplot of misfit (right) for 2500 models sampled by HEDA in bivariate 
Gaussian distribution application (two parameters p1 and p2). The search algorithm has converged to the 

global optimum. 
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Figure 8.4: 3D scatterplot (left) and density map (right) of misfit and parameter values for 2500 models sampled 

by HEDA in bivariate Gaussian distribution application (two parameters p1 and p2). The search algorithm has 

converged to the global optimum.  

8.3.1.2 K-NN approximation 

We determined the best k value in K-NN approximation of the 3000 model ensemble, 

using the adaptive strategy explained in the K-NN section. For various k values, the 

mean squared error (MSE) was calculated and plotted on a bar chart (Figure 8.5). It can 

be seen that if k=4, the MSE does not decrease significantly. Thus adding more 

complexity to the approximation by increasing k does not improve the approximation 

significantly. Therefore k=4 was selected for the later experiments. 

 

Figure 8.5: MSE versus k in K-NN approximation of ensemble obtained by the search algorithm for bivariate 
Gaussian probability density function. K=4 is best choice for the approximation. 

 

8.3.1.3 Database results for bivariate Gaussian distribution 

For the bivariate Gaussian distribution, a database of 150,000 samples was created by 

drawing random samples from the assumed parameter region of (-10, 10) and for each 

sample the misfit (negative log-likelihood) was calculated, as in equation (8.10). Figure 
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8.6 shows the uniform-like sampling density and misfit landscape of these 150,000 

random samples in the bivariate Gaussian distribution. Since the sampling is uniform, 

the true probability density can be estimated by the likelihood, and hence by the misfit 

surface. 

 

Figure 8.6: Heat maps (left) and 3D scatterplot (right) showing sampling density and misfit (negative log-
likelihood) of 150,000 random samples in database of bivariate Gaussian distribution.  

 

8.3.1.4 Estimation of probability distribution function 

The ensemble of 3000 models, each model with a corresponding misfit value  obtained 

by the HEDA was used for MCMC sampling of 150,000 new models, estimating the 

probability density of the bivariate Gaussian distribution.  

We sampled the posterior probability distribution of the bivariate Gaussian distribution 

using two studied algorithms, NAB and AMH. For both algorithms, a single walk from 

the best misfit model was performed. NAB uses neighbourhood approximation (n=1), 

while AMH uses K-NN approximation with k=4. Figure 8.7 demonstrates the heat-map 

of sampling density, which estimates the probability density function. As the figure 

shows, AMH better estimates the peak and the correlated elliptic shape than NAB, when 

compared to the shape estimated by the database results. 
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Figure 8.7: The estimated (heat-map) density of sampling in bivariate Gaussian probability density function by 
NAB (left) and AMH (right) and the true (contour-map) obtained for the database (bottom).  
AMH better captured the peak and smooth, correlated, elliptic shape of the true surface. 

8.3.1.5 MCMC sampling convergence 

The predictive parameter for uncertainty quantification was defined as the sum of the 

two variables (p1+p2) in the bivariate Gaussian distribution. The CDF of this variable 

was estimated using NAB and AMH sampling algorithms and reported in this section.  

Figure 8.8 shows the convergence of the predictive parameter’s moving average during 

the MCMC sampling of 150,000 samples by each of the algorithms. As the figure 

shows, AMH has converged better to the true value of the predictive parameter (zero). It 

should be mentioned that samples were not collected during the burn-in period. 
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Figure 8.8: Convergence of the moving average for assumed predictive parameter during the sampling of 
150,000 samples by NAB (left) and AMH (right). Both algorithms performed a single walk, starting from the best 

misfit model (2259). The dotted vertical line in AMH and the vertical blue line in NAB show the burn-in period 
(75,000 samples). The burned-in samples were not available for NAB, thus are not shown. The horizontal line 
shows the true value of the predictive parameter. After the burn-in period, AMH gets stable quicker compared 

to NAB.  
 

We also looked at the trace-plots. Trace-plots show the value of parameters throughout 

the sampling. Another important chart is the autocorrelation function (ACF). It is the 

cross-correlation of a parameter trace-plot with itself, which shows the similarity 

between samples as a function of the sample separation (lag) between them. The trace-

plots of the bivariate Gaussian distribution variables (p1 and p2) are shown in Figure 

8.9 for NAB and in Figure 8.10 for AMH. One can see that both algorithms sample 

similar parameter ranges. 

 

Figure 8.9: Trace-plot of parameters, p1 (top-left) and p2 (top-right) in a single walk of NAB, starting from the 
best misfit model of 2259. The algorithms sample similar parameter ranges. The ACF is also shown for p1 

(bottom-left) and p2 (bottom-right), which becomes zero after 5 lags in NAB and 20 lags inAMH. 
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Figure 8.10: Trace-plot of parameters, p1 (top-left) and p2 (top-right) in a single walk of NAB, starting from the 
best misfit model of 2259. The algorithms sample similar parameter ranges. The ACF for p1 (bottom-left) and p2 

(bottom-right) becomes zero after 5 lags in NAB and 20 lags in AMH. 
 

8.3.1.6 Comparison with database results 

The last figure in this section demonstrates the CDF calibration curve of the predictive 

parameter’s (p1+p2) for NAB and AMH versus the database results (Figure 8.11). One 

can see from the figure that both algorithms (NAB and AMH) estimated the CDF very 

close to the database results.  

 

Figure 8.11: CDF calibration curves of predictive parameter’s (p1+p2) for NAB and AMH versus database 

results. NAB and AMH both obtained true CDF for the database results.  

 

8.3.2 IC-Fault model application 

Following the testing of NAB and AHM on the bivariate Gaussian test function, we 

applied them to uncertainty quantification of the IC-Fault model. The IC-Fault model is 
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a synthetic reservoir case with a complicated response surface and many local minima. 

It was selected since it has a truth case and a database composed of a large number of 

forward simulation models (~160,000) sampled using a normal Monte Carlo algorithm, 

i.e. different random combinations of three uncertainty parameters were taken, and a 

forward simulation was done for each sample (Tavassoli et al., 2004). We take this 

database as the reference case for the comparative study of NAB and AMH. 

In chapters 5 and 7, we used different evolutionary algorithms for history matching of 

IC-Fault model. In this chapter, we use the ensemble obtained by these algorithms for 

resampling by MCMC-based algorithms to perform the uncertainty quantification of 

predictive parameter in IC-Fault model (FOPT). 

Tavassoli et al. (2004) showed that the best history-matched model may not give the 

best forecast. This statement by itself reveals the importance of ensemble-based 

uncertainty quantification used in this chapter. A best history-matched case is a single 

case obtained within a specific timeframe and limited computational resources, thus it is 

not guaranteed to be the global solution and the forecast from such single model is not 

usually robust.  

In this chapter, we use ensemble-based uncertainty quantification methods to obtain 

robust predictions for IC-Fault model. As discussed earlier, history matching is an 

inverse problem with non-unique solutions. The presence of local minima in the misfit 

landscape of IC-Fault model is an indication of presence of multiple acceptably history-

matched models, which are sufficiently different from each other. A robust forecast 

takes into account all these models. This is ensured by using uncertainty quantification 

techniques which involves resampling an ensemble of models obtained in history 

matching. 

One can quantify the uncertainty around each of the misfit components. However here 

we try to quantify the uncertainty of a selected predictive parameter, total oil production 

of the field (FOPT). FOPT is the most important prediction of the reservoir 

performance, and it is the basis for many reservoir development decisions.  

If we analyse the database for models with misfit under 25 (Figure 8.12), one can see a 

complex twisting, ribbon-like shape of the low misfit models in parameter search space. 
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The green dashed line in the parallel coordinate chart and the green star in the 3D scatter 

chart show the truth case.  

 
Figure 8.12: 3d scatter (left) and parallel coordinate (right) plots of models in the IC-Fault database with misfit 

under 25.0. The green dashed line in the parallel coordinate chart shows the truth case. 

As discussed earlier in this chapter, we perform uncertainty quantification of prediction 

parameters using MCMC resampling of an ensemble of models obtained from a direct 

EA search. Therefore, it is necessary to study the effect of search algorithm choice and 

ensemble size on uncertainty quantification results. 

8.3.2.1 Search algorithms 

As discussed in the chapter 3 to 7, in history matching, different EAs perform search on 

the uncertain variable space differently. i.e. some algorithms are by nature more 

explorative (e.g. GA) while others are more exploitative (e.g. EDAs).  Although, one 

can tune EAs for their optimum control parameters manually or using explicit adaptive 

algorithms (e.g. AHEDA in Chapter 7), so that, they could achieve a more balanced 

exploration and exploitation search. 

In current chapter, we selected two direct search algorithms for history matching of the 

IC-Fault model, simulated binary GA (SBGA) and incremental histogram-based EDA 

(iHEDA). For more details on these algorithms refer to Chapter 5. Regardless of the 

search algorithm used to obtain the ensemble, a high level of ensemble diversity is 

required to perform a robust resampling by MCMC algorithms. SBGA is implemented 

with simulated binary crossover and mutation operators, which respectively ensure 

exploitation and exploration in the search if properly set by the control parameters. 
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As any other EDA, iHEDA has strong exploitative properties due to the use of 

probabilistic model. Therefore, as discussed in Chapter 5, if iHEDA used in the steep 

minima problems, it may get trapped in local minima. This was shown by previous tests 

on IC-Fault (Chapter 5). In such situations, the mutation operator is the most important 

operator which can help algorithms to escape from the local minima.  

Thus, to improve the diversity of ensemble, we equipped iHEDA with a mutation 

operator and in current chapter will be referred to as imHEDA. In each generation of 

imHEDA, a set of children are generated from the incremental histogram model of the 

parent solutions (see sections 5.3.1 and 5.3.3), then the generated solutions undertake a 

mutation crossover according the procedure described in the section 5.2.2 of  Chapter 5. 

Both algorithms (SBGA and imHEDA) were tuned and forced to start from the same 

initial population. They were run two times exactly, with same initial population and 

tuning parameters. Control parameters used in two trials of the algorithms are given in 

the following table. 

Table 8.1: Control parameters of the algorithms in IC-Fault application. 

Parameter/

Algorithm 

Size of initial 

population 

Number of 

parents 

Number of 

children 

Number of 

generations 

Number of 

bins 

Learning 

rate 

Mutation 

probability 

imHEDA 30 20 10 47 20 0.7 0.3 

SBGA 30 10 10 47 --- --- 0.5 

Minimum misfit, convergence, and diversity results are shown in Figure 8.13. Although 

the same initial population and control parameters are used, minimum misfit, 

convergence and diversity behave differently in the two trials of each algorithm, due to 

their stochastic nature.  

With different misfit and diversity results, one cannot expect the same ensemble of 

models, even in two trials of the same algorithm with different seed numbers. SBGA 

and imHEDA explore the search space differently; to examine that, we looked at the 

models with misfit under 25.0 in the ensembles obtained by imHEDA (Figure 8.14 and 

Figure 8.15) and SBGA (Figure 8.16 and Figure 8.17). 
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Figure 8.13: Minimum misfit (top-left), misfit convergence (top-right), and inertia diversity (below) plots for two 

trials of SBGA and two trials of imHEDA; differenttrials relate to a different seed numbers. 
 

 

 
Figure 8.14: 3d scatter (lefts) and parallel coordinate (rights) plots showing models with misfit under 25.0 

obtained by two trials (top and bottom) of imHEDA on IC-Fault model.  
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Figure 8.15: Heat maps showing density of sampling in the space of two selected parameters (k-low and k-high) 

obtained by two trials of imHEDA on IC-Fault model.  

  

 
Figure 8.16: 3d scatter (left) and parallel coordinate (right) plots, showing models with misfit under 25.0, 

obtained by two trials of SBGA on IC-Fault model. 
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Figure 8.17: Heat maps showing density of sampling in the space of two selected parameters (k-low and k-high) 

obtained with by trials of SBGA on IC-Fault.  

 

One can see that ensembles obtained by two trials of same algorithm are different in 

terms of both well-fitting models and density of the sampling. Hence, one should expect 

different results for the Bayesian inference of ensembles obtained by those trials, 

regardless of the algorithm used for uncertainty quantification. This reveals the 

importance of the direct search algorithm used for model calibration and generating the 

ensemble. Hence, the first factor affecting the performance of ensemble-based 

uncertainty quantification methods is the ensemble itself. 

8.3.2.2 Ensemble size 

A sensitivity study of ensemble size on the sampling algorithms was performed. For this 

purpose, two imHEDA experiments were run to obtain two different ensemble sizes.  

The first ensemble was composed of 500 models, obtained by 47 generations of 

imHEDA, each containing 10 solutions. The second ensemble was created by another 

imHEDA experiment, in which 2500 models were generated in 247 generations, each 

containing 10 solutions. The distribution of models with misfit under 25.0 in these two 

ensembles is shown in Figure 8.18 and Figure 8.19. 



Chapter 8: 

Adaptive Algorithms for Uncertainty Quantification 

 

 

219219 
 

 
Figure 8.18: Scatter (left) and parallel coordinate (right) plots of the 500 models ensemble in IC-Fault model, 

showing the distribution of models with misfit under 25.0. 
 

 
Figure 8.19: Scatter (left) and parallel coordinate (right) plots of the 2,500 models ensemble in IC-Fault model, 

showing the distribution of models with misfit under 25.0. 

 

To study the effect of ensemble size on sampling algorithms, we used NAB for 

sampling 150,000 new samples from the above ensembles and the inference results 

from these two ensembles were compared, using the convergence of moving average 

and parameter traceplots.  

Figure 8.20 shows two ensembles as picked by imHEDA and their corresponding 

150,000 models sampled by NAB. From the figure, it is evident that the ensemble size 

and distribution of the models in the ensemble hugely affects the results of ensemble-

based uncertainty quantification. The ensemble should be sufficiently large and diverse 

for the posterior sampling to capture all the regions of importance and achieve a reliable 

quantification of the uncertainty. 
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Figure 8.20: Ensemble of 500 models (top-left) and 2500 (bottom-left) models, as picked by imHEDA and their 
corresponding 150,000 models sampled by NAB (top-right and bottom-right). The ensemble and distribution of 

the models in the ensemble is the first important factor of ensemble-based uncertainty quantification. 
  

Figure 8.21 shows the moving average of the predictive parameter (FOPT) using NAB 

sampling of these two ensembles. When results of two different ensemble sizes are 

compared with the prediction of the database of the IC-Fault model (P50 of 83,500 STB 

for FOPT after 3651 days of production), the figure from the ensemble of 2,500 models 

(84,500 STB), is less biased than that from the 500 models ensemble, which is 86,300 

STB. The reason is a larger ensemble size better and more diversely covers the search 

space and approximation from such ensemble will be more robust.  

500 model ensemble NAB samples from 500 model ensemble 

NAB samples from2500 model ensemble 2500 model ensemble 



Chapter 8: 

Adaptive Algorithms for Uncertainty Quantification 

 

 

221221 
 

   
Figure 8.21: Moving average of the FOPT in NAB sampling of ensembles of 500 (left) and 2,500 (right) models 

generated by imHEDA.  The red-dotted line shows P50 of Database.  P50 prediction from the ensemble of 2,500 
models is closer to that of the database compared to the ensemble of 500. 

 

We also analysed the trace-plots of three parameters, throw (Figure 8.22), K-high 

(Figure 8.23), and K-low (Figure 8.24) and their autocorrelation function values for the 

two ensemble sizes of 500 and 2500 models. The trace-plot and autocorrelation function 

of the three parameters does not vary considerably between the two ensemble sizes, 

although the 2500 model ensemble shows a wider spread of parameter range for the 

throw and K-high. 

  
Figure 8.22: Trace-plot of throw with ACF, below, for the ensembles of 500 (left) and 2,500 (right) models 

generated by imHEDA.  NAB sampling from the ensemble of 2,500 models has slightly wider parameter range 
and higher ACF than from the ensemble of 500 models. 

 

2500 models 500 models 

500 models 2500 models 
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Figure 8.23: Trace-plot of K-high with ACF, below, for the ensembles of 500 (left) and 2,500 (right) models 

generated by imHEDA. NAB sampling from the ensemble of 2,500 models has wider parameter range than the 
ensemble of 500 models. 

 

 
Figure 8.24: Trace-plot of K-low (with autocorrelation function, below) for the ensembles of 500 (left) and 2,500 

(right) models generated by the search algorithm imHEDA. NAB sampling from the ensemble of 500 models has 
slightly wider parameter range and higher ACF than ensemble of 500 models. 

 

Finally, we looked at the CDF calibration curves of the predictive parameter FOPT 

versus the database. As mentioned earlier, and as Figure 8.25 shows, in terms of the 

closeness of inference results to the database, the ensemble of 2500 models is a better 

choice than the ensemble of 500 models. In the subsequent experiments, we only use 

the ensemble with 2500 models, to minimise the effect of ensemble size on the 

performance of sampling algorithms. 

2500 models 500 models 

2500 models 500 models 
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Figure 8.25: CDF ccalibration versus database curves of 500 and 2,500 model ensembles in IC-Fault model. The 

ensemble of 2500 models resulted in a prediction very close to the database. 

 

8.3.2.3 K-NN approximation 

For the IC-Fault model, MSE was plotted against various k values, when each model in 

the ensemble of 2500 models was approximated using its k nearest neighbours. As 

Figure 8.26 shows, k=3 corresponds to the minimum MSE, and hence was used in the 

K-NN approximation. This was also confirmed by CDF calibration curves of FOPT in 

the IC-Fault application. Figure 8.27 shows results of AMH with different k values. As 

the figure shows, k=3 results in the closest CDF compared to the database. 

 

Figure 8.26: MSE versus k in K-NN approximation of ensemble obtained by the search algorithm for IC-Fault.  
k=3 is the best choice for the K-NN approximation.  
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Figure 8.27: CDF calibration curves of FOPT in IC-Fault application, obtained by AHM with different k values in 
K-NN approximation. K=3 result is closest to the database.  

8.3.2.4 Multiple walks 

In the IC-Fault model application, two options were tested for choosing the starting 

points of multiple walks in AMH sampling. The options are either to select the starting 

points randomly or perform a probabilistic-distance (PD) clustering and take the best 

fitting model of each cluster as a starting point.  

Figure 8.28 shows samples in parameter space, as sampled by the AMH algorithm from 

either random starting points (RD) or the best model of different clusters obtained by 

PD clustering.  

  

Figure 8.28: CDF calibration curves of FOPT in IC-Fault model application, obtained by 10 walks of AMH, each 
starting from a different model, selected by random (RD) or clustering analysis (PD).  

Clustering provides better starting points than the diverse sampling.  
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The trace-plots of the parameters were compared for two cases: random multiple walks 

and multiple walks from PD clustering. As shown in Figure 8.29, these plots and their 

respective ACFs were very similar for K-high and K-low. However for throw the trace-

plots and autocorrelation functions were slightly improved. 

 

Figure 8.29: Trace-plot of throw parameter with ACF, as estimated by multiple walks sampling with random 
(left) and PD clustering (right) starting points. PD clustering starting points have resulted in slightly wider 

parameter range and lower ACF than random starting points. 
 

Figure 8.30 shows CDF calibration curves of FOPT for these two options. One can see 

that starting points from PD clustering have improved the results, as they are closer to 

the database than those from random starting points. 

 

Figure 8.30: CDF calibration curves of FOPT in IC-Fault model application, obtained by 10 walks of AHM, each 
starting from a different model, selected by random (RD) or clustering analysis (PD). Clustering improves the 

results for uncertainty quantification, as the resulting CDF is closer to CDF obtained from the database. 
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8.3.2.5 Covariance matrix tuning 

Initially, we used a fixed covariance matrix for the proposal distribution in M-H; then it 

was tuned by a simple trial and error process. The starting value for the covariance 

matrix could be the covariance matrix of the models in the ensemble. Then the 

covariance matrix was tuned by using a multiplication factor and by monitoring the 

acceptance rate.  

Figure 8.31 shows the acceptance rate of M-H for different covariance matrix factors, 

which are multiplied to the initial covariance matrix of the ensemble in the IC-Fault 

model. Factors 0.01 and 0.005 show an acceptable range of acceptance rate (between 

23-50%). In the figure, D is equal to 2.38
2
/d and corresponds to the heuristic approach 

of Gelman et al. (1996), where d is the number of dimensions. In the IC-Fault model, d 

is equal to 3, thus D is equal to 1.8. Figure 8.32 shows CDF calibration curves of FOPT 

for different covariance factors in the IC-Fault model application. One can see that 

results obtained for 0.001 and 0.005 are closer to the database compared to those for 

other factors, although all the factors greater than 0.0001 have resulted in CDFs 

sufficiently close to the database. The covariance matrix factor of 0.005 is the best 

choice here, as it is supported by the acceptance rate and the CDF calibration plots both. 

 
Figure 8.31: Acceptance rate of Metropolis-Hasting algorithm with multivariate Gaussian proposal distribution 

of mean current value and covariance of the ensemble multiplied, by a factor. Results for factors 0.01 and 0.005 
fall in the acceptable range of acceptance rate (23% to 50%). 
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Figure 8.32: CDF calibration curves of FOPT in IC-Fault model application, obtained by M-H with initial 
covariance matrix of ensemble’s covariance matrix and different covariance factors used for tuning.  

Results for 0.001 and 0.005 are closer to database than other factors.  

Another option for the initial covariance matrix is to take the identity matrix i and then 

multiply it by a factor during the tuning.  Figure 8.33 shows the acceptance rate of M-H 

for different covariance matrix factors, which are multiplied to initial covariance matrix 

of identity i. In this case, factors 0.0001 and 0.0005 show an acceptable range of 

acceptance rate (between 23-50%). Figure 8.32 shows CDF calibration curves of FOPT 

in which the result obtained for 1i matches the database results best. 

 
Figure 8.33: Acceptance rate of Metropolis-Hasting algorithm with the multivariate Gaussian proposal 

distribution of mean current value and covariance of ensemble, multiplied by a factor. Results for factors 0.01 
and 0.005 fall in the acceptable range of acceptance rate (23% to 50%). 
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Figure 8.34: CDF calibration curves of FOPT in IC-Fault model application, obtained by M-H with initial 

covariance matrix of identity and different covariance factors used for tuning. Result for 1i matches database 
result best.  

 

8.3.2.6 Adaptive Covariance matrix 

In the previous section, two initial covariance matrix factors and several covariance 

factors for the multivariate Gaussian proposal distribution in M-H were tested. The 

results showed that the acceptance rate of M-H with fixed covariance matrix and the 

CDF obtained for the predictive parameter are highly sensitive to the choice of initial 

covariance matrix, as well as the covariance factor value used for tuning. Covariance 

matrix factor tuning is time-consuming and results obtained for a case cannot be applied 

to another. 

To address this problem, an adaptive strategy is applied for the covariance matrix in 

multivariate Gaussian proposal distribution of AMH. The strategy tunes the covariance 

matrix during the sampling in the burn-in period, and hence provides the M-H sampling 

with a proper proposal distribution without the need for tuning. The adaptation is done 

in the burn-in period, by recalculating the covariance matrix from the last certain 

number of accepted samples (here 1000), as discussed in the Methodology section 8.2.4. 

The initial covariance matrix can be chosen as the covariance of the ensemble 

multiplied by a factor. Figure 8.35 shows the acceptance rate of AMH for different 

covariance factors. In this case, the acceptance rate was not very sensitive, and 

regardless of the factor value, the acceptance rate was around 20% (between 13-26%). 

The results for the calibration curves (Figure 8.36) of covariance factors in AMH are 
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very close to each other and better fit the database compared to the fixed covariance 

matrix case. 

 
Figure 8.35: Acceptance rate of AMH with initial covariance matrix of ensemble and different covariance 

factors. The acceptance rates are all around 20%.  

  

 
Figure 8.36: CDF calibration curves for FOPT in IC-Fault model application, obtained by AHM with initial 

covariance matrix of ensemble and different covariance factors. Results better match database than those from 
the fixed covariance (Figure 8.34). 

 

Even if AMH starts from the identity covariance matrix, the acceptance rate, as shown 

in Figure 8.37, is around 20% (between 15-25%) and less sensitive to the covariance 

factor in M-H. However, results are very similar to AMH with initial covariance matrix 

of ensemble, which shows AMH is not sensitive to the choice of the initial covariance 

matrix (Figure 8.38). 
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Figure 8.37: Acceptance rate of AMH with initial covariance matrix of identity and different covariance factors. 

The acceptance rates are all around 20%.  

 

 
Figure 8.38: CDF calibration curves of FOPT in IC-Fault model application, obtained by AHM with initial 
covariance matrix of identity and different covariance factors. Results better match database than fixed 

covariance (Figure 8.34). 
 

8.3.2.7 Comparison of convergence diagnosis and mixing 

In this section, the results of MCMC sampling, including the convergence plots, moving 

average of FOPT and trace-plots of the uncertain parameters, are compared for a single 

MCMC sampling trial of each of the NAB and AMH algorithms. Both algorithms 

sample from the same ensemble of 2,500 models obtained by history matching, using 

the search algorithm imHEDA. AMH was set up with the adaptive proposal and an 

initial covariance value of the ensemble, and then adapted during the burn-in period. 

Figure 8.39 shows the spatial distribution of 150,000 models sampled by two MCMC 

algorithms, NAB and AMH, in the ICF application. As NAB uses the nearest neighbour 
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approximation, it only resamples models in the ensemble. However, AMH uses K-NN 

(here k=3) approximation and, as the figure shows, it has resampled a much wider area 

in parameter space. 

  
Figure 8.39: The spatial distribution of 150,000 samples taken by two MCMC sampling algorithms, NAB (left) 
and AMH (right) in IC-Fault model application. The truth case is shown with a green star. NAB has resampled 

the ensemble while AMH has sampled a much wider area. 
 

Next we looked at the convergence of mean FOPT. Figure 8.40 demonstrates the results 

of moving average of the predictive parameter. The AMH plot shows the burn-in period 

with a horizontal dotted line, after which the algorithm has reached its stationary status.  

Both algorithms have converged to a similar value of FOPT, which is slightly higher 

than the database result, shown by the red-dotted line.  

  
Figure 8.40: moving average of FPOT during sampling of 150,000 models by NAB (left) and AMH (right) 

algorithms in ICF application. The database is shown with a horizontal red-dotted line; the vertical black-dotted 
line shows the end of burn-in period in AMH. Both algorithms have converged to a similar value. 

 

Figure 8.41, Figure 8.42, and Figure 8.43 show the trace-plot and ACF of three 

uncertainty parameters, throw, K-high, and K-low respectively. The figures show that 
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NAB has slightly obtained better parameter estimation with lower ACF, especially for 

throw and K-low parameters.  

  

Figure 8.41: Trace-plot of throw parameter with ACF, as estimated by NAB (left) and AMH (right).  NAB resulted 
in slightly wider parameter range and lower ACF than AMH. 

  

Figure 8.42: Trace-plot of K-high parameter with ACF as estimated by NAB (left) and AMH (right).  Both 
algorithms resulted in very narrow parameter range and high ACF. 

  
Figure 8.43: Trace-plot of K-low parameter with ACF as estimated by NAB (left) and AMH (right).  NAB resulted 

in slightly wider parameter range and lower ACF than AMH. 
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Finally, Figure 8.44 shows the box-plot and CDF calibration versus the database plot of 

the ultimate FOPT, as obtained by the NAB and AMH algorithms. Although both 

algorithms have obtained credible intervals comparable to the database, one can see 

that, in this case, NAB has obtained predictions closer to the database compared to the 

AMH prediction. 

 

Figure 8.44: Box-plot (left) and CDF calibration plot (right) of predictive parameter, ultimate FOPT, in IC-Fault 
model, as obtained by NAB and AMH. the truth case is shown by red dots. NAB has obtained predictions closer 

to database than AMH. 
 

8.3.3 Uncertainty quantification of PUNQ-S3  

To check the validity of these results for the IC-Fault model, we also tested NAB and 

AMH algorithms on the PUNQ-S3 model (Boss, 1999; Barker & Cuypers, 2000). The 

PUNQ-S3 model is a different history match problem, with a different misfit landscape 

compared to the IC-Fault model. It has a large number of parameters (in current 

parameterisation 38). Therefore it is not possible to create a large number of realisations 

to be used as a reference case. However, it has a truth case model, which is going to be 

used as the reference case for a comparative study of the uncertainty quantification 

methods. 

8.3.3.1 History matching 

We used two algorithms, SBGA and imHEDA, for history matching and obtaining an 

ensemble of models in the PUNQ-S3 model application. Both algorithms were tuned for 

their best control parameters and both started from the same initial population. Each 

tuned algorithm was run five times with exactly the same initial population and control 

parameters but different random seed numbers. PUNQ-S3 model needs less exploration, 
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as implemented by mutation, but more exploitation than IC-Fault model. Control 

parameters used in two trials of the algorithms are shown in Table 8.2. 

Table 8.2: Control parameters for the search algorithms in PUNQ-S3 application. 

Algorithm Size of initial 

population 

Number of 

parents 

Number of 

children 

Number of 

generations 

Number 

of bins 

Learning 

rate 

Mutation 

probability 

imHEDA 150 50 50 57 20 0.9 0.1 

GA 150 50 50 57 --- --- 0.1 

 

The minimum misfit and convergence results for history matching using the two 

algorithms are shown in Figure 8.45. Although both algorithms obtained acceptable 

misfit convergences, imHEDA has achieved a slightly better minimum misfit and its 

ensemble was thus selected for use in uncertainty quantification. 

 

Figure 8.45: Minimum misfit (left) and misfit convergence (right) plots for two search algorithms, SBGA and 
imHEDA, in PUNQ-S3 application as averaged for 5 trials with different seeds. Both algorithms showed 

acceptable misfit convergence. imHEDA slightly achieved a better minimum misfit and its ensemble was 
selected for use in the uncertainty quantification. 

 

8.3.3.2 Uncertainty quantification 

In the PUNQ-S3 model application, we first looked at the uncertainty quantification 

results obtained by two ensemble-based algorithms, NAB and AMH, using an ensemble 

of 3,000 simulation runs obtained by the search algorithm imHEDA. Due to the 

stochastic nature of our sampling algorithms, samplings were repeated for 5 trials, each 

with a different seed number. The results were averaged and are shown in Figure 8.46. 

It appears that AMH resulted in a P50 (the middle line in the box-plot) and a CDF 

closer to the truth case (3.87 mmbbl). 
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Figure 8.46: Box-plot (left) and CDF plot (right) of predictive parameter for the last time period of FOPT in 

PUNQ-S3 model, obtained by two MCMC sampling algorithms, NAB and AMH. Truth case is shown by the red-
dotted line. AMH has obtained predictions closer to the truth case compared to NAB. 

 

We also analysed the convergence of the average FOPT during the sampling. Figure 

8.47 shows the results of the FOPT moving average in sampling with NAB and AMH. 

The results from AMH have converged to a value closer to the database result than 

those from NAB.  

   
Figure 8.47: Moving average of FPOT during sampling of 500,000 models by NAB (left) and AMH (right) 

algorithms in PUNQ-S3 application. The truth case is shown with a horizontal red-dotted line; the vertical black-
dotted line shows the end of burn-in period in AMH. AHM converged to a value closer to truth case than NAB. 

8.4 Discussion 

The main goal of this chapter is to analyse the factors affecting the performance of the 

ensemble-based sampling techniques for uncertainty quantification, and based on these 

findings to introduce and employ a new ensemble-based uncertainty quantification 

method which is efficient, robust, and not sensitive to control parameters, as it adapts 

the proposal distribution to the structure of the problem.  
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To perform a comparison study of the uncertainty quantification methods, several trials 

of ensembles and methods are required. As pointed out in the previous sections, due to 

the stochastic nature of the search algorithms used to create ensembles, one cannot 

repeat results with two trials of the same algorithm, even with same initial population 

and control parameters.  

Results obtained in all three applications, multivariate Gaussian function, IC-Fault and 

PUNQ-S3 models, showed that credible intervals obtained by different ensemble-based 

uncertainty quantification methods primarily depend on the ensemble itself, which 

should be large enough to be used for uncertainty quantification. 

The results also depend on the amount of the information contained in the ensemble; if 

little information is encoded in the ensemble, one would expect poor results. The 

complexity of the history matching problem, encoded in the misfit landscape, and the 

algorithm used for history matching determine the number and distribution of the 

models with low misfits in the ensemble. This in turn determines the amount and 

importance of the extracted information in the sampling.  
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CHAPTER 9:  

SUMMARY AND CONCLUSIONS 

 

This chapter concludes the thesis by summarizing the chapters, drawing the main 

conclusions and key findings, and listing the research contributions of the thesis. Finally 

possible future directions for research related to this thesis are recommended. 

9.1 Summary 

In this section, a summary of results and specific conclusions of each main chapter is 

presented. 

9.1.1 Literature review and clustering algorithms 

In Chapter 2, first, a literature review was presented on reservoir simulation models 

including an analytical model, well model, streamline simulation, and full-field 

simulation. Then we discussed the procedure of manual history matching and the steps 

required to obtain a good match.  

Chapter 2 also described automatic/assisted history matching in more detail, with an 

overview of the different optimisation techniques used for history matching. We 

reviewed evolutionary algorithms and their components required in assisted history 

matching.  

Finally in Chapter 2, a survey of uncertainty quantification techniques was presented 

and two main Markov chain Monte Carlo techniques were reviewed that can be used for 
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sampling from the posterior density function. We also summarised three different 

clustering algorithms that can be used for grouping of models in the ensemble based on 

their distance-based similarity in the parameter space. Results of the Iris dataset 

clustering in Chapter 2 showed that probabilistic distance clustering outperforms k-

mean and hierarchical agglomerative algorithms, and hence this method was used 

throughout the thesis. 

9.1.2 Estimation of distribution algorithms 

Chapter 3 described the theory and explored the application of Estimation of 

Distribution Algorithms (EDAs), a modern history matching technique that to date has 

been applied only briefly in the petroleum industry. EDAs are a set of algorithms in the 

evolutionary computation field, characterized by the use of explicit probability 

distribution models in optimization. Unlike genetic algorithms, EDAs sample from 

learnt probability distributions of the full posterior probability distribution.  

We described three EDAs, two histogram based EDAs, including basic histogram (BH) 

and equal area histogram (EAH), which make use of the histogram as their probabilistic 

model, and the Bayesian Optimisation Algorithm (BOA), which employs a more 

sophisticated Bayesian Network to approximate higher order marginals.  

In order to evaluate the performance of EDAs, they were applied to the synthetic 

PUNQ-S3 model and the following results were observed: 

 All three EDAs are capable of being employed in history matching and 

uncertainty quantification problems. 

 In an explorative set-up, the multivariate model (BOA) converges faster than 

univariate models, and fewer generations are needed to obtain a specified misfit 

value. In an exploitative set-up, the BOA is more likely to become trapped in 

local minima while univariate models (BH and EAH) perform better. 

 The degree of model complexity is another issue to be taken into account. The 

complexity of inducing multivariate models is higher than that of univariate 

models and multivariate models require more CPU time. However, in our 

problems the time required to generate the probability models is negligible 
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compared to the time required to evaluate a population (simulation runs), even in 

the more sophisticated case of BOA. On the other hand, the increased 

sophistication of BOA allows time to be saved by permitting effective 

optimization in fewer solution evaluations. 

 With respect to predicted uncertainty bounds, univariate histogram-based 

models perform better than the multivariate BOA model in an exploitative set-

up, as ensemble models created by them are more diverse, and it is proved that 

posterior sampling from a diverse ensemble leads to narrower credible intervals 

and closer to the truth case. 

 BH, EAH, and BOA combined with a NAB posterior probability sampler 

provides predicted uncertainty bounds that honour truth case results and these 

results are comparable with other modern algorithms published in the literature. 

The second case study was a real North Sea field.  Here, we were able to compare BOA 

with a commercialised, tuned GA.  We found that: 

 BOA consistently achieved lower misfits, and hence better fitting models over 

all random starting conditions. 

 BOA was, on average, 1.5 times faster than the highly tuned GA when using 

algorithm parameters that had been tuned for PUNQ-S3 model. 

 BOA provided better matches than GA on over 70% of the match quality 

components.  

9.1.3 Multiobjective estimation of algorithms for history matching 

In Chapter 4, multiobjective optimisation in general and a well-known multi-objective 

sorting algorithm, NSGA2 were presented. In multiobjective optimisation, the aim is to 

find the optimal trade-off between the objectives in the form of a diverse set of Pareto 

optimal solutions. NSGA2 performs sorting of the population based on the Pareto front 

rank of solutions; within solutions with same Pareto rank, it sorts solutions based on the 

crowding distance to the neighbouring solutions in the sorted objective space. Many 

real-world optimisation problems contain two or more competing objectives. We 

examined history matching as a multiobjective problem and combined the NSGA2 



Chapter 9: 

Summary and Conclusions 

 

 

241241 
 

sorting technique with an elitist BOA to create a multiobjective BOA (MBOA) and use 

it in history matching problem of two case studies. 

MBOA was initially applied for history matching of the PUNQ-S3 model. The result 

was compared with the result of the single objective BOA and we observed that using 

multiple objectives does not significantly improve the minimum misfit convergence. 

However, it better maintained the diversity of solutions than a single objective. We also 

tested different ways of splitting overall misfit into objectives. We showed that 

objectives based on the geography of the wells in reservoir are more favourable.  

In the second case study, we used MBOA to history match  Koma field in North Sea. 

Like the PUNQ-S3 model, the Koma field results demonstrated that the multiobjective 

scheme of BOA does not considerably improve convergence speed and quality of the 

matches.  For Koma field, the diversity of MBOA was not even superior to a single 

objective BOA. 

Finally we can conclude: 

 The use of multiobjective schemes of EAs for history matching does not 

substantially improve the misfit convergence speed nor reduce the number of 

simulations required for achieving a similar match in comparison with the single 

objective scheme. 

 A multiobjective scheme of EAs in history matching is less sensitive to control 

parameters and multiobjectivisation of a single overall misfit can potentially 

increase the diversity of the solutions in the population, since it helps the overall 

search process to avoid premature convergence of the population and trapping in 

local minima. It should be noticed that this diversity does not necessarily 

represent local optima for the overall misfit in the parameter search space. 

 The use of multiobjective algorithms for history matching can have other added 

benefits. One is to study how challenging it is to match a component of the 

misfit, e.g. wells and regions, with the current parameterisation of a model. 

Another is to identify conflicting misfit objectives regarding different parts of 

the reservoir. In this case, these conflicting objectives reveal that the total energy 

of the reservoir is not enough to obtain a good match overall. Thus, the model 
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parameterisation should be improved or if staying with current parameterization, 

acceptable match can be achieved by trade-off between conflicting objectives.  

9.1.4 Hybrid SBGA/iHEDA 

In Chapter 5, first, two new algorithms were employed: a real-coded Genetic Algorithm 

based on the simulated binary crossover and mutation operators (SBGA) and an 

incremental Univariate Marginal Estimation of Distribution Algorithm based on the 

histogram model (iHEDA).  

Then, we proposed a novel hybrid algorithm (SBGA/iHEDA) based on SBGA and 

iHEDA. In SBGA/iHEDA new solutions are created by a parallel, cooperative children 

generation scheme, which, uses crossover and mutation operators of GAs as a 

mechanism to create new solutions from the promising solutions of the entire 

population and it uses a histogram model built by iHEDA with the promising solutions 

of the entire population and samples the model to generate new solutions.  

We initially applied and tuned the algorithms on the Rosenbrock function, to obtain best 

guess for the control parameters in history matching applications. We executed SBGA, 

iHEDA, and hybrid SBGA/iHEDA to solve two history matching problems, the 

synthetic IC-Fault model and the Teal South reservoir model. The experimental results 

of the performance study demonstrated that: 

 All three algorithms, SBGA, iHEDA, and hybrid SBGA/iHEDA can be 

employed in history matching, although they may behave differently for 

different problems.  

 Experimental results on a test function, a synthetic case, and a real reservoir 

model showed that hybridising SBGA with EDAs can improve a weakness of 

SBGA, slow convergence in early stages of the search.The  hybridising also 

improves a problem of EDAs, not enough diversity and exploration power 

throughout the search. 

 When applied to the Rosenbrock test function and the difficult IC-Fault model, 

hybridisation improved the search compared to both, pure SBGA and iHEDA.  
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 When applied to the Teal South reservoir, although compared to iHEDA, 

hybridisation improved the search. SBGA still resulted in slightly better 

convergence. 

 We used two approaches for hybridizing, fixed and adaptive participation. It 

appears that fixed 50/50, 70/30 (SBGA/iHEDA), and adaptive participation 

showed better performance than other fixed participation schemes. However, the 

participation ratio of 50/50 (0.5) is proposed for future applications. 

9.1.5 Gaussian-based EDAs 

Chapter 6 introduced four different Gaussian-based EDAs which can be used in history 

matching problems with real-valued variables. These EDA algorithms include 

incremental univariate Gaussian-based EDA, multivariate Gaussian-based EDA, 

multiple univariate Gaussian-based EDA, and multiple multivariate Gaussian-based 

EDA. All four algorithms can be used for the continuous history matching problem.  

We visualised and analysed convergence and diversity of the applied algorithms. Our 

experimental results show that, depending on the nature of the problems with regard to 

multimodality and multi-variety, these algorithms are able to solve optimisation 

problems in history matching efficiently and accurately without the need for discretising 

variables. 

In Chapter 6, three novel features were used with the Gaussian-based EDA. We used an 

incremental learning mechanism for single univariate Gaussian EDA and probabilistic-

distance clustering (PDC) for splitting the set of selected solutions into multiple 

Gaussian models. PDC is less sensitive than some other clustering methods, for 

example k-mean clustering, to both initialisation and outliers. We also used 

eigendecomposition for sampling multivariate distributions. The Eigenvalues obtained 

from the eigendecomposition were used for covariance matrix repair when needed. 

We showed that the use of multiple Gaussian models for the multimodal test functions 

and the PUNQ-S3 model resulted in significant improvement in the objective function 

convergence, compared to single Gaussian models. The reason is that multiple models 

allow simultaneous exploration of multiple regions of the search space for each 

variable. Use of the multivariate Gaussian EDAs requires relatively large population 
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sizes. In the case of significant dependency between variables, these algorithms can 

improve the convergence considerably. 

9.1.6 Diversity-based adaptive EDA 

Chapter 7 introduced four different estimators of population diversity, which can be 

used for diversity/convergence studies and monitoring the performance of the 

algorithms in history matching, using the population-based evolutionary algorithms.  

These diversity measures were two distance-based measures calculated from the 

uncertainty parameter search space and two entropy-based measures calculated from the 

fitness values.  

Results showed that the inertia-based diversity measure (IDM), from the distance-based 

measures, and the crowding entropy-based measure (CEM), from the entropy-based 

measures, show better diversity/convergence of the algorithms and are recommended 

for future studies. When these measures were used in PUNQ-S3 application, hybrid 

BOA/PSO had the best convergence, while it maintained diversity. In contrast, PSO had 

a premature convergence, clearly shown by the entropy-based measures. In the Koma 

field application, PSO outperformed BOA for diversity/convergence balance. 

Diversity, by itself, is a measure of similarity/dissimilarity between individuals of a 

population. We use a distance-based diversity measure to control and adapt control 

parameters of a HEDA, firstly in a minimisation problem of two standard test functions 

and secondly in a history matching problem of a synthetic IC-Fault model. We analysed 

convergence and diversity results of the applied adaptive mechanism versus the base 

algorithm and showed that the diversity measure enables us to control the performance 

of HEDA and improve the search in the next generations of the algorithm. 

Chapter 7 then introduced an adaptation mechanism based on the population diversity 

for the control parameters of the evolutionary algorithms used in history matching. The 

diversity measure used for the parameter adaptation was the inertia-based distance 

measure (IDM). In principle, an increase in the distance between individuals in the 

population represents an increase in the diversity. The diversity measure was used to 

balance exploration and exploitation performance of a population based evolutionary 
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algorithm in history matching. The algorithm adapts to the nature of the problem and 

hence outperforms the algorithms with fixed control parameters even if they are tuned. 

Our experiments showed that although HEDA with a lower number of children 

theoretically better converges, it is more likely to be trapped in local minima in different 

trials of the algorithm. Choosing a higher number will reduce the trapping chance, but it 

will also delay the convergence of the algorithm. The optimum solution is achieved 

with the diversity-based adaptive HEDA, in which, at the early stages of the search, the 

convergence is achieved by taking lower numbers of parents, but as soon as the search 

is stacked at an entrapment, the diversity is increased by taking a larger number of 

parents. Our results showed that the proposed adaptive mechanism outperforms HEDA, 

in terms of minimum misfit, convergence speed, and uniqueness of the well-matched 

solutions. AHEDA is able to perform a balanced search, in which the 

diversity/convergence balance is maintained throughout the evolution. 

9.1.7 Adaptive uncertainty quantification 

Uncertainty quantification plays a crucial role in providing high quality and robust 

decisions for reservoir management. A set of diverse fitting models that represent the 

correct sampling of the posterior allow us to estimate posterior distribution, thus, to 

quantify uncertainty in performance prediction.  

In Chapter 8, we studied factors affecting the performance of the ensemble-based 

uncertainty quantification methods. We also proposed a novel uncertainty quantification 

method based on Metropolis-Hasting sampling with an adaptive multivariate proposal 

distribution (AMH). 

The results of ensemble-based sampling algorithms for uncertainty quantification 

showed that, if the ensemble size is not large enough or ensemble is not diverse enough, 

the models in the ensemble may exhibit similar characteristics. Therefore, MCMC 

sampling based on approximation from such ensembles cannot estimate the true 

posterior distribution.  This is because optimisation algorithms may perform the 

refinement of low misfit models and do not explore the search space enough. 

Furthermore, the algorithms might have been trapped in local minima during the search, 
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in which case, model selection from resulted ensemble is not a good approximation of 

the true posterior probability.  

The proposed method (AMH) involves inference from an ensemble of simulation 

models obtained by direct search algorithms in the history matching phase to 

approximate the posterior probability of the uncertainty parameters in model space and, 

consequently, the predictive parameter of the reservoir simulation model. AMH is not 

sensitive to the initial covariance matrix and either of the ensemble’s covariance or the 

identity matrix can be used as the initial covariance matrix, which is going to be 

updated during the burn-in period, whenever a certain number of accepted samples 

become available. 

When compared to NAB, another ensemble-based uncertainty quantification method, 

AMH with adaptive covariance matrix, was shown to be competitive to NAB. AMH 

provided results similar to the probability distribution function of multivariate Gaussian 

function function and slightly closer to the truth case than NAB in the PUNQ-S3 model 

application, although it was slightly outperformed by NAB in the IC-Fault model 

application, with regard to the closeness of forecasted CDF to the database result.  

AMH performs well in problems with a misfit landscape and probability density that 

can be estimated with a Gaussian model (e.g. multivariate Gaussian function and 

PUNQ-S3 model), while it may struggle in problems with sharp minima and those than 

cannot be effectively estimated with Gaussian models. 

9.2 Major research contributions 

1) First application of two histogram-based EDA (BH and EAH) and Bayesian 

Optimisation Algorithm (BOA) of the class of Estimation of Distribution 

Algorithms (EDAs) for reservoir history-matching (Chapter 3).  

2) Application of multiobjective sorting algorithms and integration with EDAs for 

multiobjective optimisation (MOO) of history matching problems (Chapter 4).  

3) Development and application of a real-coded simulated binary genetic algorithm 

(SBGA) for history matching optimisation (Chapter 5). 
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4) Implementation of incremental learning mechanism and mutation operator for 

history matching with histogram based algorithm (imHEDA) (Chapters 5 and 8). 

5) Development, implementation and application of a parallel cooperative hybrid 

algorithm for history matching based on fixed and adaptive participation of 

iHEDA and SBGA algorithms (Chapter 5). 

6) Development and application of four Gaussian-based EDAs based on 

univariate/multivariate and single/multiple distribution models of continuous 

parameter space in history matching (Chapter 6). 

7) Introduction of four diversity measures, including two distance-based measures 

in parameter space and two entropy-based measures in fitness space, for 

convergence/diversity analysis of population-based evolutionary algorithms 

(Chapter 7). 

8) Development and application of a novel, diversity-based adaptive HEDA, based 

on inertia diversity measure, for implementing a balanced diversity/convergence 

search in history matching (Chapter 7). 

9) Development and application of a novel, ensemble-based uncertainty 

quantification method, based on Metropolis sampling with adaptive multivariate 

Gaussian proposal distribution, k-nearest neighbours approximation for avoiding 

forward simulations, and probabilistic distance clustering for choosing optimum 

starting points of multiple independent walks in sampling (Chapter 8). 

10) Successful application of developed and implemented history matching 

algorithms and uncertainty quantification methods on several test functions, 

synthetic reservoir models and real reservoir models (Chapter 3 to 8). 

9.3 Conclusions 

A reservoir model is created from a set of uncertain variables. The reservoir model 

needs to be matched to available historical data. But, as we discussed in the chapter 2, 

multiple realisations of the reservoir model yield same historical performance. 

Therefore it is important to obtain an ensemble of acceptably history-matched models 
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using optimisation algorithm (e.g. ones introduced in this thesis). If these algorithms 

perform a balanced search in terms of exploration and exploitation, one can be ensured 

that the ensemble represents the likely uncertainty in geology and behaviour of the 

reservoir.   

According to the no-free-lunch-theorem, there is no single algorithm which performs 

well in all history matching problems. In current work, a portfolio of flexible and 

adaptive algorithms were developed and applied to history matching and uncertainty 

quantification of petroleum reservoirs. These algorithms yield good convergence speed 

and ensemble diversity. In addition, they yield insights into reservoir behaviour. The 

global search performance results and the ensemble produced using applied history 

matching algorithms showed they are highly competitive in terms of convergence, 

diversity and distribution. Furthermore, the comparative results showed that the 

proposed adaptive algorithm for uncertainty quantification can not only obtain a good 

estimate of probability distribution of predictive parameters, but also has less 

computational cost. 

As we showed in the previous chapters, improvement of the convergence speed to 

achieve a single good history-matched model is important in real field applications, 

since a single trial of assisted-history matching run requires days or sometimes months 

of a cluster of computers, which is usually limited in terms of availability and the 

number of CPUs.  

In uncertainty quantification studies using an ensemble of history-matched models, not 

only the convergence speed of the direct search algorithms (e.g. EDAs) is important, but 

also as we showed in the chapter 8, the diversity of models in ensemble is a crucial 

factor determining the performance and robustness of the resampling algorithms (e.g. 

AMH).  

An adaptive probabilistic-distance clustering technique was used in the thesis for 

creating a Gaussian probability model in EDAs for history matching and grouping of 

the models in ensemble and creating Gaussian mixtures for uncertainty quantification. 

The clustering technique is adaptive in the sense that it works out the number of 

mixtures from the data and hence adapts to the structure of parameter space. 
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For adapting the learning and variation mechanism in EAs, we introduced and used 

EDAs, an implicitly adaptive class of EAs, for history matching. The learning in EDAs 

is explicit, i.e. they can directly identify and mix building blocks from the set of 

promising solutions through the use of probabilistic models. This adaptive variation 

mechanism helps EDAs to outperform other EAs (e.g. GAs) in terms of efficiency and 

quality of the matches. 

Table 9.1: Advantages and disadvantages of three studied EDAs. 

Algorithm Advantage Disadvantage 

BHEDA Can work better in exploitative search 

thus it requires less function evaluations.  

Doesn’t handle interactions; uses fix 

discretisation. 

EAHEDA Better handles continuous variables.  Doesn’t handle interactions. 

BOA Handles interactions, if set up explorative 

enough, yields better convergence. 

More complex structure and 

implementation, more 

computationally expensive, requires 
more function evaluations. 

We tried adapting the sorting and selection mechanism in EAs by using multiobjective 

optimisation. Although history matching is not a multiobjective optimisation problem 

by nature, a trade-off between match components may be observed in some history 

matching problems. In these cases,  multiobjectivisation of the overall misfit can 

possibly help to solve these problems more effectively and efficiently by inducing more 

diversity and making the algorithm less vulnerable to improper choice of control 

parameters.  

Table 9.2: Advantages and disadvantages of single and multi-objective algorithms. 

Algorithm Advantage Disadvantage 

Single-

objective 

Better suits history-matching problems.  Performance is not great if there is 

trade-off between objective functions. 

Multi-

objective 

Better suits development optimisation 

problems; less vulnerable to parameter 
tuning and loss of diversity. 

Performance is not great if there is no 

trade-off between objective functions. 

Practically only works with two 

objectives.  

The algorithm choice is another important aspect of EAs. As the ‘no-free-lunch’ 

theorem states, an algorithm performs better than others on a set of problems. To ensure 

that an algorithm is performing an acceptable search on a set of different problems, one 

can make them adaptive. We examined the hybridisation of algorithms as a way of 

adapting the search mechanism and algorithm choice. Hybridisation combines 

advantages of the algorithms (see Table 9.3), and hence can create more flexible and 

powerful algorithms. The hybrid GA/EDA provided more diversity and exploration 

power throughout the search.  
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Table 9.3: Advantages and disadvantages of SBGA, iHEDA, and their hybrid algorithm. 

Algorithm Advantage Disadvantage 

iHEDA Preserving meaningful patterns, implicitly 

adaptive probability models. 

Too much exploitative. 

SBGA Handling complex interactions. 

 

Insufficient early convergence. 

Hybrid 

SBGA/iHEDA 

Handling interactions, implicitly 

adaptive, balanced exploration and 

exploitation, less liable to tuning. 

Requires more complex structure and 
implementation. 

 

Solution representation was another aspect of EAs which was targeted using Gaussian-

based EDAs, adapted for multi-modality and multi-variety in a misfit landscape. These 

algorithms work naturally with continuous representations and complex, multimodal, 

multivariate problems, and hence can adapt to the structure of problems in history 

matching. 

Table 9.4: Advantages and disadvantages of Guassian-based EDAs. 

Algorithm Advantage Disadvantage 

iSUGEDA Natively supports continuous variables. Doesn’t handle multiple minima in 

misfit surface and interaction between 
variables. 

SMGEDA Natively supports continuous variables. 

Handles interactions between variables. 
Natively supports continuous variables. 

Doesn’t handle multiple minima in 

misfit surface. 

MSGEDA Natively supports continuous variables. 

Handles multiple minima in misfit 

surface.  

Doesn’t handle interaction between 

variables. 

MMGEDA Natively supports continuous variables.  

Handles multiple minima in misfit 

surface and interactions between 
variables.. 

Requires large population size. 

Explicit-adaptive EAs make use of diversity measures to control and adapt the search 

mechanism for optimum diversity and convergence performance. Our developed 

diversity-based, explicitly adaptive EDA for history matching outperformed a non-

adaptive EDA by maintaining the balance between diversity and convergence 

throughout the search. 

Table 9.5: Advantages and disadvantages of AHEDA. 

Algorithm Advantage Disadvantage 

AHEDA Performs a balanced explorative-

exploitative search. No need for tuning 
the number of parents. 

Uses a diversity threshold. 

Finally, we developed and used an adaptive algorithm for ensemble-based uncertainty 

quantification which uses the multivariate Gaussian function as the proposal 
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distribution. The comparative results showed that the proposed algorithm, as a 

Metropolis-based algorithm, is more efficient than Gibbs samplers. It is robust for the 

problems which can be effectively represented by Gaussian mixtures. Lastly, it is not 

sensitive to the control parameters, as it adapts the proposal distribution to the structure 

of the sampling problem. 

Table 9.6: Advantages and disadvantages of AMH comparing to NAB. 

Algorithm Advantage Disadvantage 

AMH Proposals from adaptive Gaussian 

distribution; thus yields better 

performance in problems with Gaussian 

misfit landscape (e.g. PUNQ-S3 model); 

good acceptance rate (20-30%). 

Performance in steep minima 

problems is poor. 

NAB Proposals from marginal log-likelihoods; 

yields better performance in steep minima 

problems (e.g. IC-Fault model). 

Acceptance rate is low (usually under 

3%). 

9.4 Recommendations for application in industry 

In this section, a summary of our recommended procedure for assisted history matching 

and uncertainty quantification is presented. Our recommendations for applying the 

findings of thesis in industrial applications are embedded. 

I. Create the initial reservoir model and parameterise the uncertainties: 

a. Create the initial reservoir model based on the available static and 

dynamic data. 

b. Discuss and agree the set and the ranges of uncertain parameters with the 

multi-disciplinary team which includes people in charge of the data used 

for building the initial model. 

II. Obtain the observation data and define the misfit function: 

a. Collect and quality control the observation data, including oil, water, and 

gas rates, plus average and bottom-hole pressures. Checkout for outliers 

and inconsistency in the allocated rates. If the model is controlled on 

total voidage only match two (e.g. oil, water) out of three rates. 
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b. Consider measurement error levels for the observation data, which is 

treated as the tollerance level for misfit value. In lack of knowledge 

about the actual measurement errors, the errors can be estimated from the 

standard deviation of a Gaussian model fitted to the differences of 

observation data and simulation results of a manualy-matched base case 

model. 

c. Consider a misfit function, e.g. equation (3.4). The preference and the 

importance of the data types (e.g. oil rate, BHP) in history matching can 

be introduced in terms of weighting factors in the equation. 

III. Perform an assisted history matching using an EA search to get an ensemble of 

solutions. A solution here is a vector of uncertain variables, which represents the 

simulation model. 

a. Design and set EA control parameters. Consider a flexible or an adaptive 

EA for assisted history matching: 

1.  Flexible here means it can be tuned for the optimum performance 

on a particular problem by modifying different control parameters.  

2. Adaptive algorithms are equipped with an adaptation mechanism 

for control parameters.  

3. A good practice is to tune all of the algorithm’s control parameters 

on a small synthetic model except the parent size, for which, the 

adaption mechanism introduced in Chapter 8 is recommended. The 

parent size is most important which majorly determines the balance 

between exploration and exploitation. 

b. If tuning is not possible, our recommendations for control parameters 

are: 

1. For the total of n uncertain variables in the model, consider at least 

n+1solutions per generation (population size). 
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2. Depending on the computational expenses, consider 20 to 50 

iterations (generations). If the convergence is not satisfactory, 

extend the search to more iteration. 

3. Set the number of selected solutions in each generation (parents’ 

size) to be initially twice (e.g. in BOA) or equal (e.g. in HEDA) the 

number of children (population size). If possible, tune the parents’ 

size to get a balanced exploration and exploitation by looking at the 

convergence and diversity plots. 

4. Set the number of bins used for the discretisation of continuous 

variables (e.g. porosities) to a number between 10 and 25 (the half 

of the population size). 

c. Perform assisted history matching using EAs; A typical workflow for EA 

is: 

1. Sample the initial population (150 solutions) randomly from the 

prior range of the uncertain variables and run the simulation runs. 

2. Sort the solutions and select the parent solutions in terms of their 

misfit value. For history matching multi-objective sorting 

algorithms are not recommended (Chapter 4). 

3. Create a probablistic model for each or entire variables. Examples 

of the probablistic model are histogram model (in HEDA), 

Bayesian network (in BOA), and Gaussian model (Chapter 6). 

4. Sample child solutions from the created probablistic model. 

5. Run the simulation model with new values for uncertain variables, 

then merge created solutions with the initial population. A 

generation of soluions just created. 

6. Continue from the step 2, until 60 generations are completed. 

IV. Analyse the ensemble of history-matched models and use it for uncertainty 

quantification of predictive parameters: 
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a. Analyse the history matching results to gain insights into reservoir 

model: 

1. Compare prior (before history matching) and posterior (after 

history matching) probability distribution of each uncertain 

variable. Discuss new distributions with G&G and people provided 

the prior range. 

2. Analyse the ensemble of history-matched models for patterns and 

trends. The clustering algorithms (see Chapters 2 and 8) for 

clustering the ensemble in the uncertain variables’ space can be 

used to find these patterns. Each cluster (or pattern) can possibly 

represent a local minimum region in the search space, in another 

words, a geological/behavioural scenario of the reservoir model.  

b. Perform uncertainty quantification of predictive parameters (e.g. COP) 

using a MCMC sampling algorithm: 

1. Make sure the ensemble of history-matched models is large enough 

(e.g. 3,000). The larger ensemble size, the more stable inference 

results obtained in different trials of the sampling algorithm.  The 

ensemble size becomes enough when the convergence of the search 

algorithm has happened. 

2. Make sure the diversity of ensemble is high enough. The diversity 

can be examined using different measures discussed in Chapter 7. 

3. Consider a MCMC sampling algorithm in Bayesian inference (e.g. 

NAB or AMH in Chapter 8) to resample a larger number of 

samples (e.g. 1e6). As the forward simulations are usually 

expensive, consider an approximation technique instead, e.g. k-NN. 

4. Use multiple MCMC walks each starting from the best model of 

each cluster in ensemble (clustered in variable space) using parallel 

processing or multi-threading techniques. This can be helpful when 

resampling with MCMC becomes expensive in high-dimensional 

problems. 
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5. Check for convergence of the sampling algorithm using moving 

average plot of the predictive parameter or trace-plots of the 

variables (see Chapter 8). 

9.5 Future directions 

Recommendations for continuation and future work in the direction of this thesis are 

presented in this section: 

9.5.1 Linkage effect in histogram-based EDAs 

A drawback of the marginal histogram-based EDAs is that they do not consider possible 

interaction between variables and lack the ability to detect variable linkages. This 

becomes serious in the problem with correlated variables.  Zhang et al. (2000) used 

independent component analysis with univariate marginal EDA to tackle the 

interrelations among the variables. Ding & Zhou (2008) used two methods, a 

probabilistic graphical model and space transformation, for linkage detection in 

marginal histogram models. These methods can be used to improve the performance of 

the histogram-based EDAs studied in this thesis, when applied to problems with the 

linkage effect. 

9.5.2 Adaptive bin width strategies 

In many history matching problems, such as those with steep optima, the number of 

bins should be large enough to capture the local optima. Population size is usually 

limited due to the computational complexity of simulation runs in history matching. 

Adaptive bin width strategies allow the basic histogram model to perform a quality 

search using small bin size in a relatively small number of populations. 

Ding et al. (2007) used two strategies for adapting the bin size in histogram-based EDA, 

the surrounding effect and the shrinking strategy. These two strategies can be applied to 

the histogram-based EDAs employed in this thesis. The surrounding effect adds a small 

portion of the neighbouring bins’ probability to each bin probability. This correction 

improves the performance of the basic histogram model where the population size is not 

large enough. The shrinking strategy improves the search by shrinking the width of the 
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promising variable bin for the next generation. It allows the algorithm to find quality 

solutions in such situations, even with a small bin size. 

9.5.3 Adaptive Gaussian based EDAs 

In this thesis, we presented and employed four different Gaussian-based EDAs based on 

the single or multiple Gaussian models and univariate or multivariate models. An 

extension of this work could be a single Gaussian-based algorithm, which could adapt 

to the structure of the problem by taking appropriate type (univariate or multivariate) 

and number of Gaussian mixture models.  

Heuristic methods can be used to estimate the level of dependency between variables. 

Therefore the interaction between variables can be determined by the algorithm itself. 

Another technique is to use principal component analysis (PCA) to obtain orthogonal 

variables from the original variables, then perform optimisation, using univariate 

models in the transformed space.  

The number of models in Gaussian mixtures can be determined using the clustering 

technique discussed in Chapter 8. Therefore, this adaptive Gaussian-based EDA will be 

able to adapt to the shape of the misfit landscape in terms of multi-modality as the 

algorithm determines the number of clusters by itself.  

9.5.4 Other applications for multiobjective optimisation 

In this thesis, we showed that the history matching problem with the common misfit 

definition in assisted history matching is not a multiobjective problem by nature; 

however, there are other added benefits of multiobjectivisation of single overall misfit 

in history matching. Multiobjective EAs can be used for reservoir development 

optimisation, which is more naturally stated as a multiobjective problem and better fits 

the multiobjective scheme of EAs. For a development optimisation problem, the 

possible competing objectives can be defined as the investment cost and recovery 

income or even short term and long term production. 
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9.5.5 Mixed histogram-Gaussian based EDAs 

Typically, history matching involves both continuous and discrete uncertain parameters. 

Examples of continuous variables are porosity and permeability and examples of 

discrete variables are open/close status of faults or rocktype, PVT, or equilibrium region 

numbers. As discussed earlier, histogram models inherently support discrete variables 

but they discretise continuous variables into a certain number of bins. In contrast, 

Gaussian-based models inherently support continuous variables and discrete variables 

are considered as continuous, and after the optimization the results of discrete 

parameters are rounded up to the nearest possible discrete value. A mixed histogram-

Gaussian based EDA could support both discrete and continuous variables natively. 

9.5.6 Diversity-based adaptive mechanism for other EAs 

In Chapter 7, we used an adaptation mechanism for a histogram-based EDA based on 

the inertia diversity measure. A similar adaptation mechanism can be used based on 

other diversity measures, or for control parameters of any other population-based 

evolutionary algorithm which determine the diversity of the population in each 

generation. A good example of these control parameters are the crossover and mutation 

probability in standard GA. 

9.5.7 Other hybrid algorithms 

In this thesis, we employed a hybrid algorithm, combining a histogram-based EDA 

(HEDA) and a simulated binary GA (SBGA), to improve the performance of the HEDA 

in terms of convergence speed, balance between exploration and exploitation, etc. We 

tested a single participation function, which was parallel cooperative search; other 

participation functions are still open for further investigation. 

In another work (Reynolds et al., 2011), we proposed and employed a hybrid BOA-PSO 

for history matching. There are other potential hybrid global algorithms, such as hybrid 

HEDA/PSO or hybrid BOA/SBGA, which can be developed and applied to history 

matching. Finally, hybridization of EDAs with local optimisation algorithms can be 

attractive for history matching.  
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9.5.8 NAB-like uncertainty quantification with K-NN 

approximation 

In chapter 8, we presented AMH, a novel MCMC-based algorithm based on Metropolis-

Hasting sampling with adaptive multivariate proposal distribution. To avoid further 

simulation runs, AMH was equipped with a k-nearest neighbour approximation. In 

addition, it was equipped with the probabilistic-distance clustering to select optimum 

starting points of the multiple independent walks.  

Another ensemble-based uncertainty quantification method can be achieved by 

replacing the M-H sampling taking proposals from the multivariate Gaussian in AMH 

with the Gibbs sampler taking proposals from marginal probabilities. This method 

shares the sampling method and proposal distribution with NAB, but instead of simple 

neighbourhood approximation, as in NAB, it uses a more robust and sophisticated k-

nearest neighbour (K-NN) approximation. As in AMH, here probabilistic-distance (PD) 

clustering can be used to select optimum starting points for the multiple walks. 
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APPENDIX A:  ABBREVIATIONS 

ACF Auto-Correlation Function 

AHEDA HEDA with diversity-based parameter adaptation 

AMH Adaptive Metropolis-Hastings 

ANN  Artificial Neural Network 

ARMC Acceptance-Rejection Monte Carlo 

BHEDA Basic Histogram Estimation of Distribution Algorithm 

BHP  Bottom-Hole flowing Pressure 

BMA  Bayesian Model Averaging 

BMDA  Bivariate Marginal Distribution Algorithm 

BOA Bayesian Optimisation Algorithm 

BOA/PSO Hybrid Bayesian and Particle Swarm Optimisation Algorithm 

BT Break-through Time 

CDF Cumulative Distribution Function 

CEM Crowding Entropy-based Measure 

cGA  compact Genetic Algorithm 

CMR  Covariance Matrix Repairing 

COMIT Combining Optimizers with Mutual Information Tress 

DEMOPR  Differential Evolution based on MOGA Pareto Ranking 

DGEA Diversity-Guided Evolutionary Algorithm 

EAHEDA Equal-Area Histogram Estimation of Distribution Algorithm 

EBNA  Estimation of Bayesian Network Algorithm 

EC  Evolutionary Computation 

EDA Estimation of Distribution Algorithm 

EGNA Estimation of the Gaussian Networks Algorithm 

EnKF Ensemble Kalman Filter 

FDA Factorized Distribution Algorithm 

FOPT Total Oil Production of the Field 

GA Genetic Algorithm 

GOC Gas-Oil Contact 

GOR Gas-Oil Ratio 
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HAC  Hierarchical Agglomerative Clustering 

HDM Pairwise Hamming Distance Measure 

HMC Hamiltonian Monte Carlo 

IDM Inertia-based Diversity Measure 

iHEDA incremental Histogram-based Estimation of Distribution Algorithm 

imHEDA incremental mutation-enabled Histogram-based Estimation of 

Distribution Algorithm 

iSUGEDA incremental Univariate Single Gaussian Estimation of Distribution 

Algorithm 

iUMDA incremental Univariate Marginal Distribution Algorithm 

JDF Joint Distance Function 

KMC K-Mean Clustering 

K-NN K-Nearest Neighbours 

LSQR Sparse Equations and Least Squares 

MBOA  Multiobjective Bayesian Optimisation Algorithm 

MCMC  Markov Chain Monte-Carlo 

M-H Metropolis-Hastings 

mIDEA  mixed Iterated Density Estimation Evolutionary Algorithm 

MIMIC  Mutual Information Maximizing Input Clustering 

MMGEDA  Multiple Multivariate Gaussian Estimation of Distribution Algorithm 

MOEA Multiobjective EA Evolutionary Algorithm 

MOGA Multiobjective Genetic Algorithm 

MOPSO Multi-Objective Particle Swarm Optimisation based on NSGA 

MSE  Mean Squared Error 

MUGEDA Multiple Univariate Gaussian Estimation of Distribution Algorithm 

NAB  NA-Bayes 

NAB  Neighbourhood Algorithm with Bayesian inference 

NPGA Niched Pareto Genetic Algorithm 

NSGA Non-dominated Sorting Genetic Algorithm 

NSGA2  Elitist Non-dominated Sorting Genetic Algorithm 

NTG Net-to-Gross 

PAES Pareto Archived Evolution Strategy 

PAVE AVErage gridblock Pressure 
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PBEA Population-Based Evolutionary Algorithm 

PBIL  Population-Based Incremental Learning 

PBILc Population-Based Incremental Learning extended to continuous spaces 

PCE  Polynomial Chaos Expansion 

PDC Probabilistic Distance Clustering 

PDF probability Density Function 

PEM Proportional Entropy-based Measure 

PI Productivity Index 

PMBGA Probabilistic Model Building Genetic Algorithm 

PNX Parent-centric Normal Crossover 

PVT Pressure-Volume-Temperature 

QGP Production Gas rate 

QWP Production Water rate 

QOP Production Oil rate 

RD  RanDom starting points 

RECEDA REal-coded Estimation of Distribution Algorithm 

RFT Repeat Formation Tester 

SBGA Simulated Binary Genetic Algorithm 

SBGA/iHEDA Hybrid SBGA and iHEDA algorithm 

SBX Simulated Binary Crossover 

SHCLVND Stochastic Hill Climbing with Learning by Vectors of Normal 

Distributions 

SMGEDA Single Multivariate Gaussian Estimation of Distribution Algorithm 

SPEA  Strength Pareto Evolutionary Algorithm 

UMDA Univariate Marginal Distribution Algorithm 

UMDA Univariate marginal distribution Algorithm 

UMDAc  Univariate Marginal Distribution Algorithms for continuous domains 

WCT  Water-CuT ratio 

WOC Water-Oil Contact 
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APPENDIX B:  SOURCE CODE 

SUMMARY 

In this Appendix, source code documentation of the Python scripts written for this 

thesis is provided. The developed source codes include 13 Python scripts. 

Following table shows a summary of the scripts and their code statistics. Source 

code files are not included in the thesis as they blow up the number of pages of this 

thesis. This appendix contains the description of each module (script), its usage, 

created and last modified dates followed by a referenced list of classes and 

functions, for which, a short description and parameters and return values are 

provided. 
 

I worked on and authored all the scripts myself during my work on this thesis. 

I originated, designed and developed the idea and structure for most of the 

modules including Alg, Analyser, Forecaster, Cluster, Grapher, 

Stats, and TF. For the rest of modules (Runner, SimReaders, ObsReaders, 

RunSimMisfit, Utils and  MisfitCalculator),  the  idea  and  initial  

code  was  from  Prof. Christie's research group (Uncertainty Quantification Group 

at Heriot-Watt University), however the code has been substantially modified and 

developed further for new features and functionalities. 
 

Following class and function documentation was automatically generated by 

running Python's Sphinx and rst2pdf modules. An HTML version of the following 

documentation is placed in the source code directory of the group's cluster 

computer. 
 

Module / Line Count Total Source Comment
s 

Blanks 

Alg.py 1576 1027 341 208 

Analyser.py 980 694 193 93 

Cluster.py 232 154 58 20 

Forecaster.py 987 734 170 83 

Grapher.py 626 512 68 46 

MisfitCalculator.py 225 132 68 25 

ObsReaders.py 446 287 109 50 

Runner.py 671 474 107 90 

RunSimMisfit.py 213 126 56 31 

SimReaders.py 406 252 103 51 

Stats.py 388 167 163 58 

TF.py 129 61 42 26 

Utils.py 311 161 106 44 

Total 7190 4781 1584 825 

http://www.pet.hw.ac.uk/research/uncertainty/index.cfm
http://www.pet.hw.ac.uk/research/uncertainty/index.cfm
http://www.pet.hw.ac.uk/research/uncertainty/index.cfm
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1) Alg Module 

 

This module initiates and runs history matching jobs using different sorting and 

optimisation algorithms. :Explain: The module works in MPI mode, so that, on root 

node the history matching job is performed and simulation jobs are going to be sent to 

and received by other nodes in mpi_controller(). Experiment reads 

checks (Experiment.check_args()), and sets algorithm parameters. Then it 

creates (Experiment.create_init_pop()) the initial population of solutions. 

Population class contains a list of solutions (reservoir simulations) which can be 

run and then sorted by a criterion (e.g. objective function value). SORT class and its 

derived classes sort a population using a single (SOT) or multiobjective (WSA, AWSA, 

NSGA2, SPEA2) sorting algorithms. Solution class represents a single simulation 

run. Optimisation and search algorithms are derived from ALG, which include HEDA 

,:class:.EAHEDA,:class:.GA, GAHEDA, as well as Gaussian-based EDAs 

(SUGEDA,:class:.SMGEDA,:class:.MUGEDA,:class:.MMGEDA, and AGEDA). 
 

Results of each simulation run stored in a directory (leap*). At the end of experiment 

'misfitparams.dat' files are gathered in a tab separated misfit (.tsm) file. In addition, 

diversity and convergence results per generation are output to a tab separated 

generations (.tsg) file. 
 

Usage:  The  module  runs  on  standalone  and  calls  another  module  'Runner.py  -f 

<ensemble>.def' for initialisation and setup of algorithm parameters. 
 

Created: AA110513, Last Modified: AA130217. 
 

 

Alg.mpi_controller () 

main driver for mpi; it scatters and gathers tasks from 'root' node (rank!=0) to other 

nodes (rank!=0). 
 

Alg.exit () 

exit system for main node (rank==0)and others(rank!=0). 
 

class Alg.Population (num, n_vars, pars, simu, alg='') 

Represents a population of solutions. 
 

append (solution) 

appends a new solution to the population. 
 

extend (new_population) 

extends a population with solutions from a new population. 
 

sort (criteria=-1) 

sorts a population using a criterion, e.g. the index of objective functions. 
 

length () 

returns the number of solutions in a population. 
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populate (pars_list) 

creates solution objects from a parameters value list to run simulation either on 

cluster or serial machine. 
 

Parameters: pars_list -- parameters value list of population. 

Returns: None. 
 

 

class Alg.SORT (gen, objs) 

base class for sorting algorithms. 
 

Parameters: 
• gen -- generation number. 

 

• objs -- dictionary of objective functions. 

Returns: None 
 

 

scale_objs () 

scales  up  and  normalises  the  objective  values  for  multi-objective  crowding 
calculations. 

 
nondominated_set () 

obtains nondominated set of solutions for multi-objective algorithms. 
 

fast_nondominated_sort2 () 

Discovers Pareto fronts in a population, based on non-domination criterion. 
 

fast_nondominated_sort (first_front_only=False) 

discovers Pare to   fronts  in  a  population,  based  on  non-domination  criterion 

(second implementation). 
 

Parameters: first_front_only  --  boolean  for  either  to  return  only  first 

front or not. 

Returns: list of fronts with different ranks. 
 

 

class Alg.SOT (gen, objs) 

single objective selectio n based on tournament. 
 

run (n_select, solutions) 

runs single objective tournament selection. 
 

class Alg.WSA (gen, objs) 

Weighted Sum Approach (WSA) Using randomly generated weights and Elitism 

by Ishibuchi and Murata (1996). 
 

run (n_select, solutions) 

runs Weighted  Sum  Approach  (WSA)  sorting  algorithm  for  multiobjective 

optimisation. 
 

Parameters: 
• population -- population of solutions. 
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• n_select -- number of selected. 

Returns: list  of  sorted  solutions,  which  are  parents  for  the  next 

generation. 
 

 

class Alg.AWSA (gen, objs) 

Adaptive Weighted Sum Approach (AWSA) adapts weight factors from the 

previous generation. 
 

run (n_select, solutions) 

runs   Adaptive   Weighted   Sum   Approach   (AWSA)   sorting   algorithm   for 

multiobjective optimisation. 
 

Parameters: 
• population -- population of solutions. 

 

• n_select -- number of selected solutions. 

Returns: None. 
 

 

class Alg.PEF (gen, objs) 

Entropy-based Sorting Algorithm (Deb, Pratab, Agarwal, and Meyarivan, 2002). 
 

run (n_select, solutions, k=None) 

runs entropy-based multiobjective sorting algorithms. 
 

Parameters: 
• n_select -- number of selected solutions. 

 

• solutions -- solutions to be sorted. 
 

• k -- number of nearest neighbor solutions. 

Returns: list  of  sorted  solutions,  which  are  parents  for  the  next 

generation. 
 

 

class Alg.NSGA2 (gen, objs) 

The improved Non-dominated Sorting Genetic Algorithm (Deb, Pratab, Agarwal, 

and Meyarivan, 2002). 
 

run (n_select, solutions) 

runs NSGA2 multiobjective sorting algorithm. 
 

Parameters: 
• n_select -- number of selected solutions. 

 

• solutions -- solutions to be sorted. 
 

Returns: list  of  sorted  solutions,  which  are  parents  for  the  next 

generation. 

 
crowding_distance_assigment () 

crowding_distance_assigment: Initializes, then assigns distance for each 
individual in solutions. 

 
crowding_entropy_assigment () 
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crowding_entropy_assigment: Initialize, then assigns distance for each individual 

in the solutions. 
 

static crowded_comparasion_operator (x, y) 

crowded_comparasion_operator: A static method which oerrides the < and > 

operators in the sort() function. 
 

Parameters: 
• x -- here is the first solution 

 

• y -- here is the second solution 

Returns: None 
 

 

class Alg.SPEA2 (gen, objs) 

The  improved  Strength  Pareto  Evolutionary  Algorithm  (Zitzler,  Laumanns  and 

Thiele 2001). 
 

run (n_select, solutions) 

runs improved Strength Pareto Evolutionary Algorithm (Zitzler, Laumanns and 

Thiele 2001). 
 

Parameters: 
• n_select -- number of selected solutions. 

 

• solutions -- solutions to be sorted. 

Returns: list  of  sorted  solutions,  which  are  parents  for  the  next 

generation. 

 
randomizedSelect (A, k, length) 

randomizedSelect: select the kth smallest element from array without sorting it. 
 

Parameters: 
• A -- list of solutions to be sorted 

 

• k -- the index of k 
 

• length -- length of array 

Returns: the kth smallest element of array. 
 

 

class Alg.Solution ((pars, num, gen, n_vars, simu)) 

Solution: contains definition of single solution in population. 
 

evaluate () 

 
evaluator function, creates a temp dir, runs simulator and return objectives to 

other nodes (rank!=0). 
 

Param : None 

Returns: objectives value string 
 

 

scale_objectives (obj_bounds) 

scale objective values required for the distance calculations. 
 

Parameters: obj_bounds -- bound of objective function values. 
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Returns: None 
 

 

dominated (other, maximise=False) 

Method checks whether the individual is dominated other. 
 

Parameters: 
• other -- another solution 

 

• maximise -- boolean either problem is a Maximisation 

or not (minimisation). 

Returns: True or False 
 

 

class Alg.ALG (gen, pars, args) 

base class for optimisation algorithms. 
 

Parameters: 
• pars -- parameters objs 

 

• args -- algorithm's control parameters 

Returns: None 
 

 

sbx_crossover (first_parent, second_parent) 

performs  Simulated  Binary  Crossover  (SBX)  [1995  by  Deb  and  Agrawal] 

between two individual parents. 
 

Parameters: 
• first_parent -- first individual parent. 

 

• second_parent -- second individual parent. 

Returns: a list with two result children 
 

 

opb_crossover (first_parent, second_parent) 

Execute a one point binary crossover on the input individuals in place (SBX) 

[1995 by Deb and Agrawal]. 
 

Parameters: 
• first_parent -- first individual parent. 

 

• second_parent -- second individual parent. 

Returns: A tuple of two child individuals 
 

sbx_mutation (child) 

performs real polynomial simulated binary mutation for the crossovered children. 
 

Parameters: child -- Individual to be mutated. 

Returns: the child itself after mutation. 
 

 

gss_mutation (child, mu, sigma) 

performs real Gussian mutation for the crossovered children. 
 

Parameters: 
• child -- Individual to be mutated. 

 

• mu -- Mean around the individual of the mutation. 
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• sigma -- Standard deviation of the mutation. 

Returns: the child itself after mutation. 
 

 

normalize (child) 

guarantees that any parameter value created does not cross parameter ranges. 
 

Parameters: child -- the child to be checked 

Returns: the child itself after mutation. 
 

 

modeler (parents, Laplace_corerection=False) 

creates a histogram model for each parameter out of parent solutions. 
 

Parameters: 
• parents -- the list of parents 

 

• Laplace_corerection -- boolean perform Laplace 

correction or not. 

Returns: list of list of probebilities 
 

 

learning (model, r_Learning) 

learning from the past generation's model. 
 

Parameters: 
• model -- original model. 

 

• l_rate -- learning rate. 

Returns: updateed model. 
 

 

surrounding (model) 

adds little probability form bins with probabilities to surrounding bins. 
 

Parameters: model -- original model 

Returns: updateed model 
 

 

shrinking (model) 

shrinking strategy, shrink bin with maximum probability to two bins. 
Parameters: model -- original model. 

Returns: updated model (self.par_ranges is also updated). 
 

 

univariate_guassian_modeler (pars_data) 

calculates and return the mean and standard deviation of the parents. 
 

Parameters: pars_data -- the list of parameter values of the parents. 

Returns: mean and standard deviationof the parents. 
 

 

univariate_guassian_generator (n_children, model, p='') 

generates and return child solutions using the 'univariate Gaussian model' i.e. 

mean and sigma. 
 

Parameters: 
n_children -- number of children to be generated 
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• model -- probabilistic model created from the parent solution in 

the generation 
 

• p -- parameter serial number. list of generated child solutions. 

 
multiple_gaussian (n_children, model) 

generates and return child population using the 'multivariate Gaussian model' i.e. 

mean and sigma of Gaissian mixtures. 
 

Parameters: 
• n_children -- number of children to be generated 

 

• model -- probabilistic model created from the parent 

solution in the generation. 

Returns: list of generated child solutions 
 

 

multivariate_guassian_modeler (pars_data) 

calculates and return the 'mean' and 'covariance' of the parents. 
 

Parameters: pars_data -- the parameter values of the parents. 

Returns: the covariance vector of the parents. 
 

 

multivariate_guassian_generator (n_children, (mean, cov)) 

generator: generates and return the multivariate Gaussian mixture from the parent 

solution. 
 

Parameters: 
• n_children -- number of children to be generated 

 

• mean -- the mean vector of the parents. 

Return cov: the covariance matrix of the parents. 

Returns: list of generated child solutions. 

generator (n_children, model) 

generates and return child population from the histogram model created from the 

parent solution. 
 

Parameters: 
• n_children -- number of children to be generated 

 

• model -- probabilistic model created from the parent 

solution in the generation 

Returns: list of generated child solutions. 
 

 

PDC (data, n_cluaters='', cutoff=0.001, signif_value=0.9) 

performs probabilistic distance clustering (PDC) of a list of solutions. 
 

Parameters: 
• data -- the array of solutions' parameters value. 

 

• n_cluaters -- number of clusters. 
 

• cutoff -- cut-off value for shift in cluster centers. 
 

• signif_value -- significance value for determining the 

number of clusters. 
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Returns: the list of indeces of solutions in clusters, the list of cluster 

centers and the list of membership probabilities. 
 

 

class Alg.HEDA (gen, pars, args) 

basic Histogram-based Estimation of Distribution Algorithm (HEDA); it is equiped 

with  incremental  learning,  mutation  probability,  and  two  adaptive  bin-width 

strategies, surrounding effect and Shrinkage. 
 

run (parents, n_Children) 

runs HEDA algorithm. 
 

Parameters: 
• parents -- parent solutions parameters. 

 

• n_Children -- number of children to be created. 

Returns: the list of generated children parameters. 
 

 

class Alg.SUGEDA (gen, pars, args) 

Single  Univariate  Gaussian-based  EDA  with  incremental  learning  mechanism 

(iSUGEDA). 
 

run (parents, n_Children) 

runs SUGEDA algorithm. 
 

Parameters: 
• parents -- parent solutions parameters . 

 

• n_Children -- number of children to be created. 

Returns: generated children parameters. 
 

class Alg.SMGEDA (gen, pars, args) 

Single Multivariate Guassian Estimation of Distribution Algorithm (SMGEDA). 
 

run (parents, n_Children) 

runs SMGEDA algorithm. 
 

Parameters: 
• parents -- parent solutions parameters . 

 

• n_Children -- number of children to be created. 

Returns: generated children parameters. 
 

 

class Alg.MUGEDA (gen, pars, args) 

Multiple Univariate Guassian Estimation of Distribution Algorithm (MUGEDA). 
 

run (parents, n_Children) 

runs MUGEDA algorithm. 
 

Parameters: 
• parents -- parent solutions parameters . 

 

• n_Children -- number of children to be created. 

Returns: generated children parameters. 
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class Alg.MMGEDA (gen, pars, args) 

Multiple Multivariate Guassian Estimation of Distribution Algorithm (MMGEDA). 
 

run (parents, n_Children) 

runs MMGEDA algorithm. 
 

Parameters: 
• parents -- parent solutions parameters . 

 

• n_Children -- number of children to be created. 

Returns: generated children parameters. 
 

 

class Alg.AGEDA (gen, pars, args) 

Adaptive Guassian Estimation of Distribution Algorithm (AGEDA). 
 

run (parents, n_Children) 

runs AGEDA algorithm. 
 

Parameters: 
• parents -- parent solutions parameters. 

 

• n_Children -- number of children to be created. 

Returns: generated children parameters. 
 

 

class Alg.EAHEDA (gen, pars, args) 

Equal Area Histogram EDA algorithm (EAHEAD). 
 

run (parents, n_Children) 

runs Equal Area Histogram EDA (EAHEDA) algorithm. 
 

Parameters: 
• parents -- parent solutions parameters. 

 

• n_Children -- number of children to be created. 

Returns: generated children parameters. 
 

 

modeler (solutions) 

calculates  and  return  the  parameter  ranges  with  equal  probability  from  the 

parents. 
 

Parameters: solutions -- the list of parent solutions. 

Returns: the parameter ranges. 
 

 

generator (n_children, model) 

generates and return child population from the ranges. 
 

Parameters: 
• n_Children -- number of children to be created. 

 

• model -- the histogram model created from the parents. 

Returns: generated children parameters. 
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class Alg.GA (gen, pars, args) 

Contains Genetic Algorithm (GA). 
 

run (parents, n_Children) 

runs Genetic Algorithm. 
 

Parameters: 
• parents -- parent solutions parameters. 

 

• n_Children -- number of children to be created. 

Returns: generated children parameters. 
 

 

class Alg.GAHEDA (gen, pars, args) 

GAHEDA: Hybrid Genetic Algorithm / Histogram-based EDA algorithm. 
 

run (parents, n_Children) 

runs hybrid HEDA / GA. 
 

Parameters: 
• parents -- parent solutions parameters. 

 

• n_Children -- number of children to be created. 

Returns: generated children parameters. 
 

 

get_parts (r_Participation) 

 
calculates the number of solution needs to be generated from GA (i.e. for a 

participation rate). 
 

Parameters: r_Participation -- GA participation rate 

Returns: number of GA solution. 
 

 

class Alg.Experiment (path) 

Experiment: main driver class for an history-matching experiment. 
 

Parameters: path -- the directory path of experiment. 

Returns: None 
 

 

check_args () 

checks arguments, algorithm control parameters etc for errors. 
 

read_adapts (alg_params) 

read arguments for self.adaptive algorithm control parameters. 
 

Parameters: alg_params -- algorith parameters. 

Returns: updated algorithm parameters 
 

 

create_init_pop (gen, n_initial_pop) 

read  initial  population  from  either  a  file,  job  or  tdrm  stracture  indictaed  in 

'ensemble.def' by "init_population_in". 
 

Parameters: 



 Appendix B: Source Code Summary 

  

 

273273 
 

• gen -- generation number. 
 

• n_initial_pop -- number of solutions in initial 

population. 

Returns: initial population. 
 

 

parse_arguments () 

pares arguments passed to this module. 

2) Analyser Module 

This class module analyses and prepares results of history matching and uncertainty 

quantification for post-processing and graphing tools.  Parameter represents a 

single uncertainty parameter. Run represents a single reservoir simulation run, while 

a Measure represents a population of them and contains different diversity 

and convergence         measures         (e.g.   Measure.hamming_diversity(), 

Measure.inertia_diversity(),Measure.proportional_entropy(

), Measure.crowding_entropy()). Analyse and class contains additional 

pre/post processing functions for history matching and uncertainty quantification, 

such as: 
 

 

• Analyse.run_pareto() sorts solutions based on their Pareto ranks. 
 

• Analyse.run_pareto() reads  parameter  definition  file  and  creates 

Parameter objects. 
 

• Analyse.run_sort() sorts leap directories. 
 

• Analyse.run_read() reads and sorts leap directories and outputting to 

*.tsm files. 
 

• Analyse.run_misfit() calculates generational misfit measures from a 

*.tsm file and outputs them to a *.tsg file. 
 

• Analyse.run_pmd() calculates the histogram model of parameters and 

outputs to a *.tsd file. 
 

• Analyse.run_select() selects models from an ensemble of 

history-matched models using clustering. 
 

• Analyse.run_single() calculates and outputs misfit values and its 

calculation components to a *.tsr file. 
 

• Analyse.run_transfer() transfers created tab separated files (e.g. 

*.tsm, *.tsg, *.tsr) job in directories to a single folder, 

'<root_directory>_runs'. 
 

• Analyse.run_icf() reads full IC-Fault database and creates *.tsm file 

out of  it.  It  uses  ICF_Reader class  for  reading  and  storing  database 

results. 
 

• Analyse.run_obs() gets observation and simulation data for forecasted 

runs. 
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• Analyse.run_rdat() extracts Date-COP table from *r.dat file of VIP 

and store in a file.  
 

Usage: The module runs on standalone and accepts up to 4 command line arguments. 

For help on arguments type in command line Analyser.py -h 

Module author: Asaad Abdollahzadeh <Asaad.Abdollahzadeh@gmail.com> 
 

Created: AA110513, Last Modified: AA130217. 
 

 

class Analyser.Parameter (num, n_bins, name, type, value, 

par_normalize=False) 

contains definition of single parameter in a solution. 
 

Parameters: 
• num -- parameter number 

 

• n_bins -- number of bins 
 

• name -- parameter name 
 

• type  --  parameter  type,  e.g.  discrete,  continuous  and 

binary 
 

• value -- parameter values or range 
 

• par_normalize -- boolean for either normalize the range 

or not. 

Returns: None 
 

 

class Analyser.Run ((pars, num, gen, n_vars, simu)) 

contains definition of single run in population. 
 

Parameters: 
• pars -- list of parameter values 

 

• num -- run number 
 

• gen -- generation number 
 

• n_vars -- list of the number of misfit components in each 

objective. 
 

• simu -- simulator type, e.g. Eclipse or VIP. 

Returns: None 
 

 

class Analyser.Measure (num, n_vars, pars, simu, alg='') 

Calculate diversity measures for a population of solutions. It is a base class for 

population class. 
 

Parameters:  
• num -- population number. 
 

• n_vars -- list of the number of misfit components in each objective. 
 

• pars -- list of parameter values 
 

mailto:Asaad.Abdollahzadeh@gmail.com
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• simu -- simulator type, e.g. Eclipse or VIP. 
 

• alg -- algorithm type.  
Returns: None 

 

 

hamming_diversity () 

measures diversity for a population using the pairwise Hamming distance. 
 

inertia_diversity () 

measures diversity for a population using the 'Moment of inertia calculation' or 

'distance-to-average-point measure' . 
 

proportional_entropy (k=-1) 

measures entropy of a population using the 'Misfit proportional'. 
 

entropy2 () 

measures entropy of a population using the 'parameter bins proportional'. 
 

crowding_entropy (k=-1) 

measures entropy of a population using crowding distance. 
 

class Analyser.Analyse (mykey, predict_var='FIELD:ROOT:FOPT') 

class to analyse history-matching results. 
 

Parameters: 
• predict_var -- predictive variable. 

 

• mykey -- a placeholder for an argument. 

Returns: None 
 

 

make_uqs_db (path) 

creates 'uqs_db' and 'obs_db' files for a job directory. 
 

Parameters: path -- directory path of the job. 

Returns: none 
 

 

run_pareto (job_dirs) 

sorts solutions based on thier Pareto ranks. 
 

Parameters: job_dirs -- job directory path 

Returns: None 
 

read_pars (job_dirs, n_bins=20) 

reads parameter file range ('par_ranges.dat'). 
 

Parameters: 
• job_dirs -- the name of the directory containing 'uqs_db' 

file. 
 

• n_bins -- number of bins. 

Returns: pars: parameter objects. 
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run_sort (job_dirs) 

sorts the solutions (leap* directories). 
 

Parameters: job_dirs -- job directory path(s) 

Returns: None 
 

 

run_read (path, read_leaps=False, with_np=True, 

write_tsm=False, sort_by='Solution', predict_var='') 
read and stors history-matchin result files <job>.tsm 

 

Parameters: 
• path -- file path of the misfitparam file (*.tsm) 

 

• read_leaps -- boolean to read from l'leap' directories or 

not. 
 

• with_np -- boolean to read with Numpy or not. 
 

• write_tsm -- boolean to write-out the *.tsm file or not. 
 

• sort_by -- sort solutions by what. 
 

• predict_var -- predictive variable 

Returns: tuple of headers and parameter ranges and numpy array of 

tsm data. 

 
run_misfit (job_dirs, from_tsm=False) 

calculates generational misfit measures and outputs them to <job>.tsg 
 

Parameters: 
• job_dirs -- job directory name(s) 

 

• from_tsm -- read from '*.tsm' file or 'leap' directories. 

Returns: None 
 

 

run_pmd (job_dirs) 

calculates and outputs posterior probability distribution function to <job>.tsp file. 
 

Parameters: job_dirs -- job directory name(s) 

Returns: None 
 

 

run_select (job_dirs) 

selects models from an ensemble of history-matched models. 
 

Parameters: job_dirs -- directory containing models 

Returns: list of selected model numbers. 
 

 

run_single (job_dirs) 

calculates and outputs misfit values and its calculation components to <job>.tsr 

file for a single run directory. 
 

Parameters: job_dirs -- job directories 

Returns: None 
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run_transfer (job_dirs) 

Transfers *.tsv files from jobs in root directory to a single folder, 

'<root_directory>_runs'. 
 

Parameters: job_dirs -- job directory path(s). 

Returns: None 
 

 

run_icf (path) 

reads full IC-Fault database and creates *.tsm file from it. 
 

Parameters: path -- directory path containing 'ic_fault.data_base'. 

Returns: None 
 

 

run_obs (path) 

Gets obs and sim data for forecasted runs. 
 

Parameters: path -- directory path. 

Returns: None 
 

 

run_rdat (job_dirs) 

extract Date-COP table from *r.dat file of VIP and store in a file. 
 

Parameters: job_dirs -- path of the *r.dat file 

Returns: none 
 

 

class Analyser.ICF_Reader 

Creates 'SimReader' object for simulation result files of ICF database. 

3) Cluster Module 

This script contains classes    and functions for clustering  of data points. 

Clustering is main class for cluster analysis, in which clusters are initialised, 

checked (Clustering.check_clusters()),  output to  *.tsc  file 

(Clustering.out()). The  simillarity   measurs   such    as 

Clustering.inter_spreads() and Clustering.intra_spread() are 

used to determine the number of clusters. Three clustering techniques used here are 

k-means clustering (Clustering.km()), Hierarchical Agglomerative clustering 

(Clustering.ha()) and Probabilistic Distance Clustering 

(Clustering.pd()). 
 

Usage: The module runs standalone from a history matching job with *.tsm results 

file as first argument and clustering algorithm type (km, ha, or pd) as second 

argument. In addition, Clustering object can be created and used from other 

modules. 

Module author: Asaad Abdollahzadeh <Asaad.Abdollahzadeh@gmail.com> 

Created: AA111028, Last Modified: AA130218. 
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class Cluster.Clustering (data, alg='pd', n_clusters='', 

metric='euclidean', out_tsc=False, cutoff=0.001, 

signif_value=0.9) 

Clustering base class. 
 

Parameters: 
• data -- results of history matching data read from *.tsm 

file. 
 

• alg -- clustering algorithm, e.g. 'km', 'pd', or 'ha'. 
 

• n_clusters -- number of clusters, '' means determined by the algorithm 
 

• metric -- distance metric or similarity measure. 
 

• out_tsc -- write out clusters to output file, *.tsc. 
 

• cutoff -- cutoff value for convergence (shift in clustering centers). 
 

• signif_value  --  significance  value  for  determining  the number of 

clusters in PDC. 

Returns: None 
 

check_clusters () 

checks for empty and unity clusters; remove empty clusters and merge unity to 

nearest cluster. 
 

out (job_dir, pars=False, par_data=False) 

outputs clusters, write clustering results to an ascii *.tsc file. 
 

Parameters: 
• job_dir -- dob directory path 

 

• pars -- list of parameters 
 

• pars_data -- parameter value of solutions (points) 

Returns: index of minimum penalty. 
 

 

inter_spreads () 

calculate the spreads within clusters. 
 

intra_spread () 

calculates between clusters spread. 
 

km () 

performs adaptive k-means clustering (KMC) ; self-determines the number of 

clusters (k). 
 

ha () 

performs  Hierarchical  Agglomerative  clustering  (HAC);  self-determines  the 

number of clusters (k). 
 

pd () 

performs Probabilistic Distance Clustering (PDC). can self-determine the number 
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of clusters. 
 

4) Forecaster Module 

This script performs forecasting. Pre-requisite is a successful history matching job. 

class Forecast initialises and starts a forecasting run. Function 

Forecast.creator() of  it  is  class  generator  for  chosen  forecasting  type. 

Forward simulation runs for forecasting, if needed, can be written in a 'qsub' job 

(write_qjob()) and then submitted (submit_job()). 
 

Calc is base class for uncertainty quantification (UQ) classes. It initialises UQ 

algorithms, calculate and output the credible intervals 

(Calc.calculate_credible_intervals()), and gets simulation data from 

ensemble of simulation runs (Calc.get_sim_data()). Following classes (UQ 

algorithms) derived from Calc: 
 

 

• NAB performs Neighbourhood-Algorithm with Bayes (NAB). 
 

• ML maximum likelihood using a single model. 
 

• DA Database Averaging forecasting using large number of models. 
 

• MML Maximum Likelihood forecasting using multiple models. 
 

• MCMC Markov Chain Monte Carlo (MCMC) Sampling using 

K-Nearest-Neighbours approximation. 

Usage:  The  module  runs  on  standalone  and  accepts  up  to  11  command  line 

arguments. For help on arguments type: Forecaster.py -h 

Module author: Asaad Abdollahzadeh <Asaad.Abdollahzadeh@gmail.com> 
 

Created: AA100702, Last Modified: AA130217. 
 

 

Forecaster.spawn (f) 

auxiliary function for passing task to nodes in MPI interface. 
 

class Forecaster.Calc (path, sampler, n_models, clustering_alg, 

n_clusters, k_nn, f_cov, n_burnin, perfix, diagnose) 

base class for UQ algorithms. 
 
 

Parameters:  
• path -- path of the job 
 

• sampler -- sample type 
 

• n_models -- number of models for MC sampling 
 

• clustering_alg -- clustering algorithm type, i.e. random 

(rd), k-means (km), probabilistic-distance (pd), ... 
 

• n_clusters -- number of clusters 
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• k_nn -- number of nearest neighbours 
 

• f_cov -- covariance factor value for M-H sampling. 
 

• n_burnin -- number of solutions in burn-in period. 
 

• perfix -- prefix for the output file 
 

• diagnose -- verbose for output '*.tsp' files, which contain history of 

sampling. 

Returns: None 
 

 

calculate_credible_intervals (data, probs, text='') 

calculates credible intervals (Min, P10, P50, P90, and Max) and output them to a 

*.tsf file. 
 

Parameters: data  --  simulation  results  data  for  samples  probs:  list  of 

probabilities for each run selected for forecasting text: perfix 

for header line in *.tsf and *.tsp files. 

Returns: none 
 

 

output_single_run (data, header='') 

outputs a single run results, i.e. Data & P50 for truth case runs. 
 

Parameters: 
• data -- simulation results data for samples 

 

• header -- header line 

Returns: none 
 

 

get_sim_data (path, run_list=[, ]) 

extracts simulation data for runs. 
 

Parameters: 
• path -- directory path for simulation results 

 

• run_list  --  list  of  runs  for  which  simulation  data  is 

extracted. 

Returns: None 
 

 

get_sim_data2 (path, n_models=None) 

extracts simulation data for runs in IC-Fault database. 
 

Parameters: 
• path -- directory path for simulation results. 

 

• n_models -- number of models to be extracted. 

Returns: None 
 

 

class  Forecaster.NAB (path,  sampler,  n_models,  clustering_alg, 

n_clusters, k_nn, f_cov, n_burnin, perfix, diagnose) 

Neighbourhood-Algorithm  with  Bayes:  Vernonoi  cell  approximation  and  Gibbs 

sampling of likelihoods. 
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run () 

runs  NAB  program  and  calculate  credible  interval  for  variables  in  objective 

function from a set of runs. 
 

nad_to_misfitparams () 

gets 'misfitparams.dat' ascii file from 'na.nad' binary file. 
 

misfitparams_to_nad (forward_path) 

Converts 'misfitparams.dat' of non-na algorithms to 'nad' file. 
 

Parameters: forward_path -- directory path for files created for/by NAB 

program. 

Returns: None 
 

 

write_nab_in (nab_file) 

write out 'nab.in' file needed by 'nab' program. 
 

Parameters: nab_file -- path+name for input file for NAB ('nab.in'). 

Returns: None 
 

 

class  Forecaster.ML (path,  sampler,  n_models,  clustering_alg, 

n_clusters, k_nn, f_cov, n_burnin, perfix, diagnose) 

Maximum Likelihood forecasting using a single model. Sampler types here are: 

'mlb': single best model of ensemble, 'mct': single base (truth) case model (mct). 
 

class  Forecaster.DA (path,  sampler,  n_models,  clustering_alg, 

n_clusters, k_nn, f_cov, n_burnin, perfix, diagnose) 

Database Averaging forecasting using large number of models , e.g. the ensemble 
estimates the posterior. sampler type is 'daa': a large set of uniform samples. 

 
class  Forecaster.MML (path,  sampler,  n_models,  clustering_alg, 

n_clusters, k_nn, f_cov, n_burnin, perfix, diagnose) 

Maximum   Likelihood   forecasting   using   multiple   models,   currently   handles 
following sampler types: 'mmb': Multiple Maximum Likelihood from n Best 
Misfitmodels,  'mmc':  Multiple  Maximum  Likelihood  from  Best  Misfit  model  
of  k different clusters, 

 
class Forecaster.MCMC (path, sampler, n_models, clustering_alg, 

n_clusters, k_nn, f_cov, n_burnin, perfix, diagnose) 

Base   class   for   Markov   Chain   Monte   Carlo   (MCMC)   Sampling   using 

K-Nearest-Neighbours approximation. It handels following sampler types: 'mcm': 

Gibbs  sampling  using  marginal  probabilities,  'mcs':  Standard  Monte  Carlo 

sampling, 'mhg': Metropolis-Hasting sampling with proposals from the multivariate 

Gaussian distributions, 'arm': Acceptance-Rejection sampling using proposals from 

histogram model of best likelihood's clusters, 'nnm': One-at-a-time MH using 

proposals from marginal probability distributions 
 

knn_approximate(points) 

performs k-nn approximation. 
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Parameters: points -- array of points (each point with a list of parameter 

values). 

Returns: index  array  of  k-nn  solutions,  inverse  of  distance  based 

probabilities (weights), mean distance of k-nn, and estimated 

log likelihood. 

 
run() 

runs MCMC sampling with Nearest neighbour approximation and probabilistic 

distance clustering for starting points of walks. 
 

class Forecaster.Forecast (path) 

This class initialises and starts a forecasting run. 
 

Parameters: path -- directory path of forecasting job. 

Returns: None 
 

 

extend_dataFile() 

Extends Simulation Data Files for forecasting purpose. 
 

creator (sampler, n_models, clustering_alg, n_clusters, k_nn, 

f_cov, n_burnin, perfix, diagnose) 
main driver method for Forecasting. 

Parameters: 

• sampler -- sample type,  currently 'mlb', 

'daa','mlt','nab','mmb','mmc','mcm','nnm','mhg', 'arc', 'mcs' are supported. 
 

• n_models -- number of models for MC sampling 
 

• clustering_alg -- clustering algorithm type, i.e. random 

(rd), k-means (km), probabilistic-distance (pd), ... 
 

• n_clusters -- number of clusters 
 

• k_nn -- number of nearest neighbours 
 

• f_cov -- covariance factor value for M-H sampling. 
 

• n_burnin -- number of solutions in burn-in period. 
 

• perfix -- perfix for the output file 
 

• diagnose  --  verbose  for  output  '*.tsp'  files,  which contain history of 

sampling. 

 

                Returns: sampler class 
 

Forecaster.submit_job (qsub_filename) 

submits qsub_file with the run order for the queue. 
 

Parameters: qsub_filename -- qsub input file 

Returns: None 
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Forecaster.write_qjob (qsub_filename, job_dirs, sampler, 

n_models, clustering_alg, n_clusters, n_knn, f_cov, n_burnin, 

n_repeats, diagnose) 

writes a Forecaster.py qsub job. 

Parameters: 
 

• qsub_filename -- qsub file name 
 

• job_dirs -- list of job directories. 
 

• sampler -- sample type 
 

• n_models -- number of models for MC sampling 
 

• clustering_alg -- clustering algorithm type, i.e. random 

(rd), k-means (km), probabilistic-distance (pd), ... 
 

• n_clusters -- number of clusters 
 

• k_nn -- number of nearest neighbours 
 

• f_cov -- covariance factor value for M-H sampling. 
 

• n_burnin -- number of solutions in burn-in period. 
 

• perfix -- prefix for the output file 
 

• diagnose -- verbose for output '*.tsp' files, which contain history of 

sampling. 

Returns: None 

 

5) Grapher Module 

This module reads following tab separated ascii results files and creates charts as 

selected by arguments in the form of *.png images. Supported files are: 
 

 

• tab separated misfit result files (*.tsm) 
 

• tab separated forecast result files (*.tsf) 
 

• tab separated sampling result files (*.tsp) 
 

• tab separated clustering result files (*.tsc) 

Usage: The script runs as standalone with some arguments passed in command line. 

Help on supported command line arguments are shown by 'Grapher.py -h' command. 

The class Charts can be created and used to make charts from other modules. 

Module author: Asaad Abdollahzadeh <Asaad.Abdollahzadeh@gmail.com> 

Created: AA120414, Last Modified: AA130217. 

 
class Grapher.Charts 

main class for charts. Member functions return a specific chart type. 
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bar (xData,  yData,  err_bars=None,  names=None,  x_title=None, 

y_title=None, title=None, width=0.35, ylim=None, hline=None, 

vline=None, save_path=None, acorr=None) 

returns a bar chart. Chart data, axis and chart title, vertical and horizontal lines 

and axis limits and save path for image are passed to the function. 
 

line (xData, yData, names=None, axis_titles=None, title=None, 

xlim=None, ylim=None, hline=None, vline=None, 

save_path=None, acorr=None) 

returns a line chart. Chart data and series names, axis and chart title, vertical and 

horizontal  lines  and  axis  limits  and  save  path  for  image  are  passed  to  the 

function. 
 

normal (xData,  yData, xTitle=None, yTitle=None, 

bar_title=True, par_ranges=None, mean=None,   cov=None, 

bins1=(250, 250),  bins2=(100,  100),  title=None, 

save_path=None) 
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returns contour and heatmap plots for bivariate Gaussian distribution. Chart data 

and series names, axis and chart title, parameter ranges, bin sizes= for axes and 

save path for image are passed to the function. 
 

matrix (npArr, alpha, title='', save_path=None, 

bar_title=None) 
returns a matrix chart. Matrix data, chart title and save path for image are passed 

to the function. 
 

scatter (npArr,  color='b',  title='',  xlim=None,  ylim=None, 

hline=None, vline=None, save_path=None, bar_title=None) 
returns a scatter chart. Chart data (x and y arrays), axis and chart title, third axis 

(color array), vertical and horizontal lines and axis limits and save path for image 

are passed to the function. 
 

scatter2 (xData, yData, names=None, xlabel=None, ylabel=None, 

title='', xlim=None, ylim=None, hline=None, vline=None, 

save_path=None, bar_title=None) 

second implementation for scatter chart. x and y arrays, axis and chart title, third 

axis (color array), vertical and horizontal lines and axis limits and save path for 

image are passed to the function. 
 

contour (xData, yData, zData, x, y, n_bin=50, title=None, 

save_path=None, bar_title=None) 
returns a contour chart. x, y and z arrays, x and y axis titles, number of bins, chart 

title and save path for image are passed to the function. 
 

heatmap (xData, yData, x, y, title=None, bins=(50, 50), 

save_path=None, bar_title=None) 
returns a heatmap chart. x and y arrays, x and y axis titles, chart title, number of 

bins for two axes and save path for image are passed to the function. 
 

threeDscatter  (npArr, npArr2=None, color='b', marker='o', 

s=25,  figsize=(8,  6),  dpi=80,  axis_titles=None,  title=None, 

limits=None, bar_title=None, save_path=None,  cm=None, 

norm=None, ticks=None) 

returns a three-dimensional scatter chart. 3D array (x, y and z arrays), second 

optional 3D array, fourth array (color), marker type, figure size and dpi, axes and 

chart titles, and save path for image are passed to the function. 
 

threeDsurface (X,  Y,  Z,  points=None,  title=None,  zlim=None, 

bar_title=None,  save_path=None, rstride=1, cstride=1, 

cmap=<matplotlib.colors.LinearSegmentedColormap object 

at 0x00000000124D7C50>, linewidth=0, antialiased=False, 

vmin=None, vmax=None) 
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returns a three-dimensional surface chart. x, y and z arrays, axes and chart titles, 

z axis limits and save path for image are passed to the function. 
 

parallel_coordinates (data_sets, data_sets2=None, 

color=None, title=None, xtitles=None, cm=None, limits=None, 

save_path=None) 

returns a parallel coordinate chart for multiple variables. Data arrays, axes and 

chart titles, color array, axes limits and save path for image are passed to the 

function. 
 

class Grapher.Graph (job_dirs, file_type, chart_list, 

chart_args, perfix, show) 

main class for reading tab seperated result files (.ts) and creating different charts 

using above 'Charts' class. 
 

chart_tf (n_bins=1000) 

plots Rastrigin test function. 
 

chart_tsm () 

reads  tab  separated  misfit  result  files  (*.tsm)  and  creates  runtime,  misfit, 

parameter values vs. generations (or runs) chart. 
 

chart_tsp () 

reads   tab   separated   sampling   result   files   (*.tsp)   and   creates   probability 

distribution function (pdf), mean convergence, parameter traceplots and their 

autocorrelation function for MCMC sampling. 
 

chart_tsc2 () 

reads tab separated clustering result files (*.tsc), second implementation, three-d 

scatter, parallel coordinate and pca charts of clustering results. 
 

chart_tsc () 

reads tab separated clustering result files (*.tsc), first implementation, three-d 

scatter and parallel coordinates plots
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6) MisfitCalculator Module 

 

This module calculates misfit for a single  objective function.  

Class MisfitCalculator performs this calculation using 

MisfitCalculator.CalcMisfit()   and one   of  the 

 PUNQ (MisfitCalculator.update_misfit()), IC-Fault 

(MisfitCalculator.update_misfit_ICF()) or Teal-South 

(MisfitCalculator.update_misfit_TS())misfit definition types. 
 

Usage:  The  module  runs  as  standalone  from  a  history  matching  job  as  

current directory and a leap* run as first argument. In addition, 

MisfitCalculator object can be created and used from other modules. 

Module author: Asaad Abdollahzadeh 

<Asaad.Abdollahzadeh@gmail.com> Created: 18/08/2008 by Mike 

Christie, Last Modified: AA130225. 

 
class  MisfitCalculator.MisfitCalculator (obj,  dbase,  

obs_db,sim_db) 

Misfit calculator class; contains codes for misfit calculations from 
observation and simulation objects. 

Parameters: 
 

• obj -- objective function name. 
 

• dbase -- shelve database created from 'ensemble*.def' 

file. 
 

• obs_db -- observation data in form of ObsReader 

object. 
 

• sim_db -- simulation data in form of SimReader 

object. 

Returns: None 
 

 

CalcMisfit(out_dir
=””) 

calculates misfit. 
  

Parameters: out_dir -- output misfit calculation tables into *.tsr 

file or not. 

Returns: None 
 

 
penalize_control_ra

t() 

penalty for wells controlled by rate that not producing observed value 
(due to BHP constraint). 
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Parameters: None 

Returns: misfit penalty 

update_misfit (data_obs, data_sim, data_sig, 

data_wgt) 

calculates misfit for a single data point for PUNQ-like misfit 
definition. 

 

Parameters: 
• data_obs -- observation value 

 

• data_sim -- simulation value 
 

• data_sig -- sigma value 
 

• data_wgt -- weigth value 

Returns: misfit value 
 

 

update_misfit_TS (data_obs, data_sim, data_sig, 

data_wgt) 

calculates misfit for a single data point for Teal-South-like misfit 
definition. 

 

Parameters: 
• data_obs -- observation value 

 

• data_sim -- simulation value 
 

• data_sig -- sigma 

value 
 

• data_wgt -- weigth 

value 

Returns: misfit value 
 

 

update_misfit_ICF (data_obs, data_sim, data_sig, 

data_wgt) 

calculates misfit for a single data point for IC-Fault-like misfit 
definition. 

 

Parameters: 
• data_obs -- observation value 

 

• data_sim -- simulation value 
 

• data_sig -- sigma 

value 
 

• data_wgt -- weigth 

value 

Returns: misfit value 

7) ObsReaders Module 

This  script  reads  observation  data  files  required  for  misfit  calculation  

scripts. ObsFactory class creates an ObsReader object based on simulator 

type (e.g. ECL, VIP). HistDB is base class for observation file reader, from 
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which, ECL_Reader and VIP_Reader classes are derived which read 

Eclipse and VIP observation files respectively. 
 

Usage: The module can be run as standalone from a history matching job 

('uqs_df' shelf file) or ObsReader object can be created and used from other 

modules (e.g. Runner.py). 

Module author: Asaad Abdollahzadeh <Asaad.Abdollahzadeh@gmail.com> 
 

Created: 18/08/2008 by Mike Christie, Last Modified: AA130225. 
 

 

ObsReaders.line_iterator (lines) 

create an iterator from 
readlines() list. 

 

Parameters: lines -- lines of string. 

Returns: lines 

iterator 
 

 

class ObsReaders.ObsFactory 

class factory based on 
simulator type. 

 

Parameters: 
• simulator -- simulator name. 

 

• obs_file_list -- list of observation files including path. 
 

• obj_functions -- dictionary of objective functions 

as in 

'ensemble*.de

f' file. 

Returns: class for reading observation files. 
 

 

class 
ObsReaders.HistD

B 

base class for observation file reader. 
 

ObsVars () 

returns list of variables in the observation database created from 
observation 

files. 
 

Parameters: lines -- lines of string. 

Returns: list of variables 
 

 

ObsValue (var, date) 

returns the value of observation variable in a specified date/time. 
 

Parameters: 
• variable -- variable 

name 
 

• date -- observation date or time 
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Returns: value of variable in specified 

date/time. 
 

 

class ObsReaders.ECL_Reader (file_list, 

obj_functions) 

class reads ECL observation files. 
 

Parameters: 
• file_list -- the list of observation file. 

 

• obj_functions -- dictionary of objective functions 

as in the 'ensemble*.def' file. 

Returns:
 

None 
 

 

ReadSigFile (lines) 

reads and stores observation data from a 'PUNQ' like observation file. 
 

Parameters: lines -- the list lines as read by python's readlines(). 

Returns: None 
 

 

ReadObsFile (lines) 

reads and stores observation data from an Eclipse observation files (*.obs). 
 

Parameters: lines -- the list lines as read by python's readlines(). 

Returns: None 
 

 

ObsDates (var) 

returns dates/times from an observation dictionary created for
 Eclipse 

observation files (*.obs). 
 

Parameters: var -- the variable name in form of 

'classtype:class_name:var_n

ame'. 

Returns: None 
 

 

SigValue (var, time) 

returns sigma-weigth tuple. 
 

Parameters: 
• var -- the variable name in form of 

'classtype:class_name:var_name'. 
 

• time -- specified observation date/time. 

Returns: tuple of sigma and weigth. 
 

 

class ObsReaders.VIP_Reader (file_list, obj_functions) 

class reads VIP observation files.  
Parameters: 

 

• file_list -- the list of observation file. 
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• obj_functions -- dictionary of objective functions as in the 

'ensemble*.def' file. 

    Returns: None 
 

 

ReadVIPObsFile (obs_file) 

reads and stores observation data from an VIP observation files (*.obs). 
 

Parameters: obs_file -- the observation file. 

Returns:
 

None 
 

 

ObsSum (new_var, myVars, dates) 

return observation result value for a sum variable, e.g liquid rate. 
 

Parameters: 

 
• new_var -- variable name for new sum variable. 
 

• myVars -- list of variables to be sum. 
 

• dates -- dates for which new variable to be computed. 

ObsDates (var) 

returns dates/times from an observation dictionary created for VIP 
observation 

files. 
 

Parameters: var -- the variable name in form of 

'classtype:class_name:var_name'. 

Returns: None 
 

 

SigValue (var, date) 

returns sigma-weight tuple. 
 

Parameters: 
• var -- the variable name in form of 

'classtype:class_name:var_name'. 
 

• date -- specified observation date/time. 

Returns: tuple of sigma and weight 

8) Runner Module 

 

This class initialises and starts an experiment for history-matching (covered in 

this thesis) and development optimisation (not covered in this thesis). Runner 

is main class for initialising the experiments. It also: 
 

 

• reads in and executes the experiment configuration files (e.g. 

'ensemble.def') 

in Runner.ensemble_exec(), 
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• creates a Python shelve database (i.e. 'uqs_db') out of

 them in 

Runner.write_uqs_db(), 
 

• writes out NA input file ('write_na_in') in 

Runner.write_na_in(), 
 

• creates a Python shelve database (i.e. 'obs_db') from the observation 

files in 

Runner.setup_obs_db(), 
 

• creates a text file for uncertainty parameter ranges (i.e. 

'par_ranges.dat') 

from the configuration file in Runner.setup_pars(), 
 

• runs select_models of Analyser.py and a text file for 

model/probability of selected model used in devopt in 

Runner.setup_models(), 
 

• read initial population to resume from another experiment in 

Runner.aquire_init_population(), 
 

• creates qsub bash file for history matching experiments in 

Runner.write_job(), 
 

• creates   qsub   bash   file   for   development   optimisation   

experiments   in 

Runner.write_dev_job(), 
 

• and finally submits created Qsub job file in 

Runner.submit_job(). Usage: The script runs as standalone with some 

arguments passed in command line. Help on supported command line 

arguments are shown by 'Runner.py -h' command. 

Module author: Asaad Abdollahzadeh 

<Asaad.Abdollahzadeh@gmail.com> Created: 18/08/2008 by Mike 

Christie, Last Modified: AA130225. 

 
class Runner.Runner 

This class initialises and starts a run for history-matching. It gives default 
values to 

all required details for a run. These can be over-ridden by the ensemble.def 

file. 
 

ensemble_exec (path, ensemble_def) 

reads  in  the  ensemble.def  file  and  executes  each  line  to  over-ride  

defaults configured in initialise. 
 

Parameters: 
• path -- the path of the job file 

 

• ensemble_def -- name of the ensemble file in 

the path directory 

Returns: none 
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write_uqs_db (path, dbase_file) 

creates a 'uqs_db' file based on the values in 'ensemble.def'. 
 

Parameters: 
• path -- the path of the job file. 

 

• dbase_file -- the name of job specification and 

database file (e.g. uqs_db). 

Returns:
 

None 
 

 

write_na_in () 

creates the in file for an NA run base on the values in 'ensemble.def' 
 

setup_obs_db (path) 

creates a 'obs_db' file based on the observation reader object, which reads 
in the 

history file(s) in 'ensemble.def'. 
 

Parameters: path -- the path of the job file 

Returns:
 

None 
 

 

setup_pars (path, file_name) 

creates a 'par_ranges.dat' file based on parameter ranges in 'ensemble.def'. 
 

Parameters: 
• path -- the path of the job file. 

 

• file_name -- the output filename (e.g. 

'par_ranges.dat'). 

Returns:
 

None 
 

 

setup_models (path) 

creates 'models.dat' file based on results of a history-matching job. 
 

Parameters: path -- the path of the history-

matching job 

Returns:
 

None 
 

 

aquire_init_population () 

read  initial  population  from  either  a  file,  job  or  tdrm  structure  
indicated  in 

'ensemble.def' by "init_population_in". 
 

write_job (path, qsub, qsub_filename) 
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creates qsub_file with the run order for the queue. 

 

Parameters: 
• path -- the path of the job file 

 

• qsub -- Qsub job queuing type (e.g. 'PBS' or 'SGE'). 
 

• qsub_filename -- Qsub job file name 

Returns: None 
 

 

write_alg_cmd () 

writes algorithm's command line. 
 

write_dev_job (path, base_dir, qsub_filename) 

creates qsub_file for a development optimisation job. 
 

Paramet
ers: 

• path -- the path of the job file 
 

• base_dir -- base directory path for the devopt job 
 

• qsub_filename -- Qsub job file name 

Returns: none 
 

 

submit_job (qsub_filename, n_repeat, wait_job) 

submits created Qsub job file for a history matching. 
 

Parameters: 
• path -- the path of the job file 

 

• n_repeat -- number of repeat for a history 

matching job with exact same algorithm parameters. 
 

• qsub_filename -- Qsub job file name 

Returns: none 
 

 
 

9) RunSimMisfit Module 

This script is called by sampler/optimisation algorithm after sampling done, 

then it configures simulation run, calculates misfit and pass it to the Sampler. 

pre-requisite are UQ sampler and Simulator . 
 

ObsFactory class creates an ObsReader object based on simulator type 

(e.g. ECL, VIP). HistDB is base class for observation file reader, from which, 

ECL_Reader and VIP_Reader classes are derived which read Eclipse and 

VIP observation files respectively. 
 

Usage: The module cab run as standalone from a history matching job ('uqs_df' 

shelf file) or MisfitCalculator object can be created and used from 

other modules (e.g. Runner.py). 
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Module author: Asaad Abdollahzadeh 

<Asaad.Abdollahzadeh@gmail.com> Created: AA100626, Last 

Modified: AA130217. 

 
class RunSimMisfit.SimMisfit 

(path) Calculate objective function for a 

simulation run. 
 

Parameters: path -- directory path of the experiment. 

Returns: None 
 

 

run_tf (temp_dir) 

reads 'params.in' file and calculate misfit for each objective in test functions 
 

Parameters: temp_dir -- temp directory containing 

'params.in' file 

Returns: None 
 

 

run (temp_dir) 

reads 'params.in' file, runs the simulator and calculate misfit for each 
objective in 

simulation runs. 
 

Parameters: temp_dir -- temp directory containing 

'params.in' file 

Returns: None 
 

 

calculate_misfits () 

Creates MisfitCalcCreater objects and calculate misfit for each objective. 
 

create_misfit (v_dict, run_time) 
 
 

 
Creates 'misfit.dat' and 'misfitparams.dat' files and outputs the objective 

functions to them. 
 

Parameters: 
• v_dict -- dictionary of parameters-values. 

 

• run_time -- runtime of the simulation run. 

 Returns: None 

10) SimReaders Module 

This script reads simulation results files required for misfit calculation scripts. 

Class sim_reader is the base class, from which, reader class are derived 

for different simulators (e.g.  ECL, VIP).  Class eclipse_reader reads 

Eclipse summary spreadsheet   files   (.RSM)   and   class   

:class:`.vip_reader`   reads   VIP   summary spreadsheet files (.sss). 
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Usage: The module can be run as standalone from a history matching job 

('uqs_db' shelf file) or sim_reader object can be created and used from other 

modules (e.g. RunSimMisfit). 

Module author: Asaad Abdollahzadeh <Asaad.Abdollahzadeh@gmail.com> 
 

Created: 18/08/2008 by Mike Christie, Last Modified: AA130225. 
 

 

SimReaders.iterator (lines) 

iterates a list of lines. 
 

class SimReaders.sim_reader

 (file_list, 

count_zero_history=True) 

Base class for sim reader; reads simulation results based on the extensions 
'RSM' 

(Simulator type) 
 

Param
eters: 

• file_list -- Simulation result file list. 
 

• count_zero_history  --  ether  account  for  the  

zero  vale history results. 

Returns: SimReader object 
 

 

SimValue (var, time) 

returns simulation result value for a variable and date. 
 

Parameters: 
• var -- variable name in form of 

'classtype:class_name:var_name'. 
 

• time -- 

time/date. 

Returns: the value of variable at specified time/date. 
 

 

SimLastDates () 

returns last date in simulation 
result file. 

 
SimSum (new_var, myVars, dates) 

returns simulation result value for a sum variable, e.g. liquid rate. 
 

Parameters: 
• new_var -- variable name for new sum variable. 

 

• myVars -- list of variables to be sum. 
 

• dates -- dates for which new variable to be 

computed. 

Returns: None 
 

 

SimVars () 

returns list of variables in simulation result file. 
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InterpSimValue (var) 

returns interpolated value of a variable in dates not reported in simulation 
result 

file. 
 

Parameters: var -- variable name in form of 

'classtype:class_name:var_name'. 

Returns: interpolated values 
 

 

var_check (class_type, var_name) 

check if a vriable exists in simulation result discionary. 
 

Parameters: 
• class_type -- variable class type e.g. 'weel' and 
'field'. 

 

• var_name -- variable name in form of 

'classtype:class_name:var_n

ame'. 

Returns: None 
 

 

class SimReaders.eclipse_reader

 (file_list, 

count_zero_history=True) 

Creates  'SimReader'  object  for  simulation  result  files  with  extensions  
'RSM' 

(Eclipse Simulator) 
 

Parameters: file_list -- Simulation result file list 

Returns: SimReader object 
 

 

CreateResultsDB (file_name) 

reads simulation result from an Eclipse *.RSM file. 
 

Parameters: file_name -- Simulation result file name including path 

Returns: None 
 

 

Create_Header_Table (line_iter) 

reads header line from Eclipse simulation result and creates a header list. 
 

Parameters: line_iter -- iterator of the Simulation result file. 

Returns: headers list 
 

 

Read_Results_Page (headers, line_iter) 

reads  data  from  Eclipse  simulation  result  files  and  creates  a  
dictionary  of 

variable-date-values. 
 

Parameters: 
• headers -- list of headers in RSM files(dates, 
variables etc) 
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• line_iter -- iterator of the Simulation result file. 

Returns: None 
 

 

SimDates (var) 

returns list of dates for a variable. 
 

Parameters: var -- variable (in form of 

'classtype:class_name:var_name'). 

Returns: sorted list of dates 
 

 

class SimReaders.vip_reader (file_list, 

count_zero_history=True) 

class  SSS_Reader:  Creates  'SimReader'  object  for  simulation  result  files  
with 

extensions 'SSS' (VIP Simulator). 
 

Parameters: file_list -- Simulation result file list 

Returns: SimReader object 
 

 

CreateResultsDB (file_name) 

reads simulation result from an VIP *.SSS file. 
 

Parameters: file_name -- Simulation result file name including path 

Returns: None 
 

 

Create_Header_Table (line, class_type) 

reads header line from VIP simulation result and creates a header list. 
 

Parameters: line_iter -- iterator of the Simulation result file. 

Returns: headers list 
 

 

Create_Units (col_ref, line) 

returns list of dates for a variable. 
 

Parameters: 
• col_ref  --  dictionary  of  headers  and  thier  
respected 

column reference 

number. 
 

• line -- line containing the units. 

Returns: list of variable units 
 

Read_Results_Page (line_iter, class_type, headers) 

reads  data  from  VIP  simulation  result  files  and  creates  a  
dictionary  of 

variable-date-values. 
 

Parameters: 
• headers -- list of headers in SSS files(dates, 
variables etc) 
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• class_type -- class type of the file; e.g. field, 

wells and etc. 
 

• line_iter -- iterator of the Simulation result file. 

Returns: None 
 

 

SimDates (var) 

returns list of dates for a variable. 
 

Parameters: var -- variable (in form of 

'classtype:class_name:var_name'). 

Returns: sorted list of dates 

11) Stats Module 

 

This script contains a collection of statistical and mathematical functions 

which use 

Numpy or/and Scipy modules. 
 

Usage: These are common utility functions used across other scripts. The 

whole module (Stats.py) is imported. 

Module author: Asaad Abdollahzadeh <Asaad.Abdollahzadeh@gmail.com> 
 

Created: AA120720, Last Modified: AA130217. 
 

 

Stats.peakdet (v, delta, x=None) 

detects peaks in a list of values 
 

Parameters: 
• v -- vector of values 

 

• delta -- a positive value 
 

• x -- second list to return value from; if None the 

index of 'v' are returened. 

Returns: VCAD distance 
 

Stats.VCAD (a, b) 

Returns the cosine of the angle between two Points. 
 

Parame
ters: 

• a -- first point 
 

• b -- second point 

Returns: VCAD distance 
 

Stats.getDistance (a, b) 

Get the Euclidean distance between two Points 
 

Parameters: 
• a -- first pointp 

 

• b -- second point 

Returns: Sqrt of sum distance: sqrt(sum((a[i]-b[i])^2) for all i) 
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Stats.elbow_distance (K, N, F, F_start, 

F_end=0.0) Get elbow distance of a curve 

Parameters: 

• K -- The number of points 
 

• F -- the curve list of points 
 

• N -- the ultimate number of points 
 

• F_start -- first value of curve function 
 

• F_end -- ultimate value of curve function 
 

Returns: elbow distance from the 

curve 
 

Stats.PCA (A, cutoff=10.0) 

performs principal components analysis (PCA) on the n-by-p data matrix A 
Rows 

of A correspond to observations, columns to variables. 
 

Parameters: 
• A -- A n-by-p data 

matrix 
 

• cutoff -- cutoff 

value 

Returns: eigenvectors  (is  a  p-by-p  matrix,  each  column  

containing coefficients  for  one  principal  component),  

eigenvalues  (a vector containing the eigenvalues of the 

covariance matrix of A), and the score(the principal 

component scores; that is, the representation of A in the 

principal component space). 
 

Stats.COV (data_arr1, data_arr2=None, rowvar=1, 

bias=0) 

returns covariance matrix between two arrays (using Numpy python library) 
 

Parameters: 
• data_arr1 -- first 1-D or 2-D array containing 
multiple 

variables and 

observations. 
 

• data_arr2 -- second 1-D or 2-D array containing 

multiple variables and observations. 
 

• rowvar -- if non-zero (default), then each row 

represents a variable, otherwise, each column 

represents a variable. 
 

• bias -- if zero (default), normalisation by 'N-1' 

(default), if 

'1', then normalization is by 'N' 

Returns: The covariance matrix of the variables. 
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Stats.KLD (data_arr1, data_arr2) 

Kullback-Leibler Distance between two arrays (using Scipy python 
library). 

 

Parameters: 
• data_arr1 -- first vector 

 

• data_arr2 -- second vector 

Returns: KLD distance of two vectors 

Stats.KDE (data_arr) 

The Gussian kernel density of a numpy array (using Scipy python library). 

Parameters: data_arr -- array of data 

Returns: Array of KDE estimates 
 

Stats.DIST (data_arr1, data_arr2=None, 

metric='euclidean') Computes distance between each pair of data 

vectors in two Cartesian arrays (using Scipy python library). 
 

Parameters: 
• data_arr1 -- data 

array 1 
 

• data_arr2 -- data 

array 2 
 

• metric -- distance metric type, e.g. 'euclidean' 

Returns: Array of distances 
 

Stats.MDI (points, values, grid, 

method='nearest') Multivariate data interpolation 

(griddata)(using Scipy python library). 
 

Parameters: 
• points -- numpy data array of NxD 

 

• values -- values at the 

points 
 

• grid  --  regular  grid  for  which  interpolation  

should  be done. 
 

• method -- iterpolation method, i.e. 'linear', 'nearest', 

'cubic' 

Returns: interpolated_data: interpolated values at the regular grid 
 

Stats.KNN (data_arr, data_arr2=None, metric='euclidean', 

k=3) calculates and return the 'mean' of the a list of real values (using 

Scipy python library). 
 

Returns: data_arr: first numpy data array of NxD 

Parameters: 
• data_arr2 -- second numpy data array of NxD 

 

• distance  metric  function  type  (metric-)  --  

'euclidean', 

'sqeuclidean', 'seuclidean', 'cityblock', 'mahalanobis' 
 

• k -- number of nearest neighbours 
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Returns: index array of k nearest neighbours, distance matrix of 

k-nn, inverse of distance based probabilities (weights). 
 

Stats.HDD (data_arr, n_bins=10, density=True, ranges=None) 

creates histogram modelfor an numpy array. 
 

Parameters: 
 

• data_arr -- numpy data array of MxN 
 

• n_bins -- numberof bins 
 

• density -- boolean for output densities or frequencies 
 

 • ranges -- array of lower and upper bound tuples; if None calculated 

from the data 

Returns: histogram model and related bin 

edges. 
 

Stats.AIC (data_arr, scale=True) 

Bayesian model selection based on Akaike's Information Criterion (AIC) for 
a set 

of models it tries minimizes the Kullback-Leibler distance:

 AIC = 

-2*log-likelihhod+2p (p is number of parameters) (Akaike 1973) 
 

Parameters: 
• data_arr -- 1D array of 

values 
 

• scale -- True: scale data or not 

Returns: likelihood probabilities 
 

Stats.curvature (points) 

calculates  curvature  of  a  set  of  3  points  with  consecutive  x  value  of  1  
unit difference. 

 

Parameters: points -- three points 

Returns: radious of curvature 
 

Stats.percentile (my_list, percent, key=<function 

<lambda> 

at 0x0000000007486048>) 

Finds the percentile of a list of values. 
 

Parameters: 
• my_list -- a list of 

values 
 

• percent -- a float value from 0.0 to 10.0. 
 

• key -- optional key function to compute value from 

each element of N. 

Returns: the percentile of the values. 
 

Stats.mean (my_list) 

calculates and return the 'mean' of the a list of real values. 
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Parameters: my_list -- 

the list 

Returns: mean 
 

Stats.divide_list (my_list, n) 

Produces an iterator over subsections of maximum length n of 
the list. 

Parameters: • my_list -- the list 
 

• n -- length of sublists 

Returns: list of 

sublists 
 

Stats.weighted_average (list1, list2) 

returns average of list1 weighted 
by list2. 

 

Parameters: 
• list1 -- the list to be 

averaged 
 

• list2 -- the list used for weighting 

Returns: average 

number 
 

Stats.histogram (my_list, 

ranges) 

calculates and return the histogram model of a list of real values 
 

Parameters: 
• my_list -- the list 

 

• ranges -- histogram bin ranges 

Returns: my_dic: dictionary of list members and frequencies 
 

Stats.counter (my_list) 

counts a list for its items and return dictionary 'item:count' 
 

Parameters: my_list -- the list 

Returns: my_dic: dictionary of list items and counts 
 

Stats.bootstrap (sample, n_samples=500, 

statfunc=<function mean at 0x0000000007486128>) 

Performs  resampling  from  sample  with  replacement,  gathers  statistic  in  

a  list computed by statfunc on the each generated sample. 
 

Parameters: 
• sample  --  input  sample  of  values:  independent  
and 

identically   (iid)   distributed   with   unknown   

statistical distribution. 
 

• nsamples -- number of samples to generate 
 

• samplesize -- sample size of each generated sample 
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• statfunc -- statistical function to apply to each 

generated sample. 

Returns: list of the mean of the resampled bootstrap 'samples'. 
 

Stats.rollete_wheel (in_list, p) 

performs rollete wheel sampling. 
 

Parameters: 
• in_list -- list of real values to be sampled. 

 

• p -- quartile value, e.g. 25, 50 and 75. 
 

Returns: quantile probability distribution. 
 

Stats.linear_interpolate (x, y, order=1) 

returns a function that does linear interpolation of data in two vectors. 
 

Parameters: 
• x -- first vector 

 

• y -- second vector 

Returns: function which handles linear interpolation 

12) TF Module 

 

This script contains standard test functions used in history matching and 

uncertainty quantification. Functions include: 
 

 

• TF.ZDT() performs Zitzler-Deb-Thieless(ZDT) test suit (functions 1-

4). 
 

• TF.Sphere() performs Sphere test function. 
 

• TF.Sphere() performs Sphere test function. 
 

• TF.Rastrigin() performs Rastrigin test function. 
 

• TF.Griewank() performs Griewank test function. 
 

• TF.Rosenbrock() performs Rosenbrock test function. 
 

• TF.Ackley() performs Ackley test function. 
 

• TF.mvg() performs Bivariate Gaussian (BVG) test function. 

Usage: These are common utility functions used across other scripts. The 

whole module (Utils) is imported in and used by the modules. 

Module author: Asaad Abdollahzadeh <Asaad.Abdollahzadeh@gmail.com> 
 

Created: AA111027, Last Modified: AA130225. 
 

 

TF.ZDT (x, id) 

Zitzler-Deb-Thieless(ZDT) test functions for multiobjective optimisation. 
Currently 

functions 1-4 are implemented. 
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Parame
ters: 

• x -- vector of parameter values 
 

• id -- test function number 

Returns: string containing the value of multiple 

objectives 
 

TF.Sphere (x) 

returns Sphere (SP) or De Jong's test function value for vector 'x'; it has many 
local 

minima and one global minimum at (0,0), no interaction between variables. 
 

TF.Rastrigin (x, A=10) 

returns  Rastrigin  (RR)  test  function:  has  many  local  minima  and  one  
global 

minimum at (0,0), no interaction between variables. 
 

TF.Griewank (x) 

returns Griewank (GW) test function for vector 'x'; it consists of many local 
optima 

and has weak interaction between variables. 

TF.Rosenbrock (x) 

returns Rosenbrock (RB) test function: highly nonlinear and symmetric 
around 

quite a flat curved valley. Variables are strongly correlated. 
 

TF.Ackley (x) 

returns  Ackley  (AC)  test  function  for  vector  'x';  it  is  highly  nonlinear  
and 

symmetric around quite a flat curved valley. Variables are strongly correlated. 
 

TF.mvg (x) 

returns Mulitivariate Gaussian (MVG) test function for vector 'x'; it is used as 
a test 

funtion for MCMC sampling algorithms. 
 

TF.TF_driver (TF, par_line) 

main driver for the test functions. 
 

Parame
ters: 

• TF -- test 
function type 

 

• par_line -- string containing the input parameters 

Returns: string containing the value of single/multiple objectives.  

13) Utils Module 

 

This script contains a collection of common functions used by other modules. 
 

Usage: These are common utility functions used across other scripts. The 

whole module (Utils) is imported in and used by the modules. 
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Module author: Asaad Abdollahzadeh <Asaad.Abdollahzadeh@gmail.com> 
 

Created: AA100503, Last Modified: AA130225. 
 

 

Utils.mean (my_list) 

calculates and return the 'mean' of a list of real values. 
 

Parameters: my_list -- the list 

Returns: the mean 

value 
 

Utils.sigma (my_list) 

calculates and return the 'standard deviation' of a list of real values. 
 

Parameters: my_list -- the list 

Returns: the sigma value 
 

Utils.normalise (my_list, l_bound=0.0, u_bound=10.0) 

normalises a list based on a predefined lower and upper bound values. 
 

Parameters: 
• my_list -- the list 

 

• l_bound -- lower bound 
 

• u_bound -- upeer bound 

Returns: normalised list 
 

Utils.filter (my_list, filter_list) 

filters a list for items in another list. 
 

Parameters: 
• my_list -- the list 

 

• filter_list -- the list of items to be removed 

from my_list 

Returns: filtered list 
 

Utils.curvature (points) 

calculates  curvature  of  a  set  of  3  points  with  consecutive  x  value  of  1  
unit 

difference. 
 

Parameters: points -- three points 

Returns: radious of curvature 
 

Utils.percentile (my_list, percent, key=<function 

<lambda> 

at 0x0000000006FE0C88>) 

finds the percentile of a list of values. 
 

Parameters: 
 • my_list -- a list of values 

 

 • percent -- a float value from 0.0 to 10.0. 
 

• key -- optional key function to compute value from 

each element of N. 
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Returns: the percentile of the values 
 

Utils.copyfiles (dir_from, dir_to, file_list) 

copies a list of files from one directory to another. If the copy instruction 
fails, the error is output. 

 

Parameters: 
• dir_from -- The directory to copy the files from 

 

• dir_to -- The directory to copy the files to 
 

• file_list -- The list of files to be copied 

Returns: None 
 

Utils.process_files (cur_dir, temp_dir, 

edit_file_list, variable_dict, search_char_s, 

search_char_e, python_inc_list=[, ]) 

reads in files that will be edited, processes, and writes out to temp directory. 
 

Parameters: 
• cur_dir -- current directory path 

 

• temp_dir -- temp directory path 
 

• edit_file_list -- Edit 

files list 
 

• variable_dict -- Variables name/value pairs dictionary 
 

• srch_char_s -- Start search character, usually '{' 
 

• srch_char_e -- End search character, usually '}' 
 

• python_inc_list -- list of included Python script files. 

Returns: total_misfit: Total misfit of Objective 

Function 
 

Utils.process_line (line, variable_dict, 

search_char_s, 

search_char_e) 

takes a line of text from edit_files and processes it for the parameters. 

Parameters: 
 

• line -- text line 
 

• variable_dict -- dictionary of the parameters/values 
 

• search_char_s -- search start character '{' 
 

• search_char_e -- search end character '}' 
 

Returns: start point of processed text and the processed line. 
 

Utils.update_dict (par_list, infile) 

reads in a dictionary file and loads them into the dict. 
 

Parameters: 
• par_list -- the current parameter list 

 

• infile -- the file to be read (already in open state) 



 Appendix B: Source Code Summary 

  

 

308308 
 

Returns: new dictionary with values for the parameters 
 

Utils.run_simulator (sim_command, sim_data_file, 

solution_number, max_sim_time) 

runs the 
simulator. 

 

Parame
ters: 

• sim_command  --  Simulator  run  command,  gettin  from 

uqs_db 
 

• sim_data_file   --   Simulation   data   file   name   without 

extension 
 

• solution_number -- solution (run) serial number 
 

• max_sim_time -- maximum runtime for simulations 

Returns: None 
 

Utils.ic_fault (throw) 

in  IC-Fault  model,  it  runs  'runD'  program  to  generate  'ZCORN.INPUT'  
file 

(includes file for IC-Fault model), creates text to include created 

'ZCORN.INPUT' file. 
 

Parameters: throw -- string value of the throw of ICF fault 

Returns: text to include 'ZCORN.INPUT' plus runs 'runD' 

program to create 'ZCORN.INPUT' 
 

Utils.choose_discrete_var (range, list) 

choose a discrete variable from a list. 
 

Parameters: 
• range -- Range 

 

• list -- list to select from. 

Returns: list: list 
 

Utils.parse_range (astr) 

parses a string for directory paths 

Parameters: astr -- string to be parsed 

Returns: sorted list of absolute directory path 
 

Utils.kdtree (point_list, depth=0) 

creates a kde using an efficient kdetree algorithms. 
 

Parameters: 
• point_list -- list of points 

 

• depth -- the maximum depth of tree 

Returns: node of tree.  
 

 


