8,077 research outputs found

    A Genetic Algorithm for a Workforce Scheduling and Routing Problem

    Get PDF
    The Workforce Scheduling and Routing Problem refers to the assignment of personnel to visits across various geographical locations. Solving this problem demands tackling scheduling and routing constraints while aiming to minimise the total operational cost. This paper presents a Genetic Algorithm (GA) tailored to tackle a set of real-world instances of this problem. The proposed GA uses a customised chromosome representation to maintain the feasibility of solutions. The performance of several genetic operators is investigated in relation to the tailored chromosome representation. This paper also presents a study of parameter settings for the proposed GA in relation to the various problem instances considered. Results show that the proposed GA, which incorporates tailored components, performs very well and is an effective baseline evolutionary algorithm for this difficult problem

    A Framework for Automatic Behavior Generation in Multi-Function Swarms

    Get PDF
    17 USC 105 interim-entered record; under review.Multi-function swarms are swarms that solve multiple tasks at once. For example, a quadcopter swarm could be tasked with exploring an area of interest while simultaneously functioning as ad-hoc relays. With this type of multi-function comes the challenge of handling potentially conflicting requirements simultaneously. Using the Quality-Diversity algorithm MAP-elites in combination with a suitable controller structure, a framework for automatic behavior generation in multi-function swarms is proposed. The framework is tested on a scenario with three simultaneous tasks: exploration, communication network creation and geolocation of Radio Frequency (RF) emitters. A repertoire is evolved, consisting of a wide range of controllers, or behavior primitives, with different characteristics and trade-offs in the different tasks. This repertoire enables the swarm to online transition between behaviors featuring different trade-offs of applications depending on the situational requirements. Furthermore, the effect of noise on the behavior characteristics in MAP-elites is investigated. A moderate number of re-evaluations is found to increase the robustness while keeping the computational requirements relatively low. A few selected controllers are examined, and the dynamics of transitioning between these controllers are explored. Finally, the study investigates the importance of individual sensor or controller inputs. This is done through ablation, where individual inputs are disabled and their impact on the performance of the swarm controllers is assessed and analyzed

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Optimization. An attempt at describing the State of the Art

    Get PDF
    This paper is an attempt at describing the State of the Art of the vast field of continuous optimization. We will survey deterministic and stochastic methods as well as hybrid approaches in their application to single objective and multiobjective optimization. We study the parameters of optimization algorithms and possibilities for tuning them. Finally, we discuss several methods for using approximate models for computationally expensive problems
    • …
    corecore