46 research outputs found

    Ortalama-varyans portföy optimizasyonunda genetik algoritma uygulamaları üzerine bir literatür araştırması

    Get PDF
    Mean-variance portfolio optimization model, introduced by Markowitz, provides a fundamental answer to the problem of portfolio management. This model seeks an efficient frontier with the best trade-offs between two conflicting objectives of maximizing return and minimizing risk. The problem of determining an efficient frontier is known to be NP-hard. Due to the complexity of the problem, genetic algorithms have been widely employed by a growing number of researchers to solve this problem. In this study, a literature review of genetic algorithms implementations on mean-variance portfolio optimization is examined from the recent published literature. Main specifications of the problems studied and the specifications of suggested genetic algorithms have been summarized

    Mean univariate- GARCH VaR portfolio optimization: actual portfolio approach

    Get PDF
    In accordance with Basel Capital Accords, the Capital Requirements (CR) for market risk exposure of banks is a nonlinear function of Value-at-Risk (VaR). Importantly, the CR is calculated based on a bank’s actual portfolio, i.e. the portfolio represented by its current holdings. To tackle mean-VaR portfolio optimization within the actual portfolio framework (APF), we propose a novel mean-VaR optimization method where VaR is estimated using a univariate Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) volatility model. The optimization was performed by employing a Nondominated Sorting Genetic Algorithm (NSGA-II). On a sample of 40 large US stocks, our procedure provided superior mean-VaR trade-offs compared to those obtained from applying more customary mean-multivariate GARCH and historical VaR models. The results hold true in both low and high volatility samples

    Multi-objective optimization using statistical models

    Get PDF
    In this paper we consider multi-objective optimization problems (MOOP) from the point of view of Bayesian analysis. MOOP problems can be considered equivalent to certain statistical models associated with the specific objectives and constraints. MOOP that can explore accurately the Pareto frontier are Generalized Data Envelopment Analysis and Goal Programming. In turn, posterior analysis of their associated statistical models can be implemented using Markov Chain Monte Carlo (MCMC) simulation. In addition, we consider the minimax regret problem which provides robust solutions and we develop similar MCMC posterior simulators without the need to define scenarios. The new techniques are shown to work well in four examples involving non-convex and disconnected Pareto problems and to a real world portfolio optimization problem where the purpose is to optimize simultaneously average return, mean absolute deviation, positive and negative skewness of portfolio returns. Globally minimum regret can also be implemented based on post-processing of MCMC draws. © 2019 Elsevier B.V

    Robust and Multi-objective Portfolio Selection

    Get PDF
    In this thesis, robust and multi-objective portfolio selection problem will be studied. New models and computational algorithms will be developed to solve the proposed models. In particularly, we have studied multi-objective portfolio selection with inexact information on investment return and covariance matrix. The problems have been transformed into easily solvable problems through theoretical analysis. Numerical experiments are presented to validate the methods

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques
    corecore