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Notation

N Number of data points

D Number of dimensions

K Number of clusters

x A D-dimensional vector x = [x1, x2, . . . , xD]

X A dataset of N data points, i.e. X = (xi)
N
i=1

Ck The kth cluster

|Ck| The size (cardinality) of the kth cluster

C The set of (K) clusters, i.e. C = {C1, . . . , CK}

d(xi,xj) Distance between data points xi and xj

ID D-dimensional identity matrix

N (µ, σ2) Normal/Gaussian distribution with mean µ and variance

σ2

U(0, 1) Uniform distribution between 0 and 1

Dir(α) Dirichlet distribution

Pf Stochastic ranking fitness probability parameter

µ(k) The kth cluster mean in HAWKS

Σk The kth cluster covariance matrix in HAWKS

Σ̃k The kth cluster diagonal covariance matrix in HAWKS
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R(k) The kth cluster rotation matrix in HAWKS

S(k) The kth cluster scaling matrix in HAWKS

λratio HAWKS’ eccentricity constraint (ratio of maximum and

minimum eigenvalues)

overlap HAWKS’ overlap constraint

sall Silhouette width

starget Target silhouette width

µ̄ The global centroid of all data points

nx(1) The 1st nearest neighbour of data point x

n−1
xi

(xj) The rank of data point xj in data point xi’s nearest negh-

bours

αw The winning algorithm in HAWKS’ versus mode

αl The losing algorithm in HAWKS’ versus mode

P Population of individuals

Γ Set of relevant edges that form ∆-MOCK’s reduced geno-

type

|Γ| The length of ∆-MOCK’s reduced genotype

δ Percentage of relevant edges in the MST to keep for ∆-

MOCK’s reduced genotype

srη Calculation of δ as a function of N i.e. |Γ| = η
√
N

L ∆-MOCK’s neighbourhood size parameter

T Number of resolution levels

Gmax Number of generations
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Abstract

Identifying clusters in data has a wide range of applications, yet remains a sur-

prisingly difficult task. The subjective nature of clustering leads to difficulty in

both selecting the most appropriate algorithm for a given problem and evaluat-

ing the performance of these algorithms (as typically there is no ground truth

to aid evaluation). Synthetic data can help us to understand the capabilities of

algorithms, but only if this data is itself well-understood and presents challenges

that are reflective of real-world clustering problems.

Current benchmark sets for clustering are limited in this regard. To address

this issue, we propose a synthetic data generator (named HAWKS) for clustering

that uses an evolutionary algorithm to optimize different challenges. We com-

pare HAWKS against other popular generators and datasets for clustering. We

find that HAWKS is able to both produce datasets that result in a wide spread

of performance for clustering algorithms, and that the performance varies differ-

ently for different algorithms. We extend this generator to directly maximize the

performance difference between two clustering algorithms, automatically finding

their relative weaknesses without explicit parameterization of cluster properties.

This can provide greater mechanistic insights and aid in algorithmic development.

In the last part of the thesis, we again explore the use of evolutionary al-

gorithms in clustering, but for the assignment of data points to clusters using

multiple objectives. We extend the ∆-MOCK algorithm to adapt the search

space (which scales with the size of the dataset) in order to reduce computation

and focus the search. By adapting the search space using the current performance

and employing strategies to explore this space, at least equivalent performance

is achieved for a near two-thirds reduction in computation time (compared to

∆-MOCK). We then use HAWKS to obtain greater insights into the relative dif-

ferences in our proposed strategies by producing datasets with properties that

were better suited to previously poor strategies.
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Lay Summary

The ability to identify patterns within data, particularly identifying sub-groups

(or clusters) that contain things that are more similar to each other than they

are to other clusters, has a wide range of applications. For example, identifying

patients that are more similar to each other can help with diagnoses, or finding

similar images can help with automatic categorization.

To accurately identify this similarity however, we need to quantify it, so that

we have an idea of how similar they are. Qualitatively, an image of an apple

is more similar to that of a pear than to a pineapple, but all three are more

similar compared to an image of a sheep. Quantifying the similarity is difficult

— do we compare the colour or shape of the object in the image? What if

instead we compare the composition or some other feature of the images? Not

only can we measure similarity in different ways, but in order to verify whether

these clusters are good (i.e. the images are indeed similar), we have many further

possible choices. For example, should all images in a cluster be similar to each

other, or just similar to a few images, which in turn are similar to a few images

(and so on). Algorithms that detect these clusters are typically limited to a single

perspective, meaning that they only work for certain types of data (which we do

not know beforehand!).

To address all this subjectivity in constructing and verifying the clusters, we

need synthetic data where we know exactly which clusters the objects belong

to, allowing us to test whether the approach is suitable at detecting clusters.

Creating synthetic data that mirrors the complexities of the real-world can be

difficult however, particularly when doing it in a way that provides control over

not just the overall difficulty, but different types of difficulty (caused by the

different considerations of similarity).

In this thesis, we try to improve our ability to detect clusters in two ways.
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In both approaches, we use a type of algorithm inspired by the principles of evo-

lution to try and optimize multiple (conflicting) goals simultaneously. First, we

propose a method of generating synthetic data where we try to optimize multiple

types of difficulty, such that we can find out the capabilities and limits of cluster

detection for different algorithms, so that for future real-world datasets (where

we have no knowledge of what the clusters are) we can use more appropriate

algorithms. Second, we try to optimize the detection of clusters by optimizing

different measures of cluster similarity simultaneously, and try to improve the

ability of this algorithm to deal with large amounts of data. To gain further

insights into how this has affected the algorithm, we use our generator to tease

out more nuanced differences.
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Chapter 1

Introduction

1.1 Is there a best clustering algorithm?

To answer this question, we must first define what clustering (also known as clus-

ter analysis) is. Unfortunately, most definitions fall short of capturing the full

spectrum of both the aims of clustering or even what the clusters themselves actu-

ally are (Ackerman, Ben-David, and Loker 2010; Hennig 2015; Jain, Murty, and

Flynn 1999; Luxburg, Williamson, and Guyon 2012). In Chapter 2, an overview

of these discussions is provided, but for our purposes here we can summarize clus-

tering as trying to extract patterns from data or, more precisely, trying to find

which groups of objects (such as different patients in medical data) are similar to

each other, and dissimilar to other groups.

A frequent issue with clustering is the subjective nature of these clusters, and

the many different definitions of ‘similar’ that can lead to valid or even contrary

discoveries of clusters within data. The consequent existence of many clustering

algorithms, each with their own nuanced assumptions, makes the selection of

the best or right algorithm a non-trivial task. With the No-Free-Lunch (NFL)

theorem for learning (Wolpert and Macready 1997) and non-universal definition

of a cluster, there is no best algorithm for all datasets. For different types of

datasets/problems (referred to as a problem class) however, a subset of algorithms

may be superior to others. Attempts at validating the output of these algorithms

(using cluster validation indices) is further complicated as these indices are often

correlated with or used within the algorithms themselves, adding another layer of

assumptions and potential bias to untangle. For each possible measure of cluster

quality a clustering algorithm can be derived, creating a difficult cycle. Even
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using many different algorithms (at great computational expense) may not be

helpful if these results cannot be reliably compared. For an unbiased comparison,

certain techniques can be used if there is a ground truth, such as the confirmed

diagnosis for a patient, but as clustering is an unsupervised task this truth is

typically absent i.e. we may only be able to identify patients who are similar,

without definitive outcomes or diagnoses.

As different measures of cluster validity provide different perspectives, the nat-

ural development is to try to simultaneously use multiple such measures within

a clustering algorithm. One popular approach in this regard is evolutionary clus-

tering, which uses evolutionary algorithms as a method to tackle the resulting

multi-objective optimization problem. In Chapter 7 we study and extend one

such algorithm, ∆-MOCK. Although this algorithm simultaneously optimizes two

complementary measures, this does not guarantee that the full spectrum of pos-

sible clusters can be captured. Arbelaitz et al. (2013) highlighted the issue of

selecting complementary indices by studying 30 cluster validity indices, finding

that no single index was always the most informative and that different indices

are more useful for different types of dataset (which did not always correlate).

To illustrate the behaviour of different clustering algorithms, in Figure 1.1

(inspired by scikit-learn1), we can see the output of a number of clustering al-

gorithms on different synthetic data.2 This figure shows an array of different

challenges that may be faced during clustering, and the resulting clusters that

these algorithms discover (separated by colour). It is clear that on these datasets,

some algorithms are generally better than others, but it is not easy to determine

a priori which approach would be the best. Thus, it follows to ask how could the

right algorithm be selected without exhaustive testing of many algorithms (and

the additional complexity of tuning its hyperparameters).

1https://scikit-learn.org/stable/modules/clustering.html#

overview-of-clustering-methods
2These algorithms will be explained in Section 2.4, aside from ∆-MOCK which is the subject

of Chapter 7. The synthetic data is generated using different functions and transformations in
scikit-learn, aside from “UKC5” which is a real-world dataset discussed in Section 6.2.2 (for
illustrative purposes we use a subset of this data) and HAWKS, which is the generator we
propose in Chapters 5 and 6.

https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods
https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods
https://github.com/sea-shunned/hawks
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1.2 Selecting the right clustering algorithm

As which can be considered the most appropriate clustering algorithm varies

based on the dataset being studied, therein poses the question: through some kind

of analysis on the dataset, can we select an algorithm (or subset of algorithms)

that would be most appropriate? This underpins the algorithm selection problem

(ASP) proposed in Rice (1976), where the aim is to predict which algorithm would

be the best for a given dataset according to a set of problem features (quantitative

measures of the dataset itself). This problem is tackled in different fields, such

as meta-learning in the machine learning community or exploratory landscape

analysis in the metaheuristics community (Mersmann et al. 2011; Smith-Miles

2008; Vanschoren 2019).

Addressing this problem, this thesis deals with: adapting the concept of prob-

lem features for cluster analysis; generating datasets that exhibit particular prob-

lem features with a view of creating a diverse test suite; and, generating datasets

that are challenging for a particular algorithm (with a view to understand mech-

anistic differences between pairs of algorithms). These are further discussed in

the remainder of this section.

A subsequent body of research has expanded upon Rice’s framework for the

ASP (Muñoz et al. 2018; Smith-Miles and Tan 2012; Smith-Miles et al. 2014;

Smith-Miles and Bowly 2015), but a key part of this is the identification of the

problem features, which is domain-specific. In clustering, we have the aforemen-

tioned issue of subjectivity when it comes to measuring what a cluster is, and so

trying to capture the different facets of difficulty that a clustering algorithm face

is complex.

Having a comprehensive set of descriptive problem features is only part of

the problem; the existence of a number of datasets that have a wide range of

diversity with respect to these problem features is necessary to obtain a deeper

understanding of the advantages and disadvantages of any particular algorithm.

Development of new/modified clustering algorithms would require analysis across

a range of these different ‘types’ of difficulty in order to ascertain in what situa-

tions it is useful. At present, works that develop new clustering approaches often

use a limited range of datasets, with no reflection upon the diversity of challenge

among these datasets. The use of synthetic data is popular as it enables the use

of external validation as the ground truth is available, though there are popular



1.3. THESIS CONTRIBUTIONS 29

real-world datasets that also have labels3.

In order to generate synthetic data that has a diverse range of difficulty,

we require a flexible generator. There have been many attempts at creating

synthetic generators for clustering (Handl and Knowles 2005b; Iglesias et al.

2019; Qiu and Joe 2006a; Pei and Zäıane 2006; Pedregosa et al. 2011) with

varying levels of complexity and capability. A primary focus of this thesis is

the design of a synthetic data generator, named HAWKS4, that optimizes (also

using evolutionary algorithms to generate a population of datasets) the datasets

themselves according to different measures that correspond to a particular type

of difficulty.

The use of a synthetic generator to produce diverse datasets requires setting

a range of parameters to produce these differences. If the desire is to compare

the behaviour of clustering algorithms directly, it may not be known a priori

which parameters are relevant to teasing out the differences between the algo-

rithms. Therefore, directly producing datasets that maximize the difference in

performance between these algorithms can facilitate the discovery of weaknesses,

enabling deeper insights into the algorithms.

1.3 Thesis contributions

The main contributions of the thesis are stated more precisely as follows:

1. The development of a synthetic data generator that enables the parameter-

ization of different cluster properties in order to modify the difficulty of the

datasets (Chapter 5).

2. The comparison of existing synthetic data generators for clustering in terms

of the diversity of these datasets, measured by performance across a range

of clustering algorithms (Chapters 5 and 6).

3. The visualization of these datasets on an instance space using a set of

informative features that describe different problem characteristics, in order

to illustrate their diversity (Chapter 6 — Section 6.2).

3Such as the UCI machine learning repository (Dheeru and Karra Taniskidou 2017), though
here classification datasets are often used for clustering, which can be misleading (Luxburg,
Williamson, and Guyon 2012).

4Available at https://github.com/sea-shunned/hawks. For further software details, see
Section A.1

https://github.com/sea-shunned/hawks
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4. The identification of areas in this instance space without datasets, and

subsequent generation of datasets with properties to fill this area (Chapter 6

— Section 6.2).

5. The extension of said generator to produce datasets that directly maximize

the performance difference between two clustering algorithms (Chapter 6

— Section 6.3).

6. The creation of a more flexible encoding for evolutionary clustering through

the extension of an existing algorithm (∆-MOCK) to reduce computation

time and the importance of dataset-specific hyperparameterization (Chap-

ter 7).

1.4 Thesis structure

Background on clustering is presented in Chapter 2, where we review different

discussions and definitions for a cluster and cluster analysis as a whole; this is fol-

lowed by discussions on key aspects of clustering (similarity measures, the impact

of dimensionality) as well as different properties that a cluster can exhibit. We

then discuss different types of clustering algorithms and the aforementioned clus-

ter validation techniques to assess the quality of the output of these algorithms.

In Chapter 3 we present background on evolutionary algorithms, with an

initial overview on the different components and the role they play in the opti-

mization, followed by a focus on the importance and caveats when designing a

suitable representation for the problem. We then look at methods for handling

constraints in the optimization, and finally different methods for modifying the

core hyperparameters of the evolutionary algorithm during the optimization.

Following this, Chapter 4 provides a more specific introduction to synthetic

data generation. Therein lies a discussion of the need for synthetic data and

the role it plays in empirical work and, in particular, the algorithm selection

problem. Further discussion is given to synthetic data generators used to create

datasets for clustering, as well as a body of work by Smith-Miles (Smith-Miles

2008; Smith-Miles and Lopes 2012; Smith-Miles and Bowly 2015; Muñoz et al.

2018) which extends the algorithm selection problem framework to evaluate the

diversity of datasets, and thus the development of different methods to generate

more diverse datasets.
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After these background chapters, Chapter 5 will detail our first contribution

in the form of HAWKS, a synthetic data generator that creates controllably com-

plex datasets for more in-depth empirical analysis of clustering algorithms. The

different components and design decisions of the generator will be explained (and

tested where necessary), following a comparison with two other popular genera-

tors to evaluate the diversity of the datasets produced.

In Chapter 6 we further develop this generator, addressing some of the is-

sues identified in Chapter 5. Namely, multiple mutation operators are compared

in order to better converge in higher dimensions. We then use a wider set of

parameters in HAWKS to generate more diverse datasets, comparing against a

wider array of both synthetic and real-world data to evaluate diversity, which

itself is measured using a wider pool of properties. We then extend HAWKS

to more explicitly generate cluster structures that are difficult for particular al-

gorithms. This is achieved by optimizing the performance difference between

two algorithms in order to further understand the strengths and weaknesses of

different approaches.

Our final contribution is presented in Chapter 7, where we discuss our improve-

ment to a state-of-the-art evolutionary clustering algorithm, ∆-MOCK. Here, we

integrate self-adaptation into ∆-MOCK to create a variant, Adaptive-MOCK, in

order to address its biggest weakness: scalability. We then use datasets from

HAWKS and our instance space from Chapter 6 to try and better ascertain

the differences between our modifications to understand where ∆-MOCK and

Adaptive-MOCK struggle to find the right cluster structure.

Finally, Chapter 8 summarizes the main conclusions of this thesis and outlines

future research directions resulting from our work.

1.5 Publications

The work presented in this thesis has resulted in the following publications:

Shand, Cameron et al. (2018). “Towards an adaptive encoding for evolutionary

data clustering”. In: Proceedings of the Genetic and Evolutionary Computation

Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. ACM, pp. 521–

528. doi: 10.1145/3205455.3205506.

http://dx.doi.org/10.1145/3205455.3205506
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Shand, Cameron et al. (2019). “Evolving controllably difficult datasets for clus-

tering”. In: Proceedings of the Genetic and Evolutionary Computation Confer-

ence, GECCO 2019, Prague, Czech Republic, July 13-17, 2019. ACM, pp. 463–

471. doi: 10.1145/3321707.3321761.

It should be noted that Chapter 5 is an expanded version of Shand et al.

(2019), which was nominated for a Best Paper award at GECCO 2019, and

Chapter 7 is an expanded version of Shand et al. (2018).

http://dx.doi.org/10.1145/3321707.3321761


Chapter 2

Background: Cluster Analysis

This chapter introduces the fundamentals and challenges of cluster analysis to

provide the necessary background for the work we explore in Chapters 5 and 6.

We look at what cluster analysis is (Section 2.1) and the difficulty of defining

what a cluster is (Section 2.1.2), the process of cluster analysis and the nature

of similarity (Section 2.2), the properties we could consider for defining clusters

(Section 2.3), the different types of clustering algorithms (Section 2.4), and finish

with a discussion of how the quality of clusters can be quantified (Section 2.5).

2.1 What is cluster analysis?

The process of cluster analysis (synonymously referred to as clustering) is a natu-

ral one: given a set of objects, it is common to try and group together objects that

are more similar to each other than they are to other (groups of) objects. These

groups are generally referred to as clusters. For our purposes, these objects are

data points. In this section, we provide a formal definition of clustering, followed

by a discussion of the various arguments and definitions of what a cluster actu-

ally is, providing context to more broadly to define cluster analysis, thus laying

the foundations before we both quantify and visualize different cluster properties

later in this chapter.

2.1.1 Formal definition

In this thesis, we focus on a sub-domain of clustering where the input is a finite

set of data points, and the output is a clustering (or partitioning) of those points.

33
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A D-dimensional dataset, X, consists of N data points, i.e. X = (xi)
N
i=1. For a

data point x ∈ X, x = [x1, x2, . . . , xD]. A clustering, C = {C1, C2, . . . , CK} of X

is a partitioning of X into K disjoint subsets, i.e.
⊔K
k=1Ck = X. The size of each

cluster is represented by its cardinality, i.e. |Ck| is the number of data points in

the kth cluster.

A distance function (or metric), d(·, ·), defines a distance between two data

points. By definition (Schweizer and Sklar 1960), a metric is:

1. Symmetric d(x1,x2) = d(x2,x1)

2. 0 when the data points are identical d(x1,x1) = 0

3. Adheres to the triangle inequality d(x1,x2) ≤ d(x1,x3) + d(x2,x3)

where x1, x2, and x3 are three arbitrary data points. As a result of these prop-

erties, distances are non-negative.

We then define a general clustering function that, given a dataset X and

distance function d, outputs a partitioning (Ackerman, Ben-David, and Loker

2010). Throughout this thesis, clustering algorithms (irrespective of mechanistic

differences) take this form of clustering function. Although we focus in this thesis

on having individual data points between which we can calculate a distance, it is

important to note that in general this is not a requirement for clustering, and that

the input may be the dissimilarities between points which is then used to identify

clusters, with or without knowledge of the original data points themselves.

2.1.2 What is a cluster, really?

From our previous definition of clustering, a single cluster represents a group of

similar points. Discussions of what ‘similar’ could mean aside (which we discuss

further in Section 2.2.1), for some applications/data a cluster can represent a

single concept (such as a group of patients with high blood pressure), yet this

is still a loose and impracticable definition. How these clusters emerge from the

data is itself debated; Jain (2010) argue that clusters are natural groupings of

points inherent in the structure of the data, whereas Luxburg, Williamson, and

Guyon (2012) argue that the clusters themselves are a direct consequence of the

application. Hennig (2015) extends this argument philosophically to question the

very nature of truth (natural vs. constructed) and the inherent limited observation

capabilities of humans.
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Using image clustering as an example, it is easy to understand how many

different valid sets of clusters can be created depending on the purpose, in support

of both interpretations above. For the same data, there can be different sets of

clusters depending on the goal and thus notion of similarity. For example, a

group of images may be clustered based on their chromatic similarity, or on the

similarity of their contents (such as grouping together images of the same animal).

Through this lens, these sets of clusters are both inherent to the data and to the

application. Thus, irrespective of shape or other properties that we discuss later,

navigating a multitude of arguments we can denote a cluster as a group of points

that are similar, and the definition of this similarity is paramount to the clusters

that are produced.

One clear point from this discussion is the need for real-world applications of

clustering to have a defined purpose with a clear aim. The aim of cluster analysis

supports both defining what the cluster is and how they should be quantified.

For example, using clustering for exploratory data analysis aims to find patterns,

where clusters represent a distinct statistical pattern. This in turn narrows the

set of potential measures to quantify these clusters (Hennig 2015). It is important

for the aim to be established a priori, in order to use appropriate measures for

both the clustering itself and subsequent evaluation.

The subjectivity of what constitutes a cluster and thus the difficulty of this

definition becomes clear when attempting to visually identify cluster member-

ship. By way of example, Figure 2.1a shows three well-separated clusters (this

should be unequivocal). When examining why these are distinct clusters, post-

rationalizations will make reference to properties such as the clear separation

or density of points, but humans have instinctual pattern recognition that does

not consciously and explicitly evaluate such properties (Bowker and Star 2000;

Everitt et al. 2011; Handl and Knowles 2007; Jain, Murty, and Flynn 1999).

This is exemplified in Figure 2.1b, which presents a more challenging problem

such that our intuition begins to falter (and thus subjective opinions on cluster

boundaries diverge). The data in this example are anonymized locations of crimes

taken from UK Police (Garza-Fabre, Handl, and Knowles 2017). More conscious

analysis is required to ascertain the cluster boundaries, and the unclear nature

of the clusters results in ambiguity of the cluster membership for (importantly)

the points on the borders of clusters. The actual clusters (as defined by the

source) can be seen in Figure 2.2. This example illustrates that, even when easily



36 CHAPTER 2. BACKGROUND: CLUSTER ANALYSIS

(a) Three well-separated clusters

(b) Complex real-world data

Figure 2.1: Examples of clustering datasets, with a simple three-cluster synthetic
example (a), and a more complex real-world example (b).

visualizable, the multiple criteria and considerations of what constitutes a cluster

become difficult for humans in spite of our innate ability at identifying them.

A lot of real-world data complicates this issue as it extends beyond visualiz-

able dimensions, limiting the ability of humans to evaluate both the data and any

clusters produced by algorithms without potential loss of information (through

e.g. projection). As such, verification of clusters produced by clustering algo-

rithms relies on some quantifiable assessment and/or domain expert evaluation

(if available). In Section 2.5 we discuss different approaches to making such

assessments.

2.1.3 Defining cluster analysis

There has been research that has attempted to better define the task of cluster

analysis. These axiomatic approaches to formalizing clustering have tried to

address the ill-defined nature of the problem, and as a result highlighted the

impossibility of an all-encompassing clustering approach, showing the inherent

trade-off in clustering as a task. Kleinberg (2002) formulated the impossibility

theorem, showing that no clustering function (a function that takes the data as

input and outputs a partitioning of this data) was able to satisfy three simple
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Figure 2.2: The same real-world example (as Figure 2.1b) with the actual struc-
ture shown.

properties:

1. Scale invariance — scaling of the similarity function must not change the

partitioning.

2. Richness — the clustering function must be able to output every possible

partitioning.

3. Consistency — the output must be the same if a different distance function

that shrinks intra-cluster and expands inter-cluster distances is used.

These properties are later extended in Ackerman, Ben-David, and Loker (2010)

to create a wider set of properties that can be used to guide the choice of cluster-

ing approaches for a given task. This is achieved through the addition of other

properties, such as order invariance (where the ordering of pairwise distances be-

tween points must remain under a different distance function), and the relaxation

of previous properties, such as the use of inner and outer consistency to separate

the consistency of intra- and inter-cluster distances.

Hennig (2015) lists potential characteristics of clusters that may be desirable

in order to better identify what it is that cluster analysis approaches are trying to
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define, but even within these characteristics there are multiple perspectives (such

as the desire that “between-cluster dissimilarities should be large” and the myriad

of ways to measure this may not completely agree). Ultimately, however, there is

no unique formal definition of clustering (Adolfsson, Ackerman, and Brownstein

2019), though this may not be problematic, as evidenced by the utility and many

applications of clustering as a method for data analysis.

We can look at common approaches to clustering to better identify what is

broadly understood to be involved. If we observe the output of clustering algo-

rithms, each data point is assigned to a cluster (akin to the clustering functions

above) and therefore produces a partitioning. There are different types of output,

however. For hard or crisp clustering, each data point is assigned membership

to a single cluster, though in fuzzy or probabilistic clustering a data point can

belong to multiple clusters (with different weights or probabilities). In this thesis,

we focus on hard clustering.

2.2 Measuring clusters

In the previous section we discussed some different perspectives on what consti-

tutes a cluster and the problem of clustering as a whole. In this section, we will

look both more quantitatively and practically (through visualization of different

cluster properties) to better understand cluster analysis.

Moving away from the formal definition of cluster analysis, we can instead

look at the general steps or components, offering a practical perspective to the

task. For this, Handl, Knowles, and Kell (2005) describe three main steps of

cluster analysis, which are a condensed version of that outlined in Jain, Murty,

and Flynn (1999):

1. Pre-processing : this includes feature selection (to make the similarity be-

tween features clearer), dimensionality reduction (integrated with feature

selection, but more specifically to avoid the curse of dimensionality, which

we discuss below), and the selection of a similarity measure.

2. Clustering : the actual selection of both the clustering algorithm and ap-

propriate hyperparameters. This will be discussed in Section 2.4.

3. Validation: the evaluation of the resulting set of clusters, which can then

feedback into the pre-processing and/or clustering stages. This will be
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discussed in Section 2.5.

2.2.1 Pre-processing

The aim of this step is to better facilitate the discovery of clusters further down-

stream. This is achieved through methods such as feature selection (to reduce the

dimensionality, remove uninformative or noisy features etc.) or feature extraction

(combining features together through projection/embedding).

A key reason to reduce dimensionality is to make the similarity of data points

clearer through avoiding the curse of dimensionality. In this phenomenon, the

distances between disparate data points become increasingly similar as the di-

mensionality increases, so as D → ∞ all data points become equivalent nearest

neighbours (Bellman 1966; Beyer et al. 1999). This results in distance functions

losing their efficacy at identifying clusters in higher dimensions. Kriegel, Kröger,

and Zimek (2009) and Houle et al. (2010) provide further insights to the different

causes and effects of this “curse”, namely the distinctions between the number of

relevant features, and the local relevance of these features (distinct subsets of the

features may be relevant for subsets of the data, reducing the efficacy of global

feature reduction methods). As a result, although higher dimensionality is likely

to increase the difficulty in clearly identifying clusters (due both to an increasing

similarity in distances between points, and the number of irrelevant features),

it is dependent upon the data and not a universal truth (Fränti and Sieranoja

2018).

A famous dimensionality reduction method is principal component analysis

(PCA), which projects the data onto orthogonal dimensions that maximize the

variance (Dunteman 1989). Although useful and with wide prevalence, this ap-

proach is not well-suited for non-linear cluster structures or for outliers (Huber

1985). PCA has also been used and recommended as a quick method of identi-

fying whether there is cluster structure within the data (Varmuza and Filzmoser

2009). More recent approaches such as t-SNE (Maaten and Hinton 2008) and

UMAP (McInnes and Healy 2018) may be more suitable in reducing the dimen-

sionality of more complex data while preserving the structure, which is paramount

in order to identify clusters that are present in the data, and not an artefact of

the reduction technique.
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Measuring similarity

It is important to identify a measure of similarity, as it must be selected such

that it allows for the identification of clusters within the data. Beyond obvious

selections based on the type of data (e.g. numerical/categorical), the choice of

similarity measure is a difficult yet vital task. The selection may be informed by

intended algorithm, e.g. the use of Euclidean distance with K-Means (Jain 2010).

The use of distance metrics (as defined in Section 2.1.1) is intuitive and natural

for many applications of clustering (Jain, Murty, and Flynn 1999).

We further explain the importance of similarity measures by way of analogy.

Generally, human settlements may be grouped into neighbourhoods (clusters).

Only in sparsely populated, rural environments will such neighbourhoods be eas-

ily distinct, as opposed to urban environments where most neighbourhoods are

interconnected over varying population/building densities. The decision on where

to draw the distinction between separate neighbourhoods represents the distance

threshold for cluster delineation i.e. a minimum degree of similarity. A natural

way to measure the similarity between objects is the distance between them, of

which the most common is the Euclidean distance. We could instead consider

a conceptual similarity of neighbourhoods based on their features (landscape,

building type, fauna etc.), but here we consider distance. We expect that ob-

jects (buildings) in the same neighbourhood to be much closer to each other than

to objects in different neighbourhoods, but this typically occurs over a gradient

(representing gradual, rather than step, changes in building density). Ignor-

ing considerations about where in these neighbourhoods to measure the distance

from, if we look at the distance measure itself there are further decisions: is

the distance a straight point-to-point, or is it measured based on travel distance

(which itself can vary by the mode)? As a consequence of such subtleties, there

are numerous such measures (Anderberg 1973; Everitt et al. 2011; Jain, Murty,

and Flynn 1999).

A common distance metric known as the Minkowski distance is defined for

two data points, x and x′, as follows:

d(x,x′) =

( D∑
i=1

|xi − x′i|q
)1/q

(2.1)
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(a) q = 1 (b) q = 2 (c) q = 3

Figure 2.3: Voronoi diagrams of the Minkowski distance with different values for
the order of the norm (q).

where q is a configurable parameter, such that setting q = 1 results in the Man-

hattan distance and q = 2 results in the Euclidean distance. The effect that q can

have is shown in Figure 2.3, which shows a Voronoi diagram for q ∈ {1, 2, 3}. The

coloured cell around a marked point identifies the area that is closest to that point

according to that similarity measure (and thus a potential cluster boundary). Af-

ter an initial area that is undoubtedly closest to a particular point, we can see

that even different parameters for the same similarity measure result in quite dif-

ferent neighbourhoods/possible boundaries for a cluster around that point. Other

distance functions may affect the boundaries more significantly, highlighting the

importance of the distance function for discovering cluster structure.

Not all similarity functions are distance-based, however. A commonly-used

similarity measure is the cosine similarity, which measures the angle between two

vectors. However, some similarity measures (including the cosine similarity, which

violates the triangle inequality) are not proper metrics (Korenius, Laurikkala, and

Juhola 2007; Schweizer and Sklar 1960) and thus may not be wholly suited for

clustering. Despite this, cosine similarity has seen extensive use in the field of

information retrieval (Han, Kamber, and Pei 2011). Regardless of which type

of similarity function is used, it can then be incorporated into the clustering

algorithm to determine cluster membership. As we previously discussed, however,

the choice of similarity measure should align with the intended aim of the cluster

analysis and the intended similarity between objects in a cluster.

Having identified which points belong to the same cluster according to their

respective similarity, a complete partitioning is created. The quality of this parti-

tioning can then be validated (Section 2.5), the results of which can then be used
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(a) Compactness (b) Connectedness (c) Separation

Figure 2.4: Cluster property categories (reproduced from Handl, Knowles, and
Kell [2005]).

to feedback and adjust the feature selection/extraction methods, or algorithmic

parameters.

2.3 Cluster properties

In this section we explore different properties that can define a cluster, which can

in turn help formulate criteria that can be used within clustering algorithms, or

when assessing the validity or quality of clusters (Section 2.5).

Generally, these properties (and their various mathematical formulations)

form the objective that clustering algorithms seek to optimize, and as such these

properties can be used to categorize both the measures (also referred to as “clus-

tering criteria”) and algorithms. Handl, Knowles, and Kell (2005) identified a

broad categorization of these properties, illustrated in Figure 2.4: compactness,

connectedness, and spatial separation.

Compact clusters contain members that are all close to one another and there-

fore also close to a global representative of these points (such as the centroid).

As a result, these clusters are generally (hyper-)spherical and algorithms that use

these measures (such as K-Means, which we outline in the next section) are less

effective when the cluster shapes are more complex.

Connectedness is a property that looks at the proximity of points to their

nearest neighbour(s), rather than all members of a cluster simultaneously. This

can enable detection of non-convex cluster structures, but can be susceptible

to outliers or when there is little separation between clusters. Density-based

algorithms fall into this category as density demands close proximity between

nearest neighbours (Ankerst et al. 1999), as well as algorithms that look at clusters

with respect to distances between a subset of points, such as single-linkage (Sibson
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(a) Size/density (b) Outliers (c) Overlap

Figure 2.5: Challenging cluster properties

1973). In Figure 2.4b, some objects that are clearly part of the same cluster are

further from each other than they are to objects in the other cluster, highlighting

the “chaining” effect of these connected points. Generally, clusters that are quite

elongated (or eccentric) would be highly connected, but not compact.

In the original categorization, spatial separation is noted to be a useful prop-

erty in the presence of other criteria, such as a measure of cluster sizes or densities,

as by itself it can be a näıve measure. Whereas compactness looks at intra-cluster

similarity between all objects in a cluster, the spatial separation looks at inter-

cluster similarity. Although the compactness and connectedness differ in the res-

olution at which they look (with compactness considering the cluster as a whole

and connectedness looking at a local neighbourhood), the resolution of spatial

separation may vary depending on how this separation is measured. The inter-

cluster separation may be measured using neighbouring clusters (e.g. looking at

the distance between the closest two clusters) or the average distance between a

cluster and all others. As such, these measures can range from effectively mea-

suring the distance between the two closest data points from different clusters,

to the average distance between all data points of different clusters. Clearly, this

property is more loosely defined that the compactness and connectedness, hence

the original authors noting that it “is usually combined with other objectives”

(Handl, Knowles, and Kell 2005).

These three categories can be put further into context when we consider other

related properties, illustrated in Figure 2.5. Large differences in cluster densities

can cause problems for clustering algorithms, such as the scenario illustrated in

Figure 2.5a where it may be favourable (in terms of the criteria used by the

algorithm) to consider the small cluster as part of the larger one. The density

of clusters (or lack thereof) can play an important role in identifying cluster
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boundaries; the two clusters shown are both compact, yet could be challenging to

separately identify using a compactness-based measure or algorithm. Similarly,

clusters of vastly different sizes can result in smaller clusters being numerically ir-

relevant during the optimization when using measures that average across objects

(such as the silhouette width which we discuss later in Section 2.5.1).

Similarly, outliers can be difficult to detect as it may not be clear at which

point objects no longer belong to the cluster and are therefore considered to be

outliers (Figure 2.5b). For algorithms that primarily consider connectedness, this

can be identified through e.g. a distance threshold that defines the neighbour-

hood around objects to limit the connectedness, such that disconnected points

are outliers. Appropriate parameterization of this threshold is paramount to per-

formance, but without knowledge of the true cluster membership it is a significant

challenge.

A lack of separation can result in an overlap of clusters (Figure 2.5c), which

can result in the underlying cluster structure being irrevocably lost. As we explore

later in Section 5.1.3, there are different ways of identifying when points overlap,

but visually at least this is easy to identify. Data that exhibits high levels of

overlap cannot be clustered, but robustness to low amounts of overlap (where

a small number of points from different clusters are in close proximity) varies

between algorithms and is a challenge that needs consideration for complex data.

As previously discussed, the multitude of properties that could define similar-

ity and therefore a cluster make enumeration of potential properties difficult. The

properties discussed in this section are intuitive, however, and used extensively

in the literature. They are therefore useful to consider later in this thesis when

we try to analyze the expected difficulty of datasets based on its clusters.

2.4 Clustering approaches

Referring to the second step of cluster analysis in Section 2.2, we need an actual

clustering algorithm itself to assign cluster membership to the data points. There

have been various categorizations of clustering algorithms, depending on whether

the representation of the clusters is being categorized e.g. hierarchical against

partitional (Jain, Murty, and Flynn 1999), or the approach is categorized between

e.g. “combinatorial” (looking at the observed data only) vs. model-based (Hastie,

Tibshirani, and Friedman 2009).
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The literature for clustering algorithms is vast, and is covered well in various

texts (Duda, Hart, and Stork 2001; Everitt et al. 2011; Han, Kamber, and Pei

2011; Hastie, Tibshirani, and Friedman 2009; Jain, Murty, and Flynn 1999; Jain

2010). We describe a few commonly-used clustering algorithms that we will use in

Chapters 5 and 6, as an understanding of these algorithms is needed to interpret

the results in those sections, as well as some other popular algorithms for context.

2.4.1 Partitional clustering

Partitional clustering algorithms create a single partitioning, optimizing a partic-

ular clustering criteria (Jain, Murty, and Flynn 1999). As a single set of clusters

is produced, a common issue with this category of approaches is that the number

of clusters (K) is typically required as input to the algorithm. K-Means is a

popular algorithm in this category that suffers from the need to set K a priori,

when it is often unknown. In Section 2.5.2 we discuss several methods for trying

to estimate K with these approaches, but there is no definitive method for this.

It should be noted that “K-Means”, a term introduced in MacQueen (1967),

more generally refers to the process of trying to partition a group of data into K

sets, and there are multiple algorithms for this. The main variants are: ‘Lloyd’

(Lloyd 1982), ‘MacQueen’ (MacQueen 1967), and ‘Hartigan-Wong’ (Hartigan and

Wong 1979). The nuanced differences between these are beyond the scope of this

thesis; further details can be found in Morissette and Chartier (2013). Through-

out this thesis, we generally refer to this approach as the K-Means algorithm for

simplicity.

At its core, there are two main steps to K-Means: an assignment and update

step. As noted by Bishop (2007), these two steps are synonymous with the expec-

tation and maximization steps of the expectation-maximization (EM) algorithm

(which we will further discuss later). Following the generation of an initial set

of K cluster seeds (or, K “means”), which in the original formulation of this

approach are randomly created, in the first step each data point is assigned to its

closest seed. The second step then updates the initial seeds to become centroids

(the average point in space of the assigned data points) to include the newly

assigned data points. These two steps are repeated, iteratively updating the as-

signment of data points to the closet centroid and then updating the centroids

themselves, for either a pre-defined number of iterations or until there is no fur-

ther change in cluster assignment. Both of these steps serve to find the partition
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that (locally) minimizes the objective function for K-Means, which is defined as:

arg min
C

K∑
k=1

∑
x∈Ck

‖x− µk‖2, (2.2)

where C = {C1, . . . , CK} is the set of K clusters, and ‖x−µk‖2 is the (Euclidean1)

distance between the data point x and the centroid µk of the kth cluster (Han,

Kamber, and Pei 2011). The greedy nature of K-Means results in it converging

to local optima, and is therefore dependent on the initial location of the seeds.

To alleviate this, Arthur and Vassilvitskii (2007) introduced K-Means++, where

the initialization scheme ensures a wider distribution of the initial seeds across

the input space to avoid situations such as dense clusters starting with two (and

thus splitting the cluster). This is achieved by iteratively selecting seeds with a

weighted probability such that the data points which are furthest from existing

seeds are selected. Another popular strategy is to attempt multiple random ini-

tializations and select the best assignment (in terms of minimizing Equation 2.2),

though this can also be used with K-Means++.

Owing to the initialization issue, the need to specify K, and the bias of the

intra-cluster variance towards compactness, K-Means is applicable to a narrow

range of cluster structures. However, the commonality of these structures along-

side the computational speed (and ease of implementation) is such that the al-

gorithm has been widely used (Everitt et al. 2011; Han, Kamber, and Pei 2011;

Jain, Murty, and Flynn 1999).

Gaussian mixture models (GMMs) are another popular approach to clustering

that we use later in this thesis. GMMs provide (in the context of clustering) a

probabilistic way to model clusters via a combination of Gaussian distributions.

We write the mixture distribution of K Gaussians as:

p(x) =
K∑
k=1

πkN (x|µk,Σk), (2.3)

where µk, Σk, and πk are the means, covariances, and mixing coefficients for

the K distributions. The EM algorithm (Dempster, Laird, and Rubin 1977)

is an iterative method for finding the maximum likelihood, which in the case of

GMM is used to optimize these three parameters (means, covariances, and mixing

1K-Means can use other distance measures, but its canonical definition uses the Euclidean
distance (Jain 2010).
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coefficients). As with K-Means, the initialization of the parameters influences

both the final results and the computation required to converge (to a local, not

global, maximum). As GMM requires more computation than K-Means, these

parameters are typically initialized using a single run of K-Means. Note that this

is the case with the implementation available in Pedregosa et al. (2011) that is

used in this thesis. For further details on initialization methods for GMMs, see

Melnykov and Melnykov (2012).

As noted by Bishop (2007), we can directly relate GMM to K-Means by fixing

each covariance matrix to εI, where ε is a fixed constant and I is the identity

matrix. As ε → 0, maximizing the log likelihood is equivalent to the minimiza-

tion of Equation 2.2 for K-Means, and we obtain a hard assignment of cluster

membership.

There have been several other extensions/modifications to K-Means, from

modifications to the initialization (such as the aforementioned K-Means++) to

modifications of the distance function used such as kernel K-Means (where the

use of a kernel permits extraction of cluster that are non-linearly separable),

and K-Medoids (where data points are used as the centroids, limiting the set of

possible centroids). The latter is particularly useful when using other distance

functions Bishop (2007).

Other popular partitional clustering algorithms include spectral clustering,

which uses the eigenvalues of the similarity matrix to then partition the data,

often outperforming K-Means (Luxburg 2007). DBSCAN (Ester et al. 1996) is a

density-based algorithm that categorizes points based on how many other points

are within a pre-specified distance, which advantageously enables handling of

noise and mixed densities, though is highly sensitive to the definition of the

neighbourhood (Kriegel et al. 2011).

2.4.2 Hierarchical clustering

A primary use of clustering is to explore the structure of data, and as such not

only is the “optimal” K unknown, but analyzing cluster structure across a range

of K could prove beneficial. A common example is a biological taxonomy, where

different resolutions of clusters may wish to be explored without loss of meaning

(e.g. species can be members of different clusters, yet at the genus-level they

belong to the same cluster; Ward Jr [1963]).

Hierarchical clustering methods enable this by constructing a dendrogram that
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(a) Example dataset (generated
by HAWKS)

0

1

2

3

4

5

Di
st
an

ce

(b) Full dendrogram

Figure 2.6: Example dataset (a) and its accompanying dendrogram, using
average-linkage (b).

groups the data at different levels which correspond to a different number of

clusters. This dendrogram can be constructed in full (ranging K from 1 to N)

or to a specified K only. Figure 2.6 shows an example dataset and corresponding

dendrogram, where we can see the different splits corresponding to the cluster

structure shown.

Hierarchical clustering algorithms construct the dendrogram using one of two

approaches: bottom-up/agglomerative or top-down/divisive (Rokach and Mai-

mon 2005). In the former, each data point begins in a cluster by itself and the

clusters are iteratively merged until every point is in a single cluster. In the latter,

all data points begin in a single cluster and are iteratively split until each cluster

is a single data point.

Clusters are either merged or split using a criterion (which varies between algo-

rithms), which itself uses a similarity measure. There are three canonical linkage

algorithms that utilize a different criterion, illustrated in Figure 2.7. Single-

linkage considers the distance between two clusters as the shortest distance from

any member of one cluster to any member of another cluster (or, more generally,

the two most similar members). Conversely, complete-linkage defines the distance

between two clusters as the maximum distance of any member of one cluster to

another (Jain, Murty, and Flynn 1999; Kaufman and Rousseeuw 1990). Average-

linkage takes the average distance between every member of both clusters. These

three methods are illustrated in Figure 2.7. At each step, a single merge (or split)
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(a) Single-linkage (b) Complete-linkage (c) Average-linkage

Figure 2.7: Illustration of three methods for selecting which two clusters to merge
in agglomerative hierarchical clustering. The lines indicate which distance(s) are
considered as the distance between the two clusters.

of the two identified clusters is performed until the desired number of clusters is

obtained.

Typically, agglomerative clustering is favoured over divisive due to its sim-

plicity when choosing which pair to merge or split on (Edwards and Cavalli-

Sforza 1965), although this computation is repeated many more times as typi-

cally K << N , i.e. the number of clusters is much lower than the number of data

points (Duda, Hart, and Stork 2001; Walter et al. 2008). For a lower K, with

the added motivation of the inherent greedy nature of hierarchical clustering,

divisive methods can produce better clusters (Guénoche, Hansen, and Jaumard

1991; Macnaughton-Smith et al. 1964).

2.5 Cluster validation

The final step of cluster analysis (as outlined in Section 2.2) is validating the

output of a clustering algorithm. The validation (or assessment) of a given par-

tition is paramount to determining the performance of the algorithm, but the

inherently unsupervised and subjective nature of clustering makes this difficult.

This section discusses some of the major approaches used for cluster validation,

namely: cluster quality/validity measures, evaluation of the “correct” number of

clusters, and statistical tests for cluster structure.

2.5.1 Cluster validity indices

To assess the quality or validity of a cluster, we require explicit mathematical

formulation of one (or more) cluster properties (Section 2.3) in order to provide a

quantitative answer to the question “how good are these clusters”? Each measure,

or cluster validity index, formulates one or more of the properties in different ways,
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providing different answers to this question. Luxburg, Williamson, and Guyon

(2012) note that “A unique, global, objective score for all clustering problems

does not exist”, summarizing both the difficulty of this task and motivating the

need for using multiple such measures. There are two types of indices: internal

and external. Commonly used methods for each type are discussed below.

Internal validity indices

Internal validity indices use information inherent to the data, such as the max-

imum distance between two points that have been assigned to the same cluster.

As previously discussed, these measures each take into account a subset of cluster

properties and thus cannot capture the full spectrum of cluster quality. The sub-

stantial number of indices prohibit their description here; for more information of

these measures see Arbelaitz et al. (2013). Of particular note is that this study

compared 30 validity indices in multiple environments and concluded that no sin-

gle index was clearly superior, and some were more useful for different scenarios

(such as the amount of noise).

Silhouette width Owing to its importance in Chapter 5, the silhouette width

(Rousseeuw 1987) is fully defined here. Conceptually, it considers aspects of

intra-cluster compactness and inter-cluster separability. Silhouette width values

are in a well-defined range, [−1, 1], that is comparable across datasets of similar

dimensionality. A value of 1 represents very compact and well-separated clusters,

whereas a negative silhouette width value indicates that points in different clusters

are not well-separated (and that their cluster membership should be changed).

The silhouette width for a single data point, xi, is defined as:

s(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
(2.4)

where

a(xi) =

∑
xj∈Ck

d(xi,xj)

|Ck|
; xi 6= xj; xi ∈ Ck; Ck ∈ C, (2.5)

b(xi) = min
Ck∈C

∑
xj∈Ck

d(xi,xj)

|Ck|
; xi /∈ Ck (2.6)
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where |Ck| is the kth cluster’s cardinality and d(xi,xj) is the distance between

data points xi and xj. Here, a(xi) represents the cluster compactness (with

respect to xi) and is the average distance from xi to all other data points in its

cluster. The second term, b(xi), represents the separation between clusters; for

data point xi this is defined as the minimum of the average distances to all data

points in every other cluster. The silhouette width is calculated for all N data

points in dataset X, and an average value is taken to obtain the overall silhouette

width:

sall =
1

N

∑
x∈X

s(xi). (2.7)

Other notable cluster validity indices are the Davies-Bouldin index (Davies

and Bouldin 1979), and the Dunn index (Dunn 1973). The Davies-Bouldin in-

dex provides an average similarity between each cluster and its most similar one,

where lower values indicate a better clustering (note that while zero is the mini-

mum, there is no defined maximum). The Dunn index provides a measure of the

ratio between the minimum distance between points in different clusters com-

pared to the largest distance within a cluster, thus directly incorporating more

information about all clusters simultaneously.

These three (silhouette width, Davies-Bouldin index, and Dunn index) inter-

nal indices are measures that represent a ratio between cluster compactness and

(inter-cluster) separation, with different formulations to calculate this ratio. As

noted both by Bezdek and Pal (1995) and Bolshakova and Azuaje (2003), some

components in these formulations can be modified to give different variants of

these indices (the former work proposed a set of “generalized Dunn indices”).

Their formulation as a ratio, however, provides some utility over measures that

just consider the separation or compactness separately, yet expression as a sin-

gular value can result in information loss (Handl, Knowles, and Kell 2005).

The use of ratios is not required, however, as many popular indices con-

sider only one of the three properties (compactness, connectedness, and separa-

tion). The aforementioned K-Means method uses the intra-cluster variance, a

compactness-based measure, for which many other variants (taking the square

root, using the medoid instead of centroid etc.) can be derived (Bezdek and

Pal 1998). There are fewer properties for measuring the connectedness, though

examples include the “connectivity” (Handl and Knowles 2007) and “k-nearest

neighbour consistency” (Ding and He 2004) to capture the cluster assignment of
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nearest neighbours. Measuring the separation shares similarities with the com-

pactness, in that a few number of decisions (which data points from clusters

should be used in the measure, the use of an average or maximum/minimum

etc.) can combine to create many related measures. For a more complete enu-

meration and discussion of internal validity indices, see Arbelaitz et al. (2013).

External validity indices

External validity indices require a ground truth so that the cluster assignment

can be evaluated directly. Generally, these indices produce a value that can be

used to compare the validity of partitions from different algorithms and/or for

different datasets.

As previously discussed, cluster labels are useful insofar as they represent the

cluster structure for the intended application i.e. they are indubitable. Luxburg,

Williamson, and Guyon (2012) argue that it is an assumption that the class labels

coincide with cluster structure, which refers back to the example of clustering im-

ages producing different results based on the end-goal. The provided labels need

to match the application in mind for these external indices to provide relevant

information. For synthetic data, the labels correspond to the underlying generat-

ing mechanism and are thus sound. For the real-world data we use in this thesis,

we assume that the labels are appropriate, and are therefore applicable to use

with these external measures.

Meilă (2007) showed through analysis of the popular external validity indices

that the presence of desirable properties (such as invariance to the number of

data points and a bounded value comparable across datasets) varied and that, as

with internal indices, an index cannot have all desirable properties and thus be

universally applicable. Despite using the labels, external validity indices do not

necessarily offer a completely unbiased or unequivocal measure of cluster quality

due to e.g. assumptions in the null hypothesis (Meilă 2007), though steps (such

as normalizing with the expected value on random data) can be taken to reduce

bias (Handl, Knowles, and Kell 2005; Hubert and Arabie 1985).

Adjusted Rand Index (ARI) An adjustment of the popular Rand Index in

Hubert and Arabie (1985) to create the Adjusted Rand Index (or ARI), corrected

for chance such that random data results in a score of 0. This is an example of

attempts to correct for some bias in these measures (yet still deficient as per
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Table 2.1: Contingency table comparing two partitions C and C ′

Partition C ′

Partition C

C\C
′

C ′1 C ′2 . . . C ′s Sums

C1 n11 n12 . . . n1s n1+

C2 n21 n22 . . . n2s n2+

...
...

...
. . .

...
...

Cr nr1 nr2 . . . nrs nr+
Sums n+1 n+2 . . . n+s

Meilă [2007]), and as a result the ARI is used extensively (Santos and Embrechts

2009). The ARI has an upper bound of 1, where 0 is the expected value for

random cluster assignment, and the maximum value of 1 for completely correct

assignment (Steinley 2004). The lower bound is dependent upon the number

clusters in the clusterings being compared (Chacón and Rastrojo 2020).

Owing to our extensive use of the ARI, we fully define it here. Table 2.1

shows a contingency table comparing two partitions, C = {C1, . . . , Cr} and C ′ =

{C ′1, . . . , C ′s}, where r and s are the number of clusters for each partition. Each

entry in the contingency table is a count of the number of data points in common

between those clusters, i.e. nij = |Ci ∩ C ′j|. The ith row and column sum of the

contingency table are denoted by ni+ and n+i respectively, i.e. ni+ =
∑s

j=1 nij.

The ARI is then calculated as follows:

ARI =

∑r
i=1

∑s
j=1

(
nij

2

)
− [
∑r

i=1

(
ni+

2

)∑s
j=1

(
n+j

2

)
]/
(
N
2

)
1
2
[
∑r

i=1

(
ni+

2

)
+
∑s

j=1

(
n+j

2

)
]− [

∑r
i=1

(
ni+

2

)∑s
j=1

(
n+j

2

)
]/
(
N
2

) (2.8)

where nij, ni+, and n+j are taken from the contingency table (Hubert and Arabie

1985). Although the ARI can measure the similarity between any two partitions,

since it is typically used as an external validity index one of these partitions is

the ground truth.

Measures from supervised machine learning, such as the F-measure (Rijsber-

gen 1979) or mutual information (Romano et al. 2014) can also be used as external

validity indices. The use of these measures can provide a different view of the

quality of the clustering rather than comparing clusters individually from two

clusterings (Handl, Knowles, and Kell 2005).
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(a) Example dataset (generated by
HAWKS)
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(b) Gap statistic for varying K

Figure 2.8: Example of the gap statistic, with the dataset (a) and accompanying
graph (b) used to identify the “knee” that occurs at K = 4, indicating the likely
true number of clusters.

2.5.2 How many clusters are there?

As previously discussed, many clustering algorithms require the number of clus-

ters as an input parameter, whereas typically this is an unknown quantity that

can vary by preference or application (Everitt et al. 2011; Tibshirani, Walther,

and Hastie 2001). The necessity for this is exacerbated when, as is the case with

algorithms such as K-Means, their own objective functions are optimized when

there is one cluster per data point. As a result, using external methods and/or

information to select the appropriate number of clusters is needed.

One method of discovering appropriate values of K is to generate multiple

partitions across a range of K and then compare the performance using an afore-

mentioned validity index, or the gap statistic (Tibshirani, Walther, and Hastie

2001). The “gap” measured is the difference between the within-cluster sum of

squares for the data and a random reference distribution. The use of a compact-

ness measure does bias this method towards compact cluster structures, limiting

its utility (as a gap may not be observed for any K). For data with well-defined

structure, however, the optimal K should create a bend (referred to as a “knee”

or “elbow”) in the graph as separated clusters are initially grouped into a single

cluster with an underestimated K, and split internally into multiple clusters with

an overestimated K.
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Figure 2.8 shows a dataset and the associated gap statistic values for varying

K, where the peak occurring at k = 4 gives a (correct) indication of the true

number of clusters. This approach is useful for finding the most appropriate K

value, which is essential for clustering algorithms such as K-Means that rely on

it. The gap statistic can also be used as a framework: in Bayá and Granitto

(2013), the authors used a similarity measure based on the minimum spanning

tree (MST2) instead of the within-cluster sum of squares to identify “arbitrary-

shaped” clusters, as opposed to purely compact clusters.

Chiang and Mirkin (2010) review multiple different methods that can be used

to estimate the number of clusters, which include the use of the gap statistic

and aforementioned silhouette width. The datasets used in their experiments,

however, are simple synthetic Gaussian data which do not sufficiently examine a

broad enough range of cluster structure to fully compare the differences between

these approaches, limiting the conclusions of their work.

Some clustering approaches can find for themselves an optimal (or range of

good) K values implicitly, without the need for defined measures to estimate

it. In Chapter 7, we introduce evolutionary clustering, a group of methods that

use evolutionary algorithms (Chapter 3) to discover the cluster structure. Owing

to their population-based nature, these methods have the potential to implicitly

generate a population of solutions of different K values, allowing further analysis

or examination by a domain expert to select a single partitioning.

2.5.3 Testing for cluster structure

Most internal methods of validation assume that there is cluster structure to be-

gin with, which can be unknown and difficult to ascertain. The adjustment for

the ARI helps assign a score of 0 to randomly assigned points, but not all mea-

sures have this desirable property. Figure 1.1 showed empirically that clustering

algorithms can identify clusters where none exist, which can be particularly per-

nicious when interpreting results (Handl, Knowles, and Kell 2005; McShane et al.

2002). Thus, statistical tests can be useful to ascertain whether there is structure

in the underlying data and therefore if clustering is likely to produce clusters of

meaning (Adolfsson, Ackerman, and Brownstein 2019). Their use is restricted,

however, as Everitt et al. (2011) note that the statistical power of these tests can

2The minimum spanning tree is the subset of edges that connect all nodes (without cycles)
such that the sum of the weights (distance between points in this case) is minimized.
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be limited. The inherent assumptions of the particular null hypothesis being used

limit the cluster structures that can be detected.

The aforementioned gap statistic does implicitly test for structure, as a ran-

dom reference distribution is used as a baseline (Tibshirani, Walther, and Hastie

2001). If the data has no structure (under the same assumptions as the null

reference distribution, which typically is a simple uniform distribution over the

range of observed values), then no gap is observed for any K (Everitt et al. 2011).

Without some a priori knowledge of the underlying data distribution, misleading

results can be obtained.

Adolfsson, Ackerman, and Brownstein (2019) performed a study of cluster-

ability methods, using both real-world and carefully simulated data to tease out

differences between the approaches. The methods were analyzed through the

lens of three requirements: efficiency, algorithm independence, and effectiveness.

The first requires that the method be computable in polynomial time, such that

they can be reasonably applied to large datasets. The second requirement is that

the approach should not be specific to a particular algorithm, as it would not

be able to identify cluster structure that the algorithm itself could not identify.

The third requirement is that the method itself is effective; that, at the very

least, the method is able to identify the clusterability of datasets for which it is

clear-cut (such as the lack of structure in data drawn from a single Gaussian or

clear structure of two well-separated Gaussians). This work identified clear dif-

ferences between methods, importantly laying the foundations for further work

which has hitherto somewhat lacked study (even though it is an important step

in the pre-processing step of cluster analysis, as outlined in Section 2.2).

2.6 Summary

This chapter provided an overview of cluster analysis, highlighting the different

properties that can be considered when defining and (with difficulty) quantifying

exactly what constitutes a cluster. Some common clustering algorithms were

introduced, followed by a discussion of the different methods that can be used

to validate the resulting clusters from these algorithms, both in terms of their

structure and hyperparameters such as the appropriate number of clusters.



Chapter 3

Background: Evolutionary

Optimization

This chapter outlines single- and multi-objective optimization, describes the gen-

eral components of a genetic algorithm (GA), and covers fields relevant to the

work described later. This includes discussion of the considerations for problem

representation in Section 3.2.1 and how this interacts with the other components

of a GA. A discussion of the different types of constraints and how to deal with

them is given in Section 3.3, which is an important foundation to Chapter 5. Fi-

nally, a discussion of parameter control and tuning is given in Section 3.4, which

plays an important role in Chapter 7.

3.1 Single- and multi-objective optimization

Optimization is the process of finding a solution (x) from a set of solutions (X )

that is the ‘best’ with respect to some criterion formalized as an objective function

(f). Formally, we can define a general optimization problem as:

minimize f(x)

subject to x ∈ X ,

gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(3.1)

where gi are the m inequality constraints and hj are the p equality constraints,

which constrain the possible values that the solution (x) can have. When m =

57
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Figure 3.1: Mapping of non-dominated solutions (•) and dominated solutions (◦)
from the decision space to the 2-dimensional objective space, with the Pareto
front is highlighted by the thicker line ( ).

p = 0, it is an unconstrained optimization problem. A solution, x, consists of l

decision variables i.e. x = [x1, . . . , xl]. The feasible search space, X , is the set

of solutions, where any solution within this space satisfies the constraints and

is the set over which the search is performed. Note that here we have defined

a minimization problem, though this extends to maximization with no loss of

generality (as minimizing f(x) is equivalent to maximizing −f(x)). Our objective

function, f(x), provides a mapping (f : X 7→ R) from our solution/decision space

to our objective space.

Often, there are multiple criteria or objectives that we desire to be simul-

taneously optimized, creating a multi-objective optimization problem (MOOP;

[Emmerich and Deutz 2018]). Here, the definition for an n-objective problem is

similar to the single-objective version shown in Equation 3.1:

minimize (f1(x), . . . , fn(x))

subject to x ∈ X ,

gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(3.2)

where we now have a vector of n objectives that are to be minimized, and a

mapping f : X 7→ Rn to an n-dimensional objective space. Figure 3.1 shows such
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a two-dimensional objective space and the mapping of solutions.

3.1.1 Pareto optimality

For the comparison of solutions with multiple objectives, we use the concept of

Pareto-dominance. For two feasible solutions, x1 and x2, x1 Pareto-dominates x2

(denoted x1 � x2) if x1 is at least equal to x2 in every objective, and better in at

least one objective (Zitzler et al. 2003). If neither solution dominates the other,

then they are non-dominated solutions. Formally, we define Pareto-dominance

(for a minimization problem) as:

x1 � x2 ⇐⇒ fi(x1) ≤ fi(x2) ∀i ∈ {1, . . . , n}

∧

∃ i ∈ {1, . . . , n} : fi(x1) < fi(x2).

(3.3)

A more relaxed version of this is weak Pareto-dominance, where x1 weakly

dominates x2 (denoted x1 � x2) if x1 is at least equal to x2 in every objective,

i.e. x1 � x2 ⇐⇒ fi(x1) ≤ fi(x2) ∀i ∈ {1, . . . , n}.
If there is no solution that dominates x1, then x1 is Pareto-optimal i.e.@x2 ∈

X : x2 � x1. The complete set of Pareto-optimal or non-dominated solutions,

X ′, form the Pareto-optimal set in the decision space, which maps to the Pareto

front in the objective space, thereby representing the full spectrum of trade-offs

between the objectives. Note that it is not always possible to generate the full

Pareto front (Zitzler et al. 2003). In Figure 3.1 we show three non-dominated

solutions across the full Pareto front, alongside the mapping of these solutions

and the two dominated solutions from the decision space to the objective space.

Generally in MOOPs the goal of an optimizer is to find an approximation of the

Pareto front, for which quantifying the quality of the front is a non-trivial task

(see Section 3.2.3 for a more in-depth discussion).

3.1.2 Solving optimization problems

Optimization algorithms used for these problems come in many forms and can be

categorized in many ways, depending on whether they are: gradient-based (such

as gradient descent) or gradient-free (such as the Nelder-Mead method [Nelder

and Mead 1965]); deterministic (hill-climbing) or stochastic (genetic algorithms
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— see Section 3.2); and, population-based (particle swarm optimization [Kennedy

2010]) or trajectory-based (simulated annealing [Kirkpatrick, Gelatt, and Vecchi

1983]). One categorization is of a family of approaches that includes the subject

of this chapter: metaheuristics.

Metaheuristic methods are higher-level frameworks that guide the search pro-

cess, aiming to efficiently explore the search space (but with no guarantee of

finding optimal solutions), and are generally problem-independent but allow for

the integration of domain-specific knowledge (Blum and Roli 2003). Thus they

are suitable for problems where exact methods are not applicable/practical (Talbi

2009). Such problems occur when the landscape is either very complex (reducing

the utility of gradient-based methods) or the search space is very large (e.g. the

travelling salesman problem). When the objective cannot be expressed in ana-

lytical form, and the gradient is therefore unavailable, the problem is referred to

as black-box optimization. Here, the objective function (the black-box) can be

queried, but aside from the resulting output no other information is known about

the function.

As highlighted in Chapter 1, this thesis deals with problems that require

exploration of the trade-off between multiple, competing objectives. As there is

no analytical function that can define a dataset (Chapter 5) or an exact method to

cluster a dataset (Chapter 7), metaheuristic optimizers are highly effective in our

work. In the next section, we motivate and describe such a group of optimizers:

evolutionary algorithms.

3.2 Evolutionary algorithms (EAs)

Evolutionary algorithms (Goldberg 1989; Holland 1975), henceforth referred to

as EAs, have been used extensively as a method of approximating the Pareto-

optimal set for the optimization problems previously described. As EAs are

population-based methods, they can be used to generate multiple approximately

Pareto-optimal solutions that can then be used (for example) to gain further

insights into the nature of the trade-off between objectives.

Various terminology is used when describing EAs, and the definitions can vary

slightly between subcommunities. As such, Table 3.1 provides definitions used in

this thesis to a number of standard terms; these terms will be used and explained

further in their respective sections. It should be noted that there is a huge amount
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of variety within EAs due to their modular and flexible nature, which allows for

design choices to be made specific to a problem. Here, we describe commonly-seen

components as informative examples.

EAs are based on concepts from evolutionary biology. In short, a population

of individuals is generated and evolves over a number of generations where the

“fitter” individuals are more likely to pass on their “traits” to their offspring,

which undergo some random perturbation such that they are different from their

parents. Over time, the fitness of the individuals generally rises as the traits of

the fitter individuals are preserved and more are found.

Bäck, Fogel, and Michalewicz (2000) note that originally, EAs consisted of

three main approaches: evolutionary programming (EP; Fogel, Owens, and Walsh

[1966]), genetic algorithms (GAs; Holland [1962] and Holland [1975]), and evolu-

tion strategies (ESs; Rechenberg [1978] and Schwefel [1977]). These approaches

were originally quite distinct, though in recent years the modular nature of these

approaches has facilitated the use of methods from other areas, such that there

is now some degree of overlap. An example of this is the use of adaptive muta-

tion strategies within GAs, a method that originated in the ES community (Bäck

1992). This thesis is primarily concerned with GAs, though as we utilize concepts

from related fields the concept of GAs being a subset of EAs is noted.

The basic outline of a GA can be seen in Figure 3.2. There, the One-Max

problem is used to illustrate this example (Schaffer and Eshelman 1991). In this

problem, each individual is a string of l bits i.e. each decision variable can take

values {0, 1}. The fitness of an individual is simply the sum of the bits, which

is to be maximized. A brief description of each step/component in this outline

will be given in Section 3.2.2, but for context we first discuss how an individual

represents a solution.

3.2.1 Representations

To successfully and efficiently use EAs, an appropriate or meaningful represen-

tation of the problem is required. The way that the solutions are encoded can

greatly affect the ability of the algorithm to find the optimal solution(s), as well

as heavily influencing the design of the genetic operators. This section outlines

some of the fundamentals underpinning representations, and the importance of

their design in the context of the algorithm as a whole. For a more complete

overview, the reader is referred to Rothlauf (2006) and Rothlauf (2011).
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Table 3.1: Definitions of terms in EAs (in alphabetical order).

Term Definition

Allele A single value in the chromosome. Synonymous with decision
variable.

Child/Offspring An individual created from a parent (or parents).

Chromosome A single solution. Synonymous with individual.

Crossover/
Recombination

A genetic operator that swaps alleles between two or more
individuals to create offspring.

Decision
variable

A single value in the chromosome. Synonymous with allele.

Encoding The method in which an individual represents the problem.

Environmental
selection

Individuals from the combined pool of the parents and off-
spring are selected to form the population for the next gener-
ation.

Gene A group of conceptually/phenotypically related alleles that
can exist in some representations. Can refer to a single allele.

Generation A single iteration of the algorithm.

Genetic
operator

An operator that helps introduce genetic changes into the pop-
ulation to find individuals with higher fitness.

Genotype The direct encoding/representation of an individual — this is
what the genetic operators operate on.

Fitness The quality of an individual.

Individual A single solution. Synonymous with chromosome.

Mutation A genetic operator that randomly perturbs an individual to
try and introduce new genetic material.

Parental
selection

One or more individuals are selected from the population to
generate offspring.

Phenotype The decoded solution, i.e. the actual solution to a problem
that can be evaluated.
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Figure 3.2: Outline of a standard genetic algorithm with a population size of µ
and offspring size of λ applied to the classic One-Max problem.
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Figure 3.3: Example binary representation of l = 5 bits.
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Figure 3.3 shows the representation for a single individual. The pictured

chromosome contains all the “genetic” information for this individual. For our

purposes, we refer to this string of variables synonymously as a chromosome/geno-

type/solution.

This genotype is the space in which the genetic operators modify the individual

(rather than the phenotype), and how different individuals interact (e.g. through

recombination). When these individuals are evaluated, then we refer to the phe-

notype of the individual. For example, if our genotype encodes a tree then its

phenotype is the tree itself. The genotype and the phenotype can be the same (re-

ferred to as a direct representation), but they are conceptually distinct (Rothlauf

2006).

Types of Representation

A binary representation is illustrated in Figures 3.2 and 3.3. While the use

of a binary representation simplifies the encoding, allowing for more intuitive

design of genetic operators (e.g. bit-flip mutation), for some problems this is not

a natural encoding as it may require integer or real-valued representations instead

(Schraudolph and Belew 1992). These representations expand the possible search

space for a given length, however. For a genotype of length l, a binary genotype

can have 2l possible states, which governs the size of the complete search space.

For integer-based and real-valued representations the search space expands to Nl

and Rl respectively, vastly expanding the number of possible states.

Despite the larger search space, similarity of the encoding to the problem

itself can aid design (through using more specialized operators or initialization

schemes) and reduce ambiguity of the genotype-phenotype mapping. Similarly,

different representations can increase the number of possible values for a single

allele, but overall reduce the length of the genotype which can affect the size of the

search space differently. These considerations become important when designing

a suitable representation.

Redundancy

A representation is redundant if there are more genotypes than phenotypes, lead-

ing to different genotypes having the same fitness. Rothlauf and Goldberg (2003)
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make the further distinction between synonymously and non-synonymously re-

dundant representations. In the former, genotypes that represent the same phe-

notype are in the same neighbourhood of the genotype space, i.e. they are few

mutations apart. In the latter, genotypes that represent the same phenotype are

not similar, which makes EAs more akin to random search as small modifica-

tions to fit individuals can result in drastically different phenotypes and therefore

fitnesses.

Rothlauf (2006) notes mixed research with regards to the utility of redundant

representations, as it seems problem-dependent whether redundancy and neutral

mutations (a mutation that neither increases nor decreases fitness) quicken or slow

exploration of the fitness landscape. This does not hold for non-synonymously

redundant representations, however, as their low-locality (similar genotypes with

dissimilar phenotypes) means that applying perturbations (via the genetic oper-

ators) to individuals with a higher fitness does not result in similarly high fitness

individuals (Rothlauf and Goldberg 2003; Choi and Moon 2008). Understanding

the redundancy is important for the representation, and is a consideration made

for our design of representing a dataset in Section 5.1.1.

As previously discussed, the representation has a lot of importance to the

design and potential performance of an EA. As a result, they tend to be par-

ticularly problem-specific, with limited general recommendations for their design

(Goldberg 1989; Rothlauf 2006). Nonetheless, they are important in our work

either through our design of a representation in Section 5.1.1 or in the extension

of an encoding in Chapter 7 where working with only a subset of the genotype is

paramount both to computational cost and performance.

3.2.2 GA components

In this section we discuss the major components of a GA as shown in Figure 3.2,

which provides a broad outline for the One-Max problem. An initial population

is created, and the fitness of each individual is evaluated. Parents are selected

from the population to undergo crossover and mutation to generate offspring.

The offspring are then evaluated and compete with their parents to be selected

for the next generation. This continues until a pre-defined termination criterion

(typically a number of generations) has been met. Further details of these steps

are provided in the following sections.
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Initialization

Initialization is the process of generating the initial population of µ individuals

from which we can then vary and evolve. The method for initialization is highly

dependent on the problem, and can greatly affect convergence. Simple methods

for initialization involve generating random solutions or using a Latin hypercube

(Branke 2012), which have no regard for fitness or feasibility but (importantly)

should create diverse individuals.

Some knowledge of the problem can be embedded into the initialization scheme,

however, to generate solutions that are (hopefully) closer to and/or more diverse

along the Pareto front. Of course, this requires either knowledge about the prob-

lem or some intuition as to what may generate good solutions. The bias towards

generating solutions with a particular subset of values may also reduce diversity,

which needs consideration (Bennett, Xiao, and Armstrong 2004; X. Li et al. 2011).

A successful example of a specialized scheme is seen in Garza-Fabre, Handl, and

Knowles (2017), where the initialization produces individuals which are them-

selves an approximation of the Pareto front (this approach is discussed further in

Section 7.1.1). A key consideration in the use of specialized initialization schemes

is to ensure that there is still diversity in the initial population, thereby maintain-

ing the utility of recombination and generally the diversity of genetic material.

In the example above, the authors found that the initialization did not result in

premature convergence or a lack of diversity, as is the risk with such protocols

(Handl and Knowles 2007; Garza-Fabre, Handl, and Knowles 2017).

Evaluation

The fitness/objective function is evaluated for each individual and is used to

compare and select individuals either as parents or which will survive to the

next generation. While obvious that optimal solution(s) should be assigned the

highest fitness, similar solutions should also have a high fitness to assist the guided

search (a high-locality representation assists here). This can affect the choice or

design of the objective function (if it is not determined by the problem). As the

primary method of guidance for the search, the design of the fitness function is

key for obtaining solutions of interest. In the consideration of this design, the

representation (both its locality and decoding mechanism) and genetic operators

need to be considered (Rothlauf 2011).

The computation of the fitness function can vary greatly. If the function
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is available in closed form, then this may be straightforward, where the driver

of computation time is dependent on whether the function scales on the length

of the genotype or another input. When this scaling leads to prohibitive run

times, methods such as limiting the precision of the function in the early stages

and increasing as the run progresses can be useful (see Section 3.4.1 for further

discussion).

Fitness functions that require simulations (Ong et al. 2005) or real experiments

(Allmendinger and Knowles 2013), however, can greatly dominate the running

time for the algorithm when days are required per evaluation. In these cases,

surrogate-assisted methods can be preferred, where the fitness function is an

approximation that is used to enable cheaper evaluations. Such an approach

introduces a host of its own challenges — for more information see Allmendinger

et al. (2017), Chugh et al. (2019a), Jin (2011), and Santana-Quintero, Montano,

and Coello Coello (2010).

Parental Selection

Parental selection is concerned with selecting parents that will be used to create

offspring. Common notation is the selection of λ parents, which may be different

from the population size (µ). These methods generally utilize the fitness to bias

the selection of more fit individuals to become parents, in the hope that variations

of these fit individuals will lead to even higher fitness. We outline two commonly

used methods: fitness proportionate selection and tournament selection.

Fitness proportionate selection directly uses the fitness of an individual as the

probability for selection as a parent. This can be quantified using the normalized

proportion of fitness that an individual has (as seen in Figure 3.4) or by ranking

the individuals and calculating the probability based on the rank (Eiben and

Smith 2015). The selection pressure that this method imposes, however, can

fluctuate and deleteriously affect the search. This can occur at the beginning

of the optimization (when exploration is preferred) where a strong selection bias

towards fitter individuals can result in prematurely converging to local optima

(Whitley 1989). Although somewhat alleviated by using rank-based selection over

the absolute fitness, small differences in fitness in later generations can result in

low selection pressure (Eiben and Smith 2015). For the sampling of individuals

based on the probabilities calculated above, a roulette wheel can be used. As can

be seen in Figure 3.4, the individual selected to be a parent depends on which
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f(x1) = 15 /100 = 0.15

f(x2) = 44 /100 = 0.44

f(x3) = 7 /100 = 0.07

f(x4) = 21 /100 = 0.21

f(x5) = 13 /100 = 0.13

x1

0.15

x2

0.44

x3

0.07

x4

0.21

x5

0.13

rand()= 0.33

Figure 3.4: Illustration of fitness proportionate selection with roulette wheel sam-
pling for a population of µ = 5 individuals. Each individual occupies a range pro-
portional to its relative fitness, and a random number is sampled to determine
which individual is selected.

“bucket” the random number falls into.

Tournament selection, in contrast, does not simultaneously look at the entire

population but a subset. A number (s) of random individuals are selected for the

tournament, where the individual with the highest fitness “wins” and is selected

to become a parent. The tournament size (s) determines the selection pressure

of this method (Miller and Goldberg 1995). In the extreme, when the whole

population is used in the tournament, the individual with the highest fitness

is always selected. The individuals selected from the tournament can be with

or without replacement, which can lead to the best solution having either on

average or exactly s copies in the mating pool respectively (Rothlauf 2011; Sastry

and Goldberg 2001). Typically, a binary (s = 2) tournament is used to ensure

the selection pressure is not too elitist (Bäck 1995; Goldberg and Deb 1990).

Whichever method is used for parental selection, it repeats until λ parents have

been selected for the next step.

Genetic Operators

The genetic (or variation) operators modify the parents to create offspring, typi-

cally through recombination (crossover) and/or mutation. Crossover can be seen

as allowing for the recombination of existing genetic material between parents,

whereas mutation generally represents the ability to add genetic material into the

population. Although Holland (1992) notes crossover as the main search operator
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Parent 1 0 1 0 0 1

Parent 2 1 1 1 0 0

Child 1 0 1 1 0 0

Child 2 1 1 0 0 1

(a) One-point crossover

Parent 1 0 1 0 0 1

Parent 2 1 1 1 0 0

Child 1 0 1 1 0 1

Child 2 1 1 0 0 0

(b) Two-point crossover

Parent 1 0 1 0 0 1

Parent 2 1 1 1 0 0

Child 1 1 1 0 0 1

Child 2 0 1 1 0 0

(c) Uniform crossover

Figure 3.5: Illustrations of the three most common crossover operators.

for GAs, later work (Bäck 1992) showed the utility of mutation (dissuading the

use of ‘selectorecombinative’ GAs, which omit mutation [Goldberg 2002]). The

locality of the representation and degree of perturbation from the operators will

determine the distance of the objective space that can be explored from a given

individual.

Figure 3.5 shows three commonly used crossover operators: one-point, two-

point, and uniform crossover (Holland 1975; Rothlauf 2011; Syswerda 1989).

One-point crossover picks a random point in the chromosome, where all alleles

after this point are swapped between the parents. Similarly, two-point crossover

selects two points around which the swap will occur. Uniform crossover swaps

each allele between the parents with a mixing ratio of 0.5. By taking (on average)

half of the genetic material from either parent, offspring can be generated with

less contiguous material from their parents compared to the n-point crossover

methods. For a problem that has a particular sequence or permutation of a

set (e.g. a combinatorial optimization problem), the chromosome may need a

reparation step after crossover to ensure validity, a process which may be non-

trivial (depending on the representation and problem).

As these crossover operators swap material between parents, they are thus

independent from the type of representation (binary, continuous etc.). More

specialized operators, such as the arithmetic or geometric crossover operators

(Michalewicz and Schoenauer 1996) which attempt to mix or interpolate between

parents, may be restricted to particular types. Regardless, Surry and Radcliffe

(1996) provide some design principles for crossover operators to support the prin-

ciple that the resulting offspring should not be more dissimilar to their parents

than the parents are to each other (Radcliffe 1991). The probability used for

crossover can vary, but typically values of 0.6–0.8 are used (Eiben and Smith
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2015).

Mutation operators are generally more specific to the encoding (or problem),

and as a result do not have ‘standard’ operators in the same way that crossover

does. From simple operators such as bit-flip mutation (flipping a 0 to a 1 and

vice versa) for binary encodings to specialized operators for covariance matrices

(Section 5.1.4) or graph encodings (Section 7.1.1), the design can greatly affect

the ability of the algorithm to explore the search space.

As mutation usually occurs at the allele-level (in contrast to the whole geno-

type in crossover), in general mutation probabilities for each allele are 1
l

so that

on average one mutation occurs per individual (Mühlenbein 1992). Typically,

more focus is given to the tuning of both the probabilities and parameters for

mutation than for crossover (see Section 3.4).

Environmental Selection

Environmental selection (also referred to as survivor selection in Eiben and Smith

[2015]) is the process which selects the individuals from the pool of parents and

offspring that will continue (“survive”) to the next generation. Methods used

for parental selection can be used here, but various methods have been proposed

specifically for this task. Eiben and Smith (2015) categorizes these methods

into age-based and fitness-based replacement. Environmental selection plays an

important role in balancing some of the behavioural trade-offs of GAs, namely

between exploration and exploitation, and between population diversity and se-

lective pressure (Whitley 1989).

The simplest form of age-based environmental selection is “generational re-

placement”, where the offspring are selected in their entirety for the next gen-

eration. Using different values for the population and offspring sizes (µ and λ,

respectively), however, creates different variations of this method, such as gen-

erating a single offspring and replacing the current oldest individual (Jong and

Sarma 1992).

Similar to parental selection, many methods use the fitness of the individual

to decide whether it survives to the next generation. A popular example of

this is elitism (De Jong 1975), where a number of the most fit individuals are

selected for the next generation. These can either be selected from the offspring

(Grefenstette 1986), or more commonly from the combined pool of parents and

offspring (Eshelman 1990). The pressure that this exerts can be scaled by the
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proportion of fit individuals carried over to the next generation (in the range

[1, µ]). The aforementioned issue of premature convergence can arise depending

on the degree of selection pressure towards the most fit individual(s), as selecting

only the most elite individuals can limit exploration (Eiben and Smith 2015). A

more complex example of elitism is found in the popular GA NSGA-II, where the

individuals are organized into (Pareto) non-dominated fronts and are selected

iteratively from these fronts, ensuring that the fittest individuals remain (Deb

et al. 2002).

Termination

Most EAs simply terminate after a pre-defined number of generations (or fitness

evaluations) have passed, though performance-based criteria can also be utilized.

For example, no significant change in fitness for a certain number of generations

or evaluations can indicate convergence and terminate the EA (Jain, Pohlheim,

and Wegener 2001), though there are many ways (discussed in Section 3.2.3)

to measure both the change itself and its significance (Trautmann et al. 2008;

Trautmann et al. 2009). Alternatively, thresholds can be incorporated such that

the EA terminates when a pre-defined objective function value has been reached.

While this component is generally given less consideration than the others in algo-

rithm design, the choice can strongly influence the quality of the final population

(Ghoreishi, Clausen, and Jørgensen 2017).

3.2.3 Performance analysis

After termination, there are two main challenges facing practitioners: perfor-

mance analysis and solution selection. These are issues that primarily exist for

multi-objective optimization, where it can be unclear which individuals are best.

Analyzing the performance of an EA may be through the perspective of conver-

gence (such as the fluctuation of fitness across generations, or number of eval-

uations required for convergence) or the quality of the final population (thus

enabling performance comparison between different algorithms or parameters).

In both perspectives, measures are needed that quantify performance in some

way in order to be used for comparing different algorithms, runs, parameters

etc. For further details, see Zitzler et al. (2003) and Zitzler, Knowles, and Thiele

(2008).
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In reality, the final population produced from an EA is an approximation of

the Pareto front, as it can be impracticable or even infeasible to generate the

complete front (Zitzler et al. 2003). Due to this, and the inherent stochasticity

of EAs, different runs can produce different final populations (also referred to

as approximation sets). Thus, it can be useful to not only compare different

algorithms or different parameter configurations for the same algorithm, but also

the variability or robustness of a single algorithm configuration over multiple

runs.

Owing to its extensive use in the community and later in this thesis (Sec-

tion 7.2.5), the hypervolume is one example of a unary measure of performance

(Zitzler and Thiele 1998). It is a measure of the volume of the objective space

dominated by a given set of solutions, thereby providing a measure of both the

diversity of the population and the extent of optimization for each objective. By

using a shared reference point (also known as the nadir point) to calculate the

volume, multiple configurations or algorithms can be directly compared. This

measure is Pareto-compliant, providing a strictly better value for an approxima-

tion set when it dominates another (Zitzler et al. 2003).

Beyond comparing singular values, empirical attainment functions (EAFs)

have been proposed to probabilistically analyze and compare approximation sets,

permitting visualization of the (estimated) probability that areas of the objective

space will be dominated by solutions producing during a run (López-Ibáñez, Pa-

quete, and Stützle 2010). Due to the stochastic nature of (in this context) EAs,

each approximation set will vary between runs. The attainment function aims to

define the distribution from which these random sets originate, and is defined as

the probability of a set of non-dominated solutions, X ′, attaining (i.e. generating

a solution that weakly Pareto-dominates) an arbitrary point x′ ∈ Rn. Attainment

of this point is denoted X ′ E x′ (Fonseca et al. 2011). Mathematically, the at-

tainment function is the probability that ∃x ∈ X ′ : x � x′. For j non-dominated

approximation sets X ′1, . . . ,X ′j , the EAF is the function αj : Rn → [0, 1] that is

defined as:

αj(X ′1, . . . ,X ′j ; x′) =
1

j

j∑
i=1

1(X ′i E x′) (3.4)

where 1(·) is the indicator function that is 1 if the condition is true and 0 other-

wise. Note that this is the empirical attainment function as the limited number

of approximation sets provide an estimate of the attainment function (Fonseca
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Figure 3.6: Example of an empirical attainment function (EAF) plot and EAF
difference plot generated from the EAF R package.

et al. 2011).

EAFs can then be used for visualization through the generation of “k%-

attainment surfaces” (Fonseca and Fleming 1996; López-Ibáñez, Paquete, and

Stützle 2010), which represent a separation in the objective space highlighting

the area where solutions would have been attained in at least k% of the runs.

These surfaces can then highlight expected e.g. worst-case or median performance

(exemplified in Figure 3.6a). Further information on the computation of the EAF

and the attainment surfaces can be found in Fonseca et al. (2011).

An EAF difference plot (López-Ibáñez, Paquete, and Stützle 2010) can di-

rectly compare the search capabilities of two methods in the objective space. As

can be seen in Figure 3.6b, the shading in different parts of the space represents

the probability of that approach to find solutions in that region compared to the

other approach. This example shows that the second method (“A2”, on the right)

is far superior at minimizing the second objective only, but the method “A1” has

slightly better performance across a larger part of the front for both objectives.

The selection of a single solution from the set is generally problem-specific,

and is an open area of research. For a practical application a domain expert can

ideally select a solution according to their own personal criteria and expertise.

Preferences can be used to weight the objectives, enabling easier selection.

3.3 Constraint handling techniques

For many real optimization problems, we have constraints that restrict the deci-

sion space between feasible and infeasible regions (as highlighted in Figure 3.1),

limiting the range of values that can be explored for each decision variable. This

https://mlopez-ibanez.github.io/eaf/
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section discusses some constraint handling methods for use in GAs. For further

details see Coello Coello (2002), Mezura-Montes and Coello Coello (2011), and

Michalewicz and Schoenauer (1996).

Constraints can exist as real limitations for a system. For example, in the opti-

mization of the placement of buoys for power generation (Neshat et al. 2019), the

constraints are inherent limitations for the actual equipment being optimized. In

Chugh et al. (2019b), optimizing the design of a ventilation system is constrained

by manufacturing limitations. Such constraints, known as box or domain con-

straints, limit the values of individual decision variables.

The inequality (gi) and equality (hj) constraints (Equation 3.1) can them-

selves be linear or non-linear, further restricting the possible values for decision

variables and affecting the complexity of the search. Though traditionally these

constraints are imposed by an externality (design constraints, practicalities etc.),

in Section 5.1 we use constraints more akin to secondary objectives in order to

embed a preference towards the solutions with degrees of constraint violation

(which represent an aspect of problem difficulty).

The need for specific constraint handling techniques originates from the fact

that, in their base form, EAs do not explicitly consider constraints (Michalewicz

and Schoenauer 1996). That is, neither fitness functions nor genetic operators are

guaranteed to create feasible individuals and satisfy constraints. Thus, specific

techniques are needed to embed consideration of the constraints and feasibility

into the algorithm without disrupting the search. As the optimal solution may lie

close to the boundary of the feasible region, exploration of the infeasible region

may be necessary for discovering (near-)optimal solutions.

Two popular taxonomies have been proposed for constraint handling tech-

niques: Michalewicz and Schoenauer (1996) and Coello Coello (2002). Mezura-

Montes and Coello Coello (2011) tried to unite these taxonomies to better frame

more recent research, identifying broad categories into which the techniques fall:

penalty functions, decoders, special operators, and the separation of objective

and penalty functions. Specific attention will be given to the first and last of

these categories as they are most relevant to this thesis.
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3.3.1 Penalty functions

Penalty functions are used to worsen the fitness, so as to preferentially select

(more) feasible solutions. The general formula for a penalty function is:

φ(x) = f(x) + p(x), (3.5)

where φ(x) is the penalized objective function and p(x) is the penalty function.

The quadratic loss function is one example of such a penalty function (Runarsson

and Yao 2000), which is calculated as follows:

p(x) =
m∑
i=1

ri ·max (0, gi(x))2 +

p∑
j=1

cj · |hj(x)|, (3.6)

where ri and cj are penalty factors for each constraint. It should be noted here

that p(x) is positive for our aforementioned minimization problem, but the sign

can be flipped (for maximization) with no loss of generality of Equation 3.5.

Penalty factors directly influence the magnitude of the penalty being applied,

and therefore static values are specific to the magnitude of the fitness values for

the problem. As a result, such fixed values may be unhelpful or even misleading

during optimization (Runarsson and Yao 2000; Mezura-Montes and Coello Coello

2011). The magnitude of these penalty factors can control whether a constraint

is considered “hard” or “soft”. Hard constraints must not be violated, and can

therefore use a factor large enough to ensure this is respected (known as a “death

penalty”). Such immediate removal of infeasible solutions can lead to poor explo-

ration, however, and is thus unfavourable (Yeniay 2005). Lower penalty factors

can be used for soft constraints, enabling their use as preferences that do not

need to be satisfied, but an ideal solution would violate these less (or not at all

if possible).

The use of dynamic penalty functions can help use more appropriate penalty

values at different times of the optimization. Of course, the use of such functions

introduces additional parameterization which can also be problem-dependent. A

simple example of such a function is to incorporate the generation counter into

p(x), either as a linear multiplier (Joines and Houck 1994) or by using more

complex functions (Kazarlis and Petridis 1998). Similarly, which function is ap-

propriate to use may also vary, making it difficult to find generally applicable

methods. Regardless, such dynamic techniques are generally predicated on the
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idea that lower penalization at the beginning assists with exploration, and fea-

sible solutions become increasingly preferred over time, effectively utilizing the

explore-exploit idea.

To incorporate information about how the search is currently performing

(and thus using more problem-dependent information), adaptive penalty func-

tions have been proposed. These can use the fitness of the best solution found

in a previous number of generations (Rasheed 1998), or simply the current ra-

tio of feasible to infeasible solutions to balance the search (Hamida and Schoe-

nauer 2002). Mezura-Montes and Coello Coello (2011) note that the downside of

adaptive methods is the potential to make changes (to the search) that may be

unhelpful in later stages of the optimization.

For the comparison of individuals based on their constraint violation, fair

comparison across constraints can become an issue. Constraints of different mag-

nitude both to each other and to the fitness (when combined as in Equation 3.5)

can result in a bias towards the numerically larger constraint. As Paula Garcia

et al. (2017) note, methods such as normalization are not always possible for

some applications (e.g. where the bounds are unknown). The magnitude of these

constraints can even distort the fitness landscape itself, particularly for static

penalties (Equation 3.5) that combine the penalty and objective functions (Deb

2012).

3.3.2 Separation of objectives and constraints

By separating the objectives and constraints, the problem can be transformed

to allow the use of multi-objective optimization methods for handling trade-offs,

creating a more balanced search between them. The two main ways to transform

the problem are: formulating a bi-objective problem (typically using the original

fitness function and sum of constraint violation); and, turning the constraints

into objectives (Mezura-Montes and Coello Coello 2011). The latter has the issue

that multiple constraints result in a many-objective problem, where traditional

comparison methods, such as Pareto dominance, become less useful as a greater

percentage of the objective space becomes non-dominated (Ishibuchi, Tsukamoto,

and Nojima 2008).

One popular technique in this category was originally proposed in Deb (2000)

and sets three feasibility criteria/rules to a binary tournament selection: two
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feasible solutions are compared by their fitness; a feasible solution is always pre-

ferred over an infeasible one; and, two infeasible solutions are compared by their

sum of constraint violation(s). The concept of using different methods to com-

pare feasible and infeasible solutions has also been used by stochastic ranking

(Runarsson and Yao 2000) and other related ranking methods (Ho and Shimizu

2007; Paula Garcia et al. 2017; Runarsson and Yao 2002).

Stochastic ranking

Owing to its extensive use in HAWKS (Chapters 5 and 6), further detail is given

on the stochastic ranking method. Introduced by Runarsson and Yao (2000),

stochastic ranking attempts to balance the search between the fitness and penalty

functions by probabilistically using either one when comparing individuals. The

aim of the method is to rank (and sort) the individuals for either parental or

environmental selection.

Adjacent individuals in the population are iteratively compared. Two fea-

sible individuals are always compared using their fitness. Otherwise, the two

individuals are compared using either the fitness or constraint violations with a

probability of Pf and 1 − Pf respectively. The winner, judged by either a bet-

ter fitness or a lower constraint violation, is then placed at a higher rank in the

population (i.e. the winner is swapped if need be), using µ sweeps through the

population (or stopped early when no swaps have been made during a sweep)1.

Pseudocode for the algorithm can be found in Algorithm 3.1, where a population

of µ individuals is sorted. If used for environmental selection, the combined pool

of µ + λ individuals would instead be sorted. For further details or alternative

pseudocode, see Runarsson and Yao (2000).

From their experiments, Runarsson and Yao (2000) recommend 0.4 ≤ Pf ≤
0.5, though B. Li et al. (2016) found 0.4 ≤ Pf ≤ 0.6 to be more useful. When all

solutions are infeasible, the selection becomes a weighted bi-objective problem of

the fitness and sum of constraint violations with weights of Pf and 1−Pf respec-

tively. Ultimately, the appropriate value of Pf is both problem- and algorithm-

specific, as it represents a bias in the search that may be more appropriate de-

pending on the nature of the fitness and penalty functions or the fitness landscape

of the problem (where, for example, the optimum lies on the edge of the feasible

region). In Chapter 5, we use this parameter to directly encode a preference into

1This is essentially a bubble-sort-like procedure (Runarsson and Yao 2000).
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Algorithm 3.1: Stochastic ranking

input : Pf , µ, xi ∀ i ∈ {1, . . . , µ}
output: Individuals sorted by rank

1 for i = 1 to µ do

2 for j = 1 to µ− 1 do

3 u ∼ U(0, 1)

4 if (p(xi) = p(xi+1) = 0) or u < Pf then

5 if f(xi) > f(xi+1) then

6 Swap(xi, xi+1)

7 else if p(xi) > p(xi+1) then

8 Swap(xi, xi+1)

9 end

10 if no Swap then

11 Break

12 end

the search where infeasible solutions are desirable, making all possible values of

Pf potentially useful in contrast with its traditional use.

3.4 Parameter setting & self-adaptation

An issue of EAs is that the various components (operators, selection mechanisms

etc.) typically have hyperparameters that affect the ability of the algorithm to

find (near-)optimal solutions. Compounding this, the complex, epistatic interac-

tions between these many parameters makes the use of more simplistic methods

(e.g. factorial design) of limited use when determining ideal parameters, which

themselves will vary by problem for the same algorithm.

In isolation, different components of the algorithms have their own suggested

parameter settings (such as length-based mutation probabilities), or off-the-shelf

operators, yet combined these may not be suitable, and/or they may not be suit-

able for the particular problem. While the field of hyperparameter optimization

has seen increasing prominence in the machine learning community (Feurer and

Hutter 2019), the use of these methods (from grid search to Bayesian optimiza-

tion) in the evolutionary computation community is less widespread (Karafotias,

Hoogendoorn, and Eiben 2015).
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In this section, we discuss parameter tuning and parameter control, and some

methods that are used to adapt the parameters of an EA during optimization

to avoid setting values a priori. This will provide background necessary for the

work in Chapter 7. For a more complete review, see Eiben, Hinterding, and

Michalewicz (1999), Eiben and Smit (2011), and Karafotias, Hoogendoorn, and

Eiben (2015).

3.4.1 Parameter tuning & parameter control

The parameter tuning problem is the need to select good values for the hyperpa-

rameters of the EA itself (such as the population size), whereas the parameter

control problem is the fact that for ideal performance these values may need to

be varied during optimization. Ignoring implementation practicalities, solving

the control problem implicitly solves the tuning problem, though these can be

designed and used independently (Karafotias, Hoogendoorn, and Eiben 2015).

The strategies for tackling these two problems are multifarious, and the relative

merits of tuning versus control are both algorithm- and problem-dependent, and

as such lack generalized approaches.

In Chapter 7, we consider a parameter control problem where the search

space itself is adapted by progressively expanding the genotype based on whether

the hypervolume indicates convergence. For an overview of parameter tuning

methods, see Eiben and Smit (2011). As the selection of good hyperparameters

for an algorithm to a specific problem relates to hyperparameter optimization,

this is further discussed in Section 4.2.1 with the additional context of clustering,

as the methods there are not specific to EAs but to the wider problem of selecting

appropriate parameters.

Parameter control

To better place our work in Chapter 7 into context, we provide some further

background on parameter control. Eiben, Hinterding, and Michalewicz (1999)

tried to unite previous classification schemes, resulting in the main criteria for

method classification being based on what component of the EA was changed,

and how the change was made. Similar to Hinterding, Michalewicz, and Eiben

(1997), parameter control methods were subdivided into deterministic, adaptive,
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and self-adaptive categories. Deterministic methods make a change to a pa-

rameter using some pre-defined rule e.g. a change occurs every set number of

generations. Adaptive parameter control methods utilize some feedback from the

search to alter the change (magnitude and/or direction) of a parameter. Self-

adaptive methods incorporate the parameters themselves into the encoding, and

therefore directly undergo evolution in the hope that good values result in fitter

individuals and thus propagate. More recently, Karafotias, Hoogendoorn, and

Eiben (2015) provided a more focused review on parameter control, as this is the

harder problem that has seen less progress than parameter tuning.

Methods from all three categories have been applied to different components

of EAs, of which we discuss some adaptive methods here (as it is most relevant to

our work). For the representation, the ARGOT (adaptive representation genetic

optimizer technique) strategy proposed in Shaefer (1987) adapted the search space

by changing the number of bits (i.e. the numerical precision) in the genotype.

Schraudolph and Belew (1992) adapted the genotype-phenotype mapping directly

to change the resolution of the search, effectively narrowing the search space. The

trigger that changes the resolution is based on a count of the number of individuals

in different numerical ranges, after enough individuals are in this range the search

is considered to have converged and thus the resolution can narrow further. Some

of these strategies are further discussed in relation to our work in Section 7.2.1.

Setting mutation probabilities has received much attention due to its strong

impact on performance, yet typically heuristics (calculating based on the length

of the genotype) or constant values are used (Eiben, Hinterding, and Michalewicz

1999; Grefenstette 1986; Mühlenbein 1992). Other works do not use a static mu-

tation rate, however, by using e.g. a deterministic control scheme to decrease

the rate over time (Fogarty 1989) or an adaptive control scheme based on per-

formance (Cobb 1990) can help either explore or fine-tune as appropriate. This

latter work monitored the average fitness of the population and, after a drop

in this average, employed hypermutation (where the mutation probabilities are

significantly increased for a single generation). This short-term rapid exploration

is intended to help find new, useful genetic material, which is particularly useful

if the search space itself changes (and thus there is an abundance of new genetic

material to find). As a result, we adopt this method in Section 7.2.1.

While Cobb (1990) used the average fitness to determine whether any change
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was required, Mart́ınez, Oropeza, and Coello (2011) use the hypervolume to de-

tect convergence and thus trigger a change in the population size. The authors do

not discuss precisely how they determine whether there is no improvement in the

hypervolume, so it is assumed that a direct comparison of the exact hypervolume

is used (as opposed to e.g. a threshold). In Section 7.2.2 we measure the rate

of change of the hypervolume instead, so that a change is triggered before the

current search space has been completely explored.

One framework, “Borg”, embeds convergence detection and strategies to deal

with it into the GA (Hadka and Reed 2013). In contrast to our aforementioned

work, which uses the rate of change in the hypervolume, Borg divides the objective

space into ε-boxes (Deb, Mohan, and Mishra 2005), where progress is measured

as the time since a solution has been found in a better (i.e. Pareto-dominant)

box. If progress is not found, several restart mechanisms are employed (adapting

the population size, tournament size, and re-population from the elitist archive).

This framework also uses multiple crossover and mutation operators which are

adaptively selected based on which produce a higher proportion of dominant

individuals. Such self-adaptive approaches add significant complexity, but may

confer flexibility in selecting appropriate hyperparameters for each individual

problem.

The efficacy of controlling the parameters is related to the purpose of the EA.

For example, adapting the mutation rate may help lead to a more diverse search

if insufficient diversity is expected, but this has limited use if it does not assist the

desired outcome (such as focused search on a region of the Pareto front). Such

considerations can help when deciding what parameters require tuning and how

to tune them.

3.5 Summary

This chapter has introduced single- and multi-objective optimization problems

(Section 3.1), and a class of algorithms that can be used to solve these problems

(Section 3.2). We have introduced various important areas of research within EAs

pertinent to our work, namely constraint-handling techniques (Section 3.3) and

methods for parameter control and tuning (Section 3.4). In the next chapter, we

introduce challenges and methods for producing synthetic data; later in Chapter 5

we use these EAs to generate such data.



Chapter 4

Background: Evolving Synthetic

Data

This chapter provides background information relevant to the synthetic data gen-

erator we propose in Chapters 5 and 6. We first discuss the need for synthetic

data and its role in experimentation in Section 4.1. We then discuss the algo-

rithm selection problem in Section 4.2 and how synthetic data is useful to tackle

it, followed by a review of different synthetic data generators in Section 4.3. Some

of the content in this chapter has been adapted from Shand et al. (2019).

4.1 The need for synthetic data

With regards to terminology, we distinguish between synthetic and real-world

data by the former having a constructed/defined generating mechanism (e.g. sam-

pling from a defined distribution), and the latter being collected (e.g. from sensors

or observations), representing samples from one or more typically unknown dis-

tributions/models. Of course, the collection and processing of real-world data

can clean the data such that it can practically function as synthetic data, but for

our purposes we distinguish the two by their source.

Empirical comparison between techniques is a cornerstone of the scientific

method. At a community level, methods developed by independent researchers

need to be compared in order to gain insights into the applicability and efficacy of

their developments. As newly proposed methods must be compared to existing

ones on the same data, subsequent research is highly likely to use these same

datasets. Difficulties with reproducing previous work further enforces the use

82
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of these same datasets to facilitate comparisons. This feedback loop results in

“standard” datasets becoming virtually required to include in experimentation

(Hooker 1995). This reliance on experimenting with a subset of datasets also

occurs more explicitly through the creation of benchmark suites — a collection

of problems collated and/or created for the purpose of widespread comparison.

This issue can occur with either synthetic or real-world data.

The issue of this feedback loop is that the community as a whole tunes both

hyperparameters and algorithmic development to these specific problems (Hooker

1995; Schmidhuber 2015). If these popular problems represent a broad spectrum

of challenges that reflect real-world challenges, then this is not a negative —

analyzing whether these problems adequately cover the space of encounterable

problems is difficult, if even possible to do in its entirety (Recht et al. 2019).

Hooker (1995) argues for “controlled experimentation” i.e. comparing algorithmic

performance on a specific problem characteristic that the research in question is

addressing, compared to the “competitive testing” that is encouraged when the

same subset of datasets are re-used time and again, often with a limited pool of

comparison measures.

Comparing performance using data that explicitly exhibits the problem char-

acteristic under investigation is inherently simpler with synthetic data, as we have

control over the generating mechanism and thus (to varying extents) the proper-

ties of this data. The use of real-world data for this purpose is possible if there

is an appropriate measure of the problem characteristic and a controlled way to

vary this. For a concrete example, if we are measuring the ability of algorithms

to scale with the size (e.g. dimensions) of the data, then this is simple regardless

of the data source as we can simply sample data to the desired size. If, however,

we are investigating the robustness of clustering algorithms to clusters in close

proximity then both a measure of the proximity and control over this proximity is

vital to identify differences, which requires a purposefully constructed generating

mechanism.

Insights into the algorithms beyond binary superiority (i.e. algorithm A is

better than algorithm B) are obtained under the assumption of the No-Free-

Lunch (NFL) theorem, which supports the intuition that no single algorithm is

expected to be superior across all problems (Wolpert and Macready 1997). Mc-

Dermott (2020) reviews the arguments for and against the validity of the NFL

theorem (and its subsequent refinements) in different contexts, highlighting how
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the NFL is often mis-used. In clustering it is demonstrably clear, however, that

no single algorithm is superior for every problem (as outlined in Chapter 2 and

discussed in Ben-David [2018]). The inductive bias of each algorithm (e.g. the

assumption of GMM that the data is Gaussian) differs, but fundamentally lim-

its their capabilities. Thus, having a diverse range of datasets is necessary to

reveal particular algorithms’ strengths and weaknesses, and that the diversity of

these datasets is understood and (ideally) explicitly controlled. Hooker (1995)

argues that benchmark problems should be constructed to control for parameters

that may affect performance, rather than problems that purely represent reality

(thus potentially conflating insights). This supports the utility of toy datasets, of

which many have been created for clustering (Fränti and Sieranoja 2018; Handl

and Knowles 2006) due to their simplicity and easy visualization of results. Al-

though these datasets may serve to illustrate simple capabilities or properties of

clustering algorithms (such as a broad favouring towards compactness or con-

nectedness, as discussed in Section 2.3), these scenarios are often too contrived to

consider more than a single, basic characteristic and thus provide more complex

challenges.

When assessing the diversity of benchmark problems, we refer to the spe-

cific properties/challenges of the datasets, such as those discussed in Section 2.3.

Macià and Bernadó-Mansilla (2014) analyzed the datasets in the popular UCI

Machine Learning Repository (Dheeru and Karra Taniskidou 2017), finding a

surprising similarity in complexity (in terms of both statistical measures of the

data and the limited diversity of classification performance for algorithms with the

same parameters) across them. We expect that a diverse set of problems would

require not only a tuning of algorithm-specific hyperparameters, but a vast range

of performance in the algorithms (that for a group of sufficiently competent al-

gorithms should not positively correlate). Without explicit effort to identify and

quantify aspects of problem structure or difficulty, it is difficult to ensure a di-

verse set of problems and thus a comprehensive benchmark suite. Such a task is

further complicated in clustering, due to the subjective nature of the task itself

(Section 2.1).

The utility of including real-world problems in a suite is undeniable due to the

inherent complexity of real-world data and, fundamentally, the fact that it is real-

world data to which algorithms will be applied. The performance on this data

likely reflects their actual applicability and efficacy. As discussed in Section 2.1,
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Luxburg, Williamson, and Guyon (2012) argue that the utility of clustering lies

only in its domain-specific application, further supporting the inclusion of such

problems. Note that this data has to be suitable for clustering, however, as

it is an assumption that class labels are synonymous for cluster labels (Guyon,

Von Luxburg, and Williamson 2009). Meaningful cluster labels facilitate external

cluster validation (Section 2.5), which is required for an unbiased evaluation of

performance. Given this, synthetic benchmarks are often preferred over the use

of real-word data as they offer an opportunity to accurately evaluate performance

on them, in addition to the ability to explicitly model problem properties and

exercise control over these properties (Smith-Miles and Bowly 2015).

4.2 The algorithm selection problem (ASP)

The algorithm selection problem (ASP) was first introduced by Rice (1976), which

seeks to predict which algorithm (from a portfolio) will perform best on a problem

given a set of measurable problem features. There is inherent motivation in the

concept of identifying the right algorithm for the problem at hand, which Smith-

Miles (2008) argues is further motivated by the NFL (Wolpert and Macready

1997). The bias of clustering algorithms to the discovery of a subset of possible

cluster structures (Section 2.4) naturally lends itself to a formulation of the ASP.

In this section, we define the ASP and the challenges involved with its application.

We first define notation for the ASP, as used in Smith-Miles and Lopes (2012):

• The problem space (P) is the set of instances of a problem (for our purposes,

an instance is synonymous with a dataset).

• The feature space (F) contains the set of measurable properties of the

instances (referred to as problem features).

• The algorithm space (A) is the portfolio of algorithms used to solve the

problem.

• The set of performance measures (y ∈ Y) that map the result of an algo-

rithm for a given instance to a numerical value.1

1Note that Smith-Miles and Lopes (2012) explicitly define the performance space as Y,
whereas in Rice (1976) the performance measures simply map to R.
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Thus, the ASP can then be defined as: for a given problem instance x ∈ P , with

a feature vector f(x) ∈ F , find the selection mapping S(f(x)) into A, such that

algorithm α ∈ A maximizes the performance measure(s) y(α,x) ∈ Y .

The utility of any prediction of algorithmic superiority on problem instances

is predicated on the descriptive power of the feature set (F). The identification

of appropriate or relevant features that form such a feature set is both difficult

and domain-specific. The difficulty of selecting the appropriate feature set has

naturally led to work such as Muñoz et al. (2018), where they used feature selec-

tion2 to identify a relevant subset of features from 509 different measures (from

simple statistical values, to information-theoretic measures, to itemset rules) of

the data. The use of feature selection has its own downsides, such as the bias

introduced when identifying the relevant subset, or the need to re-run feature

selection should the collection of features change (which may be desirable for

iterative improvement as new features are added). A more complex approach

was used in Smith-Miles and Bowly (2015), where a genetic algorithm was used

alongside a classifier to identify the best subset of features to use with PCA (dis-

cussed in Section 2.2.1). Regardless of the approach used, when there are many

possible features that could be measured, such an approach may be needed to

identify both useful and (ideally) uncorrelated problem features to construct the

instance space (discussed in Section 4.3.1).

4.2.1 The ASP in other contexts

The desire to select the best algorithm for a given task exists in other areas,

though not necessarily using the same formulation as Rice (1976). Smith-Miles

(2008) attempted to unite multiple sets of disparate literature that, at their core,

relate to the ASP. From meta-learning in the machine learning community to

landscape analysis in the metaheuristics community, the ability to predict perfor-

mance of algorithms on a given problem is a focus of research. Smith-Miles (2008)

argues that this disconnect has slowed research in this area, which is merited, yet

as we previously discussed a core component of this research is the identification

of problem features (F) which is both complex and domain-specific and as such

limits broader progress.

2Feature selection is the process of selecting a subset of data features with the aim of reducing
the dimensionality, removing irrelevant features that do not help with classification/pattern
recognition, and/or removing redundant features which do not provide additional information
over existing features.
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Meta-learning, or learning to learn, is “the science of systematically observing

how different machine learning approaches perform. . . and then learning from this

experience” (Vanschoren 2019). With reference to algorithm selection, it is learn-

ing the selection mapping S(f(x)) into A. The current meta-learning paradigm

looks at the prediction of task (synonymous with instance) performance for a

given configuration (e.g. hyperparameters). The shift of approach in predicting

configurations (as opposed to a particular algorithm from a portfolio) is relevant

for the task of hyperparameter optimization, which is vital in machine learning.

Note that this approach is synonymous with the “algorithm configuration prob-

lem”, which has been considered in the optimization community (Birattari 2009;

Hutter, Hoos, and Leyton-Brown 2011; López-Ibáñez et al. 2016). The selec-

tion of appropriate hyperparameters is also vital for metaheuristics (referred to

as the parameter tuning problem which we discussed in Section 3.4.1), for which

approaches such as that detailed by López-Ibáñez et al. (2016) is focussed on

(though their framework, irace, is agnostic in application).

In this thesis we are more concerned with the identification of problem fea-

tures that describe datasets, rather than the algorithm selection itself. In the

meta-learning field, “meta-features” are used analogously as problem features,

which can range from simple statistics (Michie, Spiegelhalter, and Taylor 1994)

to identifying task similarity directly (Bardenet et al. 2013). We discuss prob-

lem features further in Section 4.2.2. Overall, further developments in this field

provide potential opportunities to the broader work on algorithm selection, thus

making the link between them important.

Similarly, landscape analysis (or ELA, exploratory landscape analysis) is an

area trying to quantify different features of the fitness landscape in order to

both identify the “best” algorithm, but also to improve understanding of both

algorithms and their relationship to different problems (Mersmann et al. 2011).

It is an area that is growing in its own right, as evidenced by its introduction as a

tutorial at GECCO (the Genetic and Evolutionary Computation Conference) in

2017 (Kerschke and Preuss 2017) that has continued since. Recent work (Kerschke

and Preuss 2017; Kotthoff et al. 2015) directly references the algorithm selection

problem, highlighting that the previous issue of divergence literature identified

in Smith-Miles (2008) may no longer be as prevalent an issue. Software such as

flacco3 help both in the compilation of problem features, and in their application

3http://kerschke.github.io/flacco/

http://kerschke.github.io/flacco/
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to a wider set of fitness landscapes (thus providing further insights). The recent

creation of the “Benchmarking Network”4 holds promise for further development

of this field, following consideration of Hooker’s discussion around “competitive

testing” that benchmarking can encourage (Hooker 1995).

Our work in Chapters 5 and 6 is motivated by the need for identifying a

set of problem features for clustering and a generator that can create instances

with varying properties, which is required for the ASP to be investigated for

clustering. For this, we build upon the body of work from Smith-Miles, which we

provide further background on in Section 4.3. As discussed in the future work

(Section 8.2.1), the developments in these other fields may be useful for further

extending our work in clustering.

4.2.2 Problem features

The ability to accurately predict which algorithm from the portfolio (A) is best

suited to a particular problem is entirely predicated on the descriptive power

of the problem feature set (F), specifically in relation to the capabilities of the

algorithms. For example, a set of features that describe (in different ways) the

elongation of the clusters in the dataset is meaningless if the algorithms are

mostly agnostic to variations of this (such as single-linkage). Thus, not only

is the identification of problem features dependent upon the domain or type of

problem (i.e. problem class), but also potentially even on the algorithms available.

As previously mentioned, the field of meta-learning discusses “meta-features”

which are synonymous with the problem features we consider in this thesis. A

more complete overview of meta-features is given in Castiello, Castellano, and

Fanelli (2005) and Vanschoren (2019). In general, they fall under the similar

categories of work discussed later in this section; these meta-features are pri-

marily statistical or information-theoretic measures of the data, which are not

found to be uniformly descriptive across datasets for predicting performance of

classification algorithms (Bilalli, Abelló, and Aluja-Banet 2017).

The need for the problem features to be application-/domain-specific is high-

lighted in the work of Smith-Miles (and co-authors). They have tackled the

ASP on problems such as combinatorial optimization (Smith-Miles and Bowly

2015), classification (Muñoz et al. 2018), and outlier detection (Kandanaarachchi,

Muñoz, and Smith-Miles 2019). For each, a different set of problem features was

4https://sites.google.com/view/benchmarking-network/home

https://sites.google.com/view/benchmarking-network/home
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identified, with very little overlap between the sets of features (only standard

statistical measures, such as correlation or skewness of the data, were common).

As such, in addition to its importance, it is clear that the selection of problem

features is a non-trivial task.

The esoteric nature of the differences between typical measures of clusters

(such as the cluster validity indices discussed in Section 2.5) further exacerbate

this difficulty for our problem domain. As previously noted, the study by Arbe-

laitz et al. (2013) indicated that while some of these indices do share similarities,

they do not consistently correlate between different types of clustering problem.

Ferrari and Castro (2015) looked at the algorithm selection problem for clus-

tering within the context of meta-learning, selecting “meta-attributes” (another

term for problem features) under three categories: simple, such as the size of the

dataset; statistical, such as the average correlation between features; and, infor-

mational, such as the entropy of the discrete features. Soares, Ludermir, and

A. T. de Carvalho (2009) used a similar set of features to predict a ranking of

clustering algorithms on synthetic data (generated using the method proposed in

Handl and Knowles [2005b], which we discuss later in Section 4.3.2).

In both of these works, no problem features were used that were specific to

clustering (or related to the properties discussed in Section 2.3, such as compact-

ness or connectedness), and were evaluated using datasets from the UCI repos-

itory (Dheeru and Karra Taniskidou 2017) which, as previously discussed, may

not be suitable for clustering (Luxburg, Williamson, and Guyon 2012). Despite

the limited scope of the experiments, there were promising results that a ranking

of clustering algorithm performance could be predicted. Our work experiences a

similar difficulty in identifying suitable problem features (Section 5.2.4), though

in Section 6.2.1 a wider set of features is used that takes into account a more

varied perspective of different cluster properties.

4.3 Instance generation

In this section, we focus on research that has investigated generating problem

instances. In particular, we discuss methods for visualizing the instances, gen-

erating instances, and finally a discussion about generators used specifically for

clustering and the general properties that such a generator should have.
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Figure 4.1: Illustration of an instance space, with the winning algorithm high-
lighted to show the ‘footprints’ (areas where a particular algorithm is dominant).

4.3.1 Instance space

There have been multiple works that look to extend Rice’s framework for the

ASP (Oliveira et al. 2018; Smith-Miles et al. 2014; Smith-Miles and Bowly 2015;

Muñoz et al. 2018). A key part of this work is the creation of an instance space

(Smith-Miles and Tan 2012), which is a visualization of the identified problem fea-

tures, thus allowing the visualization of the instances. This facilitates observation

of the problem diversity (according to the set problem features, F), highlight-

ing where there may be gaps i.e. datasets with properties that do not yet exist.

Having a visualized space of the datasets also allows for the identification of an

algorithm’s ‘footprint’ (an area where a particular algorithm is dominant), poten-

tially providing insights into its strengths and weaknesses (Corne and Reynolds

2010). In order to create a comprehensive benchmark suite, an understanding of

the diversity among the existing datasets is paramount to robust evaluation of

algorithms.

An example of an instance space is shown in Figure 4.1, showing a number of

datasets plotted, which are highlighted by the algorithm that performed the best

on them. This is an ideal instance space, where there is a clear footprint for each

algorithm, i.e. a region in the space for which a particular algorithm is uniquely

suited. In practice, to obtain an instance space such as this, the problem features

and algorithms must be quite distinct (which is unlikely for both complex tasks

and algorithms). As shown in this example, there may be datasets for which

there is no winner (which may be due to their simplicity, equivalent difficulty to
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different algorithms, or a consequence of the scoring method being used).

Typically, PCA is used to project the problem feature set (F) down to the

visualizable two dimensions. Whether PCA is the appropriate method for this

depends on the datasets, number of features, and how much variance is lost

in the projection, though in the literature it has been applied to tasks with

three problem features (Smith-Miles and Bowly 2015) up to 40 (Smith-Miles and

Tan 2012). Although useful, as PCA is inappropriate for non-linear relation-

ships, for complex problem features sets it may not be the best approach. In

Muñoz et al. (2018), the authors devised a projection method (later referred to

in Kandanaarachchi, Muñoz, and Smith-Miles [2019] as ‘Prediction Based Linear

Dimensionality Reduction’, or PBLDR) that explicitly incorporates algorithmic

performance into the projection, such that the resulting space is an optimal pro-

jection of the datasets according to their difficulty and problem features rather

than just their problem features alone. Although useful, the complexity of this

method (involving different transformations for the features, running a random

forest model for each algorithm on each possible feature set combination, and

obtaining the optimal projection using BI-population CMA-ES [Hansen 2009])

adds a barrier for usage. The use of more complex projection methods can also

remove the intuition that PCA provides (i.e. the correlation between features)

which can help when identifying problem feature values that are not currently

exhibited.

Note that, although ‘instance space’ refers to a specific construction used in

the aforementioned works, other related works have also used visualization tech-

niques to understand the diversity of data using slightly different methods. In

Macià, Orriols-Puig, and Bernadó-Mansilla (2010), they visualize both real-world

and derived synthetic problems onto a “complexity space” using different mea-

sures of problem complexity. All plots used in this work are pairwise, so despite

having multiple such measures only two are ever simultaneously visualized. While

this provides more fine-grained information about pairwise interaction between

these measures for different datasets, unlike the use of projection in the con-

struction of an instance space this method does not scale well to more problem

features.

In Smith-Miles and Bowly (2015), the distribution of instances in the instance

space is used to identify target points i.e. gaps in the space where there is a lack of

datasets with those properties. For this, they simply used the Euclidean distance
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between the defined target points and the problem feature vectors projected using

the previously calculated principal components. This distance was then used as

the fitness function for a GA to evolve new instances, though multiple strategies

were used for how to set the target points. The difficulty of evolving instances

with specific problem features depends on the flexibility of the generator, and

the complexity of the problem features. For the graph colouring problem used

in Smith-Miles and Bowly (2015), the best strategy found was to progressively

move target points away from existing datasets, highlighting the difficulty with

generating instances with specific properties.

Beyond the identification of algorithmic footprints, an instance space allows

us to inspect how the problem feature values vary across the space for different

datasets, either by their source (synthetic or real-world) or to identify differences

in the underlying generating mechanism of synthetic datasets. The latter is par-

ticularly useful when it is not possible to explicitly generate data with certain

properties, which is an issue with synthetic data generators for clustering. In

the following section, we discuss some existing generators against which we later

compare our proposed generator.

4.3.2 Synthetic cluster generators

Synthetic data is trivial to generate, as in the simplest case we can draw samples

from simple distributions with little parameterization. The complexity occurs

with the desire to generate synthetic data with various properties, including dif-

ficulties (e.g. noise) found in real-world data. In this section, we discuss a range

of different methods for generating synthetic data for use in clustering. Note

that we have selected a cross-section of work to highlight different approaches,

rather than an exhaustive list of all works that have created synthetic data for

clustering.

In the popular Python machine learning library scikit-learn (Pedregosa et al.

2011), there are several functions for generating data that sample from simple

distributions or functions, three of which are illustrated in Figure 4.2. The first

(Figure 4.2a) shows a toy dataset of two concentric circles (with some noise added

to the samples) which, despite its simplicity and far-removal from real-world data,

presents a clear and easily visualized challenge for compactness-based clustering

algorithms. Figure 4.2b shows a function that provides an analogue for the con-

nectedness property, which while useful provides parameterization only for the
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(a) Circles (b) Moons (c) Blobs

Figure 4.2: An example dataset from each of three simple synthetic generator
functions in scikit-learn (Pedregosa et al. 2011).

noise, and not shape or number of such clusters. In Figure 4.2c we can see a

function that samples from a specified number of multivariate Gaussian distri-

butions (four in this example). This function provides very limited control, as

although the width of the distribution can be controlled, there are no covariances.

As shown, two clusters have been placed almost directly overlapping (in the top-

left), making it impossible to separate these and thus rendering any evaluation

using the labels misleading. These functions/generators can help illustrate ad-

vantages or disadvantages of algorithms (as was shown in Figure 1.1), but they

do not provide a comprehensive challenge, and only exhibit one such challenge

for a given dataset.

The generator proposed in Qiu and Joe (2006a), henceforth QJ, uses a ge-

ometric framework for cluster placement. The measure of separation used was

proposed in Qiu and Joe (2006b), named the “degree of separation”. It provides

a measure of the spatial separation between clusters, and the authors calculated

values that roughly correspond to “close”, “separated”, and “well-separated” clus-

ters. This value then imposes a minimum amount of separation that is accepted

between any two clusters; the covariance matrices are iteratively scaled until

this minimum separation is achieved. Although useful and geometrically inter-

pretable, this provides a single perspective of cluster structure. Their generator

does add an additional aspect of problem difficulty via the introduction of noise,

in addition to explicit rotation of data points to increase the difficulty of identi-

fying the number of clusters (Qiu and Joe 2006a). Although this generator has

useful parameters to customize the difficulty of the generated problems, the gen-

erator is not easily extended to incorporate other cluster properties. An example

dataset from this generator can be seen in Figure 4.3.
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Figure 4.3: An example dataset from the QJ generator (Qiu and Joe 2006a).

A generator that has been used extensively was proposed in Handl and Knowles

(2005b), henceforth referred to as HK. Owing to the difficulty of generating in-

teresting (non-trivial) cluster structures in higher dimensions, two separate gen-

erators were proposed: “gaussian”, and “ellipsoidal”. The former uses a sim-

ple trial-and-error approach to place clusters in a pre-defined multi-dimensional

space, while rejecting clusters that would result in overlap. Here, they define

overlap as a data point’s nearest neighbour belonging to a different cluster. The

ellipsoidal generator uses a genetic algorithm to shift cluster positions to mini-

mize the overall deviation (with a penalty for overlap) which, as defined in Handl

and Knowles (2005a), is the sum of distances from each data point to its respec-

tive centroid. This generator does not consider systematic adjustment of cluster

shape, nor does it consider a standardized measure of cluster validity (i.e. dimen-

sionless, and thereby interpretable in its own right) as it simply aims to reduce

this measure of compactness while penalizing overlap. Given the above, and the

hard-coding of a large number of design choices, both parts of HK s generator are

limited in their ability to produce instances with a specified level of difficulty and,

therefore, in generating benchmarks that systematically test the performance of

clustering methods with respect to particular aspects of problem difficulty. How-

ever, the explicit design of a generator for producing eccentric clusters in higher

dimensions allows for cluster shapes that are otherwise difficult to generate (as

seen in Section 6.2). Example datasets from these two generators can be seen in

Figure 4.4.

Similar to Handl and Knowles (2005b), in Jing, Ng, and Huang (2007) the

generator proposed was not the main focus of the work, rather it was created
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(a) “Gaussian” (b) “Ellipsoidal” (projected to 2D via PCA)

Figure 4.4: Example datasets from the two synthetic generators proposed in
Handl and Knowles (2005b).

specifically to test an aspect of the clustering approach they proposed (in this

case, it was to explicitly create sparse data/clusters). For this, they generate

clusters in a subset of the space, such that the feature values are either zero or

random according to a “subspace ratio”. An “overlap ratio” is also defined to

determine to what degree the subspaces of clusters can overlap. This is similar

to Zäıt and Messatfa (1997), where clusters are generated in disjoint ranges of a

continuous domain or (mostly) disjoint subsets of categorical features. In both of

these works, clusters are generated in different domains such that they should be

clearly separable, but no explicit measure of this is included in their generation.

At a similar time to our work (Shand et al. 2019), Gallagher (2019) proposed a

method of generating clustering problem instances of varied difficulty for the ex-

perimental evaluation of continuous optimization algorithms. Despite a different

target of evaluation (we directly target the evaluation of clustering algorithms),

the desire to generate clustering problems with different characteristics is the

same. This work similarly attempts to define key aspects of instance difficulty

for clustering problems, though this is done through the perspective of fitness

landscapes (where the objective is the same intra-cluster variance that K-Means

uses, described in Equation 2.2). The identified characteristics that modify the

difficulty of these instances are simple descriptors of the data, namely the number

of clusters (K), dimensions (D), and data points (N).

The proposed instance generation focuses entirely on compact clusters, how-

ever, and thus provides little utility in the generation of problems useful for
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non-compactness-based algorithms. In terms of generating mechanism, similar

to Macià, Orriols-Puig, and Bernadó-Mansilla (2010) and Macià and Bernadó-

Mansilla (2014), Gallagher (2019) generates data through modification of the

existing examples. A subset of the data is selected that maximally degrades the

performance of an EA (measured by the time to converge). Such a subset may

no longer represent what the clusters should be, potentially providing misleading

results. As a result of this method, no explicit generator is provided for the syn-

thetic data in Gallagher (2019), and thus will not be included alongside the QJ

& HK generators in our later work.

4.3.3 Evolving instances

As illustrated in the previous section, instances can have a variety of generating

mechanisms that vary greatly in complexity. If we have measures that give an

indication as to the properties of our generated instance, then the use of heuristics

or optimization such that we can guide the generation of our instances to certain

values of these properties is desirable. While certain combinations of properties

may be impossible, if there is a trade-off between these properties then a multi-

objective optimization approach (Section 3.1) is far more useful than a random

generation mechanism. In this section, we explore existing work that uses EAs as

the generating mechanism to create instances (apart from the previously discussed

HK generator).

In the previous section, we discussed a method of generating data that involved

modifying existing datasets, rather than constructing them from scratch. A major

issue with such methods is that the meaningfulness of difficulty is lost, as the

removal of data points may result in a change of what the labels should be,

which would not be reflected in subsequent evaluation. Macià, Orriols-Puig, and

Bernadó-Mansilla (2010) and Macià and Bernadó-Mansilla (2014) use NSGA-

II to select a subset of the data to optimize complexity measures (such as the

fraction of data points on the class boundary). The constraints used (such as

a minimum number of instances and maintaining a class balance) can alleviate

the issue of distorting what the classes should be, but as these are user-defined

parameters this is not guaranteed. Macià and Bernadó-Mansilla (2014) apply

this method to datasets from the UCI repository (Dheeru and Karra Taniskidou

2017) to construct samples from these datasets that exhibit different measures of

complexity, which are then visualized using a “complexity space” that is similar
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to the aforementioned instance space (Section 4.3.1) we utilize in this thesis.

Hemert (2006) uses an EA to generate datasets for different combinatorial

optimization problems, using the search effort (such as the number of constraint

checks) of a pre-defined solver as the fitness and thus indicator of difficulty. As a

result, only one perspective of difficulty is taken into account and other problem

features are not explicitly incorporated. By measuring the search effort for a

particular algorithm without explicit measurement or consideration of general

problem properties, the generated datasets have potentially limited transfer to

other algorithms. The comparison of search effort between algorithms can offer

insights but, the lack of problem features obscures the causal reason behind such

differences.

Utilizing yet another EA paradigm, Lensen, Xue, and Zhang (2018) use ge-

netic programming (GP) to evolve datasets for feature selection. Their motivation

for this is similar in concept to ours for clustering; that is, the need to construct a

dataset that has defined properties which are difficult to measure. In their case,

identifying which features of a dataset are non-linearly redundant (i.e. share infor-

mation with existing features, but the relationship is not a simple linear correla-

tion) is difficult, thus warranting the generation of datasets with these properties.

In their work, the datasets themselves are not evolved from nothing — existing

datasets are used as the initial features, from which additional features are con-

structed. While their approach was both useful and provided potentially more

informative features for downstream analysis, there was no overall analysis of the

diversity of the datasets produced.

As mentioned in Section 4.3.1, Smith-Miles and Bowly (2015) created an in-

stance space for (vertex) graph colouring, a challenging optimization task where

vertices on a graph need to be assigned a colour such that no two vertices shar-

ing an edge have the same colour. In this work, evolution was used as a means

of generating datasets with more explicit properties. Using the instance space,

they identified target points within this space that were missing instances and as

such attempted to generate instances at these points. They used a GA to evolve

individuals (graphs), experimenting with different strategies for the selection of

target points in the instance space. Multiple strategies were used to generate

datasets that fill the instance space (by modifying either the fitness function or

how target points in the instance space are identified). An interesting strategy

creates a spread of target points close to existing instances, and iteratively moves
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these points during optimization to help guide the search and accelerate con-

vergence. As a result, they generate datasets with a significantly higher spread

across the instance space (note, however, that there is a small difference in algo-

rithm performance with the new instances). Nevertheless, there is clear utility

in not only generating instances with properties that have been identified as ab-

sent from existing data, but directly using the proximity of current individuals to

those in the instance space during optimization to drive this evolution. This is

particularly useful if the original optimization (both the fitness and constraints)

are loosely associated with the problem features.

4.3.4 What makes a cluster “difficult”?

We have previously discussed the need for a diverse range of datasets in order

to gain algorithmic insights. Generally, clustering algorithms optimize using a

single measure of (internal) cluster quality (Section 2.5.1). In Section 2.3 we

discussed some of the different properties of clusters that need to be captured by

these indices. These are, in essence, a non-exhaustive set of properties that can

make the cluster structure clearer or harder to discover for different algorithms.

Evaluating the difficulty (and thus diversity) of datasets requires in part the use

of these indices, which can lead to the introduction of biases towards algorithms

that utilize the same or similar indices. As these biases can be difficult to identify,

the use of multiple, carefully selected (i.e. complementary) internal indices and

other properties is required to ascertain the difficulty of any clustering problem

with as broad a perspective as possible.

Examples of different properties and the difficulty they pose for different al-

gorithms can be seen in Figure 1.1, with specific reference to the three eccentric

clusters that have been reproduced here in Figure 4.5 for ease. Referring to the

properties defined in Handl, Knowles, and Kell (2005), these clusters have high

connectedness and low compactness, in addition to the fact that they are close

to overlapping with each other (low spatial separation). As different clustering

algorithms are biased towards different cluster structures, this example has prop-

erties that can vary the difficulty for algorithms in different ways. Referring to

the cluster assignments in Figure 4.5, single-linkage struggles to separate the clus-

ters as they are close enough it looks like one big continuous cluster (beyond the

‘outliers’ in the top-left and bottom-right), and K-Means++ has difficulties due

to the eccentricities of the clusters. Owing to their generation from a Gaussian
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Figure 4.5: Varied behaviour/performance of different clustering algorithms on
three eccentric Gaussian clusters (subset of Figure 1.1).

distribution, GMM finds the exact assignment.

Understanding the different facets of difficulty can allow for these to be used

in the generation of synthetic clusters. As discussed, increasing the difficulty

according to a single property would result in a non-uniform response from a

portfolio of clustering algorithms. Generating synthetic data for clustering would

require a flexible tool where the various levers of difficulty can be pulled (ideally)

independently if we are to gain algorithmic insights. In Chapter 5, we take our

first step to creating such a generator.

4.4 Summary

In this chapter we explored the role of synthetic data in experimentation, and

how it is useful in tackling the algorithm selection problem. We reviewed differ-

ent existing synthetic data generators specific to clustering, and the challenges

that such a generator must face to be broadly useful. Combined with the gen-

erative power of EAs (Chapter 3) and the multi-objective, multi-faceted nature

of difficulty for cluster analysis (Chapter 2), in the next chapter we introduce an

EA that evolves cluster structure to create synthetic data of varied difficulty for

different clustering algorithms.



Chapter 5

Evolving Difficult Synthetic

Clusters I

Following from Chapter 2 and Chapter 4, there is a clear need for a comprehen-

sive synthetic data generator that can be used in clustering. Such a generator

needs to consider different properties that pose different challenges for different

algorithms, while having the flexibility to parameterize and optimize multiple

properties in order to produce a diverse set of datasets. As such, EAs (Chap-

ter 3) provide a great approach for this task. In this chapter, we introduce our

synthetic data generator HAWKS, first beginning with a description of its com-

ponents and the design decisions behind them (Section 5.1). This is followed in

Section 5.2 by an evaluation of HAWKS, particularly in comparison with other

popular generators. Finally, from these experiments we identify several areas of

improvement for HAWKS in Section 5.3.

5.1 HAWKS

In this section, we introduce and discuss HAWKS1, a synthetic data generator.

Some of the content in this chapter is adapted from Shand et al. (2019). Details

on where to find and use HAWKS can be found in Section A.1.

1The name is derived from the surnames of the people involved: Handl, Allmendinger,
Webb, Keane, and Shand. Note that the order is irrespective of contribution, it’s just the best
acronym I could think of.

100
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Algorithm 5.1: HAWKS

input : N , K, D, Gmax, |P|, Pf , starget, Cmin, β1, β2

output: Population of datasets (P)

1 P ← initialization(N , K, D, |P|, Cmin, β1, β2) // Section 5.1.1

2 evaluation(P, starget) // Section 5.1.2, Section 5.1.3

3 for gen ← 1 to Gmax do

4 P ′ ← parental selection(P) // Section 5.1.5

5 P ′′ ← genetic operators(P ′) // Section 5.1.4

6 evaluation(P ′′, starget)
7 P ← stochastic ranking(P ∪ P ′′, Pf) // Section 5.1.5

8 end

HAWKS uses an EA (evolutionary algorithm) to generate and optimize a pop-

ulation of datasets, subject to constraints that encourage certain cluster proper-

ties. Using an EA provides a flexible, modular framework that enables the use

of many different components, which is necessary for a broadly capable synthetic

data generator. The stochasticity of EAs is also favourable in this context, as

it allows for the generation of multiple datasets using the same set of parame-

ters, potentially creating a number of diverse datasets (either in the same or in

different initializations).

In Algorithm 5.1, we provide a general overview of HAWKS to provide context

for the remainder of this section. Overall, a generic EA framework is used, but

owing to the complexity of the design decisions made in creating a generator to

evolve clustering datasets, these are discussed in their own sections.

In Section 5.1.1, we discuss how we parameterize and encode a dataset as an

individual, as well as how an initial population of individuals is created. The

evaluation of an individual, encompassing its fitness and constraints, is covered

in Sections 5.1.2 and 5.1.3 respectively, where we discuss the pitfalls and com-

plexities of defining the fitness of a dataset, and how constraints can be used to

add additional cluster properties without disrupting convergence. Section 5.1.4

discusses how to design meaningful genetic operators that can perturb clusters in

a way that directly affects the fitness while ensuring that HAWKS retains flexi-

bility. Finally, in Section 5.1.5 we discuss how to select which individuals should

be parents, and which should be selected for the next generation and thus drive

the evolution forward.
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Figure 5.1: Example representation of a two-cluster problem instance.

The input parameters for HAWKS in Algorithm 5.1 will be explained through

this chapter in their relevant sections. For each experiment in this thesis, the full

set of parameters for HAWKS are provided in a configuration file. Please refer to

Section A.1.1 for further details on this and more generally how to replicate our

experiments.

5.1.1 Encoding a dataset

As discussed in Section 3.2.1, the representation (or encoding) used is vital to

the success of an EA. We use a simple encoding scheme to represent the dataset,

where each cluster is a (multivariate) Gaussian distribution encoded by its mean

(µ) and covariance (Σ). Treating each cluster as a “gene” of a (µ,Σ)-pair, the

genotype is of length K genes. Figure 5.1 shows an example of this representation

and the corresponding two-cluster dataset, where the actual points sampled from

the cluster and the corresponding distribution (to 3 standard deviations) are

shown. In the genotype underneath, each mean and covariance contains D and

D(D + 1)/2 (independent) variables respectively, which can be important when

considering the genetic operators.
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As the data points themselves are sampled from the encoded distributions,

this representation has some non-standard properties that are important to note.

Although the details of the fitness function will be detailed in Section 5.1.2, if

we assume it is some quantity representing cluster structure then it’s clear that

a rotation of the dataset will significantly change the genotype, but the fitness

will be unchanged. Thus, as multiple genotypes can have the same fitness our

representation is synonymously redundant (defined in Section 3.2.1).

Further, it’s clear that stochastic sampling of data points from the Gaussian

distributions can potentially result in different fitnesses for the same genotype,

adding further complication to the evolution. To alleviate this issue and better

guide the optimization, the samplings from each distribution are fixed (for each

individual cluster via a constant random seed). As a result, a rotation of the

covariance matrix is synonymous with a rotation of the sampled data points.

To assess the sensitivity of our encoding to different samplings, we perform a

sensitivity analysis in Section A.2, where it was clear that the individuals varied

(in terms of their fitness) far more across a population than for different samplings

of the same genotype.

Then, we need to determine the number of points to sample from each distri-

bution. The total number of data points (N) for the datasets is user-defined, and

the size of each cluster is set during the initialization and remains fixed through-

out the optimization across all individuals (rather than encoded). This ensures

that there is no negative interaction with the fitness, which will be explained

further in Section 5.1.2. We discuss the initialization of the cluster sizes and the

individuals themselves in the following section.

Initialization

Algorithm 5.2 provides pseudocode for the initialization (referred to on line 1 in

Algorithm 5.1) that creates the initial population of datasets, denoted P (and

thus |P| the number of individuals in the population, which we use in place of

the traditional symbol µ to avoid ambiguity). This will provide further details

on how we generate random clusters, including the task of generating random

(valid) covariance matrices to create a diverse set of clusters.

Although the sizes of the clusters are fixed during the optimization, HAWKS

provides a degree of control over the sizes of the generated clusters as this can

challenge a clustering algorithm’s robustness to dealing with differences in density
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Algorithm 5.2: HAWKS initialization

1 Function initialization(N , K, D, |P|, Cmin, β1, β2)

2 generate cluster sizes(N , Cmin)

3 P ← ∅
4 for i← 1 to |P| do

5 xi ← ∅
6 for k ← 1 to K do

7 µ(k) ← U [0, β1]D

8 Σ̃(k) ← diag(U [0, β2]D)

9 R(k),S(k) ← sample matrices()

10 Σ(k) ← R(k) · S(k) · Σ̃(k) ·R(k)ᵀ

11 xi ← xi ∪ {µ(k),Σ(k)}
12 end

13 P ← P ∪ xi

14 end

15 return P

(as illustrated in Figure 2.5a). The clusters can be forced to be equally sized, but

otherwise they are generated randomly such that they sum to the pre-specified

N , with an optional minimum cluster size (Cmin) imposed. For completeness,

and owing to its non-triviality, the method of generating random cluster sizes

with a minimum size that also sum to a defined value is provided in Section A.3.

This is the procedure referred to in Algorithm 5.2 (line 2). As an example, if we

specify N = 500 and K = 5, and the cluster sizes were randomly generated as

{|Ck| : Ck ∈ C} = {34, 191, 95, 58, 122}, then every individual will have clusters

of those sizes in every generation, forcing the differences to be in the parameters

(µ, Σ) of the clusters themselves.

To initialize the individuals, we need to randomly generate the means and

the covariances. As shown on line 7 in Algorithm 5.2, the kth mean, µ(k), is

generated as follows:

µ(k) ∼ U [0, β1]D, (5.1)

where U is the uniform distribution, and β1 specifies the upper bound that the

mean values can be sampled from. Thus, the mean is simply sampled as a random

point in a D-dimensional hypercube.
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The covariance matrix in HAWKS is constructed from several different com-

ponents. The kth covariance matrix, Σ(k), is constructed as follows:

Σ(k) = R(k)S(k)Σ̃(k)R(k)ᵀ, (5.2)

where R(k) and S(k) are the kth rotation and scaling matrices respectively, and

Σ̃(k) is the kth axis-aligned covariance matrix (i.e. a diagonal matrix that consists

of only the variances). Decomposing the covariance matrix allows us to modify

the rotation and scaling matrices separately, which is important for the muta-

tion operators discussed in Section 5.1.4, as well as allowing for more intuitive

initialization parameters.

The axis-aligned covariance matrix for the kth cluster is sampled as follows:

Σ̃(k) ∼ diag(U [0, β2]D), (5.3)

where β2 is a parameter that controls the magnitude of the initial variances and

diag(·) of some D-dimensional vector produces a D ×D diagonal matrix whose

entries are the elements of that vector.

The rotation matrix, R, modifies the axis-aligned covariance matrix such that

the resulting covariance matrix is non-diagonal i.e. it has covariances. Visually,

the difference can be seen in Figure 5.1 where the second cluster has no covari-

ance. The initial rotation matrix is created by drawing a random orthogonal

matrix from the Haar distribution (Stewart 1980). This ensures that the covari-

ance matrix after rotation is valid (i.e. positive semi-definite). This matrix is

generated using scipy2 (Virtanen et al. 2019). The initial scaling matrix is the

D-dimensional identity matrix, ID, as this is not needed for the initialization (but

is useful later in the mutation).

The initial sampling range of the means and covariances (controlled by β1 and

β2) influence the likelihood of whether the clusters are initialized as overlapping

or not. This will have a direct influence on convergence, depending on what the

final desired cluster structure is and their starting positions. Additionally, higher

values for β2 increase the chance of having more eccentric clusters, which can

pose difficulties for compactness-based clustering algorithms (such as K-Means).

Further guidance and considerations on these parameters will be provided later

in Section 5.1.4.

2The scipy.stats.special ortho group function is used.
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5.1.2 What is the fitness of a dataset?

As previously mentioned, the fitness of the data should quantify in some way the

cluster structure and by extension the potential difficulty. However, as discussed

in Chapter 4, identifying a useful and diverse set of problem features to measure

the difficulty of a dataset is a complex issue which is further complicated when

used in clustering. For our first iteration of HAWKS, we want a simple, single-

objective algorithm that incorporates several elements of difficulty. To control

the dataset difficulty, we optimize towards a user-defined value of difficulty, which

can be represented through e.g. cluster validity indices and/or other measures of

different cluster properties (Section 2.3).

Directly maximizing or minimizing such measures would generate datasets of

no use in gaining insights into algorithms. If we use the intra-cluster variance

(defined in Equation 2.2) as an example, a dataset that is evolved to minimize

this would result in trivially separable clusters (by placing each point in its own

cluster) that pose no challenge to any competent algorithm. Conversely, maxi-

mizing the intra-cluster variance would attempt to move data points in the same

cluster as far away from their centroid as possible, creating a dataset that has no

actual cluster structure. Without other measures, such as the separation between

clusters, the overall cluster structure would be poor/non-existent.

While optimizing towards a user-defined value can avoid these extremes, the

measure used must have an interpretable target value to provide intuition for the

user. As a result, it should be bounded, dimensionless, and easy to understand.

Additionally, a more complex cluster validity index that takes into account com-

pactness and inter-cluster separation would help to provide a more holistic view

of the “fitness” of the dataset.

As such, we selected the silhouette width (see Section 2.5.1 and Equation 2.4

for details) as a proxy for the difficulty, where the user provides a target silhouette

width (starget) that is optimized towards. The extensive study by Arbelaitz et al.

(2013) indicated that the silhouette width was notably one of the most useful

indices out of 30 that were studied (though they could not conclude it was supe-

rior). Importantly for HAWKS, it provides a dimensionless (and thus comparable

across datasets of the same dimensionality) measure of average compactness and

separation in the range [−1, 1], and is therefore more interpretable.

Our fitness function is thus formulated to minimize the absolute difference
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between starget and sall , defined as:

min f(X) ≡ min |starget − sall | (5.4)

where sall = 1
N

∑
x∈X s(x), and X is the set of data points sampled from the K

encoded Gaussian distributions.

Before we discuss the limitations of the silhouette width, which are important

to consider in the design of HAWKS, it should be noted that (as discussed in

Section 2.5.1) all indices have some drawbacks that need to be considered. One

of the main limitations of the silhouette width is its computational complexity,

O(DN2), which has made its use as an optimization objective problematic (Ven-

dramin, Campello, and Hruschka 2010). However, as the data points in our

datasets/individuals change only due to the genetic operators, we are able to re-

duce this computation to only the clusters that change, thereby permitting the

re-calculation of only a subset of pairwise distances. As such, the above complex-

ity is the worst-case that only occurs when every cluster in a dataset has been

modified. Even without this improvement, however, the generation of datasets is

rarely a time-constrained environment, making this a less important consideration

than when used in clustering algorithms themselves.

Another issue with the silhouette width, that is particularly pertinent for op-

timization, is the fact that it is an average across all points. This fact presents

two primary issues in need of consideration when being used in an EA: for lower

N , each individual data point has a relatively higher contribution to sall such

that outliers or samples far from the distribution’s mean may result in a mis-

representative sall value; and, a dataset with equally well-separated clusters may

have the same sall as a dataset that contains both completely overlapping and

very well-separated clusters as long as the vast majority of actual data points are

separated. As such we can have a ‘deceptive’ (higher than expected) silhouette

width, an example of which was generated with HAWKS and is shown in Fig-

ure 5.2. This behaviour also motivated the need to fix the cluster sizes throughout

the optimization, otherwise changing the silhouette width can easily be achieved

by changing of cluster sizes rather than their location,the latter of which is of far

greater importance towards the goal of generating interesting datasets.

As previously discussed (Section 2.5.1), the limited perspective of ‘difficulty’

that cluster validity indices such as the silhouette width provide leads to the nat-

ural desire to simultaneously incorporate information from multiple such indices.
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(a) Separated (b) Deceptive

Figure 5.2: Two example datasets (generated by HAWKS), both with sall = 0.9.
As this value is an average we can optimize to a high silhouette width by placing
larger clusters further away, even if small clusters end up overlapping. The points
and 3 standard deviations are shown for each cluster.

Therein follows the question why we are using a single objective. First, for a useful

set of complementary indices, we may require many such indices to the point that

we create a difficult many-objective problem. Second, the non-trivial interaction

between these measures during the search drastically complicates both the evo-

lution and the ability of the user to specify the difficulty. Overall, the silhouette

width provides a broadly useful indicator of cluster structure that is comparable

between datasets in a population, and in a range that can be easily understood by

users. We can further modulate this difficulty however, through the introduction

of constraints that would not be useful in isolation as an objective.

5.1.3 Augmenting difficulty through constraints

To counter the limited perspective of difficulty provided by the silhouette width,

two constraints are added to incorporate additional cluster properties.

Elongation

As previously discussed in Section 4.3.4, the elongation of a cluster is an impor-

tant component of difficulty for different clustering algorithms. As HAWKS uses
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Gaussian (and therefore ellipsoidal) clusters, we refer to elongation more specif-

ically as eccentricity. To quantify and control this eccentricity, we can calculate

the ratio between the largest and smallest eigenvalues of the covariance matrices.

This ratio is calculated for each cluster in an individual, from which the maximum

is then taken, as follows:

λratio = max
∀ k∈{1,...,K}

|λmax(Σ(k))|
|λmin(Σ(k))|

, (5.5)

where λmax(Σ(k)) and λmin(Σ(k)) are the maximal and minimal eigenvalues of Σ(k)

respectively.3

Controlling the amount of eccentricity that leads to an infeasible solution can

allow for the creation (or prevention) of elongated clusters, depending on whether

an upper or lower bound is set to calculate the constraint violation. This can be

used to introduce different challenges for clustering algorithms by having highly

compact (or elongated) clusters. This ratio has a lower bound of 1, which indicates

perfect sphericity, and no upper bound.

Overlap

Noise is prevalent in real-world data, and one particularly challenging consequence

of this is when clusters have a degree of overlap which can further complicate

identification of cluster membership. The robustness of algorithms to overlap

varies significantly, and therefore having a degree of control over this property

helps provide a wider diversity of cluster structures that can be generated. By

formulating this as a constraint, we can either penalize or encourage a pre-defined

amount of overlap.

The concept of overlap itself is not purely objective. For example, Fränti

and Sieranoja (2018) use a measure that determines a point as overlapping if the

distance to its own centroid is higher than the distance to a point in another

cluster. In this formulation, highly eccentric clusters may be seen to “overlap”

even if spatially separated (and thus visually be separated, which is a more in-

tuitive understanding of overlap). We use the same formulation as Handl and

Knowles (2005b), where a data point is defined as overlapping if the point’s near-

est neighbour is a member of a different cluster than itself. This provides a more

3Note that λratio is equivalent to the maximum condition number across all K covariance
matrices.
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intuitive measure that is less biased towards spherical clusters, and has the addi-

tional advantage of discouraging the aforementioned ‘deceptive’ silhouette width

(Figure 5.2).

The overall overlap is calculated as the percentage of points that match this

criterion, and is scaled into the range [0, 1]. It is important to note, however, that

for two perfectly super-imposed Gaussian clusters (Ci and Cj) with identical µ,

Σ, and sampling density (i.e. |Ci| = |Cj|), the expected overlap is 0.5 and not 1, as

a given data point has a 50% chance of being in either cluster. Values higher than

this can be achieved with multiple overlapping clusters, or overlapping clusters

of different densities.

Before we formally define the overlap, we first need to define notation for a

data point’s nearest neighbour. Let nx : {1, . . . , N} → X be a function such that

nx(j) is the jth nearest neighbour of data point x. This function can be viewed

as indexing into a re-ordered dataset (x′i)
N
i=1 such that d(x,x′1) ≤ · · · ≤ d(x,x′N).

The first nearest neighbour is the data point itself, i.e. nx(1) = x.

We define the overlap formally as:

overlap = 1− 1

N

∑
x∈X

1Ck
(nx(2)) (5.6)

where Ck is the cluster that data point x belongs to, and 1 is the indicator

function defined as:

1Ck
(nx(2)) :=

1, if nx(2) ∈ Ck
0, if nx(2) /∈ Ck

For the remainder of this thesis, we refer to this constraint explicitly as

overlap, to disambiguate from the general concept of overlap which we also heav-

ily refer to.

Constraint handling

As discussed in Section 3.3, the general purpose of constraints is to penalize solu-

tions with either undesirable (soft constraints) or unacceptable (hard constraints)

constraint values for a given genotype. For constraint-handling techniques that

seek to balance exploration of the infeasible region against exploitation of the fea-

sible region, feasibility is at least preferred, if not required. Our constraints can
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conflict with the fitness such that it is impossible to minimize the fitness with no

constraint violation. This can potentially create many infeasible solutions (that

are still useful or even desirable) during evolution, as would be the case if we were

to generate datasets with e.g. varying degrees of overlap for a given silhouette

width. For certain sets of parameters (such as a high starget and high overlap)

there may be no feasible solutions, which can disrupt the guided process of the

search if not appropriately handled.

To tackle this, we use stochastic ranking (Runarsson and Yao 2000) to handle

the trade-off between satisfying the constraints and the objective function. For

a full explanation of the stochastic ranking, see Section 3.3.2. In brief, the Pf

parameter in stochastic ranking specifies the probability that two (infeasible)

solutions are compared using the objective function rather than their constraint

penalties. At low Pf values we favour lower constraint violation, and at higher

values we favour greater minimization of |starget − sall |.

For the constraints we have in HAWKS, solutions that violate the constraints

(to a degree) are acceptable and may even be desired depending on the intended

use of the generated datasets. Particularly in the aforementioned scenario where

both a high overlap and a high silhouette width is desired, having a balanced

trade-off between these non-mutually satisfiable properties allows for the genera-

tion of varied and potentially interesting datasets. In the absence of exploring this

trade-off through techniques available in multi-objective optimization (by treat-

ing the constraints as objectives — discussed in Section 3.3.2), the stochastic

ranking allows us to directly specify a preference for this trade-off by adjusting

Pf . For each of our two constraints, a lower or upper threshold is set, where

going outside of the permitted range will incur a penalty of the squared differ-

ence between the threshold and the actual value obtained (Runarsson and Yao

2000). The utility of using the stochastic ranking to embed a preference will be

investigated in Section 5.2.3.

Having calculated the fitness of an individual, variation is needed in order to

generate new datasets and drive the evolution forward. In the next section, we

look at how to design genetic operators that are meaningful in the context of

clustering.
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(a) Components

µ(1),Σ(1) µ(2),Σ(2) µ(3),Σ(3) µ(4),Σ(4) µ(5),Σ(5)

µ(1),Σ(1) µ(2),Σ(2) µ(3),Σ(3) µ(4),Σ(4) µ(5),Σ(5)

µ(1),Σ(1) µ(2),Σ(2) µ(3),Σ(3) µ(4),Σ(4) µ(5),Σ(5)

µ(1),Σ(1) µ(2),Σ(2) µ(3),Σ(3) µ(4),Σ(4) µ(5),Σ(5)

(b) Whole clusters

Figure 5.3: Uniform crossover, swapping either the individual components (a) or
the (µ, Σ)-pair (b).

5.1.4 Perturbing a dataset

A core part of an EA is its genetic operators, providing a source of perturbation

to help the search. As each (µ, Σ)-pair in our representation is a cluster, we

can design our operators to modify individual clusters (rather than operating

purely on decision variables), which has an intuitive and geometric advantage

that enables us to directly and meaningfully perturb cluster structure, which is

key to the generation of diverse and difficult datasets.

Crossover

We use standard uniform crossover (see Section 3.2.2 for background information),

but considered at two resolution levels as illustrated in Figure 5.3. In Figure 5.3a,

each µ and Σ is treated independently for crossover, whereas in Figure 5.3b the

(µ, Σ)-pair is considered as a single unit to swap between individuals. Intuitively,

it stands to reason that as the fitness measures the intrinsic spatial structure of

the dataset, there is a united contribution of the mean and covariance to this

measure, and breaking up this single unit may be detrimental or even misleading

to the search. Preliminary tests (not shown here) did not show a significant

difference between these two operators, however.

Mutation

For the mutation, we wanted to ensure that there was no bias towards particular

shapes or structures while maintaining significant random perturbation to per-

mit sufficient exploration. For this, mutation of the mean and the covariance is

handled by separate operators.
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(a) Mean (b) Covariance (c) Mean and covariance

Figure 5.4: Illustration of HAWKS’ mutation operator for the mean, covariance,
and both combined.

To mutate the mean, we simply sample a new mean, denoted µ′(k), from a

normal distribution around the current mean:

µ′(k) ∼ N (µ(k), σ2) (5.7)

where σ2 is the variance of the normal distribution. Thus, we effectively shift the

mean of the cluster in a random direction, as illustrated in Figure 5.4a. To avoid

excessive mutation rates, this new mean is actually sampled from each dimension

individually (from a univariate Gaussian) with probability 1
D

, so that the mean

is shifted in a subset of the possible dimensions. As there are more directions

that can move a cluster away from the other clusters than towards in higher

dimensions, this helps slow an increasing drift of the silhouette width (sall) after

multiple mutations.4

To mutate the covariance, we revisit the scaling and rotation matrices dis-

cussed in Section 5.1.1. Fundamentally, the scaling matrix acts to modify the

eigenvalues (the cluster’s eccentricity) of the covariance matrix, while the rota-

tion matrix modifies the eigenvectors (the cluster’s orientation).

For the scaling matrix S, we found that additive or multiplicative scaling

led to a biased distortion of cluster shape after repeated applications, reducing

the diversity of the resulting datasets. To alleviate this, we ensure that the

determinant of the covariance matrix remains the same after applying the scaling

matrix. For this, let zi be the elements of a vector sampled from a Dirichlet

4This issue is later addressed in Section 6.1.
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distribution, then:
D∑
i

zi = 1

⇒
D∑
i

(
zi −

1

D

)
= 0

⇒ exp

(
D∑
i

(
zi −

1

D

))
= 1

⇒
D∏
i

exp

(
zi −

1

D

)
= 1.

The determinant of a diagonal matrix is the product of the values on the

diagonal, thus the scaling matrix (S = exp(zi − 1
D

)) has determinant 1.

The rotation matrix, R, is created by drawing a random orthogonal matrix

from the Haar distribution as described in Section 5.1.1. Here, however, the rota-

tion matrix is raised to a fractional power (defaulted to 0.3) to avoid a complete

reorientation of the cluster, helping to maintain the incremental, guided process

of the optimization. The rotation and scaling matrices then perturb Σ as shown

in Equation 5.2.

By way of analogy, R and S act to rotate a balloon and apply pressure to the

principal semi-axes respectively, thereby changing the shape while maintaining

the volume. The effect of this is shown in Figure 5.4b. The combined effect of

both the mean and covariance operators is shown in Figure 5.4c, which shows

both a change in location and shape of the cluster.

For the mutation probability, we use standard length-based mutation proba-

bilities separately for the mean and covariance, i.e. the mean and covariance each

have a 1
K

probability of mutating. Despite the difference in the number of deci-

sion variables between the means (K × D) and covariances (K × D(D + 1)/2),

it is more meaningful to consider mutation at the µ or Σ level as opposed to

isolated decision variables.

In Section 5.1.1, we discussed the role of the β1 and β2 in the convergence

of HAWKS as they determine the initial location and shape (respectively) of

the clusters. As the dimensionality increases, there are more directions in which

clusters can move away from each other than towards one another, which is prob-

lematic for the mean mutation operator (Equation 5.7). As a result, throughout

this chapter we choose to initialize the clusters closer together, which makes the
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evolution easier by perturbing these clusters until they are as compact as needed

for the given starget and constraints. If they begin very far apart, as D increases

it is less likely to make perturbations that bring them closer together. Initial ex-

periments (not shown here) with well-separated clusters resulted in much slower

convergence when optimizing to lower silhouette width values.

The absolute values of β1 and β2 are less important than their relative values,

particularly as the silhouette width produces a ratio (and thus the magnitude of

the distances is irrelevant). The only caveat is that the mutation step-size (the

variance of the Gaussian in the mean mutation operator, σ2) is affected by the

magnitude of these distances. Preliminary experiments (not shown) indicated

setting these three parameters to 1 does not disrupt convergence to starget.

5.1.5 Selection a dataset

An important part of an EA is the selection of both the parents and particularly

which individuals survive to the next generation. In this section, we discuss

the parental and environmental selection schemes (lines 4 and 7 respectively in

Algorithm 5.1) that HAWKS uses to drive the evolution of our datasets forward.

Parental selection Binary tournament is used for the parental selection (back-

ground information on this method is given in Section 3.2.2). As we are using the

stochastic ranking to embed a preference between the fitness and the constraints,

the use of a standard tournament selection procedure where the winner is the

individual with the best fitness ignores this preference and thus may not be suit-

able here. Therefore, we use a modified tournament selection where the winner is

the individual with the higher (sorted) rank obtained by stochastic ranking. For

empirical verification of this approach, see Section A.4 for a comparison between

the two methods.

Environmental selection As discussed above with the parental selection,

stochastic ranking is used to embed a preference in the selection of individuals

whether they should primarily satisfy the objective or the constraints. Therefore,

this preference should also be respected in the environmental selection. For this,

stochastic ranking (Section 3.3.2) is used to sort the combined pool of parents

and offspring, from which the top |P| (population size) individuals are taken to

the next generation, as opposed to using a purely fitness-based elitism.
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Figure 5.5: Illustration of a single run of HAWKS, and how the cluster structure
changes over the generations as the silhouette width is optimized to starget = 0.9.
The median fitness (with the first and third quartiles) of the population is shown.

To illustrate the evolution of HAWKS, Figure 5.5 shows the fitness for a single

run with starget = 0.9. For this run, any overlap was penalized (i.e. overlap ≤ 0),

and a low amount of eccentricity was allowed (λratio ≤ 10 was permitted). A

population size of 10 was used, with N = 2000 and K = 6, and run for 70

generations. The best individual (highest fitness, then lowest constraint penalty

if tied) is shown at three different generations, with the samples and corresponding

normal distribution (to 3 standard deviations) for each cluster is plotted. The first

individual is taken from generation 10, where we can see some initial separation

(as the initialization is mostly overlapping), represented by a steep decline in

fitness. The second individual is taken from generation 20, where we can see

a greater degree of separation of the clusters, though there is still some clear

overlap. Finally, at generation 50, we can see that the fitness has converged and

that the clusters look a lot more separated.
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5.2 Evolving controllably difficult clusters

In this section we perform several experiments to evaluate whether HAWKS can

generate datasets that result in differential performance across standard, well-

known clustering algorithms, and how this diversity compares to existing gen-

erators. We illustrate how our generator can be used to produce datasets that

consider multiple aspects of problem difficulty.

As our objective function and overlap constraint interact in a non-trivial way

that varies at different dimensionalities, we first (in Section 5.2.2) investigate this

interaction for a deeper understanding of HAWKS and to identify relevant values

for the target difficulty at these dimensionalities. Then, in Section 5.2.3 we inves-

tigate how controlled variation of the stochastic ranking parameter (Pf ) allows

us to generate datasets associated with different trade-offs between the silhouette

width and overlap, and the subsequent differences in dataset difficulty. Finally, in

Section 5.2.4 we investigate our choice of the silhouette width as a useful measure

to create differential performance among multiple clustering algorithms, and how

diversity across those datasets compare to other cluster generators.

5.2.1 Experimental setup

Unless stated otherwise, all experiments use 30 independent runs of the generator,

where the best individual (determined by which individual is closest to the target,

starget, and in the case of a tie which has the lowest constraint penalty) is selected

from each run.

For evaluating the diversity of the datasets based on the clustering perfor-

mance (in Sections 5.2.3 and 5.2.4), the following algorithms are used:

• K-Means++ (Arthur and Vassilvitskii 2007)

• Single- and average-linkage, run separately with the true number of clusters

(K) and 2×K, as these methods can be prone to identifying singleton clus-

ters, thereby potentially performing better with an over-estimation. Gener-

ally this should be more important for single-linkage over average-linkage,

but we run both for comparative purposes.

• Gaussian mixture models (GMM; [Dempster, Laird, and Rubin 1977])



118 CHAPTER 5. EVOLVING DIFFICULT SYNTHETIC CLUSTERS I

These algorithms were discussed in further detail in Section 2.4. They are stan-

dard algorithms that represent well-understood yet different capabilities for clus-

tering. In general, we can consider K-Means++ and, to a lesser extent, GMM

as compactness-based algorithms. Owing to the ability of GMM to find more

eccentric clusters and its inherent representation of clusters as Gaussian distri-

butions, without the constraints of HAWKS we expect GMM to perform very

well. The linkage-based algorithms represent a slightly different paradigm, with

single-linkage very favoured towards the connectedness property of clusters, and

the aggregation over data points that average-linkage provides makes it less sus-

ceptible to outliers.

To evaluate the clustering performance, the Adjusted Rand Index (ARI) is

used (discussed in Section 2.5.1). In brief, the ARI provides a value where 1

(the upper bound) is obtained when every point has been assigned to the same

cluster as its label, 0 is the expected value for random cluster label assignment,

and negative values indicate a structured misassignment of labels.

5.2.2 Silhouette width at different dimensionalities

The silhouette width utilizes a similarity measure (the Euclidean distance in our

case), which as previously discussed (Section 2.1) can be problematic in higher

dimensions. We want to identify a range of silhouette width values at different

dimensionalities that would be of interest. Specifically, for a desired dimensional-

ity D, we aim to identify which silhouette width values correspond to non-trivial

datasets (i.e. not well-separated), where the constraints are hard enough to sat-

isfy that different aspects of cluster quality can exist. As the overlap constraint

considers only the nearest neighbour, it is less distorted/affected by an increase

in dimensionality compared to the silhouette width. For silhouette width values

that are close to 0 or 1, the datasets are either pointless or trivial (respectively)

to cluster, and thus are not interesting for clustering algorithms and do not create

trade-offs with the constraints.

We select two levels of dimensionality: 2D and 20D. For each, we generate two

clusters (Ci and Cj) that are hyper-spherical (Σ(i) = Σ(j) = ID), with the same

mean (µ(i) = µ(j)) and size (|Ci| = |Cj|), but with different samples such that the

expected overlap ≈ 0.5. These clusters are gradually separated by moving the

cluster means in an equal and opposite direction along a single axis/dimension

only, as depicted in Figure 5.6.
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Figure 5.6: Two identical clusters (with different samplings) begin overlapping,
and are gradually separated along a single dimension.
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Figure 5.7: Silhouette width vs. overlap at 2D and 20D

As expected, Figure 5.7 shows that the silhouette width increases and the

overlap decreases as the clusters move apart. In this graph, each point represents

a step movement apart. In 2D, we see an almost (inverse) linear correlation, where

the overlap decreases at a commensurate rate of increase for the silhouette width.

In 20D, however, the overlap quickly decreases as the clusters are separated, for

which there is only a small change in the silhouette width.

As the overlap measures the proportion of nearest neighbours that are assigned

to a different cluster, despite the separation in a much smaller proportion of the

dimensions this is enough to alter the nearest neighbours such that the overlap

measure is affected. The silhouette width measures the actual distance between

points, so the separation in one dimension is insignificant until the difference

in this dimension dominates the smaller distances in the remaining dimensions,

which clearly occurs at a different amount of separation. As such, clusters with

no actual overlap (and are thus linearly separable, providing they are convex) are
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associated with low silhouette values of sall ≈ 0.35 in 20D. This is important to

consider when selecting values for these parameters that create a trade-off in the

optimization, particularly as our mutation operator similarly occurs on a subset

of the dimensions (only 1 on average).

5.2.3 The objective-constraint continuum

In Section 5.1.3 we discussed the use of stochastic ranking to trade-off between the

objectives and the constraints. Here, we investigate the utility of this mechanism

and its ultimate effect on the difficulty of the resulting datasets, as measured by

the performance of the four clustering algorithms.

We set the upper bound of our overlap constraint as 0, so that it is always

penalized. Based on the results in Figure 5.7, we select starget = 0.2 in 20D

and starget = 0.6 in 2D. As it is more difficult to generate poorly structured data

while avoiding overlap, this should provide conflict between these parameters. We

experiment with Pf ∈ {0.1, 0.5, 0.9} to represent a preference towards optimizing

the constraints (reducing the violation), no bias, and preferring the objective

respectively. The eccentricity constraint is not used here (i.e. λratio ≥ 1). The

full set of parameters used for HAWKS in this experiment can be found online5.

In Figure 5.8, we show the values for the silhouette width and the overlap at

2D (a), and 20D (b), for the three Pf values. In 2D, we can see that there is no

continuous trade-off between the silhouette width and overlap for starget = 0.6.

We can see, however, that the Pf value did successfully encode a preference in the

optimization, as the target is strongly optimized when Pf = 0.9 and the overlap is

greatly minimized when Pf = 0.1. Additionally, when using Pf = 0.5 a lower

overlap was achieved while still successfully optimizing to starget when compared

to Pf = 0.9, but this did not (for the vast majority of individuals) require an

increase in sall to achieve.

In 20D, we can see a broader variety of silhouette width and overlap values

obtained when Pf = 0.5, exhibiting a more direct trade-off. Whereas strong

preference for the fitness function or constraints were adhered to, a balanced

exploration successfully enabled the discovery of datasets between the silhouette

width and overlap target values, as there was a clear trade-off between them.

Figure 5.9 shows the performance (ARI) of the aforementioned clustering

algorithms at 2D (a) and 20D (b). Here we want to see if the silhouette width

5https://github.com/sea-shunned/thesis_material/chp5_stoch-rank.json

https://github.com/sea-shunned/thesis_material/chp5_stoch-rank.json
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Figure 5.8: Silhouette width vs. overlap for different values of Pf at 2D and 20D.
The best individual from each of the 30 runs is shown.

and overlap values above correspond to differences in algorithmic performance,

and how this compares across algorithms. For 2D, as we more strictly enforce a

lower silhouette width, the performance of all algorithms naturally decreases as

the cluster structure becomes less well-separated. Of note is the greater decrease

in performance of single-linkage relative to the other algorithms, which is less

robust to an increase of overlap between clusters due to its method of identifying

clusters to merge based on the minimal distance between any two points in the

clusters. The aggregation of average-linkage makes it less susceptible to this, as

supported by the higher performance.

In 20D (Figure 5.9b), we can observe generally worse performance of the

clustering algorithms, which is likely largely due to the much lower starget and

thus overall structure. Single-linkage in particular is mostly unable to cluster the

datasets no matter the Pf value, indicating that the lack of structure and close

proximity of the clusters at this silhouette width range is particularly challenging.

Of interest is the sharp drop in performance of average-linkage as optimizing the

fitness is preferred, indicating that (similar to single-linkage) its threshold of

required separation between clusters occurs around sall = 0.3 in this experiment

(shown in Figure 5.8b). The greater robustness and performance of GMM (and, to

a lesser degree, K-Means++) is expected as GMM is inherently suited to model our

multivariate normal clusters. K-Means++ exhibits a greater drop in performance

with increasing overlap due to movement of cluster centroids towards denser

regions, which may be closer to cluster boundaries due to the overlap.

The Pf parameter is clearly able to greatly modify the optimization process
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Figure 5.9: Performance (ARI) of clustering algorithms for different values of Pf
at 2D and 20D.

and fulfill is role in embedding a preference to either the constraints or the objec-

tive. This can be particularly useful when trying to generate datasets that more

explicitly adhere to constraint settings, or conversely focus on the target. For

difficult parameter settings or an a priori desire for specific properties, this is a

useful lever available in HAWKS.

5.2.4 Benchmark set comparison

Although data generators are useful for creating single or a small number of

datasets, the real utility of data generators is in the construction of a benchmark

suite of many, diverse datasets. We wanted to preliminarily investigate the di-

versity of datasets that can be produced by HAWKS using our main proxy for

difficulty — the silhouette width. For this, we generated a set of datasets by

varying just a few parameters. While it represents a narrow range of the ca-

pabilities of HAWKS, it serves to validate whether our choice of the silhouette

width as the objective helps generate datasets of varied difficulty. To evaluate

the diversity, we compare the generated datasets against two popular synthetic

generators (discussed in Section 4.3.2). The parameters for HAWKS (Table 5.1)

represent a realistic desire of clusters to have minimal overlap and thus a more

“realistic” difficulty, as opposed to a lack of cluster structure.

The key parameters for all three generators are shown in Table 5.1. We

show the primary parameters for HAWKS and (where possible) the corresponding

values for the other generators. Where parameters cannot be measured in the

other generators no value (-) is given. As only the most important subset of
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Table 5.1: Generator parameters

Parameter HAWKS HK QJ

N 2000.2± 1.05i 1860.25± 796.25 599.13± 289.21

K 5, 30 4, 10, 20, 40 3, 6, 9

D 2, 20 2, 10, 50, 100 5–24

Pf 0.5 - -

Objective target 0.2, 0.5, 0.8 0 0.010, 0.210, 0.342

λratio ≥ 1 - -

overlap ≤ 0 0,≤ 0ii -

Number of datasets 360 160 243

i Due to stochasticity in generating random cluster sizes that sum to 2000
ii For the ‘gaussian’ and ‘ellipsoidal’ generators respectively, as the former does not allow any
overlap while the latter penalizes

HAWKS’ parameters are shown, the full configuration for this experiment can be

found online6. With 2 different values each for both K and D, and 3 for starget,

there are 12 unique combinations of parameters. Each of these combinations were

run 30 times, and the best (defined in Section 5.2.1) dataset was selected from

each run to create a combined pool of 360 datasets. We have set Pf = 0.5 to

create a balanced search between the fitness and constraints, allowing us to set

the overlap constraint so that it always penalizes, yet retaining flexibility through

the stochastic ranking.

We compare against two generators discussed in Section 4.3.2: HK (Handl

and Knowles 2005b), and QJ (Qiu and Joe 2006a). Available online7, the HK

generator has two methods of generating datasets, which are referred to as the

‘gaussian’ and ‘ellipsoidal’ generators. There are 80 datasets from the ‘gaussian’

generator with D ∈ {2, 10} and K ∈ {4, 10, 20, 40}, and 80 datasets from the

‘ellipsoidal’ generator with D ∈ {50, 100} and K ∈ {4, 10, 20, 40}, covering a

range of settings. As discussed in Section 4.3.2, these generators seek to optimize

the compactness of the generated clusters and reject/minimize (for ‘gaussian’ and

‘ellipsoidal’ respectively) any clusters that overlap (using the same definition as

HAWKS).

6https://github.com/sea-shunned/thesis_material/chp5_benchmark.json
7The 160 datasets can be found at https://personalpages.manchester.ac.uk/staff/

Julia.Handl/generators.html

https://github.com/sea-shunned/thesis_material/chp5_benchmark.json
https://personalpages.manchester.ac.uk/staff/Julia.Handl/generators.html
https://personalpages.manchester.ac.uk/staff/Julia.Handl/generators.html
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In Qiu and Joe (2006a) the authors define three levels of separation: “close

structure”, “separated”, and “well-separated” (the values for these, which cor-

respond with their measure of separation, are given in Table 5.1). A range of

dimensionality is used, from 5 to 24 dimensions, and K ∈ {3, 6, 9}. The authors

specify differing levels of noisy variables to add further complexity. The authors’

R package8 was used to generate these datasets. Further details of the generators

and the parameters they use can be found in Section 4.3.2 and their respective

papers.

Results

To analyze the diversity of the datasets, we again look at the clustering perfor-

mance across the datasets, which is shown for each generator in Figure 5.10. As

we are interested in the diversity of performance, we aggregate the ARI values

across all datasets for each algorithm. This is not useful for gaining insights

into algorithmic performance on specific datasets, but useful for comparing the

diversity of the generators. Large variance in the performance for every algo-

rithm would signify an equally diverse set of datasets have been generated, an

ideal that would require both a powerful and flexible generator, and a systematic

generation of an equal number of datasets that exhibit particular properties that

are well-understood. For the simple clustering algorithms we use here this is not

an unthinkable goal, but clearly the full spectrum of possible cluster structure is

such that this ideal may be unreachable.

It is clear that the QJ generator has a strong preference for generating com-

pact clusters that are, on the whole, simple for the compactness-based algorithms

(GMM and K-Means++) and unsuited for single-linkage. The wide spread of per-

formance for average-linkage highlights its robustness over single-linkage due to

its nature of taking an average of the pairwise distances of points between algo-

rithms. The spherical nature of the clusters (and degree of overlap), however,

still leads to lower average performance in many datasets, though a wide range

is achieved.

On average there is a wider variance in performance for the HK generator

over HAWKS (through visual inspection of the inter-quartile range), indicating a

greater diversity of challenge. To get further insights into the differences between

the datasets of these generators, Figure 5.11 shows the silhouette width and

8https://cran.r-project.org/web/packages/clusterGeneration/index.html

https://cran.r-project.org/web/packages/clusterGeneration/index.html
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Figure 5.10: Performance (ARI) of clustering algorithms across each of the three
generators
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Figure 5.11: The overlap and sall calculated for each dataset from the three
generators (from left to right: HAWKS, HK, and QJ ).

overlap for each of the datasets from the three generators. The distribution of

both the silhouette width and overlap is shown more directly as a violin plot in

Figure 5.12.

The HK ‘gaussian’ generator rejects any overlap, and the ‘ellipsoidal’ gener-

ator penalizes overlap in its optimization, which is clearly reflected in the very

small deviation from 0 overlap. This may account for the larger spread of per-

formance for (in particular) single-linkage, which is less robust to overlapping

clusters. Of interest however, is the higher median performance of all linkage-

based algorithms for HAWKS over HK (Figure 5.10) despite the lower overlap

and higher average silhouette width of the HK generator. This may be due to

the eccentric clusters that HAWKS can produce (particularly as only half of the

generators from HK originate from the generator designed for eccentric clusters).
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Figure 5.12: Violin plots showing the distribution of the silhouette width (a) and
overlap (b) across the datasets from each of three generators. The raw data are
shown as markers in each plot.

The banding of HAWKS datasets in Figures 5.11 and 5.12 around the three

starget values (0.2, 0.5, and 0.8) and simultaneous existence of datasets between

these values show the ability of the generator to balance between the objective

function and the constraints. It should be noted, however, that there is a larger

diversity of datasets between target values of 0.2 and 0.5 than between 0.5 and

0.8. This may be due to the clear trade-off between silhouette width and overlap,

where obtaining clusters that overlap at higher silhouette widths becomes much

harder than simply optimizing the fitness, decreasing the algorithm’s ability to

discover datasets in this space. Generating datasets with such properties is easier

with smaller clusters (and thus datasets), but as this is a manifestation of a

“deceptive” silhouette width (Section 5.1.2) such a dataset is of less interest. The

QJ generator shows a similar trade-off between silhouette width and overlap, but

the ‘upper-bound’ of overlap that can be generated for a given silhouette width

is lower than what is shown by HAWKS. The low silhouette width and high

amounts of overlap in the QJ datasets is the likely cause of the greater spread

in performance for K-Means++, and for the poor performance of single-linkage.

Explicit parameterization of the overlap with HAWKS may facilitate a wider

ability to generate datasets, as the overlap between clusters in the QJ generator

is only roughly controlled by the level of separation specified in their measure

(Qiu and Joe 2006a).

Although Figure 5.10 provided an insight into the broad performance of the

clustering algorithms for the three generators, the aggregation of this data (and
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Table 5.2: Generator ARI results

Algorithm HAWKS HK QJ

Average-Linkage 0.689± 0.26 0.536± 0.30 0.368± 0.38

Average-Linkage (2K) 0.741± 0.22 0.654± 0.24 0.622± 0.38

GMM 0.809± 0.17 0.749± 0.25 0.926± 0.10

K-Means++ 0.733± 0.20 0.647± 0.27 0.822± 0.24

Single-Linkage 0.220± 0.32 0.201± 0.31 0.052± 0.17

Single-Linkage (2K) 0.285± 0.34 0.274± 0.37 0.091± 0.25

the nature of boxplots) does not give a clear indication of the significance in

difference between them. The mean (and standard deviation) ARI values for

each algorithm is shown in Table 5.2 to get a different perspective of the vari-

ance in performance, though of course this largely corroborates the trend seen in

Figure 5.10.

To ascertain the significance of the differences between them, we follow the

procedure outlined in Demšar (2006) for comparing multiple algorithms across

multiple datasets. In short, we perform a Friedman test that ranks each algo-

rithm for each dataset, where the null hypothesis is that all algorithms are equal

and therefore have equal ranks. Rejection of this null hypothesis indicates that

at least one algorithm is significantly different, and to identify which we need a

post-hoc test. The two-tailed Nemenyi test (Nemenyi 1962) is used for this, which

calculates the critical difference (CD) — the CD is the minimum that two average

ranks must differ by to be significantly different (unless stated otherwise, we use

p = 0.05 significance level for the null hypothesis). Demšar (2006) presents the

CD diagram as a method to illustrate the average ranks of the methods, high-

lighting any significant differences. In these diagrams, a solid line that connects

two or more algorithms indicates that those methods are not significantly dif-

ferent from each other (i.e. their average ranks do not differ by more than the

calculated CD).

It is important to note here that Benavoli, Corani, and Mangili (2016), among

others, argue that the use of mean-ranks post-hoc tests should be discouraged,

as the CD is computed using all algorithms and thus the statistical significance

between two algorithms actually depends on the performance of the other algo-

rithms. For our scenario, this argument would hold if we introduced multiple
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Figure 5.13: Critical difference (CD) diagrams for each of the three generators,
showing the average rank for each algorithm across the datasets from that gen-
erator. Solid lines connect algorithms which are not significantly different from
each other according to a two-tailed Nemenyi test.

algorithms that we believed would do either well or poorly across all datasets,

thus inflating or deflating (respectively) the ranks of the remaining algorithms.

As we are evaluating the diversity of difficulty across these datasets, which is

unknown, such issues are not relevant here.

In Figure 5.13 we show CD diagrams for each of the generators to provide

a clearer view of performance across the algorithms. Figure 5.13a shows that

for HAWKS, GMM is significantly the best algorithm, but that the two average-

linkage variants and K-Means++ are tied for 2nd place. Owing to the Gaussian

representation used in HAWKS, it is unsurprising that GMM performs the best.

With K-Means++ and average-linkage performing equally well, it signifies that
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there is sufficient variance in the amount of overlap and eccentricity to present

challenges for these two algorithms. Single-linkage is the worst performer for all

three generators, which was also clear from the boxplots (Figure 5.10).

The rankings for the HK datasets are shown in Figure 5.13b, where we can

also see the superiority of GMM. Giving double the true K value has lead to a

significantly better performance for average-linkage (in contrast to the datasets

produced by HAWKS), which is likely due to a smaller degree of eccentricity in

the ‘gaussian’ datasets (as spherical clusters are more challenging for the linkage-

based methods). Finally, Figure 5.13c shows the rankings for the QJ generator.

Here, the algorithms show a clear ranking with GMM nearly achieving a per-

fect average rank, closely followed by K-Means++, highlighting the stronger bias

towards these compactness-based algorithms. The performance of the remain-

ing linkage algorithms follow a similar pattern with the 2K variants performing

better, and single-linkage overall performing the worst.

The tighter rankings (and increased central tendency to the average rank of

3.5) of the algorithms on datasets generated by HAWKS highlights a more even

spread of performance across the algorithms, with the well-ordered rankings for

the QJ datasets clearly demonstrating the lack of variance (in terms of challenges

for different algorithms) among them. The HK datasets show a ranking distri-

bution in between the other two, which is consistent with the previous results

(Table 5.2 and Figure 5.10).

Instance space

To visualize the datasets according to their problem features, we construct a

simple instance space using a few features: the dimensionality (D), overlap, and

silhouette width (sall) of the dataset. Although the work of Smith-Miles uses

many more features in the construction of an instance space (Smith-Miles and

Bowly 2015; Smith-Miles et al. 2014; Smith-Miles and Lopes 2012), we use the

three aforementioned features as they can be meaningfully and easily measured

across the datasets from the 3 generators. To easily visualize this space, we use

principal component analysis (PCA) to project the values of the three features

down to 2D.

Figure 5.14 shows the instance space, with the datasets from each of the

generators highlighted. Visually, both HAWKS and QJ cover a large amount

of the space, indicating greater diversity (across the problem features) for these



130 CHAPTER 5. EVOLVING DIFFICULT SYNTHETIC CLUSTERS I

2 1 0 1 2 3 4
PC1

1

0

1

2

3

PC
2

Source
HAWKS
HK
QJ

Figure 5.14: The datasets from each generator (‘source’) plotted on an instance
space. This space is constructed using the silhouette width, overlap, and D for
each dataset and reduced to 2D using PCA.

generators. The majority of the variance in the 2nd principal component is due

to the dimensionality of the data, where the HK generator extends significantly

higher. In addition, the stronger banding of the HK generator indicates more

similarity between the various instances produced using different settings (of K

and D). Of particular note is the groups of datasets formed by HAWKS (contrast

to the more contiguous grouping of QJ ), indicating that the different parameter

combinations have a distinct effect.

The instance space for different properties is shown in Figure 5.15. In Fig-

ures 5.15a to 5.15c, we show the features that were used to construct the instance

space so we can see how they vary across the space. Figure 5.15d shows the

best ARI found by any algorithm for each dataset. Comparing the silhouette

width (b) and ARI (d) values across the datasets, we can see a loose correlation

between the two (as expected). Of note are the datasets produced by the ‘ellip-

soidal’ (HK ) generator (the two bands at a higher dimensionality), which proves

to be significantly harder than the datasets from its ‘gaussian’ counterpart. As

these datasets are not associated with a particularly different overlap or silhou-

ette width, it is likely that the dimensionality (a known problem in clustering)
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Figure 5.15: The constructed instance space, with values for different properties
displayed. The first three figures — (a), (b), and (c) — are the features used by
PCA to construct this space. The best ARI found for each dataset is shown in
(d).
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may be the cause of this difference, though it may also be due to other problem

features we have not captured. One such feature we have not captured is the

eccentricity, particularly as the HK ‘ellipsoidal’ generator was explicitly designed

for that, and there is a wide spread of performance in these datasets that is not

reflected in the instance space.

As also shown in Figures 5.10 and 5.12, the silhouette width does not pro-

vide a complete indication of difficulty. Nevertheless, it seems a useful lever in

configuring the difficulty of datasets produced by HAWKS.

5.3 Summary

This chapter has described an evolutionary algorithm to generate synthetic data

to facilitate more specific empirical comparisons, thus obtaining further insights

into clustering algorithms. A simple, single-objective version of this generator

(named HAWKS) was shown to be flexible, and offer more parameterization and

thus control over the difficulty and properties of the resulting datasets when

compared to existing generators. It is clear, however, that some improvements

are needed for a more capable generator:

1. We previously discussed the need for the initialization scheme to generate

overlapping clusters as (particularly in higher dimensions) the mutation

operator has a bias towards increasing the silhouette width, and will have

difficulty bringing high-dimensional clusters closer together. A more capa-

ble operator will assist with generating datasets at higher dimensionalities.

2. We have not explored the range of datasets that HAWKS can produce when

varying its other parameters, in particular the λratio constraint can be used

to bias the generation of clusters that are either more compact (when lower)

or eccentric (when higher), and the effect that this could have to clustering

algorithms.

3. The instance space used a limited number of features in its construction —

can we identify other features that can provide a deeper insight into the

diversity and different properties of these problems?

4. After these modifications, can we (through more explicit and varied pa-

rameterization) generate a more comprehensive set of datasets that could
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be used for algorithmic insights? Is this diversity reflected in the instance

space and/or algorithmic performance?

In the next chapter, we address these issues and further develop HAWKS.



Chapter 6

Evolving Difficult Synthetic

Clusters II

In Chapter 5, we introduced HAWKS, a synthetic data generator that optimizes

the datasets according to an objective (the silhouette width) and some constraints

(the percentage of points overlapping and the maximal eccentricity of a cluster),

allowing for the parameterization of cluster properties that partially represent

the difficulty of the dataset. We identified some shortcomings and areas for

future expansion that we explore in this chapter, mainly: addressing the bias of

the mutation operator that scales with dimensionality (Section 6.1); a fuller set

of problem features and generation of more varied datasets (Section 6.2); and,

generating datasets for specific algorithms (Section 6.3).

6.1 Mutating clusters in higher dimensions

In Section 5.1.3, we noted that the current mutation operator for the cluster

means (µ) is decreasingly useful as the dimensionality increases due to stochastic

movement of the mean, resulting in a bias towards increasing the silhouette width

(as the clusters drift apart). In this section, we implement and compare several

different mutation methods that try to explicitly embed directionality into the

random movement to avoid this bias.

134
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6.1.1 Candidate mutation operators

To reduce the bias towards clusters drifting apart in higher dimensions, the addi-

tion of explicit directionality to the operator can guide whether the movement of

clusters is either away from or towards existing clusters, increasing and decreasing

the silhouette width respectively. As such, a new mutation operator would need

to incorporate the position of at least one other cluster in the random perturba-

tion. For this, several new operators have been proposed, which are described in

the following sections, accompanied by an illustration of how they work.

In each illustration we show a hypothetical dataset of K = 5 clusters, with

only the means of each cluster shown. The cluster means are represented by

different symbols: µ(i) signifies the mean that is being mutated; µ(n) signifies the

mean(s) used to create directionality in the mutation; µ̄ is the global centroid

(of all data points); and, µ is a placeholder for the means of the other clusters

in the dataset that are not involved in the mutation, which are unlabelled for

simplicity. In each illustration, a shaded area (or line) indicates the space in

which the mean can mutate within and the criteria (where applicable) to select

that area.

Original operator

In Equation 5.7 we defined the original mean mutation operator for the ith cluster

as µ′(i) ∼ N (µ(i), σ2), where µ′(i) is the new mean, µ(i) is the current mean,

and σ2 is the variance (width) of the multivariate normal distribution. In other

words, the new mean is simply sampled from a normal distribution around the

current mean. By default, each dimension is sampled separately from a univariate

distribution and has a 1
D

chance of occurring (to avoid inflated mutation rates).

The illustration in Figure 6.1a shows the total possible area that the mean can

mutate to.

“Rails” operator

As a simple baseline for the inclusion of directionality, a single cluster is selected

and the current cluster moves either away from or towards that cluster (without

any lateral movement, i.e. on a rail) with a random weighting, w1.

To select a random cluster that is different from the current one, let n be a

random integer from the set {1, . . . , K} \ {i}. The mean of the current cluster,
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Figure 6.1: Reachable area for mutating µ(i) using the original and “rails” mu-
tation operators.

µ(i), can be mutated as follows:

µ′(i) =

µ(i) + w1(µ(n) − µ(i)) if p ≤ 0.5

µ(i) − w1(µ(n) − µ(i)) if p > 0.5
(6.1)

where µ(n) is the mean of the random cluster n, w1 ∼ U(0, 1) is a random weight,

µ(n)−µ(i) is the difference between the cluster means, and p ∼ U(0, 1) is a random

uniform probability. Figure 6.1b shows the continuous line upon which the mean

can mutate along, the direction of which is determined by a coin-flip (p), and the

position along that line is determined by w1.

PSO-inspired mutation with random directionality

For a mutation that covers more of the space, we take inspiration from another

EA paradigm: particle swarm optimization (PSO). In the original PSO mutation,

each particle is updated by incorporating their current position, the best position

that particle has ever had, and the best position ever found by any particle.

These latter two best positions are weighted by random coefficients in order to

create a random movement of the particles. For further details, see Kennedy

and Eberhart (1995) and Kennedy (2010). We use this as inspiration by viewing

the clusters as particles, and try to mutate the location of the cluster based on

the position of another cluster and some global representative. As our fitness is

derived from a combination of all particles, the original notions of personal and

global best are not applicable here, but the concept of independently weighting
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Figure 6.2: Reachable area for mutating µ(i) using the PSO-inspired mutation
operators

both a single point and an aggregated one is.

By updating the mean using a randomly weighted combination of an existing

cluster and the global mean (µ̄) of all data points, we can create a random move-

ment of the cluster that still takes into account the position of the existing clus-

ters. By incorporating the global mean, we can avoid generating well-separated

groups of clusters that can deceive the silhouette width (Section 5.1.2). To en-

sure that the location of the global mean is calculated in a way meaningful to the

fitness, we calculate the mean across all data points (not across cluster means),

as it is the former that is used in the calculation of the silhouette width (and thus

fitness). As a result, relative cluster sizes are incorporated into the mutation.

The mean of the current cluster, µ(i), can be mutated as follows:

µ′(i) =

µ(i) + [w1(µ(n) − µ(i)) + w2(µ̄− µ(i))] if p ≤ 0.5

µ(i) − [w1(µ(n) − µ(i)) + w2(µ̄− µ(i))] if p > 0.5
(6.2)

where w2 ∼ U(0, 1) is the second random weight. The area that the mean could

mutate to (depending on the coin-flip) is illustrated in Figure 6.2a. This operator

will be referred to as PSO-random.

PSO-inspired mutation with informed directionality

By using a coin-flip to determine whether the cluster should move towards or away

from existing clusters, there arises obvious scenarios where the existing clusters

may be very far apart and a closer structure is desired. An unfavourable coin-flip

moves this cluster further away, wasting a perturbation and thus fitness evalu-

ation. By using whether the current silhouette width (sall) of the individual is

above or below the target (starget), we can move the cluster centre in the direction
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Figure 6.3: Reachable area for mutating µ(i) using the DE-inspired mutation
operator. Note that, unlike the previous operators, as a constant scaling factor
(F ) is used, only a single point can be reached and not a variable area.

that will have the best chance of improving the fitness.

The mean of the current cluster, µ(i), can be mutated as follows:

µ′(i) =

µ(i) + [w1(µ(n) − µ(i)) + w2(µ̄− µ(i))] if sall > starget

µ(i) − [w1(µ(n) − µ(i)) + w2(µ̄− µ(i))] if sall ≤ starget

(6.3)

This is illustrated in Figure 6.2b, where we can see that if the individual’s silhou-

ette width is higher than the target, the mean is more likely to mutate towards

the other clusters. This operator will be referred to as PSO-informed.

DE-inspired mutation

Taking inspiration from yet another EA paradigm, differential evolution (DE),

we view the existing clusters as individual vectors which can help in the creation

of a “donor vector” (the new mean) from a “target vector” (the current mean).

The classical DE mutation operator combines three existing individuals in order

to create a new individual (Fleetwood 2004; Ortiz and Xiong 2014). We adapt

this to generate a new cluster mean from existing ones as follows:

µ′(i) = µ(i) + F (µ(r1) − µ(r2)) (6.4)

where i, r1, and r2 are distinct indices of a cluster, and F is a constant factor

in the range [0, 2]. This operator is illustrated in Figure 6.3, where we can see
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distinct points that the mean can mutate to. Unlike with the previous operators,

the randomness occurs only in terms of which other means are selected, such

that the movement vector for the current mean is a fixed multiple of the vector

between the randomly selected means. This is illustrated by, for the two means

randomly selected, the two new means corresponding to F = 1.0 and F = 2.0.

As a result, the number of possible locations that a cluster can mutate to is finite

and related to the number of clusters.

6.1.2 Experimental setup

The main issues that the new mutation operator needs to address are: conver-

gence in higher dimensions; and, the ability to converge regardless of the initial-

ization. Therefore, we construct four scenarios where the initialization generates

clusters that are either overlapping or apart, and we set a target silhouette width

(starget) as either low (0.2) or high (0.9). Thus, we test not only the ability of

each operator to move clusters together or apart at different dimensionalities, but

also whether they are able to maintain such states over many generations (testing

their stability). Each of the five operators listed in Section 6.1.1 will be run 30

times in each of these four scenarios using D ∈ {2, 50} dimensions.

The parameter ranges for the different operators are set as given in the equa-

tions of the previous section. For the DE-inspired operator, we set F = 1 to

encourage movement of the clusters without changes that are too large. The full

configuration for this experiment can be found online1.

We expect that all operators should provide some improvement over the orig-

inal operator with regards to optimizing the fitness in higher dimensions, with

one possible exception. The DE-inspired operator moves clusters according to

the vector between any two random clusters, which in higher dimensions pro-

vides many potentially unhelpful directions (in terms of increasing or decreasing

the fitness). This may harm the operator’s capabilities in higher dimensions,

but it is unclear whether this is to the same extent as the original operator. The

“rails” operator should be able to move clusters both towards and away from each

other, but the simplicity (not taking into account overall structure) may lead to

the aforementioned (in Figure 5.2) issues of a misleading silhouette width, where

the average obscures subsets of clusters that are close together. The inclusion of

1https://github.com/sea-shunned/thesis_material/chp6_mut.json

https://github.com/sea-shunned/thesis_material/chp6_mut.json
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direct fitness information into the PSO-informed operator should increase con-

vergence speed, though this may come at the cost of increased violation of the

overlap constraint.

6.1.3 Results

Figure 6.4 shows convergence plots (the average silhouette width, sall , for each

generation across the 30 runs) for the four different scenarios in 2D. The dashed

line on each plot shows the target silhouette width (starget). The scenario with

overlapping clusters and a low silhouette width target (starget = 0.2) is shown

in Figure 6.4a. The overlapping initialization is such that the initial silhouette

width is negative, requiring the mutation operators to move the clusters apart.

All mutation operators are quickly able to do this, rapidly increasing the silhou-

ette width, but we see a difference in the stability after this as some operators

(predominantly DE and PSO-random) further increase the silhouette width above

starget, highlighting a mechanistic bias. In Figure 6.5a we can see the minimiza-

tion of the overlap constraint, which is naturally greater for the operators that

increased the silhouette width. This indicates a difference in the relative ease of

satisfying starget and minimizing overlap between the operators, particularly with

the lack of pressure (afforded by Pf = 0.5) towards either one. With such a low

starget, there is a strong inverse correlation between the overlap and fitness. The

PSO-informed operator has an explicit drive to avoid a drift of the silhouette

width away from the target, but the vast difference in drift for the DE-inspired

operator illustrates a clear behavioural difference.

In Figure 6.4b, we have the same low starget but with the initialization scheme

that samples the initial cluster centres further apart (thus with an initial average

silhouette width far above starget). As this scenario explicitly tests the ability of

the operators to bring clusters together, we can see a stark difference between them

(as hinted previously). The DE-inspired operator is unable to decrease the fitness

at all, and just minimizes the overlap (shown in Figure 6.5b). As the DE operator

can only move by a fixed multiple of the vector between two of the current

clusters, there is a lack of nuance when moving clusters (which is important when

making smaller improvements to a fit individual). The PSO-random operator

is unable to converge to starget, but as the PSO-informed operator is able to

rapidly converge we can conclude that this is due to a lack of directionality

towards directly improving the fitness as opposed to an inability of the mechanism
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(c) Overlapping, starget = 0.9
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Figure 6.4: Convergence plots showing the average fitness across the 30 runs for
each generation for each of the four scenarios (initializing the clusters together
and apart, both at a low and high starget) in 2D. The dashed line shows starget in
each scenario.
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Figure 6.5: Convergence plots showing the overlap constraint for two of the
scenarios in 2D.

in moving the cluster means. The slow convergence of the original operator

highlights its mechanism of taking small random steps, an issue we know grows

with the dimensionality.

There is no significant difference in the speed of convergence between the op-

erators when optimizing for starget = 0.9, independent of the initialization used

(Figures 6.4c and 6.4d). As expected due to its explicit embedding of direction-

ality according to the fitness, the PSO-informed operator converges the quickest,

and our original operator the slowest (though the difference here is minimal).

None of the operators drift once converged, as this target also satisfies the over-

lap constraint, meaning that there is no further selection pressure away from

starget.

Figure 6.6 shows the convergence plots for the same four scenarios in 50D.

Looking at Figure 6.6a, we again have the scenario where we initialize with over-

lapping clusters and a low starget. Owing to the nature of silhouette width in

higher dimensions (which we explored in Section 5.2.2), the actual silhouette

width of the initial population is closer to (but still below) starget. All operators

(apart from the DE-inspired operator) are able to maintain a silhouette width

close to the target, which is at least better than the initialization. The real diffi-

culty is seen in Figure 6.6b, where the initialization results in a silhouette width

of close to 1, requiring the clusters to be brought together. Our original opera-

tor is unable to make any improvement at all in this higher-dimensional space,

with the DE-inspired operator barely able to do better. As the DE operator uses

the direction and magnitude of the vector between two random clusters, it does

not necessarily move the cluster being mutated in the direction of other clusters



6.1. MUTATING CLUSTERS IN HIGHER DIMENSIONS 143

0 20 40 60 80 100
Generation

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
e 

sil
ho

ue
tte

 w
id

th

(a) Overlapping, starget = 0.2

0 20 40 60 80 100
Generation

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

sil
ho

ue
tte

 w
id

th

Operator
Original
Rails
PSO-Random
PSO-Informed
DE

(b) Apart, starget = 0.2

0 20 40 60 80 100
Generation

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

sil
ho

ue
tte

 w
id

th

(c) Overlapping, starget = 0.9
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Figure 6.6: Convergence plots showing the average fitness across the 30 runs for
each generation for each of the four scenarios in 50D. The dashed line shows starget

in each scenario.

(particularly in higher dimensions), thus confirming our earlier concern. The re-

maining operators are able to significantly decrease the fitness (as they do move

the cluster with respect to the other clusters), and the explicit directionality uti-

lized by the PSO-informed operator allows rapid convergence to the target. The

small increases of the silhouette width in the later generations correspond with

larger minimizations of the overlap (not shown).

The ability of our original operator to move clusters away from each other in

higher dimensions is highlighted in Figure 6.6c, which is clearly contrasted with

the proposed operators that are all able to converge significantly faster. Once

again, utilizing the individual’s current silhouette width allows the PSO-informed

operator to consistently move the clusters apart, converging rapidly. The speed

of convergence for the DE-inspired operator is likely due to its stepsize being

based on the distance between two random clusters, thus enabling it to rapidly

move clusters apart. When the clusters are initialized further apart (Figure 6.6d),

similar behaviour is seen for the high starget scenarios as with the low starget. The
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Figure 6.7: The silhouette width against overlap for the two PSO-inspired op-
erators, showing the bias towards the fitness function that the PSO-informed
operator inherently provides. The best individuals from each of the 30 runs are
shown.

initial silhouette width is very close to the target, yet our original and the DE-

inspired operators are still unable to significantly improve the fitness as they

begin above the target. It is likely that in this scenario, the stepsize (movement

of the cluster mean) is too large for the DE-operator to be useful, and too small

and undirected for our original operator.

6.1.4 Experimental summary

All of the proposed operators confer some advantage over the original operator

in higher dimensions. The DE-inspired operator, however, struggles to bring

clusters closer together, a deficiency shared with the original operator, due to

a lack of directionality and inappropriate stepsize. The rails operator appears

to offer no advantage over either of the PSO-inspired operators, of which PSO-

informed exhibits faster convergence at the cost of embedding a preference to

the objective over the constraints (as illustrated by the higher overlap values

obtained). Focussing on the two PSO-inspired operators, in Figure 6.7 we can

see a difference in the spread of datasets between the silhouette width and overlap,

thus depending on the intended properties of the datasets one operator may be

preferable over the other. The bias towards satisfying the objective with the PSO-

informed operator also creates a conflict with Pf , exacerbating the difficulty of

parameter setting, and thus may be less useful in general.
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6.2 Expanding the instance space

At the end of Chapter 5, we highlighted that our experiments had varied a subset

of the parameters available in HAWKS. One issue in testing a wider set of param-

eters is identifying which are important in terms of generating varied, interesting,

and challenging datasets. On top of the usual parameter tuning (Section 3.4.1)

issues with EAs for the population size, mutation rates etc., with HAWKS we

have the additional layer of tunable parameters and constraints specific to clus-

tering. A deeper understanding of the relative importance of these parameters is

needed to know which levers we need to pull, and how hard we need to pull them

when generating a more comprehensive benchmark set.

In this section, we build upon the experiment in Section 5.2.4 by identifying

additional problem features and other datasets to compare against, using a wider

range of parameters within HAWKS. With this instance space, we then attempt

to directly target an area in this space to generate datasets with properties that

HAWKS had not previously produced, assessing the flexibility and parameteri-

zation of HAWKS.

6.2.1 Expanding the problem features

A notable issue with the instance space presented in Section 5.2.4 was both the

low number of features used in its construction and that these features could be

directly modified in HAWKS. As noted in Section 4.2, the algorithm selection

problem frames the problem features as the set of measurable properties of the

instances (datasets) that capture their difficulty. We have previously discussed (in

Section 4.3.4) the difficulty, or perhaps impossibility, of such a complete set being

designed for clustering. Nevertheless, the identification and subsequent inclusion

of more problem features should improve the utility of the instance space, leading

to a more robust visualization of the datasets and their relative differences.

The inclusion of more cluster validity indices (Section 2.5.1) into the feature

set is one obvious way of providing more direct information about the clustering-

related properties of the datasets (as opposed to more general data statistics).

An issue with using these indices as features, however, is in our projection in the

instance (particularly as we use PCA). Cluster validity indices can be correlated

for many situations, yet for certain cluster structures the subtle differences be-

tween them may result in uncorrelated variation (Arbelaitz et al. 2013). PCA
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may overexaggerate the contribution of these features and thus skew the resulting

instance space, so some care needs to be taken beforehand to ensure that we do

not select multiple, highly correlated indices.

In the following paragraphs we describe the additional problem features that

have been added to the dimensionality and average silhouette width, which were

used in Section 5.2.4 (the overlap has been replaced as a problem feature) to

create a set of 7 features.

Connectivity Handl and Knowles (2007) proposed the connectivity measure

(which was a modified version of the measure introduced in Ding and He [2004]) to

evaluate the extent to which data points have been assigned to the same cluster as

their nearest neighbours. Denoting L as the neighbourhood size (i.e. the number

of nearest neighbours that we consider), the connectivity is calculated as follows:

1

N

∑
x∈X

L∑
j=2

ρ(x, nx(j)), (6.5)

where nx(j) is data point x’s jth nearest neighbour, and:

ρ(x, nx(j)) =

1
j

if @Ck ∈ C : {x, nx(j)} ⊂ Ck

0, otherwise

where C = {C1, . . . , CK} is the set of K clusters. Thus, higher-ranked (i.e. closer)

nearest neighbours are penalized more severely for being assigned to a different

cluster. Note that we use j = 2 so that the data point itself is excluded. In

contrast with Handl and Knowles (2007), we use 1
N

to take an average so that

this measure can be compared across datasets. This has replaced the overlap

as a problem feature as the connectivity provides a more detailed picture by

incorporating more points than just the nearest neighbour.2

Number of clusters We simply use the true number of clusters (K), accord-

ing to the labels. Datasets with larger numbers of clusters can potentially create

challenges with the convergence of algorithms, and thus may provide some dis-

criminative power.

2The overlap constraint is a special case of the connectivity, where L = 2 and a constant
penalty of 1 is used.
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Entropy of cluster sizes To provide a measure of the relative differences in

size between the clusters, we calculate the entropy of the cluster sizes as follows:

H(C) = −
K∑
k=1

|Ck| logK |Ck|, (6.6)

where C is the set of clusters, and |Ck| is the (normalized3) size of cluster k. By

using K as the base of the log, we ensure that for any K, equal distribution of

cluster sizes will give H(C) = 1.0, and H(C)→ 0 in the other extreme (where one

cluster has N − K + 1 data points). By ensuring that the resulting value is in

the range [0, 1], the calculated entropy is comparable across datasets of varying

K and N .

Silhouette width standard deviation The average silhouette width across

all samples (sall) was previously used as a problem feature. Here, we use the

standard deviation of the silhouette width (defined in Equation 2.4) across the

samples, denoted sσ, as a problem feature. This provides an indication of whether

the clusters are equally well-assigned, or if there is a high degree of variation and

thus a potentially “deceptive” silhouette width (see Figure 5.2 for an illustration

of this). For completeness, this is calculated as follows:

sσ =

√
1

N

∑
x∈X

(s(x)− sall)2. (6.7)

Average eccentricity A notable omission from our problem features is a mea-

sure that captures the eccentricity of clusters. This is easy to calculate for

HAWKS as we have the exact covariance matrix, but for other datasets this in-

formation needs to be extracted. There are various methods of either estimating

the covariance matrix or measuring the eccentricity directly, but assessing which

would be most suitable is non-trivial. We use a method similar to the calcula-

tion of eccentricity (Equation 5.5), but instead take an average of the largest to

smallest eigenvalue ratios across all clusters. The eigenvalues accounting for 95%

of the total sum are used, however, to avoid dividing by zero eigenvalues (which

would occur with subspace clusters). As the resulting value is dimensionless, we

can compare this across all datasets in this study.

3The cluster sizes are normalized such that they sum to 1 before calculation of the entropy.
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Table 6.1: Dataset source parameters

Source N K D # Datasets

HAWKS 500, 2500 5, 30 2, 50 448

HK 5474± 2137 10, 20, 40, 60,
80, 100, 120

20, 50, 100,
150, 200

350

QJ 599± 289 3, 6, 9 5–24 243

SIPU 2248± 817 2, 15, 20, 35,
50

2, 4, 8, 16, 32,
64, 128, 256,

512, 1024

107

UCI 600± 571 2, 3, 4, 6, 7,
8, 10, 11, 15

3, 4, 6–11, 13,
18, 19, 22, 30,
34, 44, 60, 90,

166

20

UKC 30685± 2178 10, 11, 12 2 8

6.2.2 Additional datasets

In Section 5.2.4 we compared the datasets produced by HAWKS against two other

generators: HK and QJ. In order to obtain further insights into the diversity of

clustering datasets, we have added datasets from several other sources to see if

they are in a different area of the instance space. Basic parameters about all sets

of datasets can be found in Table 6.1.

HK (expanded) We include the fuller set of datasets from the HK generator

used in Garza-Fabre, Handl, and Knowles (2017). This set consists of 350 datasets

from the “ellipsoidal” generator only, with 10 datasets each from 35 unique com-

binations of K ∈ {10, 20, 40, 60, 80, 100, 120} and D ∈ {20, 50, 100, 150, 200}.
Henceforth, HK will refer to this expanded set of datasets, which can be found

at https://github.com/garzafabre/Delta-MOCK.

SIPU We use the clustering benchmark datasets used in Fränti and Sieranoja

(2018). Specifically, we use the ‘S-sets’, ‘A-sets’, and ‘G2 sets’. The ‘S-sets’

are all 2D data where N = 5000 and K = 15, but have different degrees of

overlap between the clusters (using their definition of overlap, which is whether

https://github.com/garzafabre/Delta-MOCK
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the closest centroid is a different cluster). The ‘A-sets’ are also 2D data with

varying numbers of (equally-sized) clusters. The ‘G2 sets’ of datasets consist of

two Gaussians with varying degrees of overlap, constant size (N = 2048) and

varying dimensionality (from 2 to 1024). Despite the lack of information about

the underlying cluster generation mechanism, the variance of overlap and high

number of dimensions presents some challenges for clustering algorithms. These

datasets can be found at http://cs.joensuu.fi/sipu/datasets/.

UCI Machine Learning Repository The UCI machine learning repository

(Dheeru and Karra Taniskidou 2017) is a popular database for datasets of varied

domains and applications. Here, we use the same 20 datasets from this repository

as was used in Arbelaitz et al. (2013), where the names and further details of

each individual dataset can be found. These datasets were originally intended for

supervised learning, but we assume that the labels represent clusters (which may

be a poor assumption [Luxburg, Williamson, and Guyon 2012]).

UK Police Data These datasets were curated in Garza-Fabre, Handl, and

Knowles (2017), and are the (anonymized) locations of crime. As such, all of these

datasets are 2D, yet as illustrated in Figure 2.2 provide a variety of challenging

cluster structures. Extreme outliers in the data have been removed to ensure that

structure is present. These datasets are larger, with an average N of ∼ 30,000.

As per their original source, these datasets will be referred to as UKC. More

details about this data can be found in Garza-Fabre, Handl, and Knowles (2017)

and its supplementary material, and the datasets themselves can be found at

https://github.com/garzafabre/Delta-MOCK.

6.2.3 Experimental setup

To take a further step to evaluating HAWKS and its capabilities for producing

a range of datasets more akin to a benchmark suite, we generate datasets using

a wider range of parameters. The wider range of both datasets and problem

features should enable a more robust comparison and evaluation of HAWKS.

The experiment itself will be similar to Section 5.2.4 — the datasets will be run

on the same set of clustering algorithms, and through their problem features be

projected to 2D to create an instance space where we can evaluate their diversity.

http://cs.joensuu.fi/sipu/datasets/
https://github.com/garzafabre/Delta-MOCK
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Modifying the eccentricity constraint

The original constraint on eccentricity (Equation 5.5) in HAWKS measured the

ratio of the largest to smallest eigenvalue of the covariance matrix, and then took

the maximum of these across the clusters. An issue with this approach, is that

it does not necessarily reflect the overall challenge that the dataset represents.

For example, if we have two datasets that have one equally eccentric cluster, but

in one dataset the remaining clusters are slightly less eccentric and in the other

they are perfectly spherical, the resulting λratio is still the same.

To put more pressure on HAWKS to generate datasets that are more wholly

eccentric, we modify the constraint proposed in Equation 5.5 to the following:

λratio = min
∀ k∈{1,...,K}

|λmax(Σ(k))|
|λmin(Σ(k))|

, (6.8)

such that we now use the least eccentric cluster to calculate the penalty. This

enables the constraint to be more useful at embedding a preference of eccentricity

when generating datasets.

HAWKS configuration

For this experiment, we use 64 unique combinations of parameters. To avoid

flooding the instance space (and obscuring the other datasets) with datasets from

HAWKS, we generate 7 instances from each of these combinations to produce 448

datasets (as shown in Table 6.1). In addition to the parameters shown there, we

set starget ∈ {0.45, 0.9}, two upper thresholds of the overlap constraint ({0, 0.1}),
and two lower thresholds of the eccentricity constraint λratio ({1, 50}). For the

overlap constraint we have one setting that penalizes any, but the second setting

allows for some overlap to create greater diversity (though at 10% the amount

of overlap allowed is still small to ensure that the dataset has structure). For

the λratio constraint, our first setting allows any amount of eccentricity, but the

second tries to enforce eccentricity (which is now taken to be the minimum across

all clusters). To ensure a balanced trade-off between the different values of starget

and the constraints, we keep Pf = 0.5. The full configuration can be found

online4.

4https://github.com/sea-shunned/thesis_material/chp6_exploring.json

https://github.com/sea-shunned/thesis_material/chp6_exploring.json
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Figure 6.8: The instance space of the datasets with each of the six dataset sources
highlighted.

6.2.4 Results

Figure 6.8 shows the instance space, with the different sources of the datasets

highlighted. The variance contribution of the different problem features in this

space is shown in Figure 6.9, where the magnitude of the line is correlated with

the variance contribution to show both in which direction of the space that feature

varies, and its relative contribution. For example, we can see that the connectivity

feature was quite distinct when compared to the entropy or number of clusters.

To see how each problem feature varies across the instance space, the full set of

figures can be found in Section A.5.1. The two principal components account for

57.56% of the variance, and so there is some information loss in this projection.

The spread of datasets generated by HAWKS is highly encouraging, partic-

ularly as (in contrast to the feature set of Section 5.2.4) the problem features

are more decoupled from HAWKS’ parameters. As was previously seen in Sec-

tion 5.2.4, the QJ generator is also well spread across the space, though this

time as a narrow band across the space. The expanded HK datasets spread in

a noticeably different direction to the other datasets. Looking at the problem

feature contributions and from knowledge of the generator itself, this is likely
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Figure 6.9: The direction and magnitude of the problem features as they con-
tribute to the first two principal components.
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Figure 6.10: The instance space colourized by the value of the average eccentricity
problem feature, indicating that a subset of the HK datasets are significantly more
eccentric than any of the other datasets.



6.2. EXPANDING THE INSTANCE SPACE 153

due to the higher number of clusters and more eccentric clusters. This genera-

tor was designed specifically for creating eccentric clusters in higher dimensions,

which when we look at the average eccentricity feature (in Figure 6.10) it is very

successful at. The diversity of performance on datasets from this generator was

not reflected in a spread across the space in Section 5.2.4, so the spread seen

here indicates that our greater set of problem features is significantly better at

capturing different challenges or properties of the datasets.

The SIPU datasets show a strong banding of instances, particularly due to

the ‘G2 sets’ which have a much higher dimensionality than the other datasets

we use. This implies that there is low variation among the datasets from each

configuration. The UCI datasets are very spread across the space, though this is

unfortunately due to a lack of structure (which we later explore when looking at

clustering algorithm performance), as their higher connectivity indicates that the

labels do not line up with a locality perspective of clustering. Finally, the UKC

datasets do not seem to represent anything extraordinary with regards to the

problem features we use here, leading to the conclusion that either the synthetic

datasets used here are not too dissimilar to real-world data or our set of problem

features does not capture some aspect of complexity that they uniquely exhibit —

as we see in the following section, these datasets seem to pose no greater difficulty

for clustering algorithms than any other used here, so it is likely the former.

The more stochastic nature of HAWKS is illustrated by its lack of banding, as

multiple datasets from the same configuration can result in quite different datasets

depending on the trade-off that was found, rather than a dataset with very similar

properties (but just a different location of the clusters). Nevertheless, the clear

separation between the datasets of HAWKS and HK either speaks to a limitation

of HAWKS, or a lack of diversity in the parameterization. We investigate this

further in Section 6.2.5, after looking at how these problem feature differences

corresponded with a difference in cluster algorithm performance.

Clustering algorithm performance

The aggregated performance of the clustering algorithms across all datasets from

each source is shown in Figure 6.11. We can see a varied tale of performance across

the sets, some of which was observed from the instance space. HAWKS appears

to exhibit the broadest spread of performance across all algorithms. The HK

generator seems to have generated datasets that were generally very difficult for
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Figure 6.11: Clustering performance (ARI) for each algorithm on each of the
dataset sources. The size (IQR) of the boxplot indicates diversity of difficulty of
the datasets, and the median indicates the average difficulty for that algorithm.

the algorithms, with a low mean ARI for each (and incredibly poor performance

for single-linkage). As this generator is explicitly designed to create eccentric

clusters in high dimensions, the eccentricity of these clusters may in-part explain

these results. Looking at Figure 6.105, we can see that in general these datasets

are considerably more eccentric than those from any other source.

The poor structure of the UCI datasets is reflected in the poor performance

obtained by all clustering algorithms, even obtaining negative ARI values. The

SIPU datasets, however, exhibit a very different view, where the datasets are

generally very easy for average-linkage, K-Means++, and GMM, but have a very

wide spread of performance for single-linkage (due to the overlap). Interestingly,

for many of the datasets the ARI for single-linkage is either 0 or 1, though the

median here is ≈ 1.0, highlighting the sensitivity of this algorithm where close

clusters are chained together (Hubert 1974). The UKC datasets do not vary

significantly in the challenge that they pose, with all algorithms generally doing

well (though again the sensitivity of single-linkage is highlighted with its higher

range of ARI values obtained).

The critical difference (CD) diagrams previously shown in Figure 5.13 are

shown for this experiment in Figure 6.12. Notably for HAWKS, average-linkage

5Visualizations of the instance space for each of the other problem features can be found in
Figure A.3.
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Figure 6.12: Critical difference (CD) diagrams for each of the dataset sources,
showing the average rank for each algorithm across the datasets. Solid lines
connect algorithms which are not significantly different from each other according
to a two-tailed Nemenyi test.

was the best performing algorithm on the datasets produced, owing to the greater

diversity of clusters that are less obviously Gaussian. GMM, as before, performed

significantly better than K-Means++, which in turn was superior to the remaining

linkage-based algorithms. Single-linkage achieved the same rank even with an

additional number of clusters, indicating that the cause of poor performance

was either not due to the chaining effect, or an even higher number of clusters

was needed (which could be caused by tightly-packed eccentric clusters in higher

dimensions).

GMM and average-linkage (with 2K) were equally superior to the other datasets

for the HK datasets, likely due to their high eccentricity. The additional clus-

ters for average-linkage helped to avoid the assignment of multiple clusters into

a single one, possibly caused due to highly eccentric clusters in close proximity

in higher dimensions, as evidenced by the location of the datasets in the instance

space where the 2K variant was superior (shown in Figure 6.13). The boxplots

for these algorithms (Figure 6.11) indicate that for some datasets, GMM was

able to perfectly cluster the data, but for the majority of datasets it was not
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Figure 6.13: The instance space, where the algorithm that performed the best
(highest ARI) is highlighted.

able to. The high dimensionality of these datasets impedes visualization to eluci-

date further reasons for this low performance, though the distinguishing feature

and likely reason is the eccentricity, and the higher standard deviation of the

silhouette width combined with lower average silhouette width implies a lack of

separation between the clusters (shown in Figure A.3).

Two groups of algorithms were found for the UCI datasets (Figure 6.12e),

whereas no algorithm was superior to any other for the UKC datasets (Fig-

ure 6.12f). The poor structure in the former datasets makes it harder for algo-

rithms to differentiate performance, and the smaller number (8) of datasets in the

latter is likely not enough to tease out significant differences between the algo-

rithms. The higher connectivity in the UCI datasets (shown in Figure A.3b) can

also explain the lower ranking of single-linkage. The ranks of the algorithms in

Figure 6.12f favour the compactness-based algorithms (GMM and K-Means++),

which is somewhat expected when visualizing the datasets (one of eight UKC

datasets was shown in Figure 2.2, though visualizations of all can be found in the

supplementary material of Garza-Fabre, Handl, and Knowles [2017]).

Considering algorithmic “footprints” in the instance space, we can see the

space highlighted according to the algorithm that achieved the best ARI in Fig-

ure 6.13. Clearly there are some areas where particular algorithms dominate,



6.2. EXPANDING THE INSTANCE SPACE 157

Table 6.2: Number of ‘wins’ (highest ARI for a given dataset) for each algorithm
from each of the sources.

Source Average-
Linkage

Average-
Linkage

(2K)

GMM K-
Means++

Single-
Linkage

Single-
Linkage

(2K)

Tied

HAWKS 117 25 107 25 7 5 162

HK – 149 199 2 – – –

QJ 2 5 157 20 – 1 58

SIPU – – 11 21 – – 75

UCI 2 3 10 4 – – 1

UKC – – 5 1 – – 2

indicating that the expanded set of problem features are more discriminative and

capable of separating the datasets. The ‘tied’ datasets are those on which at least

two algorithms achieved the same score (i.e. a perfect ARI of 1), indicating that

these are trivial datasets to solve. For further detail, in Table 6.2 we provide

a table of counts for each algorithm broken down by each dataset source. We

can see that HAWKS was the only generator both to produce datasets where ev-

ery algorithm performed the best, and capable of producing datasets specifically

where single-linkage performed the best.

Overall, as there are not clear boundaries of where particular algorithms are

dominant, this may hint that either the projection method results in too much

information loss, or that our problem feature set still needs further refinement to

capture a broader range of properties that cause differential performance.

6.2.5 Targetting the instance space

We previously discussed (Section 4.3.3) the generation of datasets in a specific

area of the instance space, an example of which can be found in Smith-Miles and

Bowly (2015). Given that we have an instance space, we can identify regions

where we would like datasets with those properties but do not currently have

any. There are gaps in our instance space where datasets either cannot exist

(e.g. high silhouette width and high connectivity), it would be undesirable to

generate them (e.g. high silhouette width variance), or it is less straightforward
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how to generate such datasets (e.g. high silhouette width variance). As such, a

downside is that some understanding of the features and their relation is required

to identify meaningful gaps.

Nevertheless, in this section we identify a region of the instance space with no

datasets from HAWKS and identify a set of parameters that may produce datasets

with such problem feature values. Unlike Smith-Miles and Bowly (2015), we do

not explicitly incorporate information about the instance space into the generat-

ing mechanism — all we have is the parameters that HAWKS provides. While

this is useful for generating datasets from a user-perspective, by not incorporat-

ing a target (informed by the instance space) into the generating mechanism, we

may limit our ability to generate datasets in a target region of the space. This

is particularly true as the link between the parameters and the problem features

may not be obvious (e.g. the standard deviation of the silhouette width is influ-

enced by multiple parameters simultaneously). As explored in Smith-Miles and

Bowly (2015), explicit targeting of the instance space would require a modifica-

tion of the objective function to reflect proximity to this target, which in our case

would result in a loss of the aforementioned advantage in having a user-defined

parameter for the ‘difficulty’.

Eccentric clusters

From the average eccentricity feature values obtained in particular by the HK

datasets (shown in Figure 6.10), it’s clear that the parameterization of the λratio

constraint has been conservative. As such, we run HAWKS another 10 times with

parameter modifications. We set λratio ≥ 100,000, and the upper bound of the

range used for sampling the initial cluster eigenvalues (defined in Equation 5.3

as β2, which has been hitherto unchanged) is increased significantly (×1,000) to

try and create more eccentric clusters from the start. To further push HAWKS

towards generating eccentric clusters, we set Pf = 0.25, putting more emphasis on

satisfying the constraints. For the fitness, starget = 0.6 is used to help encourage

bringing the clusters together so that the eccentricity is more impactful (for very

well-separated clusters, high eccentricity is less challenging). Similar to the HK

datasets, any overlap is penalized. We also use a larger number of smaller clusters

(K = 100) and data points (N = 4000) to better emulate the HK datasets. The

full configuration can be found online6.

6https://github.com/sea-shunned/thesis_material/chp6_targetting.json

https://github.com/sea-shunned/thesis_material/chp6_targetting.json
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Figure 6.14: The generated datasets visualized in the instance space (a) and the
performance of the clustering algorithms on these datasets (b).

Figure 6.14 shows the 20 generated datasets in the instance space (the larger

dots are the generated datasets). The majority of the datasets are in areas

that HAWKS has not previously explored, several of which are closer to the

HK datasets as desired. Two of these datasets in particular are in regions of the

instance space distinct from all of the other datasets, implying that these datasets

have quite separate properties (from inspection of the problem feature values, the

primary difference is a higher connectivity). The performance of the clustering

algorithms on these datasets, shown in Figure 6.14b, indicate that (at least for

average-linkage) the large distance between these datasets in the instance space is

reflected in a variance of performance. Similar to the results seen in Table 6.2, the

higher performance of average-linkage (2K) indicates a greater similarity between

these new datasets and the HK datasets.

6.2.6 Experimental summary

In this section, we ran HAWKS with a wider set of parameters, creating an in-

stance space with a broader range of problem features (that were not directly

encoded by HAWKS), comparing against more varied sets of datasets. The set of

parameters helped HAWKS generate more diverse datasets, resulting in a more

uniform spread of performance across several clustering algorithms than the other

datasets. The additional problem features were useful in creating a more informa-

tive instance space, though the quest to find additional (uncorrelated) features is

a constant source for improvement. We were able to identify regions of the space

without datasets to then more explicitly generate datasets from HAWKS with
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those problem feature values. The more stochastic nature of HAWKS results in a

wider spread of these datasets across the space than may be desirable when trying

to explicitly generate datasets in a certain region, though additional tweaking of

HAWKS’ parameters may prove beneficial in such a scenario.

6.3 Maximizing performance difference

In our two larger experiments (Section 5.2.4 and Section 6.2), we saw that dif-

ferent generators tended to generate datasets that favoured particular algorithms

(in terms of the ease of getting an ARI close to 1). Our expanded set of problem

features helped somewhat to capture these differences, but to do this accurately

we require a full feature set (F) that describes all aspects of a problem, which

as we have discussed is particularly challenging (if even possible) with cluster-

ing. A potential way to circumvent the recondite and potentially unquantifiable

features of the data that present different challenges for clustering algorithms is

to instead generate datasets that directly maximize the performance difference

between them. The cluster structures that favour one algorithm over another

can then be discovered without explicit modelling or a priori knowledge of these

structures.

This facilitates obtaining better insights into the strengths and weaknesses

of algorithms, and in particular to get a deeper understanding of the relative

differences between algorithms. This goes beyond the original ASP (Section 4.2),

which is concerned with predicting the best clustering algorithm for a dataset

based on its problem features. The approach proposed in this section is more

focussed on directly comparing clustering algorithms in order to obtain insights

about their performance, which can aid in the more fundamental development of

clustering approaches.

To enable HAWKS to do this, our objective needs reformulation in order to

capture the performance difference between two algorithms:

max f(X) ≡ max φ(αw)− φ(αl), (6.9)

where f(X) is the fitness function (the original fitness function was defined in

Equation 5.4) applied to dataset X, φ is a scoring function (e.g. the ARI), αw is

the winning algorithm we want to perform better relative to the losing algorithm,
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αl. This creates a new mode for HAWKS, named ‘versus’ mode, as we create an

adversarial7 situation between the two clustering algorithms.

Otherwise, HAWKS remains the same as in the previous section. As our

fitness function no longer relies on the silhouette width, in this mode HAWKS

cannot use the PSO-informed mutation operator. With no explicit control over

the silhouette width, there is the potential to generate datasets with low sall (and

thus are uninteresting datasets due to their poor structure), but as the difference

between the algorithms is being maximized this is unlikely to occur due to a poor

structure being generally ‘unclusterable’ by all algorithms.

6.3.1 Experimental setup

To ascertain the capabilities of HAWKS in generating datasets that challenge

different algorithms differently, we run each of the four previously-used algorithms

against every other in a head-to-head. These different combinations will present

varied difficulty to the optimization (based on the perceived similarity of the

algorithms). The datasets produced will then be run on all clustering algorithms

to get a broader view of the challenges that these datasets propose.

Once the ability of HAWKS to generate datasets in this setting has been

ascertained, we pose the situation where HAWKS is unable to generate datasets

that favour one algorithm over another. In such a scenario, it can be difficult

to conclude whether this is due to the superiority of one algorithm over another,

or the inability of HAWKS to generate structures with properties that would

differentiate them. Of additional interest is how these datasets are generated —

for example, if datasets are generated to fool one algorithm through exploiting

highly overlapping clusters, while this presents an insight into the different levels

of robustness to overlap, it does not provide datasets that are generally useful

due to their poor structure.

Despite HAWKS’ utility for embedding a preference towards either the ob-

jective or the constraints, in previous experiments we were more interested in

generating a diversity of datasets and so we kept Pf = 0.5. For this ‘versus’

mode, it is clear that some pairings of algorithms are likely to be challenging for

HAWKS. In such a scenario, while we still have constraints that are important,

7According to the non-scientific definition, as opposed to the field of adversarial machine
learning. Although the algorithms are against each other, there is no communication between
them and their input is the same.
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we wish to avoid situations where the optimization is being mainly driven by

reducing the constraint penalty. Rather than simply removing the constraints,

we can increase Pf to add further emphasis in the optimization on producing a

difference in algorithmic performance. For generating datasets that cause a max-

imal difference between e.g. K-Means++ vs. GMM, such pressure may be needed.

Note that, “K-Means++ vs. GMM” refers to K-Means++ as the winning algorithm

(αw), and GMM as the losing one (αl). Without a priori knowledge of the diffi-

culty, this provides a useful lever for driving dataset generation through iteration

and interaction with HAWKS. To encourage a performance difference, we use

Pf = 0.75 in all experiments, though this can be adjusted if the ARI difference

is achieved through e.g. too much violation of the overlap constraint.

For our scoring function (φ) we use the ARI to provide a comparable measure

of agreement with the true labels of the datasets. While any scoring function can

be used here for the optimization, an unbiased external validity index provides

a broader perspective of performance and thus can be used with any clustering

algorithms with no preference of structure.

HAWKS configuration

This set of experiments was performed using a single configuration, which can be

found online8. We use the PSO-random mutation operator in this experiment,

with overlap ≤ 0 (fully constrained) and λratio ≥ 1 (fully unconstrained). For

visualization purposes, we generate 2D data with K = 5 clusters and N = 2000.

Avoiding a completely overlapping initialization of the clusters is also likely

to help speed convergence and create more potentially interesting structures,

as regardless of properties such as eccentricity if the clusters are well-separated

algorithms are likely to do equally well. As such, we use the same setting as the

‘apart’ initialization scenario used in Section 6.1.2.

6.3.2 Results

To get an overall impression of the ability of HAWKS to successfully optimize the

differences between the algorithms, we refer to Figure 6.15. Each non-diagonal

plot in this grid (i.e. the line plots) represents the best ARI difference (i.e. highest

fitness) for each of the 30 runs between the αw (the algorithm for that row) and

8https://github.com/sea-shunned/thesis_material/chp6_versus.json

https://github.com/sea-shunned/thesis_material/chp6_versus.json
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the αl (column). For example, average-linkage vs. GMM is the second plot in the

top row. We can visually identify the ability of HAWKS to create a difference

by observing the angle of the lines. For each plot on the diagonal, we have the

overall mean (and standard deviation) of the ARIs achieved when that algorithm

was chosen as the winner (on the left-hand side) and as the loser (on the right-

hand side). This illustrates the ability of HAWKS to more generally produce

datasets that the particular algorithm finds either easy or difficult to solve. We

can observe that for K-Means++, HAWKS has the flexibility to produce datasets

that are both easy and difficult, more so than when compared to single-linkage

where it is significantly easier to generate datasets it performs poorly on, and

more difficult to generate datasets it can uniquely perform well on.

For the stochastic algorithms (K-Means++ and GMM) there is inherent vari-

ability in the fitness evaluation9. As each parent is evaluated once, despite our

use of multiple initializations for these algorithms there remains the inevitable

possibility that the best resulting model from these initializations is only locally

optimal, and thus may give a deceptively low or high fitness value. To illustrate

to what extent this affects the results, we run the clustering algorithms again

(using the same parameters) with a different set of initializations. In Figure 6.16,

we can see overlaid on each plot a new set of 30 lines with the updated ARI

values, as well as the updated aggregate on the relevant diagonal plot. Note that

for ease of illustration we have skipped the two scenarios where only deterministic

algorithms were involved (average-linkage vs. single-linkage and vice versa). Most

notably, we can see the performance for GMM increase for many runs when it

was the losing algorithm, indicating that for these datasets GMM was capable of

doing better — across all runs as αl, GMM saw an increase of ' 0.14 in the mean

ARI. Of course, the stochastic nature of these algorithms is an inherent disad-

vantage, and giving them an unrealistic computational budget would not reflect

this natural disadvantage of these algorithms over e.g. linkage-based algorithms.

In the following sub-sections, we go into further detail on particular combi-

nations of algorithms, providing examples of datasets that were generated. In

the example datasets we show, a difference in colour/marker indicates a differ-

ent assignment of cluster. For each example, the performance (ARI) is shown

above the dataset. It is not reasonable to go through every combination here, so

9Interestingly, when the initialization of these algorithms did not change between evaluations,
HAWKS moved clusters such that the initialization (when designated as the losing algorithm)
would split them into multiple clusters, thus reducing performance in an undesirable way.



164 CHAPTER 6. EVOLVING DIFFICULT SYNTHETIC CLUSTERS II

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e-

Lin
ka

ge

Average-Linkage GMM KMeans++ Single-Linkage

0.00

0.25

0.50

0.75

1.00

GM
M

0.00

0.25

0.50

0.75

1.00

KM
ea

ns
++

Winner Loser
0.00

0.25

0.50

0.75

1.00

Si
ng

le
-L

in
ka

ge

Winner Loser Winner Loser Winner Loser

W
in

ne
r

Loser

Figure 6.15: Grid of plots showing the ARIs for each algorithm as both the
αw (rows) and αl (columns). Each line represents the best individual found from
a single run (across 30 runs). The angle of the line indicates the performance
difference, and the spread of the lines indicate robustness. On the diagonal is
the aggregated mean and standard deviation across all of the (best) individuals
where that algorithm was the αw (left-hand side) and αl (right-hand side).
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Figure 6.16: Same plots as Figure 6.15, but with each of the clustering algorithms
(combinations with only deterministic algorithms have been skipped) run again
with different initializations to ascertain the stochasticity in the obtained ARI
scores. The aggregated range of ARIs obtained with the new initializations is
also shown in the diagonal plots.
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Figure 6.17: The ARIs obtained across the 30 runs for each of the head-to-heads
between GMM and single-linkage.

we select a few combinations that cover all of the algorithms, illustrating varied

insights and (to some degree) the success of this mode.

GMM and Single-Linkage

In Section 5.2.4 all three generators produced datasets that, on average, GMM

performed better on compared to single-linkage. This difference is inescapably due

to the convex clusters that all these generators create. The results in Section 6.2.4,

however, indicated that HAWKS does not generate datasets that are all easily

solved by GMM only, and that it can create datasets in which single-linkage

performs the best. While we expect HAWKS to easily maximize the difference of

GMM vs. single-linkage, the reverse scenario should be more difficult.

Figure 6.17 compares the ARI for GMM and single-linkage side-by-side for

each of the 30 runs. When αw = GMM (Figure 6.17a), there is a very clear trend

towards an ARI difference of 1, showing that HAWKS was consistently able to

generate datasets that create a very large performance difference between the two

algorithms. In Figure 6.17b, we see a more varied picture. The spread of ARI

performance for single-linkage is much higher, indicating that HAWKS was not

always capable of producing datasets that single-linkage could perfectly solve.

The average angle of the lines suggest that a consistent performance differential

could be created, but this difference is much lower than in the reverse scenario.

Although this result is not unexpected, by looking at the datasets produced

we can investigate how the clusters were placed to create this large performance

difference. In Figure 6.18 we can see an example dataset with an ARI difference
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Figure 6.18: Example dataset from GMM vs. single-linkage, illustrating that
placing clusters in close proximity to each other easily resulted in single-linkage
chaining the clusters together.

of ' 1.0. By placing the clusters close together, the few datasets that are sampled

further away from the mean induce the ‘chaining effect’ of single-linkage (Hubert

1974) such that the vast majority of points are assigned to a single cluster, yet

these clusters are still separated enough that GMM can precisely identify the

correct membership.

Figure 6.16 showed that, for a significant number of runs, there was an im-

provement in performance of GMM when run again with a different initialization,

highlighting the cause of the lower ARI. As previously discussed, the poor con-

vergence due to poor initialization is an inherent limitation of this algorithm, as

simply running the algorithm more times is not always a practical solution. By

inspecting the datasets produced, there were two main ways that HAWKS seems

to generate datasets where single-linkage could perform better: move larger clus-

ters out far from each other, and overlap smaller clusters such that GMM splits

larger clusters. Of course, the latter of these is not necessarily useful (from the

perspective of generating realistic datasets), but both of these approaches ap-

pear to exploit the dependence of GMM on initialization. Figure 6.19 shows

two examples of these exploitations. The degree of overlap in both examples is

small, particularly in Figure 6.19a where overlap = 0.004, and so these are not

implausible datasets.

Of further interest is the contrast of performance across all algorithms on the

datasets produced in these two scenarios. In Figure 6.20a we can see that most

algorithms did well apart from single-linkage, showing that the close proximity of
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Figure 6.19: Two example datasets from single-linkage vs. GMM, highlighting the
exploitation of overlap and well-separated clusters to induce poor initialization
and thus local optima.
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Figure 6.20: Clustering performance across all algorithms for the two head-to-
head scenarios between GMM & single-linkage.

clusters was a challenge unique to single-linkage. The variant that used double

the number of clusters (2K) showed a significant improvement, highlighting the

need for this algorithm to have an over -estimated K for less-compact clusters

in close proximity. The placement of the clusters that resulted in poor GMM

performance generally resulted in even worse performance for K-Means++ (shown

in Figure 6.20b), highlighting their shared weakness. The improved initialization

scheme of K-Means++ should have somewhat helped avoid large clusters being

split, but the close proximity and eccentric clusters (as highlighted in the exam-

ple datasets) are a larger barrier to convergence (compared to GMM). Average-

linkage was able to perform almost as well as single-linkage, as expected.

Average-Linkage and Single-Linkage

Figure 6.15 showed two notably different profiles of performance between the

head-to-heads of these algorithms, worthy of further investigation. The first sce-

nario, average-linkage vs. single-linkage, displays very similar results to GMM

vs. single-linkage, in terms of both the ARI difference (Figure 6.21a) and ex-

ploitation used (Figure 6.22). By taking an average of the distances between two

groups, average-linkage is not susceptible to the chaining effect that single-linkage

is (Hubert 1974; Yim and Ramdeen 2015), making it trivial to induce this effect.

We can see a very high spread of ARI differences for single-linkage vs. average-

linkage (Figure 6.21b). There are some datasets that correlate both high and low
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Figure 6.21: The ARIs obtained across the 30 runs for each of the head-to-heads
between average-linkage and single-linkage.
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Figure 6.22: Example dataset from average-linkage vs. single-linkage, illustrating
that placing clusters in close proximity to each other easily resulted in single-
linkage chaining the clusters together (as seen previously with GMM vs. single-
linkage).
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Figure 6.23: Two example datasets from single-linkage vs. average-linkage, high-
lighting the exploitation of separating most clusters to cause a split in clusters
placed closer together.

performance between the two, indicating that the algorithms do share some simi-

larities. In Figure 6.23, we can see two example datasets where the ARI difference

was larger between the two (and maximized for single-linkage), indicating that

HAWKS managed to find a structure that better favoured single-linkage. Exam-

ining these datasets, we can see that in both examples the clusters are in general

well-separated. By placing some clusters much further away, and co-locating a

few smaller clusters, the averaging criterion (to determine where to split next)

used by average-linkage assigns clusters that are closer together the same cluster

label. The mixed eccentricities of clusters that HAWKS is able to generate helps

facilitate the discovery of this exploit.

We can also see that this co-location of several clusters (relative to the large

distances between the well-separated clusters) is reflected in a degraded perfor-

mance of the other clustering algorithms, as shown in Figure 6.24. A similar

weakness was exploited in single-linkage vs. GMM, which GMM also shares with

K-Means++. To explore the differences between these two algorithms, in the next
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Figure 6.24: Clustering performance across all algorithms for single-linkage
vs. average-linkage.

section they are put against each other to study what structures cause perfor-

mance differences.

GMM and K-Means++

The final combination to study more in-depth is between GMM and K-Means++.

As discussed in Section 2.4, K-Means can be formulated as a special case of GMM,

and thus broadly similar performance is expected. It is expected, however, that

some cluster structures (such as neighbouring clusters that are highly eccentric

and orthogonal) are likely to pose more of a problem for K-Means++ than GMM.

Owing to its consistent high performance and suitability for the cluster represen-

tation of HAWKS, the generation of datasets that are easier for K-Means++ over

GMM may be difficult.

The spread of ARIs obtained for both scenarios is shown in Figure 6.25. From

the consistency of the results, it is clear that the optimization of GMM vs. K-

Means++ was easier than vice versa — the average performance difference is much

greater, and the spread of performance for the winning algorithm is much wider

for K-Means++. The results indicate that K-Means++ shares more mechanistic

similarities with GMM than vice versa, as there is a higher correlation of perfor-

mance (for both lower and higher ARI values).
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Figure 6.25: The ARIs obtained across the 30 runs for each of the head-to-heads
between GMM & K-Means++.

Two example datasets of GMM vs. K-Means++ are shown in Figure 6.26. The

first example (Figure 6.26a) is somewhat expected as GMM can handle eccentric

clusters, but nonetheless it is encouraging that such an exploitation was found.

The compactness-based nature of K-Means++ presents difficulties when clustering

neighbouring, highly eccentric clusters (note that, despite the look of the clusters

they are separated as overlap = 0.006). The second example (Figure 6.26b)

is interesting, as it highlights a potential benefit of using metaheuristics. The

placement of highly eccentric clusters on top of other clusters is undesirable and

unrealistic for a dataset, but highlights the very different nature of the algorithms:

the iterative nature of K-Means++ does not permit membership assignment akin

to overlapping mixture models. The amount of overlap (0.034) is low for this

example, and although many algorithms would struggle with this example the

relative proportion of overlapping data points indicates that the very low ARI

obtained is caused by the placement completely disrupting the convergence of

K-Means++.

For K-Means++ vs. GMM, we can see two example datasets produced in Fig-

ure 6.27. Similarly to when GMM was the ‘losing’ algorithm against single-

linkage, the initialization is the weak point of the approach that HAWKS exploits.

For single-linkage, this exploit utilized elongated clusters (Figure 6.19a), though

this cannot work here since that is also a weakness of K-Means++. The improved

initialization scheme used by K-Means++ ensures a wider spread of the initial cen-

troids (Arthur and Vassilvitskii 2007), making it less susceptible to large clusters

placed far away from other clusters (where it can be erroneously split by trapping
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Figure 6.26: Two example datasets from GMM vs. K-Means++, highlighting the
use of eccentricity and/or clusters placed on top of each other which mechanisti-
cally K-Means++ cannot separate, in contrast to GMM.
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Figure 6.27: Two example datasets from K-Means++ vs. GMM, highlighting a
similar exploitation previously used against GMM to place larger clusters further
away to induce poor initialization.
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two or more of the initialization locations). Lacking this more advanced initial-

ization scheme, GMM more easily converges to the local maxima, the chance of

which is increased by HAWKS placing large clusters further away. Experiment-

ing with these algorithms and/or initialization schemes within HAWKS presents

a potentially useful avenue, as visualizing the locations of clusters may help gen-

erate insights into the pitfalls of the scheme, namely the location of the initial

centroids (for K-Means++) or parameter estimates (for GMM).

6.3.3 Experimental summary

In this section, we reformulated the objective function of HAWKS to use the

actual cluster assignment of two algorithms, seeking to maximize the difference

in their performance (according to the ARI). Rather than tweaking parameters

trying to coax HAWKS into generating structures that one algorithm is better

suited to when compared to another algorithm, by directly maximizing the per-

formance difference such structures can be discovered. An advantage of HAWKS

that was not explored here is the option of iteratively adjusting the parameters

based on the datasets produced, such as discouraging eccentricity in GMM vs. K-

Means++ to try and discover a less obvious weakness.

By using algorithms that are well-understood, we have been better able to

understand whether the structure of the datasets that have been used to gen-

erate differences between algorithms are both valid and interesting, as opposed

to just overlapping clusters such that the data itself becomes unrealistic. This

understanding better facilitates future application to more complex algorithms

that are less-understood.

6.4 Summary

This chapter saw multiple improvements to HAWKS, namely: a new mutation

operator that better allows for optimizing datasets in higher dimensions (Sec-

tion 6.1); a clearer understanding of the parameters available in HAWKS and

how these can be used to generate more diverse datasets, as measured by a more

informative set of problem features (Section 6.2); and, a new mode where we

generate datasets specifically to maximize the difference in performance between

two algorithms (Section 6.3).



Chapter 7

Adaptive Evolutionary Clustering

In this chapter we look at another use of EAs within clustering, where instead of

generating clusters we use EAs as a clustering function to directly assign cluster

membership. In Section 7.1 we provide background on this field of evolutionary

clustering by detailing an algorithm (∆-MOCK) that we then extend with a more

flexible encoding in Section 7.2 to create our “Adaptive-MOCK” variant. Then,

in Section 7.3 we use our generator (HAWKS) and the instance space/problem

feature set we developed in Section 6.2 to further investigate the different methods

we use in “Adaptive-MOCK”. Some of the content in this chapter has been taken

from Shand et al. (2018).

7.1 Background: Evolutionary clustering

Evolutionary clustering is the field where an EA is used to identify cluster mem-

bership, given a dataset (or a dissimilarity matrix of data). As discussed in

Chapter 2, there is no single measure that can capture the many facets that de-

fine a cluster. Naturally, this sets up clustering as a multi-objective optimization

problem, for which EAs can be used to optimize clusterings. For more infor-

mation about the field as a whole, see Handl and Knowles (2004), Handl and

Knowles (2007), Mukhopadhyay et al. (2014), and Mukhopadhyay, Maulik, and

Bandyopadhyay (2015).

176
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7.1.1 The ∆-MOCK Algorithm

Garza-Fabre, Handl, and Knowles (2017) introduced ∆-MOCK, as an improve-

ment upon the MOCK algorithm (Handl and Knowles 2007). Although there

lacks comprehensive work comparing evolutionary clustering algorithms, ∆-MOCK

is a state-of-the-art approach that is able to cluster difficult datasets (Garćıa and

Gómez-Flores 2016; Zhu, Xu, and Goodman 2020).

In this section, we outline how the ∆-MOCK algorithm works, to provide

context for the rest of this chapter where we build upon this algorithm. For a

complete description of the main changes and differences with the original MOCK

algorithm, see Garza-Fabre, Handl, and Knowles (2017).

Representation

∆-MOCK uses an adaptation of the locus-based adjacency representation, illus-

trated in Figure 7.1, which was used in MOCK and proposed by Park and Song

(1998). This representation treats each of the N data points as nodes on a graph,

where the edges on that graph are encoded in the genotype by the index and the

value of each gene. For example, in Figure 7.1 the first gene has the value four,

thus creating an edge between nodes (synonymous here with data points) 1 and 4

(i.e. x1 → x4).1 The connected components (a subset of nodes connected to each

other) of the resulting graph are the clusters, exemplified by the four clusters in

Figure 7.1.

The advantages of this representation are: no K is encoded into the repre-

sentation, allowing for its discovery; there is no bias towards a cluster represen-

tation (such as other representations that encode real-valued centroids directly

[Mukhopadhyay, Bandyopadhyay, and Maulik 2006]); and, meaningful genetic

operators can be created to modify the edges on the graph. A primary disad-

vantage, however, is that the genotype length is equal to N , thus growing with

the size of the data and increasing the search space. If each node can connect to

itself or any other node, then the total search space is NN , which quickly becomes

infeasible to search over. As we will see, however, MOCK and ∆-MOCK employ

strategies to limit this search space.

The main improvement in ∆-MOCK was the identification that not all edges

are equally important, thus enabling the creation of a reduced version of this

1The direction is illustrative only as the underlying graph is undirected.
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Figure 7.1: Locus-based adjacency representation, where the genotype (of length
N) encodes the edges that connect the N nodes (which represent the data points).
For the gene at index i with value j, an edge is added to the graph between
those nodes, i.e. xi → xj. The connected components of the graph represent the
clusters.

representation. Owing to its namesake, a hyperparameter δ is introduced that

represents the percentage of the genotype to freeze, i.e. to not involve in the

optimization. This then leads to another core piece of ∆-MOCK — the minimum

spanning tree (MST). Previously mentioned in Section 2.5.2, the MST is the

subset of edges that connect all nodes (without cycles) such that the sum of the

weights (which is the distance between points in this case) is minimized. As part

of the precomputation, the MST is calculated and used as a starting point for

solutions. To identify the relative importance of edges on the MST, the degree

of interestingness (DI) is used as a measure to identify which edges are likely to

be most important during the optimization. This measure was previously used

to guide the generation of the initial population in MOCK (Handl and Knowles

2007), but is now utilized to reduce all genotypes throughout the optimization.

To define the DI, we need to define notation for the rank of a data point with

respect to another (in terms of nearest neighbours). In Section 5.1.3 we defined

nx(j) as the jth nearest neighbour of data point x. The inverse of this function,

n−1
x : X → {1, . . . , N}, provides the rank of a given data point. For example, if

data point x5 is the 3rd nearest neighbour of x, then nx(3) = x5 and n−1
x (x5) = 3.
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Using this, the DI for an edge xi → xj as follows:

DI(xi → xj) = min
{
n−1
xi

(xj), n
−1
xj

(xi)
}

+
d(xi,xj)

dmax

, (7.1)

where dmax is the maximum distance between any two data points in the dataset

to ensure that the second term is in the range [0, 1]. This provides nuance and

discrimination between edges of the same nearest neighbour ranking. A higher

DI value indicates that the two points are a more unlikely edge in the MST as

they are further outside each others local neighbourhood, and is thus potentially

an edge between clusters. Note that ∆-MOCK by default uses the Euclidean

distance, but other distance measures can be used to calculate the DI and MST.

A ranking is created for all edges in the MST according to their DI value. The

hyperparameter δ is then used to partition the edges of the MST into two sets:

“relevant” (Γ) and “nonrelevant” (∆). The parameter δ is a value in the range

[0, 1] that specifies the fraction of the least interesting edges (i.e. lower DI value)

that are deemed “nonrelevant” and thus frozen for all individuals, effectively

reducing the genotype (and therefore search space) to the “relevant” set of edges.

When δ = 0, there is no reduction in the genotype length, and thus |Γ| = N .

The reduced genotype length is calculated as |Γ| = dN × (1− δ)e.

Figure 7.2a shows the MST for our example dataset, alongside a DI value for

each edge. If we wish to reduce the search space by half then we can set δ = 0.5,

which freezes half of the edges as seen in Figure 7.2b. The reduced encoding

allows exploration of only the top 50% most interesting edges (highlighted by

“?” in the genotype), thereby creating a partial solution with P = 6 components

and a genotype of length |Γ| = 5. These components or sub-clusters consist of

points that are likely to belong to the same cluster, transforming the optimization

problem so that it is now finding the optimal configuration of these components

rather than single data points (though as shown components can contain any

number of data points). When δ = 0, the full genotype is used as with the

original MOCK (Figure 7.2c) such that each data point is a component (P = N).

We refer to this as the maximum resolution of the search, in contrast to the

minimum resolution (δ = 1) where the MST represents a single-cluster solution.

As the value of δ fixes a percentage of edges in the MST, it is clear that the

optimal value of δ will differ for different datasets.
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Figure 7.2: An example dataset with N = 10 data points is presented. In (a),
the MST is shown (equivalent to δ = 1). The DI value of each edge is displayed
next to it. In (b), the P = 6 components corresponding to δ = 0.5 can be seen,
where half of the least interesting edges have been fixed. This produces a reduced
genotype of length |Γ| = 5. In (c), there are no fixed edges when δ = 0, resulting
in a full-length genotype (P = N).
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Naturally, there is a trade-off between reducing the search space (by increas-

ing δ) and avoiding the creation of components that contain two or more data

points that belong to different clusters. Although the non-universally applicable

nature of the MST and DI measure means that edges that cross cluster bound-

aries may not always be found and assigned a high ranking, in general higher δ

values increase the size of the components and thus likelihood that they contain

heterogeneous data points (with respect to their cluster membership).

Objectives

∆-MOCK minimizes two objectives: intra-cluster variance and connectivity. The

former objective emphasizes cluster compactness and is minimized when every

data point is in its own separate cluster; the latter considers preservation of local

structure, and is minimized when all data points are together in a single cluster.

This adverse relationship leads to the generation of a Pareto front that spans

a range of K values, facilitating both exploration and the natural discovery of

appropriate K values.

The intra-cluster variance is simply the sum squared distances for each cluster

between each point and its centroid (which is what K-Means sought to minimize

in Equation 2.2). We reiterate it here as follows:

1

N

∑
Ck∈C

∑
x∈Ck

d(x,µk), (7.2)

where C = {C1, . . . , CK} is the set of clusters and d(x,µk) is the Euclidean

distance between point x and µk (the centroid of cluster k). The Euclidean

distance is used by default in ∆-MOCK, but for other inputs other distance

measures may be more appropriate.

The second objective, connectivity, was used as a problem feature and defined

in Equation 6.5 (except here there is no 1/N averaging term). In brief, it measures

the extent to which neighbouring data points are assigned to different clusters,

with larger penalties incurred when the data points have a higher nearest neigh-

bour ranking (i.e. are closer). ∆-MOCK defines the size of the neighbourhood

i.e. the number of nearest neighbours to consider by the hyperparameter L.

Underlying ∆-MOCK is the NSGA-II algorithm (a change from MOCK, which

used PESA-II [Corne et al. 2001; Garza-Fabre, Handl, and Knowles 2017; Handl

and Knowles 2007]), owing to the more elitist nature of the latter imposing too
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much selection pressure such that genetic material from the initialization (dis-

cussed in the following section) was removed prematurely. The crowding distance

used by NSGA-II (Deb et al. 2002) to promote diversity across the Pareto front is

additionally useful for ∆-MOCK, as this front contains individuals across a range

of K values.

Initialization

As previously mentioned, the initial population is generated using the MST in

order to closely approximate the Pareto front. Individuals are created by cutting a

random number of edges from the MST, thus also creating individuals of a varied

number of clusters. An initial range of k values in the range [2, kmax] is used,

where kmax is a user-defined parameter which is twice the real (or estimated if

unknown) number of clusters. The upper bound, kmax, is overestimated to ensure

a variety of different individuals are created, thereby facilitating exploration.

Each k is iteratively sampled from this range (without replacement) to generate

solutions, which are obtained by removing the k − 1 most interesting edges in

the MST. Each edge xi → xj is then replaced by the edge xi → xh where

xh ∈ {nxi
(1), . . . , nxi

(L+ 1)} \ {xj} i.e. the new edge must be different from the

previous one, but is either self-connecting or to one of xi’s L nearest neighbours.

Thus, variation is introduced into the initial solutions beyond the genetic material

present in the MST.

Genetic Operators

Standard uniform crossover (Section 3.2.2) is used for recombination. For muta-

tion, the neighbourhood-biased mutation operator is used (Handl and Knowles

2007). The mutation probability is calculated individually for every gene, where

for an edge xi → xj encoded by a gene the probability is:

pm(xi → xj) =
1

|Γ|
+

(
n−1
xi

(xj)

|Γ|

)2

. (7.3)

where the second term increases the probability of mutating edges between data

points that are further apart (at least in terms of nearest neighbour ranking).

When selected for mutation, the edge xi → xj is replaced with the edge xi → xh
in the same way as the initialization. Thus, the mutation can only create edges
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to L + 1 nodes (the node itself and the L nearest neighbours). While this has

the advantage of not creating an edge between two data points that are very far

away when L << N , if L is too small then there is the possibility that all possible

mutations for a given gene have no effect on the fitness (as every edge is between

two points in the same cluster). The genetic operators are applied to the reduced

genotype only. The design of ∆-MOCK is such that the relevant set (Γ) of edges

that we do mutate should be on cluster boundaries such that the neighbourhood

defined by L is of interest.

7.1.2 The need for adaptation

As stated in the previous section, the δ hyperparameter limits the search space to

the (hopefully) more ‘interesting’ region, providing the opportunity to find equiv-

alent or better solutions at a lower computational cost. As previously mentioned,

the flexibility of the locus-based adjacency representation is such that, with no

restrictions, the size of the search space is NN and thus infeasible to search over.

The restriction of the L neighbourhood hyperparameter we previously discussed

restricts the search space to (L+2)N instead (the L nearest neighbours, the node

itself, and the node in the MST which may have a nearest neighbour ranking

higher than L), where typically L << N . With the restriction of the search to

the relevant set (Γ) to create a reduced genotype of length |Γ|, the search space

for ∆-MOCK is (L+ 2)|Γ|.

The optimal δ value is the highest possible value that does not freeze an

edge that connects two clusters, which inherently differs between datasets. As

this represents the smallest search space where the optimal solution is reachable,

values of δ above and below this value represent a trade-off between performance

and computation time. For the more exploratory approach of clustering, a more

conservative δ value may be appropriate to provide greater diversity in the final

population. As one of the primary improvements of ∆-MOCK was the decreased

computation time, the prospect of multiple runs to find this optimal δ seems

counterintuitive. Garza-Fabre, Handl, and Knowles (2017) compromised by using

a heuristic that scales δ with the size of the dataset. For this the authors used the

notation srη, which specifies that |Γ| = η
√
N , where η is a user-defined value.

The actual δ is then calculated as δ = 1 − η√
N

. While this allows for a more

universal approach to setting δ, it still may require further tuning.

To avoid repeated runs of ∆-MOCK to find better δ values, in the next section
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we propose a novel method of adjusting this parameter during the optimization,

based on the current rate of convergence, such that the search space is enlarged

only when needed.

7.2 Towards an adaptive encoding

This section outlines the method proposed in Shand et al. (2018) to create a

variant of ∆-MOCK, “Adaptive-MOCK”, that adjusts the search space during

the run in order to limit computation and focus the optimization on the edges

more likely to produce better clusterings.

7.2.1 Performance-based adaptation

To identify when the search space should be modified, we need to measure the cur-

rent state of the optimization to understand when we have converged or exhausted

the current search space (i.e. explored the relevant combinations of components).

Referring to the categorization of control strategies proposed in Eiben, Hinterd-

ing, and Michalewicz (1999), the most appropriate description of our proposed

method is adaptive parameter control. Such methods generally refer to a specific

parameter of the EA itself (such as the population size), whereas here we are

tuning a parameter that controls the genotype length (by freezing genes to the

value of the MST) and thus the search space itself. As such, this deviates slightly

from the original definition. For further background, see Section 3.4.

Two similar methods to our proposal are the ARGOT strategy (Shaefer 1987)

and delta coding (Whitley, Mathias, and Fitzhorn 1991). The former uses a flex-

ible mapping of function variables to the genes that allow for both the expansion

and reduction of the search space through adaptation of the number of bits that

are used to represent the gene. By increasing or decreasing the numerical preci-

sion, the resolution of the search is modified. Delta coding modifies the search

space through iterative reinitializations in a range around the current best so-

lution. The trigger, or condition, used to reinitialize is a measurement of the

Hamming distance between the best and worst individuals in the population,

and is thus a proxy measure for the diversity (or lack thereof) of the current

population. Although the Hamming distance threshold used is fixed, the size of

the “hypercube” (i.e. search space) varies dependent on performance.
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Algorithm 7.1: Adaptive-MOCK

input : X, δ, Gmax, L, kmax

output: Population of partitions (P)

1 precomputation() // MST, DI, “delta-evaluation” etc.

2 P ← initialization()

3 evaluation(P)
4 HV0 ← hypervolume()

5 for gen ← 1 to Gmax do

6 P ′ ← parental selection(P)
7 P ′′ ← genetic operators(P ′)
8 evaluation(P ′′)
9 P ← environmental selection(P ∪ P ′′)

10 HVgen ← hypervolume()

11 if trigger mechanism(HVgen) then

12 Reduce δ, recalculate components

13 search strategy()

14 end

15 P → Pareto nondominated()

Typically, adaptive parameter control methods rely on feedback from the cur-

rent search to trigger changes of the parameter values (Karafotias, Hoogendoorn,

and Eiben 2015). Measures used to quantify the state of the search generally

consider either the quality (i.e. fitness) of the best solution in the current pop-

ulation or the quality of the population as a whole. Of course, with multiple

objectives quantifying the population quality is an active area of research (Li and

Zheng 2009; Riquelme, Lücken, and Barán 2015; Zitzler and Thiele 1998). In our

case, we use the hypervolume to provide feedback on the performance due to its

simplicity, popularity, and Pareto-compliant (i.e. adheres to Pareto dominance,

defined in Section 3.1.1) property. The hypervolume (discussed in Section 3.2.3)

is a unary measure of the volume of the Pareto front dominated by the current

population (Zitzler and Thiele 1998). It has been previously used as a convergence

measure in the context of a stopping criterion (Guerrero et al. 2009; Trautmann

et al. 2008) or to increase the population size (Mart́ınez, Oropeza, and Coello

2011), though here we use it to adapt the search space.
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Figure 7.3: Illustration of an expansion of the reduced genotype (signified by the
genes with ?) when δ is decreased. The edge with the next highest DI value in
the MST is unfrozen, which removes the edge 4→ 2 and splits component c1.

7.2.2 Adapting ∆-MOCK

Algorithm 7.1 provides pseudocode for Adaptive-MOCK, where the primary dif-

ferences from ∆-MOCK are in lines 11–13. In this and the following sections, we

motivate and detail the additions we made in Adaptive-MOCK.

Our adaptation of the search space occurs through incremental changes to

the δ value. A stagnation of the hypervolume indicates that better (Pareto-

dominant) solutions are not being found, which indicates that the search space

is too restricted. In order to focus the search and limit computation as much as

possible, we start with a restricted search space (i.e. a very high δ value), and

incrementally decrease this value when the hypervolume stagnates. Specifically,

we consider the situation with a given set of T levels of resolution, with the

minimum resolution level (i.e. smallest search space) defined by δHigh and the

maximum resolution defined by δLow.

To understand what changes occur with a decrease in δ, Figure 7.3 illustrates

this on our example dataset. The next most ‘interesting’ edge (which is 4 → 2

according to the DI values shown in Figure 7.2a) is removed, splitting apart

component c1 into two disjoint components. As a result, data points 4 & 8 can

form clusters without the presence of data points 1 & 2 (and vice versa), which

may present a better partitioning.

A stated advantage in the design of ∆-MOCK was the “delta-evaluation”,

which allowed for the precomputation of a significant part of the fitness eval-

uation (Garza-Fabre, Handl, and Knowles 2017). By computing the objective
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contributions of the components, the objective function for a given individual re-

quires identifying which components are connected and then computing the con-

tributions of these combinations. Further details for this approach can be found

in Garza-Fabre, Handl, and Knowles (2017). Of importance to us is the need to

re-do this precomputation when δ changes, which needs to be taken into account

when comparing computation time between ∆-MOCK and Adaptive-MOCK.

There are two main components to our method that we explore: the trigger

mechanism that causes a change in the resolution, and a search strategy that helps

to search the newly expanded search space. These are explained in Section 7.2.3

and Section 7.2.4 respectively.

7.2.3 Trigger mechanisms

To determine whether the hypervolume-based mechanism adds additional value

over a non-performance-based trigger, we compare against two baseline trigger

mechanisms. The three mechanisms we experiment with are as follows:

1. Random — Randomly sample T − 1 generations at which to trigger a de-

crease in δ.

2. Interval — Create T−1 equally spaced intervals to provide an equal number

of generations at each δ value.

3. HV — Use the rate of change in the hypervolume to determine whether

the search is stagnating and thus whether a decrease in δ is required.

To explore T levels of resolution, we have a maximum number of T−1 triggers.

The two baseline trigger mechanisms are prescriptive in that there is no variability

in the number of triggers. Therefore, for a fair comparison the HV method cannot

trigger more than T −1 times (though, depending on performance, it may trigger

less than this). The random mechanism simply draws T − 1 samples from the

range [1, . . . , Gmax]. The interval mechanism creates T equal intervals between 0

and Gmax to give an equal number of evaluations at each level of resolution. For

example, if Gmax = 100, each level of resolution is explored for 20 generations.

For our hypervolume-based approach, in order to identify convergence we

require a reference to compare against. For this, we calculate the change in

hypervolume (∆HV ) in the first 10% of generations (Gmax/10). After this, a

moving average gradient of the hypervolume is recorded, and when this average
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falls significantly below the reference gradient (< 0.1×∆HV ), this indicates that

the rate of improvement has notably stagnated and thus we should expand the

search space (i.e. trigger a decrease in δ). To avoid multiple, rapid changes in

δ, after a trigger we record a new reference gradient for the following Gmax/10

generations (during which δ cannot be decreased again).

7.2.4 Search strategies

As a change in resolution results in an expansion of the current search space, it

follows that it would be beneficial to focus on exploring this new space specifically,

avoiding repeated evaluations on previously explored component combinations.

For this, five strategies are considered:

1. CO — ‘Carry on’, a baseline strategy with no changes following a decrease

in δ.

2. FM — Fair mutation, where new individuals are created specifically to

explore each of the newly unfrozen genes.

3. RO — Reinitialized offspring, where offspring are generated using the spe-

cialized initialization scheme.

4. THall — Triggered hypermutation applied to all genes in the (reduced)

genotype.

5. THnew — Triggered hypermutation applied to only the newly unfrozen genes

of the (reduced) genotype.

Fair mutation (FM ) was a method introduced in Allmendinger and Knowles

(2010) in order to explore the space of solutions from newly introduced genes for

a binary genotype. Here, we modify this method for ∆-MOCK’s representation.

Offspring are created by generating an equal number of individuals for each new

gene in the genotype. In the original work, each new gene was set to 1 and pro-

tected from modification for several generations in order to explore genotypes in

the context of the new gene, assisted through the use of a raised mutation rate

for the remaining genes. As every individual in our population will have the same

value for the newly unfrozen genes (the value present in the MST), individuals are

generated separately for each new gene by setting this value as self-connecting,

thus removing the edge. Using Figure 7.3 as an example, as there is only a single
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gene (at index 4) added to the genotype all offspring would have a value of 4

here protected for several generations. This helps to explore previously unseen

partitions as the new component(s) are separated (at least from that node). This

shares similarities with the binary genotype variant of ∆-MOCK introduced in

Garza-Fabre, Handl, and Knowles (2017), which just encodes whether the edge

specified by the MST is present or not, directly searching for the optimal combi-

nation of MST-derived components.

Owing to ∆-MOCK’s specialized initialization routine, which as previously

discussed is bound by the relevant set (Γ), the RO strategy uses this routine to

generate offspring to compete against the current population. As the purpose of

this routine is to be an approximation of the Pareto front, this should produce

competitive offspring and, with the random mutation used in this routine, also

introduce useful new genetic material into the population.

As discussed in Section 3.4.1, hypermutation is an approach where mutation

rates are dramatically (i.e. ×500) increased for a single generation. In the original

work (Cobb 1990), this hypermutation is employed following identification of a

drop in the average fitness. Here, we use it as a strategy to rapidly explore the

search space to find better solutions, with the addition that in our work this is

accompanied by a change in the search space itself. The first strategy we use

based on this concept, THall, applies the hypermutation rate to all genes in the

(reduced) genotype, whereas the second strategy (THnew) applies this only to the

genes that have become available as a result of the change in δ. In Figure 7.3, THall

would apply this rate to all 5 of the genes in the reduced genotype, whereas THnew

would apply this rate to the gene at index 4 only. As such, the second is more

focused on specifically exploring potentially different component combinations

available via the new genes, whereas the former may be able to do this with

the additional context of the other genes. Naturally, the utility of either scheme

depends on the structure of the MST and genetic material in the population at

the time. Specific parameters for all search strategies are given in the following

section.

7.2.5 The effectiveness of adaptation

In this section we examine whether the search strategies with a performance-

based trigger mechanism are able to better explore the search space, or at least

able to match ∆-MOCK that uses a δ value known to be effective on the datasets
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being used (when starting with a δ that is worse on average). As we start the

algorithm with a shorter genotype length, this should confer a reduction in com-

putation time. Of course, when the appropriate δ is unknown then this adaptive

approach should have additional utility, but here we test that we are able to ef-

fectively reduce the δ from a potentially poor value without a considerable loss

of performance.

Experimental Design

All five search strategies were run with each of the three trigger mechanisms 30

times across two sets of datasets. We use the 350 (expanded) HK and 8 UKC

real-world datasets from Section 6.2.1.

For each search strategy we begin with a very large reduction in the search

space by using δHigh = sr1, i.e. δHigh = 1− 1√
N

. This is the first of T = 5 resolution

levels, down to the largest search space (or lowest level of resolution) which is

determined by δLow = sr5. We compare this against two baselines: ∆-MOCK (as

implemented in Garza-Fabre, Handl, and Knowles [2017]) run at both our highest

and lowest level of resolution i.e. δ ∈ {sr5, sr1}. These values were selected as

they were found to be on average good and bad (respectively) on the datasets

studied here2. Assuming that sr1 is too restrictive, there should be a trade-off

between performance and computation time between these two baseline methods.

Our three trigger mechanisms then operate as previously discussed, decreasing

δ stepwise after each trigger from sr1 to sr5, increasing the genotype length by√
N each time.

Each run is stopped after 100 generations (i.e. Gmax = 100). We use a pop-

ulation size of 100, L = 10 (the neighbourhood size), and crossover probability

pr = 1.0. These parameters are consistent with Garza-Fabre, Handl, and Knowles

(2017). The moving average calculated for the hypervolume is a window of 3 gen-

erations. For the hypermutation search strategies (THall and THnew) a 500× pm
mutation rate is used for a single generation. The FM strategy uses a 50 × pm
mutation rate for the non-protected genes, and the designated self-connecting

genes are protected for 3 generations.

2In Garza-Fabre, Handl, and Knowles (2017), sr1 was found to lead to poor performance
across these datasets. For some datasets the resulting δ value led to |Γ| < K, which inherently
makes the optimal solution unreachable. As we do not know the optimal δ value, we can only
say that generally these settings lead to good and poor values of δ.
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(b) Interval trigger
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(c) HV -based trigger

Figure 7.4: Performance for each search strategy for each of the three trigger
mechanisms for the HK -generated datasets. The computation times are normal-
ized in the range [0, 1].

Results

Throughout this section, unless otherwise stated we select the best individual

from the final population (according to the ARI) at the end of each of the 30 runs.

We select the best solution so that we can assess the potential of each method to

generate good solutions. As some Pareto-optimal solutions will inevitably have

significantly more or fewer clusters than the true K (leading to poor ARI values),

aggregated values across the final population are of less interest here.

In Figure 7.4 we show the clustering performance on the HK datasets for all

methods, separated by the trigger mechanism used. The computation times are

also shown for each search strategy (scaled to the range [0, 1] such that the maxi-

mum computation time is set to 1), which includes the additional precomputation

required for “delta-evaluation” (discussed in Section 7.2.2). Shading of the box-

plots is used to identify whether the result is significantly different in comparison

to the baseline method (∆-MOCK with sr5) using a Wilcoxon signed-rank test

(with p = 0.05 significance level, corrected with the Holm-Bonferroni method

[Holm 1979] as we make several pairwise comparisons).

Across all search strategies and trigger mechanisms, none were statistically

significantly better than the baseline, ∆-MOCK (sr5). Nevertheless, it is clear

that the RO strategy performed the best out of the search strategies, with results

visually similar to the baseline method for a vast reduction in the computation

time, with little overhead compared to the baseline method CO. In Table 7.1 we

can see the mean (and standard deviation) ARI values obtained across the search

strategies and trigger mechanisms. From this and the boxplots, we can see that

the RO strategy performs slightly worse with our HV -based trigger mechanism,

which is likely due to the more conservative nature of this method resulting in
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Table 7.1: ARI mean and standard deviation for HK datasets

Method Random Interval HV

CO 0.929± 0.106 0.931± 0.104 0.921± 0.113

FM 0.950± 0.046 0.951± 0.045 0.951± 0.063

RO 0.962± 0.048 0.963± 0.046 0.956± 0.057

THall 0.950± 0.051 0.951± 0.050 0.953± 0.057

THnew 0.953± 0.048 0.954± 0.047 0.954± 0.056

∆-MOCK (sr5) 0.965± 0.042

∆-MOCK (sr1) 0.846± 0.155

a higher final δ value, thus reducing the number of initializations and therefore

impact of this search strategy (which immediately benefits from a change in δ).

The significantly poorer performance of ∆-MOCK with the smallest genotype

(δHigh, or sr1) indicates that the starting resolution for the adaptive methods is

restrictive, and thus performance has been largely recovered when compared to

∆-MOCK (sr1). As previously discussed, however, there are many datasets for

which this value is not restrictive, leading to a large spread in performance.

Of note is the large number of outliers (and higher standard deviation) found

for the CO strategy, which indicates that the general idea of using a method

to rapidly explore the new space is beneficial and, for some datasets, necessary

to recover performance. All of the search strategies studied here resulted in a

mean ARI closer to ∆-MOCK (sr5) than to the CO search strategy, highlighting

their utility. When we compare CO to the restrictive baseline, ∆-MOCK (sr1),

for some of these datasets we can see (from the outliers in Figure 7.4) that the

expansion of the search space with no additional strategy is actually more detri-

mental to performance over searching in a restricted space. This is likely due

to the reduction of mutation probabilities as the genotype length increases, and

the decreasing relevance of the new genes added which reduces the focus of the

search.

In Table 7.2, the mean and standard deviation of the normalized computation

times are shown. The HV -based trigger method greatly reduces the computation

required, which as we previously saw corresponds with no considerable drop in

performance when compared to the other trigger methods. For the RO strategy
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Table 7.2: Normalized computation time mean and standard deviation for HK
datasets

Method Random Interval HV

CO 0.281± 0.080 0.287± 0.069 0.178± 0.041

FM 0.356± 0.101 0.364± 0.084 0.219± 0.046

RO 0.316± 0.110 0.322± 0.099 0.205± 0.063

THall 0.406± 0.125 0.417± 0.106 0.252± 0.059

THnew 0.372± 0.121 0.382± 0.106 0.232± 0.060

∆-MOCK (sr5) 0.531± 0.156

∆-MOCK (sr1) 0.107± 0.041

with the HV trigger mechanism, the mean ARI (0.956) is close to the baseline

(0.965) in absolute terms, for a computation time that is (on average) 39.4%

that of the same baseline. Such vast differences in computation time become

paramount for the practical application of ∆-MOCK on very large datasets. Of

note is the higher computation time for the three methods that increase the

mutation rate, in particular the two hypermutation strategies, which we discuss

further in Section 7.2.6.

Although we did not find that our adaptive approach was able to reach the

performance of the baseline method, in Table 7.2 and Figure 7.4 we can see that

close performance was achieved for a significant reduction in computation time

(even with the repeated precomputation steps). This reduction is most obvious

in our HV -based trigger mechanism, which illustrated that it was not always

necessary to decrease δ down to sr5. Across the HK datasets, the HV -based

trigger mechanism decreased δ on average 1.72 times3.

For the UKC datasets, Figure 7.5 shows the ARI and computation times. For

these datasets, we can see a mix of statistically equal and even better approaches

for some strategies when compared to the ∆-MOCK (sr5) baseline. When looking

at both these boxplots and the mean ARIs in Table 7.3, we can see that the results

are numerically close between all strategies, trigger mechanisms, and even the two

baselines. Owing to the large size of the datasets, it is clear that even δHigh (sr1)

is not overly restrictive for this dataset, though the poorer performance of the

3A maximum of 4 is possible.
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Figure 7.5: Performance for each search strategy for each of the three trigger
mechanisms for the UKC datasets. The computation times are normalized in the
range [0, 1].

baseline with this δ value does indicate that it was not optimal. The larger size

(N) and low cluster count (≈ 11) of these datasets is such that even δHigh is

not so high that the components are significantly heterogeneous (with regards to

the true cluster membership of the points), highlighting a disadvantage to the√
N -based heuristic of setting δ.

Of interest is the significantly better performance of CO for the interval and

HV trigger mechanisms. This is likely due to the non-restrictive nature of the δ

values being used, allowing ∆-MOCK to initially focus on the more useful genes

in the relevant set (Γ) that exist above δLow. This highlights that the search

strategies which raise the mutation rate perform the worst here, and can be dis-

ruptive enough that doing nothing is more effective. Of particular interest is FM,

which only showed parity with the baseline for the HV trigger mechanism and

was otherwise worse. This is likely due the protection given to individuals that

keep the new components separated, when (as indicated by the high performance

of our ‘restrictive’ δ value) these components are likely homogeneous and thus

should not be separated.

The computation times (tabulated in Table 7.4) show a similar pattern to

the HK datasets, with the HV trigger mechanism resulting in a noticeably lower

computation time. For the RO strategy, we obtain statistically significant results

for the ARI with the HV -based mechanism, for 33.75% of the (average) compu-

tation time. On average, the HV trigger mechanism was activated 2.13 times,

hence the large reduction in computation time compared to ∆-MOCK (sr5). The

impact and importance of δ on larger datasets is highlighted by the far lower com-

putation time for ∆-MOCK (sr1) and the higher variance in computation time

for the random trigger mechanism.
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Table 7.3: ARI mean and standard deviation for UKC datasets

Method Random Interval HV

CO 0.975± 0.027 0.976± 0.025 0.976± 0.025

FM 0.966± 0.033 0.966± 0.029 0.974± 0.028

RO 0.976± 0.026 0.976± 0.026 0.976± 0.025

THall 0.970± 0.035 0.973± 0.030 0.973± 0.032

THnew 0.974± 0.030 0.974± 0.030 0.975± 0.027

∆-MOCK (sr5) 0.975± 0.024

∆-MOCK (sr1) 0.963± 0.034

Table 7.4: Normalized computation time mean and standard deviation for UKC
datasets

Method Random Interval HV

CO 0.301± 0.086 0.314± 0.025 0.218± 0.039

FM 0.391± 0.113 0.393± 0.027 0.277± 0.037

RO 0.305± 0.091 0.302± 0.020 0.212± 0.038

THall 0.535± 0.146 0.553± 0.048 0.410± 0.060

THnew 0.418± 0.121 0.421± 0.036 0.266± 0.043

∆-MOCK (sr5) 0.627± 0.052

∆-MOCK (sr1) 0.036± 0.016
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For the UKC datasets (and to a lesser extent the HK datasets), the compu-

tation times for both of the TH strategies were noticeably higher than the other

methods. Even the FM method also had a slightly higher computation time

compared to CO and RO. As the computation time for the raised mutation rate

is negligible, there must be a downstream cause of these methods that results in

this difference, likely occurring in the evaluation function. In the next section

(Section 7.2.6), we investigate this further.

To further explore the differences between the search strategies, we use EAF

difference plots (which were introduced in Section 3.2.3). These plots highlight

(via shading) the probability of that approach finding solutions in that area of

the objective space compared to the other approach depicted. In Figure 7.6 we

can see two EAF difference plots comparing the baseline method against RO on

the same dataset, where Figure 7.6a is when the HV trigger mechanism is used

and Figure 7.6b shows the interval mechanism. In both of these examples, we

can see a clear superiority of ∆-MOCK with δ = sr5 when optimizing the intra-

cluster variance objective, whereas there is a smaller probability that the RO

strategy finds better solutions for the connectivity objective. This is likely due

to the introduction of genetic material from the MST, which inherently favours

solutions that optimize this objective (as the MST itself is the minimization of

this objective). We can see that the Pareto front found by the two approaches is

more similar with the interval mechanism, whereas the higher δ values used for

the HV mechanism are more likely to favour the connectivity objective (due to

a higher chance of a lower number of clusters).

7.2.6 Mutation bias

One stated advantage of MOCK was that, owing to the design of its objectives,

the Pareto front produced is comprised of solutions with varying K values. The

spread of this front (i.e. the variance of K across the individuals) provides some

indication into the diversity of the population, and thus it is useful to look into

whether our modifications to the algorithm affected this diversity.

In Figure 7.7 we can observe the spread of the number of clusters found across

the final population for one HK dataset (a) and one UKC dataset (b), where the

true K value is shown by the dashed horizontal line on both graphs. Here we

can see a clear bias, particularly for the UKC dataset, towards a higher number

of clusters for all three methods that raise the mutation rate. As an increased
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Figure 7.6: EAF difference plots comparing our baseline strategy (∆-MOCK
with δ = sr5) against RO using the HV (a) and interval (b) trigger mechanisms.
Although slight, the RO strategy favours the connectivity objective, whereas the
original ∆-MOCK is far superior at the intra-cluster variance objective.
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Figure 7.7: The number of clusters encoded by individuals in the final population
for each method on a HK dataset (a) and a UKC dataset (b). The true number
of clusters is shown by the dashed horizontal line.



198 CHAPTER 7. ADAPTIVE EVOLUTIONARY CLUSTERING

0 100 250 400 550
Connectivity

0.
2

0.
6

1
1.

4
In

tr
a−

cl
us

te
r 

V
ar

ia
cn

e

CO

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 100 250 400 550
Connectivity

0.
2

0.
6

1
1.

4
In

tr
a−

cl
us

te
r 

V
ar

ia
cn

e

TH (all)

(a) CO and THall

0 200 400 600 800 1100
Connectivity

0.
2

0.
6

1
1.

4
In

tr
a−

cl
us

te
r 

V
ar

ia
cn

e

RO

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 200 400 600 800 1100
Connectivity

0.
2

0.
6

1
1.

4
In

tr
a−

cl
us

te
r 

V
ar

ia
cn

e
TH (all)

(b) RO and THall

Figure 7.8: EAF difference plots comparing the hypermutation search strategy
THall against CO (a) and RO (b), highlighting the preference towards the intra-
cluster variance. Both are runs where the HV trigger mechanism is used.

number of clusters increases the computation required for the fitness evaluation,

this is the main source of increase in the computation time required by these

methods.

Then, we must further investigate why our methods, specifically those that

increase the mutation probability, leads to a significant increase in the number

of clusters. As previously discussed, the mutation operator works by choosing to

replace an edge randomly from a data point’s nearest neighbour. This is inher-

ently more likely to create an intra-cluster edge, as nearest neighbours are more

likely to be in the same cluster than in a different one. By having a bias towards

creating intra-cluster rather than inter -cluster edges, and as this operator occurs

more frequently throughout the genotype, there is a higher chance of increasing
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the number of clusters. As this inherently satisfies the intra-cluster variance ob-

jective, these solutions are not necessarily rejected, though the crowding distance

of NSGA-II should limit the number of solutions in the population that favour

this objective, which is evidenced by the wide spread of clusters identified in the

final population. Naturally, this spread of focus away from K values closer to the

true number reduces the amount of search in the more ‘interesting region’, which

may (in general) affect the ability of these methods to find good solutions, though

this is traded for greater diversity. In our experiments, the best individual found

(in terms of ARI) did not seem unduly affected by this wider spread of K values,

but a slightly lower average ARI was observed.

To further investigate the difference of the hypermutation methods, Figure 7.8

shows the hypermutation method THall against the baseline search strategy CO

(Figure 7.8a) and against the best-performing search strategy RO (Figure 7.8b).

Against both methods, though particularly when compared to CO, we can see

a greater degree of optimization for the intra-cluster variance when using THall,

further supporting the idea that the mutation operator favours the creation of

intra-cluster edges, resulting in higher individuals that encode a higher K and

thus favouring the intra-cluster variance objective.

7.2.7 Experimental summary

In this section, we used the HK and UKC datasets to investigate whether our

adaptive method of increasing the search space based on the rate of change of the

hypervolume was useful to maintain performance while decreasing the computa-

tion time. We also investigated whether our proposed search strategies helped

to rapidly explore this new search space. Overall, for these datasets, we found

mixed performance. For the HK datasets, none of our search strategies was able

to achieve significantly better ARI values, though the difference is practically

very small. This was, however, obtained for a much lower computation time (the

best-performing search strategy, RO, required 33.75% of the computation time

of ∆-MOCK using sr5). For the UKC datasets, several of our methods were

found to be statistically equivalent or better than the baseline, highlighting the

potential of our approach to not only reduce the computation time, but to narrow

the search such that performance is improved.

The use of search strategies that increased the mutation rate highlighted a bias

in the mutation operator towards one of the objectives, which itself is optimized
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as the number of clusters encoded by the individual increases. This was due to

the mutation operator being, by definition (for typical L values used), more likely

to create edges that are intra-cluster rather than inter-cluster. While we found

that this can be useful when the search space is very restricted, when the search

space is properly defined this is likely detrimental behaviour.

In the next section, we utilize our work from Chapters 5 and 6 to see if further

insights can be gained into these search strategies and the capabilities of MOCK

as a whole.

7.3 Can HAWKS grant further insights?

As a further investigation into these methods, we can use the datasets we gen-

erated in Chapter 6 to try and provide further information about the differences

between these methods. In this section, we take a small selection of these datasets

and run both ∆-MOCK and Adaptive-MOCK on them.

We use the 20 datasets produced in Section 6.2.5, where we explicitly at-

tempted to generate more eccentric clusters. These datasets are run using the

same settings as were used with the HK and UKC datasets.

7.3.1 Results: Clustering performance

The performance of the search strategies and the two baseline ∆-MOCK strategies

is shown in Figure 7.9. From these boxplots and the mean ARI values (Table 7.5),

it is immediately clear that all search strategies were vastly superior to CO and

that the minimum resolution (sr1) was far too restrictive for these datasets.4

In general, ∆-MOCK and Adaptive-MOCK were able to find good solutions,

though with greater variance in performance over the results seen in Figure 6.14b.5

The skew of the results (with the median being notably higher than the mean),

indicates that for some datasets sr5 was either too restrictive (or they pose a

significantly higher difficulty, which is less likely).

Although none of the search strategies were statistically better than or equal

to ∆-MOCK (sr5), once again in absolute terms the ARIs were not far apart,

4In Section B.1.4 we use a wider range of δ values to determine that sr5 was not too
restrictive, but the use of sr9 resulted in slightly higher ARIs.

5Though these clustering algorithms are markedly more simple than ∆-MOCK, for these
datasets they were given the true K which is not always known.
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Figure 7.9: Performance for each search strategy for each of the three trigger
mechanisms for the HAWKS datasets. The computation times are normalized in
the range [0, 1].

Table 7.5: ARI mean and standard deviation for HAWKS datasets

Method Random Interval HV

CO 0.521± 0.118 0.515± 0.115 0.528± 0.115

FM 0.688± 0.119 0.696± 0.118 0.681± 0.126

RO 0.684± 0.123 0.686± 0.123 0.689± 0.122

THall 0.706± 0.114 0.711± 0.110 0.701± 0.120

THnew 0.702± 0.115 0.702± 0.113 0.707± 0.117

∆-MOCK (sr5) 0.719± 0.120

∆-MOCK (sr1) 0.300± 0.090
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Figure 7.10: The number of clusters encoded by individuals in the final population
for each method aggregated across all 20 HAWKS datasets. The true number of
clusters (the same for each dataset) is shown by the dashed horizontal line.

particularly for the triggered hypermutation (TH ) methods, indicating that for

this scenario an exploration of a larger number of clusters was beneficial. Fig-

ure 7.10 shows the variance in the number of clusters obtained by individuals

in the final population (using the HV trigger mechanism) across all 20 HAWKS

datasets. This further supports that the δ value employed may have been too

restrictive and thus explains the utility of the increased mutation rate. The ef-

fect of the adaptive approach can be seen with the lower whiskers for the search

strategies, as the lower K individuals encoded by the shorter genotypes remain

in the population. As the genetic material in MOCK is derived from the MST,

all individuals have the same value in the genes that are ‘unfrozen’ following a

decrease in δ, and therefore both the crossover operator and the unmodified mu-

tation operator are unable to significantly modify the genotype to recover the

performance (as illustrated by the narrow spread of K for the CO strategy).

A similar pattern to the previous datasets can be seen in Table 7.6 with the

computation times, though the difference between RO and the hypermutation

strategies is much smaller in this experiment. This is likely due to the similar

(median) number of clusters obtained for the methods, as shown in Figure 7.10.

The HV trigger mechanism once again saw a reduction in the computation time,

but noticeably less when compared to the time reductions seen with the HK and

UKC datasets. This is due to the poorer performance requiring a higher average
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Table 7.6: Normalized computation time mean and standard deviation for
HAWKS datasets

Method Random Interval HV

CO 0.377± 0.088 0.399± 0.065 0.367± 0.081

FM 0.440± 0.100 0.458± 0.075 0.408± 0.092

RO 0.433± 0.096 0.443± 0.073 0.407± 0.087

THall 0.454± 0.099 0.475± 0.079 0.423± 0.097

THnew 0.452± 0.099 0.479± 0.075 0.430± 0.093

∆-MOCK (sr5) 0.763± 0.097

∆-MOCK (sr1) 0.096± 0.038

number of triggers (thus also validating that the reference gradient does correctly

reflect a difference in the performance), which was 3.24 times across the HAWKS

datasets6. The restriction not to trigger more than T −1 times in order to ensure

a fair comparison does lessen the flexibility of the HV approach, which would

not exist in normal use. The need to calculate a new reference gradient, blocking

further triggers, does inherently limit the number of times this approach can

change δ, however.

At least for the given hyperparameters, this experiment serves to confirm the

potential difficulty of datasets that HAWKS can generate and the vast importance

of δ to the performance of this algorithm. As these datasets are not particularly

large, yet still required a lower δ value, there appears to be a higher proportion

of relevant edges that are important in the MST. This may be due to a closer

structure of the datasets, though from Section A.5.1 we know that the average

silhouette width of the HK datasets is also quite low, yet a δ value corresponding

to sr1 was far more effective on those datasets.

7.3.2 Results: Instance space

The boxplots provided in Figure 7.9 give an overall perspective of performance

between the methods, but do not provide finer-grained information about the

nature of the different algorithms, and whether different properties resulted in

6Compared to 1.72 and 2.13 with the HK and UKC datasets respectively.
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Figure 7.11: The direction and magnitude of the problem features as they con-
tribute to the first two principal components.

different performance between the methods. To obtain this information, we use

the problem feature set designed in Section 6.2.

Throughout this section, we select only results that use the HV trigger mech-

anism, so that we can further analyze our proposed method. The 7 problem

features (defined in Section 6.2.1) were calculated for the 378 datasets (350 HK,

20 HAWKS, and 8 UKC ) as before. The components for this projection can be

seen in Figure 7.11, which shows a more directional spread of the features than

previously obtained (in Figure 6.9). To see how each problem feature varies across

the space, visualizations of the instance space can be found in Section B.1.3. The

two principal components account for 65.88% of the variance, and so there is

some information loss in this projection, but less compared to that previously

seen (which was 57.56%).

The instance space itself, with the datasets themselves highlighted by the

different sources that they originate from are shown in Figure 7.12. There is

a clear separation between the three sets of datasets, indicating that they each

have notably different properties compared to each other in this space. To fur-

ther investigate the descriptive power (in terms of the performance of clustering

algorithms), and to see how the methods compare in more fine-grained detail, we
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Figure 7.12: The instance space of the datasets with each of the three dataset
sources (HAWKS, HK, and UKC ) highlighted.

can modify the instance space to highlight which approaches performed best.

Figure 7.13 shows the instance space again, but with the ‘winning’ method

highlighted. As each method was run 30 times on each dataset, we must first

decide how to select a single value (ARI) to use to compare performance. For

this, we select the median value to provide a view of the average performance

of the methods (note that the instance space using the maximum ARI found

for each method is shown in Section B.1.1). This approach is not too dissimilar

with the previous stochastic clustering algorithms (GMM and K-Means++), which

themselves have been run several times for each dataset, taking the ‘best’ run

from each. The difference is that the ‘best’ in that scenario is the minimum lower

bound of the log-likelihood (for GMM) or the minimum within-cluster sum of

squares (for K-Means++), whereas for MOCK we are directly evaluating using

the true labels to select a solution, primarily due to the open-problem nature

of selecting a solution from the Pareto front. Thus, while this method prevents

us from directly (and meaningfully) comparing results between these algorithms,

within the variants of MOCK discussed in this chapter as long as our method of

model selection remains constant we can compare results. For ease, the results
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Figure 7.13: The instance space of the datasets highlighted according to the
method that achieved the best performance (measured by the median ARI of the
best individuals from the 30 runs).

Table 7.7: Number of ‘wins’ for each approach across the 378 datasets

Method Number of ‘wins’

∆-MOCK (sr5) 155

Tied 109

CO 47

FM 33

RO 24

THall 4

THnew 3

∆-MOCK (sr1) 3
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have been tabulated in Table 7.77.

For many of the datasets, there was a tie between two or methods and thus no

definitive winner. These have been categorized as “Tied”, and generally represent

the easier datasets where multiple approaches could get a maximum ARI of 1.

In general there is a mixture of performance, apart from a group of HK datasets

(in the bottom left of the instance) where ∆-MOCK (sr5) uniquely performs

the best. According to the problem features, this region has the datasets with

the lowest silhouette width, indicating that for these less structured problems

the search strategies may be more disruptive than helpful, and the larger search

space is helpful (as the components are typically less homogeneous with regards

to their cluster membership with such datasets).

Predominantly, as expected, ∆-MOCK (sr5) is the best performing algorithm

across the space. We see a much greater diversity of performance for the UKC

datasets, though with the high performance of all approaches it is unlikely that

this has a meaningful cause. Of interest is the centralized pocket of datasets for

which CO is superior. Further investigating these datasets, they generally have

a higher K, indicating that allowing the progressive enlargement of the search

space was useful, but that the existing operators were sufficient to explore the new

space without adding pressure to either objective (via the search strategies). For

completeness, in Section B.1.2 we show the ARI across the space for each of the 7

methods (two baselines and five search strategies), which shows a clear gradient of

performance across the space for each of the methods, which is particularly clear

with the HK datasets. This is encouraging for tackling the ASP (i.e. predicting

the performance according to the problem features), as no correlation between

the projection and the performance would indicate that the problem features do

not reflect difficulty.

We can also use the critical difference (CD) plots presented in Section 5.2.4 to

further analyze the performance of these methods across the datasets. Figure 7.14

shows the CD plots for the datasets from HAWKS (a) and HK (b); note that

UKC is not shown here as the Friedman test failed to show a significant difference

between the approaches. This is likely due to the differences being too slight, as

seen in Figure 7.5 and Table 7.3, and too few datasets being used to tease out

further differences.

7Note that the lower number of wins for RO, when compared to methods such as FM which
it has generally been shown to be superior to, is to the equivalent performance with ∆-MOCK
sr5 in the “Tied” category.
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Figure 7.14: Critical difference (CD) diagrams for HAWKS and HK, showing the
average rank for each method across the datasets. Solid lines connect methods
which are not significantly different from each other according to a two-tailed
Nemenyi test. UKC is not shown as there was no significant difference according
to the Friedman test.
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In Figure 7.14b we can see that the baseline, ∆-MOCK (sr5), was statistically

equivalent to the RO search strategy. This provides a different perspective from

Figure 7.4c, which found RO to be worse than the baseline, though this included

data from each of the 30 runs across all of the datasets, whereas here we just

select a single value across the 30 runs for each dataset. There is also a difference

in the statistical tests being used, as the Friedman test considers the ranks of

the different approaches, whereas the Wilcoxon signed-rank test considers the

magnitude of difference between the performance. As a result, we cannot fully

conclude the relative efficacy of RO against the baseline. As the boxplots include

more information from the actual runs, however, as opposed to an aggregation,

that is arguably a better reflection of the general performance of the methods.

Nonetheless, the much closer proximity of RO to the baseline than to the other

methods indicates its efficacy on these datasets. Aside from ∆-MOCK (sr1),

which performed far worse than any other approach, the remaining methods

are equivalent. This highlights the aforementioned weaknesses of increasing the

mutation rate (at least in general on these datasets, as we know it can be useful

when K is higher).

For the HAWKS datasets, Figure 7.14a shows a more complex perspective of

performance. As each solid line connects methods that can be considered equiv-

alent under the Nemenyi two-tailed test, we can see many subgroups of methods

that performed equivalently to each other, but as a whole worse than those un-

connected with a higher rank (i.e. towards the left), and better than those uncon-

nected with a lower rank. As previously observed (Table 7.5), the hypermutation

strategies were the best performing on the HAWKS datasets, owing to the high

number of clusters (K = 100) which MOCK underestimated (Figure 7.10). In

general, the CD plot for these results is consistent with previous results.

7.3.3 Experimental summary

It is not conclusive that our method was overall superior to the original non-

adaptive ∆-MOCK, though the differences were not large in absolute terms and

were complemented by a significant reduction in computation time. The need to

adjust the δLow and δHigh values highlight a primary downside of this approach:

it is semi-adaptive only. While it may not be possible to circumvent the need for

an initial δ value, in a fully adaptive scenario (where δ can be both increased and

decreased, at a magnitude based on performance rather than stepwise) this is less



210 CHAPTER 7. ADAPTIVE EVOLUTIONARY CLUSTERING

impactful on performance and thus reduces the need for multiple runs to tune

these hyperparameters. The incorporation of these improvements is non-trivial,

however, and will require extensive further work (which we discuss further in

Section 8.2.3). Nonetheless, large reductions in computation time were observed

for mostly equivalent (in absolute terms) performance, in an experimental setup

that was difficult for Adaptive-MOCK (as in general the baseline was given a

good value of δ, and our adaptive version started with a poor δ).

In this section, we used datasets from HAWKS to provide further insights

into the trigger mechanism and search strategies, but also to ∆-MOCK in gen-

eral. The datasets we used were generated specifically to be eccentric, and are

difficult both due to this and the close proximity of clusters (these datasets have a

silhouette width of between 0.55 and 0.60). This presented a scenario where the

hypermutation strategies were advantageous (in contrast to the HK datasets),

as the final population in all approaches had a median K considerably under

the true value. Further experiments with different hyperparameters of ∆- and

Adaptive-MOCK would be required to see if better performance can be obtained

on these datasets, or if they just present properties (either deliberate, or through

a lack of separability) that are inherently difficult. Despite the multi-objective

nature of MOCK, it is predicated on the idea that the MST is able to capture all

relevant information useful for clustering.

A notable omission is the use of the ‘versus mode’ (Section 6.3) of HAWKS

to directly pit ∆-MOCK and Adaptive-MOCK against each other. While this

could help identify if they have weaknesses with respect to each other, therein

lies an issue that we have not previously needed to address: selecting a solution

from the final population. A major advantage of evolutionary clustering is the

generation of a population of solutions, which as we discussed for MOCK consists

of solutions of varying K. Without a priori knowledge of the true K, selection

of a single individual from this population is an open question in and of itself

(Handl and Knowles 2007). For our results, we have used the labels to select the

best individual so that we can measure the potential of the method, but as the

diversity is a component of performance (and in practice labels are not available),

this may not be the best approach to use in the ‘versus mode’.
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7.4 Summary

In this chapter we modified the ∆-MOCK algorithm (creating a variant we name

“Adaptive-MOCK”) to adjust the search space based on the current performance,

as measured by the hypervolume. We compared multiple different search strate-

gies with the goal of rapidly searching the new decision variables in the genotype,

aiming to avoid repeated evaluations on solutions we have previously seen. Our

hypervolume-based approach was successful in limiting the number of adapta-

tions required, seeing a greater reduction in computation time for equivalent

performance when compared to baseline methods that randomly decided when

to increase the search space. Similarly, our search strategies were all able to more

rapidly explore the search space, as compared to a baseline strategy (CO) that

did not change anything after an increase in the search space. The use of datasets

from HAWKS provided a different perspective, showing that some of the search

strategies did have uses for datasets with different properties (to those of HK ).

Additionally, the use of our problem feature set constructed an instance space

that highlighted some potential differences between the search strategies.



Chapter 8

Conclusion

This thesis has investigated the utility of evolutionary algorithms applied to clus-

ter analysis, specifically for generating datasets useful for evaluating clustering

algorithms and as a multi-objective clustering algorithm itself. The main findings

of this thesis with reference to the original contributions (stated in Section 1.3)

have been outlined in Section 8.1. In Section 8.2 we discuss some of the limita-

tions of our work, and the various potential future avenues of research that our

work has presented.

8.1 Contributions

Development of a synthetic data generator that enables the param-

etrization of different cluster properties in order to modify the difficulty

of the datasets

In Chapter 5 we introduced HAWKS, a synthetic data generator that used an

evolutionary algorithm to optimize and explore different cluster properties that

could be set by the user to create datasets of varied difficulty. This was achieved

by setting a target value for the silhouette width, which is an internal cluster

validity index (defined in Section 2.5.1) that takes into account both the intra-

cluster compactness and inter-cluster separation. To ameliorate the difficulty

and avoid issues that arise due to the silhouette width being an average over

data points, two constraints have been added. The first measures the overlap

as a percentage of data points whose nearest neighbour is in a different cluster,

and the second measures the cluster eccentricity via the ratio of the largest to

212
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smallest principal axes (i.e. the eigenvalues of the covariance matrix). To embed a

preference between satisfying these constraints and the objective, which is useful

to generate challenging datasets when these parameters conflict, the stochastic

ranking was used.

Comparison of existing synthetic data generators for clustering in terms

of the diversity of these datasets, measured by performance across a

range of clustering algorithms

In Section 5.2.4, we generated a set of datasets using HAWKS by varying a

few simple parameters such as the silhouette width target and number of clus-

ters. The performance of four clustering algorithms (average-linkage, GMM, K-

Means++, and single-linkage) on these datasets was compared to datasets pro-

duced by two popular generators: HK (Handl and Knowles 2005b) and QJ (Qiu

and Joe 2006a). Greater diversity of performance (as measured by the average

ranking of each algorithm) was found for the datasets produced by HAWKS.

This was taken further in Section 6.2 where we compared more generators/sets

of datasets with more diverse datasets from HAWKS (by varying the aforemen-

tioned constraints). Once again, a broader range of performance was seen across

the clustering algorithms for the datasets produced by HAWKS.

Visualization of these datasets on an instance space using a set of

informative features that describe different problem characteristics, in

order to illustrate their diversity

In Section 5.2.4, and further developed in Section 6.2.4, we presented an in-

stance space to visualize the datasets according to their problem features. In

Section 6.2.1 we designed a more descriptive set of problem features (going be-

yond aspects such as the number of clusters) to take into account properties such

as the average eccentricity and entropy of cluster sizes, enabling the construction

of a more informative instance space. The utility of this problem feature set for

describing the performance of clustering algorithms has been further validated in

Figure B.2 by the correlation of performance (of ∆- and Adaptive-MOCK) across

the instance space.



214 CHAPTER 8. CONCLUSION

Identification of areas in this instance space without datasets, and the

generation of datasets with properties to fill this area

In Section 6.2.5 we have specifically tried to generate datasets that were different

(according to their problem features) from those previously produced, motivated

by the clear separation of datasets produced by HK and HAWKS. Through a

small modification of HAWKS’ parameters we have been able to generate datasets

in a different area of the instance space, with some datasets more similar to HK

and others more distinct to any previously seen.

Extension of the generator to produce datasets that directly maximize

the performance difference between two clustering algorithms

In Section 6.3 we modified the objective function of HAWKS to directly maximize

the performance difference of two clustering algorithms. This removes the need

for careful parameterization in order to create different challenges for different

algorithms, thereby directly generating datasets that exploit an algorithm’s rel-

ative weakness(es). We generated datasets for each of the aforementioned four

clustering algorithms, with each algorithm both as the ‘winner’ and ‘loser’ (in

terms of their performance being maximized and minimized, respectively). We

found a surprisingly nuanced capability of HAWKS to generate datasets that di-

rectly found and exploited the weaknesses of each algorithm, which can be useful

for further understanding and developing cluster algorithms.

Creation of a more flexible encoding for evolutionary clustering through

the extension of an existing algorithm (∆-MOCK) to reduce computa-

tion time and the importance of dataset-specific hyperparameterization

In Chapter 7 we used an existing evolutionary algorithm (∆-MOCK) that gener-

ates partitions of data and took a step towards addressing its major limitation:

scalability. The flexibility in clustering provided by this algorithm comes at the

cost of a vast search space that, despite its specialized initialization scheme and

other well-designed components, does not allow practical application of the algo-

rithm to very large datasets (e.g. N > 1,000,000). In Section 7.2.2 we proposed

Adaptive-MOCK, which begins with a small search space and iteratively enlarges

it based on the rate of convergence (as measured by the hypervolume). We ex-

plored the use of different (search) strategies to rapidly explore the new search
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space. In general, across the datasets studied, equivalent performance is ob-

tained for a vastly lower computation time (between half and two-thirds that of

the original ∆-MOCK). We then applied HAWKS to gain further insights into

the differences between the search strategies and their applicability for datasets

with different properties.

8.2 Future Work

This work opens up many possible avenues of future investigation. We first

discuss more over-arching future work relating the algorithm selection problem

(ASP) and clustering, followed by separate sections that discuss specific work on

both HAWKS and Adaptive-MOCK.

8.2.1 Tackling the ASP for clustering

In Section 4.2, we discussed (at length) the nature of the ASP and how it relates

to other fields of research (such as meta-learning). Our work in Chapters 5 and 6

focussed on developing a descriptive problem feature set and flexible generator in

order to have the information necessary to predict the performance of different

clustering algorithms on different datasets.

Naturally, the next step is to take our developments with HAWKS and ac-

tually tackle the ASP directly for clustering. While this poses many further

questions of methodology for learning the mapping between the problem features

and algorithmic performance, we have discussed previous work (in Section 4.2.1)

that has attempted this, highlighting its feasibility. Recent work in areas such as

exploratory landscape analysis, algorithm configuration, and meta-learning may

be useful in this regard.

8.2.2 HAWKS

Various aspects of HAWKS can be modified and improved going forward. Its

modular construction allows for these to be pursued independently of one another,

yet the improvements can be shared.
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Representation

An obvious issue with HAWKS that has been highlighted is its singular use of a

Gaussian representation of clusters. While this provides useful properties (such

as designing a geometrically interpretable mutation operator), it creates an in-

herent predisposition to particular cluster shapes (i.e. convex clusters) regardless

of eccentricity.

Using a different distribution is unlikely to fully address this issue, and any

methods of transformation/embedding to adjust the cluster shapes can add ad-

ditional complexity (and potential redundancy) to the representation, increasing

the difficulty of the optimization process. Nonetheless, a greater diversity of

clusters can assist with the construction of a broader range of datasets.

This is related to a capability that the QJ (Qiu and Joe 2006a) generator

exhibited that HAWKS did not — noisy features. While HAWKS is able to per-

turb the covariance matrix, members of each cluster are sampled from a Gaussian

with this covariance. The introduction of uncorrelated or noisy features, either

as additional elements of the genotype or through modification of the Gaussian

itself, will add an additional aspect of difficulty to the generator. This is particu-

larly important when considering clustering algorithms that have inherent feature

selection (such as methods that integrate clustering with neural networks [Yang

et al. 2017]).

Versus mode

Generating datasets that maximize the performance difference between algo-

rithms (Section 6.3) is a useful way to understand the mechanistic differences

between algorithms without having to first identify datasets that can tease out

these properties (which, if unknown, is an impossible task). At present, this has

been presented as a single-objective approach between two algorithms. It is easy

to envisage the expansion of this, both in terms of the number of algorithms and

potentially number of objectives. In the former case, having multiple ‘losing’ al-

gorithms requires identification of properties that the ‘winning’ algorithm is more

distinctly able to capture, further refining the ability of the generator to explore

the unique strengths of a single algorithm. In the latter case, the formulation

of multiple objectives (such as a two-objective problem where the performance

difference of two algorithms is simultaneously maximized) permits exploration of

the trade-off between the two algorithms over a more continuous scale.



8.2. FUTURE WORK 217

Further development of this approach can then permit deeper analysis of the

resulting datasets’ problem features to directly quantify the differences between

the algorithms. The integration of the instance space with this work can better

help to establish algorithmic ‘footprints’ and thus the algorithm selection problem

itself.

Eccentricity in higher dimensions

The generation of eccentric clusters in higher dimensions is a non-trivial task, as

highlighted by the design in Handl and Knowles (2005b) of a separate generator

specialized for this task. The average eccentricity problem feature we designed

in Section 6.2.1 specifically to measure this highlighted that the HK generator

was notably more successful in this regard. Although the initialization scheme of

HAWKS can encourage more eccentric clusters, and the λratio constraint can also

encourage this, the covariance mutation operator may be unsuitable at higher

dimensions to create high eccentricity in a reasonable number of generations.

More consideration in the initialization stage of generating individuals that better

adhere to the λratio constraint may better generate a wider array of eccentricities

among the individuals in higher dimensions.

Benchmark construction

The experiment in Section 6.2 took a further step towards the creation of a

more comprehensive set of datasets that can be used to benchmark clustering

algorithms. Robust comparison of the diversity for existing clustering datasets

(similar to Macià and Bernadó-Mansilla [2014] but for clustering instead of clas-

sification) is lacking, partially due to the abundance of such datasets. The afore-

mentioned improvements to HAWKS, on top of the study of diversity already

performed in Section 6.2, should further facilitate and encourage the study of

these datasets and subsequent construction of a more comprehensive benchmark

suite.

The instance space and problem features are vital in the construction of a

benchmark suite, as they allow for identification of where there may be datasets

that lack particular properties or if there is a lack of diversity in an algorithm’s

footprint (for any competent algorithm, there should be datasets where it per-

forms the best). Throughout this thesis we have used PCA to project our problem
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features down to 2D for the instance space, but previously discussed work (Kan-

danaarachchi, Muñoz, and Smith-Miles 2019) indicates that other methods of

projection may help to improve the utility of the visualization.

At a similar time to Shand et al. (2019), Iglesias et al. (2019) released a gen-

erator (named MDCGen) that aims to address the deficiencies of the generators

discussed in Section 4.3.2. It shares some conceptual similarities and aims with

HAWKS, though is quite different mechanistically. They outline a list of 16 re-

quirements that a generator must satisfy (specifically for generating datasets for

clustering), ranging from control over distributions, overlap, outliers etc. to a

reproducible tool. Note that, while they do not state it is a requirement, we be-

lieve an additional requirement should be that the generator is open-source and

easily-configurable.1

In contrast to HAWKS, MDCGen does not use optimization to position clus-

ters such that they meet certain criteria. This is achieved primarily through the

use of equidistant hyperplanes to create a grid upon which the clusters are placed

(which are then scaled and transformed later according to the configuration). The

overlap between clusters obtained is then evaluated using the silhouette width

(Section 2.5.1), thereby giving an indication of whether the point should (or

should not) be placed in that cluster (as opposed to Handl and Knowles [2005b]

which compares the true labels between nearest neighbours). At present, there

appear to be no experiments which give an indication into the range of perfor-

mance that can be obtained on the datasets produced by MDCGen by varying its

parameters, making it difficult to verify how effective their grid-based approach

to placing clusters is. Considering the properties and potential power of this gen-

erator, a direct comparison (both qualitative and using the instance space) with

HAWKS would be informative.

8.2.3 Adaptive-MOCK

In Section 7.4 we discussed some of the issues with our approach and therefore

potential areas for further work. In this section we provide further details about

such work.

1Both HAWKS and MDCGen (available at https://github.com/CN-TU/mdcgen-matlab)
satisfy this.

https://github.com/CN-TU/mdcgen-matlab
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Adaptation

The vast reduction in computation time is a clear advantage of using an adaptive

encoding, though the real utility of this reduction is seen when there is no a priori

knowledge of a suitable δ. In such scenarios, our method of gradually decreasing

δ from a very high value may also fail if the other hyperparameters (such as the

pre-defined number of resolution levels, T ) are incorrect, or the initial δHigh is

too restrictive to be useful. Combined with the limited ability of δ to only be

decreased, and not increased, there is an obvious need for improvement.

The use of the hypervolume as a method to track performance is valid, but

as it is measuring whether the search has (mostly) converged, this does not fa-

cilitate identifying when δ should be increased. Thus, in the absence of an easy

way to track performance it follows that we should use self-adaptive rather than

adaptive approaches (Section 3.4.1). One such approach would be to define δ on

an individual level, thus creating a population of mixed resolutions. A primary

barrier to this approach is the inherent conflict between this and the “delta-

evaluation” (Section 7.2.2), potentially reducing the vast computational savings

of ∆-MOCK. Preliminary work (not shown in this thesis) supports the potential

for a more flexible approach, however.

Components & mutation bias

The mutation bias illustrated in Section 7.2.6 presents an issue for both Adaptive-

MOCK and ∆-MOCK itself. It highlights a more fundamental issue with the

operator — the use of the degree of interestingness (DI) in ∆-MOCK was aimed at

identifying which edges in the minimum spanning tree (MST) were not important

to the search, yet the mutation does not make an equivalent adjustment. The

δ hyperparameter transforms the search into finding the optimal combination

of components (rather than individual points) which are ideally homogeneous

groups of data points. Thus, this shift of searching for the optimal configuration

of components should be mirrored in the mutation operator, as the present version

of searching through each point’s L nearest neighbours may not affect the fitness.
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Neighbourhood hyperparameter

While δ has the biggest impact on performance, the L neighbourhood hyperpa-

rameter will also have a significant impact, yet this is not considered for adap-

tation. Primarily, this was due to the complexity and interference with “delta-

evaluation”, which has the potential to significantly increase the computation

required. Throughout this work, we use a fixed L = 10 as established by Handl

and Knowles (2007), but recognize that this may not be ideal and that future

work should consider the adaptation of multiple hyperparameters, not just δ.
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Zäıt, Mohamed and Hammou Messatfa (1997). “A comparative study of clustering

methods”. In: Future Gener. Comput. Syst. 13.2-3, pp. 149–159. doi: 10.

1016/S0167-739X(97)00018-6.

Zhu, Shuwei, Lihong Xu, and Erik D. Goodman (2020). “Evolutionary multi-

objective automatic clustering enhanced with quality metrics and ensemble

strategy”. In: Knowl. Based Syst. 188. doi: 10.1016/j.knosys.2019.105018.

Zitzler, Eckart, Joshua D. Knowles, and Lothar Thiele (2008). “Quality Assess-

ment of Pareto Set Approximations”. In: Multiobjective Optimization, Inter-

active and Evolutionary Approaches [outcome of Dagstuhl seminars]. Ed. by

Jürgen Branke et al. Vol. 5252. Lecture Notes in Computer Science. Springer,

pp. 373–404. doi: 10.1007/978-3-540-88908-3_14.

http://dx.doi.org/10.1109/4235.585893
http://proceedings.mlr.press/v70/yang17b.html
http://proceedings.mlr.press/v70/yang17b.html
http://dx.doi.org/10.3390/mca10010045
http://dx.doi.org/10.1016/S0167-739X(97)00018-6
http://dx.doi.org/10.1016/S0167-739X(97)00018-6
http://dx.doi.org/10.1016/j.knosys.2019.105018
http://dx.doi.org/10.1007/978-3-540-88908-3_14


BIBLIOGRAPHY 245

Zitzler, Eckart and Lothar Thiele (1998). “Multiobjective Optimization Using

Evolutionary Algorithms - A Comparative Case Study”. In: Parallel Problem

Solving from Nature - PPSN V, 5th International Conference, Amsterdam,

The Netherlands, September 27-30, 1998, Proceedings. Ed. by A. E. Eiben

et al. Vol. 1498. Lecture Notes in Computer Science. Springer, pp. 292–304.

doi: 10.1007/BFb0056872.

Zitzler, Eckart et al. (2003). “Performance assessment of multiobjective optimiz-

ers: an analysis and review”. In: IEEE Trans. Evolutionary Computation 7.2,

pp. 117–132. doi: 10.1109/TEVC.2003.810758.

http://dx.doi.org/10.1007/BFb0056872
http://dx.doi.org/10.1109/TEVC.2003.810758


Appendix A

HAWKS Supplementary Material

A.1 HAWKS availability

HAWKS is available as a Python package on PyPI at https://pypi.org/project/

hawks/, or on GitHub at https://github.com/sea-shunned/hawks. Instruc-

tions for installation and documentation on how to the use the package can be

found there.

A.1.1 Replicating our experiments

For each experiment that involves HAWKS in this thesis, we have provided a

link to a configuration file (in the text) for reproducibility. In the GitHub reposi-

tory that contains these configuration files (https://github.com/sea-shunned/

thesis_material/), the version of HAWKS used in this thesis (v1.0) is also in-

cluded to ensure these files work regardless of future changes/development to

HAWKS. There is also guidance on how to use these configuration files and gen-

erate the graphs included in this thesis.

A.2 Random sampling sensitivity

To ascertain whether different samplings (or instantiations) of the same genotype

in HAWKS results in significant variance in the phenotype, a sensitivity analysis

was performed. For this, a single genotype is selected from the final population

and sampled 50 times using different seeds. The magnitude of this observed vari-

ance is not informative in isolation, however, so the variance in the fitness of the
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Figure A.1: Sensitivity analysis of the silhouette width from different instantia-
tions of the same genotype relative to the silhouette width variance across the
whole population, for an increasing number of data points (where K = 5).

final population itself is also recorded (for parity, the population size is 50). The

number of examples was increased N ∈ {100, 500, 1000, 5000} with a constant

K = 5 clusters. To ensure diversity among the datasets in the population, the

variance in the silhouette width for multiple instantiations of a genotype should

be less than the variance of fitness across a population, so that we are obtain-

ing different cluster structures rather than just different samples from the same

distribution of clusters.

In Figure A.1 we can see that, as the number of examples increases, the vari-

ance in the silhouette width of different instantiations decreases dramatically,

particularly relative to the variance across the population. With the aforemen-

tioned sensitivity of the silhouette width, it is expected that as N increases the

sampling density of the clusters increases such that different samplings are mostly

equivalent (in terms of average distance to other points) i.e. the density is suf-

ficient to overcome differences in sampling locations. This does indicate that

when generating very small datasets (i.e. < 100 examples) or few data points per

cluster, HAWKS will have greater sensitivity to the particular instantiations for

that run. Thus, the N and K parameters need to be considered together, as it

is their combination that influence the sampling density and thus sensitivity to

instantiation.
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A.3 Generating random cluster sizes

To generate K randomly sized clusters that sum to a given value, and have at

least a certain size, the following approach is used. First, we generate K weights:

w = [w1, . . . , wK ]

where wi ∼ Dir(α) and α = (1, 1, . . . , 1). For a given cluster i, the size is:

|Ci| = Cmin + wi(N − (K × Cmin))

where Cmin is the minimum size a cluster can be, and N is the number of data

points.

This ensures a uniform distribution of cluster sizes after scaling such that

they sum to N , which is not guaranteed when simply sampling random numbers

and scaling these to N (as the resulting distribution is not uniform).

A.4 Modified tournament selection

In order to limit the introduction of preference towards either the fitness or the

constraints outside of setting a value for the Pf , we modify the well-established

binary tournament selection protocol for the parental selection step of a GA. As

discussed in Section 3.2.2, a subset of individuals are selected for a tournament,

from which the individual with the highest fitness is selected as a parent. Typi-

cally, a binary tournament is used, so only two random individuals are selected.

This adds selection pressure from the fitness, which may run counter to the pref-

erence specified by the stochastic ranking parameter Pf , particularly if it is set

< 0.5 such that the constraints are favoured. Our modification is thus that, still

using a binary tournament, the individual with the higher rank in the sorted (by

stochastic ranking) population is used.

To investigate how this modified the characteristics of the algorithm, we run

a simple experiment. The experimental set up is similar to Section 5.2.3, i.e. only

the overlap constraint is used, and we use Pf ∈ {0.1, 0.5, 0.9} to explore how

the addition of preference with the parental selection changes with the preference

embedded by Pf . As before, we run HAWKS 30 times at 2D and 20D, with starget

0.6 and 0.2 respectively.
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Figure A.2: Silhouette width vs. overlap for different values of Pf in 20D, using
the original and modified binary tournament.

From our experiment in Section 5.2.3 we know that the trade-off between the

objective and constraint occurred in 20D and less so in 2D, where they could

both be satisfied. Thus, here in Figure A.2 (similar to Figure 5.8b) we show

the silhouette width against the overlap in 20D. When using the original tour-

nament selection method, the additional pressure towards optimality (over con-

straint satisfaction) has reduced the level of trade-off between the objective and

overlap constraint.

A.5 Exploring the instance space additional ma-

terial

A.5.1 Expanded instance space features

Figure A.3 shows the instance space from Section 6.2 colourized by all problem

features.
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Figure A.3: All problem feature values across the instance space
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MOCK Supplementary Material

B.1 Instance space

In this section we provide graphs that further illustrate and describe the instance

space presented in Section 7.3.2.

B.1.1 Winner selection method

Figure 7.13 showed the ‘winning’ algorithm, for which the median value of the

best individuals from each of the 30 runs was used for each dataset. For com-

pleteness, in Figure B.1 we show this side-by-side with comparing the maximum

ARI achieved across the 30 runs for each method, to see if the selection method

resulted in different results. The results are also tabulated in Table B.1. The

main difference that can be observed is the increased number of ‘tied’ results,

which is expected as the performance on these datasets is generally high enough

that most approaches could do equally well given enough runs. In particular, the

CO method was primarily affected by using the maximum instead, likely due to

the search strategies favouring different datasets in different ways through either

a bias towards the connectivity objective by RO, or towards the intra-cluster

variance objective by the strategies that raise the mutation rate, and the more

neutral behaviour of CO.

B.1.2 Method performance across the space

In Figure 7.12 we showed the instance space for the HAWKS datasets generated

in Section 6.2.5, the UKC, and the (expanded) HK datasets. In Figure B.1 we
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Figure B.1: The instance space of the datasets highlighted according to the
method that achieved the best performance as measured by the median, (a),
or the max, (b), ARI of the best individuals from the 30 runs.

Table B.1: Number of ‘wins’ for each approach across the 378 datasets, for the
two individual selection methods (using either the median or maximum ARI of
the best individuals from the 30 runs).

Number of ‘wins’

Method Median Maximum

∆-MOCK (sr5) 155 160

Tied 109 136

CO 47 34

FM 33 22

RO 24 11

THall 4 8

THnew 3 6

∆-MOCK (sr1) 3 1
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can see these datasets according to the ‘best’ approach. In Figure B.2 we show

the actual ARI obtained on each of the datasets for the different methods. The

consistent gradient of performance across the space is particularly encouraging for

trying to address the ASP, i.e. predicting the performance according to the prob-

lem features. If there was no correlation between the projection of the datasets

and the performance then it would indicate that the problem features do not

reflect the difficulty for these methods.

B.1.3 Full problem feature values

For a fuller categorization of how the problem features vary across the instance

space, in Figure B.3 we show the instance space according to each of the problem

features.

B.1.4 Expanded δ ranges

In this section, we provide the results for running a wider range of δ values

on the HAWKS datasets. Based on the particularly poor performance for ∆-

MOCK (sr1), it is clear that even our ‘non-restrictive’ δ value may have been too

high. Therefore, it follows to use different settings for δLow and δHigh to further

understand if these datasets have some inherent difficulty for ∆-MOCK that led

to poor performance, or if the search space was just too restricted. For this, we

shift the values such that δLow = sr9 and δHigh = sr5, so that our previous larger

search space is now our starting point. This enables us to see if there is additional

utility in opening up the search space further.

In Figure B.4 we can see the performance and computation times for the search

strategies across the three trigger mechanisms. The higher resolution (sr9) is

statistically significantly better than the previous (sr5), indicating that having a

larger search space is beneficial for these datasets. Notably, however, we see a vast

difference in performance for the search strategies across the trigger mechanisms.

Both from the boxplots and the mean ARI values (Table B.2), in absolute terms

the ARI values obtained are quite similar, particularly when compared to the

previous experiment. Thus, before we discuss the significant differences between

the methods it is clear that having a non-restrictive value of δ is more important

than a particular strategy, suggesting that if the optimal solution(s) are unable

to be found then no strategy can aid with this.
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Figure B.2: Performance (ARI) across the instance space for each of the two
baseline methods and five search strategies.
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Figure B.3: All problem feature values across the instance space
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(b) Interval trigger
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(c) HV -based trigger

Figure B.4: Performance for each search strategy for each of the three trigger
mechanisms for the HAWKS datasets. The computation times are normalized in
the range [0, 1].

Table B.2: ARI mean and standard deviation for HAWKS datasets with δLow =
sr9 & δHigh = sr5

Method Random Interval HV

CO 0.733± 0.121 0.733± 0.119 0.723± 0.121

FM 0.761± 0.110 0.764± 0.110 0.731± 0.117

RO 0.730± 0.123 0.733± 0.119 0.723± 0.118

THall 0.751± 0.112 0.753± 0.110 0.733± 0.115

THnew 0.760± 0.116 0.764± 0.116 0.725± 0.120

∆-MOCK (sr9) 0.751± 0.113

∆-MOCK (sr5) 0.720± 0.116
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All search strategies performed worse with the HV trigger mechanism, indi-

cating that it was too conservative with activating. For this experiment, there

were an average of 1.37 triggers (compared to 3.24 on these datasets when the

initial δ value was higher). With the wider initial search space, the initial ref-

erence gradient is shallow enough that further improvements are unlikely to be

‘stagnating’ in comparison, creating a situation where it is difficult to trigger fur-

ther. Thus, this approach only works when the initial δ is considerably restrictive,

which in this case it is not. Thus, the additional increases in the search space for

the other mechanisms create enough of a difference that the an extra ≈ 0.03 ARI

is obtained, making a statistically significant difference.

For the search strategies themselves, we can see that FM and THnew were

significantly better than ∆-MOCK (sr9) for the random and interval trigger

mechanisms. The increased mutation rate is obviously beneficial to increase K as

we previously discussed, but of interest is how FM was more successful than THall.

It is likely that the latter approach is too disruptive, a property that becomes

more important as the genotype length grows and the effect of the hypermutation

rate on increasing K is more pronounced. This is supported by the number of

clusters in the final population, which is shown in Figure B.5 (for the interval

mechanism). The poor performance of RO is a consequence (once again) of the

underestimation of K, as the initialization routine becomes sparser in its sampling

of individuals from the MST using different K values as the true K increases.

With the average K found by the methods being noticeably lower than the

trueK, even with the higher δ, it indicates that some other hyperparameters (such

as the neighbourhood parameter L) may also be unsuitable for these datasets.

Considering that the parameters were selected in the original work primarily for

the HK datasets, this is unsurprising. As with δ, tuning of such parameters is an

important part of ∆-MOCK yet is not practical (particularly for larger datasets).
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Figure B.5: The number of clusters encoded by individuals in the final population
for each method aggregated across all 20 HAWKS datasets, using δLow = sr9 and
δHigh = sr5. The true number of clusters is shown by the dashed horizontal line.
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