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Abstract

Portfolio selection is to allocate resources into assets. Markowitz’s seminal work on mean-

variance model provided the first quantitative treatment of the trade-off between invest-

ment and risk. After Markowitz’s seminal work, there are tremendous amount of research

on portfolio selection from both model and computational algorithms to make model

portfolio theory more practical. In the Markowitz’s model, risk is measured by variance

which is suffered from drawbacks if distribution is not symmetry. To overcome this draw-

back, some more risk measurements are developed, such as semi-variance, Value-at-Risk

(VaR) and Conditional-Value-at-Risk(CVaR). In the standard mean-variance model, on-

ly one-off decision is made at the beginning of the period which is maintained until the

end of this period. However, investors always like to adjust their investment according

to the real performance of the portfolios. Thus, multi-period portfolio selection prob-

lem has attracted extensive research interests. During portfolio selection modelling, the

investment return and the variance of the portfolios are usually estimated through the

historical data. However, these estimates are inexact and suffer from uncertainty. Thus,

robust portfolio selection problem is considered. Although portfolio selection problem has

been studied about seventy years since Markowitz’s seminal work, there are still many

problems unresolved due to the complex nature of the portfolio selection. In this the-

sis, robust and multi-objective portfolio selection problem will be further studied. New

models and computational algorithms will be developed to solve the proposed models.

In Chapter 1, we will briefly introduce the portfolio selection problem and the corre-

sponding models.

In Chapter 2, the results on existing portfolio selection are reviewed.

In Chapter 3, the distributionally robust multi-period portfolio selection problem sub-

ject to bankruptcy constraints is studied. Distributionally robustness means that the

worst performance of the portfolios in terms of distribution will be optimised. For this

model, we consider two cases: one is that the moment information is exactly known and

the other one is the the moment information is uncertain, but within an elliptical set. For

the two cases, we transform them into second-order-cone programming problems which

can be easily solved by existing convex optimization toolbox. Numerical experiments are

presented to illustrate our methods.

In Chapter 4, robust multi-period and multi-objective portfolio selection problem sub-

ject to no-shorting constraints and transaction costs is studied. In this model, we suppose
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that the mean and variance of the investment return vector are within an elliptical data

set. Then, the worst investment return and risk in the uncertainty set are optimised.

For the original minimax optimisation problem, we can prove that it is equivalent to

an minimax optimisation problem where the inner maximisation is one concave and one

dimension. So the inner maximisation can be analytically solved. Through weighting

method, we transform the original multi-objective optimisation problem into a single-

objective optimisation problem which can be easily solved. Numerical experiments are

presented to show the impact of the parameters’ uncertainty to the performance.

In Chapter 5, we develop a nonlinear scalarisation method to solve a tri-objective

portfolio selection problem. In this problem, the investment return, risk and skewness

are optimised. Different from traditional linear weighting method, we develop a non-

linear scalarisation method to solve this problem. Due to the objective of skewness is

non-convex, the nonlinear scalarisation method can achieve better Pareto-front solutions.

Numerical experiments on the performance of nonlinear scalarisation method for different

benchmarks and the tri-objective portfolio selection problem is presented.

Chapter 6 concludes the thesis and give some future directions on research of portfolio

selection.
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CHAPTER 1

Introduction

1.1 Background

A portfolio is a grouping of financial assets, such as stocks, bonds, commodities, curren-

cies, asset-backed securities, real estate certificates and bank deposit. Portfolios are held

by investors and/or managed by financial professionals and money mangers. Investor

should construct an investment portfolio in accordance with their investment return, risk

tolerance, asset diversification, etc.

An investment portfolio is to allocate the resources into different assets for the purpose

of maximizing benefit while minimizing the risk or maintaining the risk to be under

control. Portfolio selection is to optimally allocate investors’ capital to a number of

candidate securities. The process of selecting a portfolio can be divided into two stages

[55]. The first stage is to estimate the future performance of a candidate portfolio through

its past performances. In the second stage, the candidate portfolios will be selected based

on their estimated future performances and investors’ preference on return and risk.

Formally, the portfolio selection can be formulated as follows: Given a set of N assets

which we may invest, we need a strategy to divide the resources among these assets, such

that after a specified period of time T , the return on investment can be achieved as high

as possible while minimizing the risk or maintaining the risk under a given level.

The fundamental breakthrough of solving this problem dates back to Markowitz’s

seminal work in 1952 [55]. In Markowitz work, this problem was formulated as a mean-

variance optimization problem where the risk is measured through the variance of the

candidate portfolios. In this model, an investor regards expected return as desirable and

variation of return as undesirable. Let ri be the random variables which are the future

rate of return for the asset i, i = 1, · · · , N , and define z = [r1, r2, · · · , rN ]T which is the

collection of all the random variables ri. Denote µi = E(ri), m = [µ1, µ2, · · · , µN ]T and the

covariance matrix Σ = cov(z), where E(ri) means the expectation of the random variable

ri, cov(z) is the covariance of the random vector z. Suppose that [w1, w2, · · · , wN ]T is a

set of weights which are corresponding to the investment percentages to the assets. Then,

4



1.1 Background 5

the Markowitz mean-variance model is as below:

Markowitz Mean-Variance Model:

min
1

2
wTΣw

subject to mTw ≥ µb,

eTw = 1, w ≥ 0, (1.1)

where µb is the given expectation return, e = [1, · · · , 1]T .

An alternative formulation, which explicitly trades off risk and the return in the ob-

jective function through method, is as follows:

max mTw − λwTΣw

eTw = 1, w ≥ 0, (1.2)

where λ is the given weight to trade off risk and investment return.

Similarly, one can also consider to maximization return while keeping variance under

a given level:

max mTw

subject to wTΣw ≤ σp,

eTw = 1, w ≥ 0, (1.3)

where σp is a given risk level.

In Markowitz mean-variance model, the market is considered without transaction cost,

the short selling is not allowed, and the assets are considered to be able traded with any

non-negative fractions. Variance as a risk measure has been criticized because of its

symmetrical treatment of both upside and downside deviations from the mean as risk,

which cannot be justified, especially, for skewed distributions. [101]. To overcome this

drawback, some other risk measures are proposed.

In order to consider special aversion to returns below the mean value, downside risk

measure such as the semivariance of return is introduced in the literature [76]. The

semivariance is defined as the weighted sum of square deviations below this mean value

[76]. Mathematically, Mean-Semivariance model for the portfolio selection can be defined

as below:

Mean-Semivariance Model:

min
w

∫
RN

min(rTw − µb, 0)2dP

subject to mTw ≥ µb,
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eTw = 1, w ≥ 0, (1.4)

where P is the joint distribution of r.

In addition to semi-variance, there are some other downside risk measures, such as

Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR), which are widely used in

the literature to describe the risk. VaR measures the maximum likely loss of a portfolio

from market risk with a give confidence level (1 − α). For example, if VaR is valued as

10,000 with 95% confidence level, it means that there is only a 5% chance that the loss

will be greater than 10,000. The higher the confidence level, the less the chances the loss

is out of the value. [54]. Mathematically, VaR at a given confidence level 1 − α is the

maximum expected loss that the portfolio cannot exceed with probability α,

VaRα(w) = min {ζ ∈ R : Ψ(w, ζ) ≥ α} , (1.5)

where Ψ(w, ζ) is the probability of the loss not exceeding a threshold ζ. Suppose that the

probability function is P , then

Ψ(w, ζ) =

∫
−rTw≤ζ

dP. (1.6)

Then, the mean-VaR model can be stated as below:

Mean-VaR Model:

min
w

VaRα(w)

subject to mTw ≥ µb,

eTw = 1, w ≥ 0, (1.7)

As a measure of risk, VaR has its limitations, such as lacking subadditivity, convexity,

and not coherent [88]. An alternative risk measurement, CVaR, is coherent with attractive

properties including convexity. Thus, the model based on CVaR is easier than VaR to

compute from the mathematical perspective. Mathematically, CVaR is defined as the

conditional expectation of the portfolio loss exceeding or equal to VaR [68]:

CVaRα(w) =
1

1− α

∫
−rTw≥VaRα(x)

−rTwdP (1.8)

Mean-CVaR Model:

min
w

CVaRα(w)

subject to mTw ≥ µb,
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eTw = 1, w ≥ 0, (1.9)

In portfolio selection problems, there are at least two-objectives: return and risk. In

some applications, there have even more objectives, such as the diversification of the

investment and the liquidity of the portfolios. In the above mentioned models, either only

one objective is minimized and the others are put into the constraints or the objectives

are weighted together as only one objective. For the first case, how to determine an exact

threshold for an investor is rather challenging. For the second case, how to determine

this weight is difficult as different investors have different preferences to the objectives.

Thus, to present all potential solutions to the investors is much important and study the

multi-objective portfolio selection are paramount to applications. In this thesis, we will

develop a meta-heuristic based method for the portfolio selection.

In the above model, the portfolio selection problem has been formulated as a standard

optimization problem where the risk is minimized while maintaining the expected invest-

ment return to be above a desired level. Furthermore, only a static portfolio selection is

considered. In practice, investors always prefer to invest long-term assets for obtaining

investment return. In this scenario, the investors are required to adjust the assets held

according to the assets financial performance from time to time as shown in Figure 1.1

In Figure 1.1, xi+1 = xi + ∆xi, i = 0, 1, · · · , T − 1. Generally, a multi-period portfolio

0 1 2 T-1 T
0x 1x 1Tx  Tx

2x ⋯⋯0x
1Tx 2x1x

Figure 1.1: Multi-period portfolio selection

selection problem is heavily depending on the given dynamics. For different dynamics,

the solution methods are different. In this thesis, we will study multi-period portfolio

selection with uncertainty.

1.2 Research Objectives

The aims of the thesis are to study portfolio selection under different scenarios. In par-

ticularly, we will study the following portfolio selection problems:

(i) Multi-period portfolio selection with moment uncertainty and subject to bankrupt-

cy;

(ii) A nonlinear scalarisation method for multi-objective optimisation and applications

in portfolio selection;
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(iii) Multi-period and multi-objective portfolio selection with bound uncertainty for the

return expectation and covariance matrix.

Distributionally Robust Multi-Period Portfolio Selection Subject to Bankrupt-

cy Constraints:

In portfolio selection, we need to know the future performance of the candidate port-

folios which is estimated from the historical data. Based on the historical data, we can

estimate the mean and covariance of the excess return of the candidate portfolios. In

some of the existing works, the excess return is assumed to follow a normal distribution.

Clearly, this assumption is too strong as there are too many factors might affect the excess

return of the candidate portfolios in practice. To address this shortcoming, we introduce

the distributionally robust optimization to study the distribution of the excess return is

unknown in advance. In addition, the estimates of the mean and covariance of the excess

return of the candidate portfolios are not exact. In this thesis, we study portfolio selection

with inexact estimates of the mean and covariance, but within a bound set. For the two

cases, we will derive tractable algorithms to solve them.

Robust Multi-Period and Multi-Objective Portfolio Selection:

In the multi-period mean-variance model, the investment return and the risk are usu-

ally weighted together to be a single objective to optimize. However, different investors

have different preferences on return and risk. Furthermore, there is lacking a unified way

to determine the weight. Under this circumstance, to present all the potential solutions

to the investors is important so that they can choose the one that is best suitable for

them. As mentioned in the above, to consider the uncertainty of the return is important

since the exact information is always not available. In the above model, the mean and

variance are considered as uncertain and varied within a bound set. In this model, instead

of formulating such a portfolio selection problem as distributionally robust optimization

problem, we formulate it as a deterministic optimization problem where the excess return

is considered to be bounded within a given set.

A nonlinear scalarisation method for multi-objective optimisation problems

and applications to portfolio selection:

Portfolio selection problem is a multi-objective optimisation problem in nature. If

skewness is optimised, the corresponding optimisation problem is nonconvex. The exist-

ing linear weighting method might not provide good approximations of the solutions in

Pareto-front. In Chapter 5, we will develop nonlinear scalarisation method in stead of

traditional linear weighting methods to transform a multi-objective optimisation problem

into a single-objective optimisation problem. We test numerical performance of the pro-

posed nonlinear scalarisation method through a wide of benchmarks. Then, this proposed

method is introduced to solve a tri-objective portfolio selection problem.
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1.3 Thesis Organization

This thesis is organised as follows:

• Chapter 2: This chapter presents a survey of existing results on portfolio selection.

• Chapter 3: This chapter aims to address the distribution and moment uncertainty

in the multi-period portfolio selection problem. We firstly study multi-period port-

folio selection problem with the given mean and covariance of the excess return but

unknown distribution. Under this assumption, the original portfolio selection prob-

lem is formulated as a distributionally robust optimization problem. This problem

is further transformed into an equivalent deterministic optimization problem which

can be solved easily by the existing optimization software. Then, we study the case

that both the estimates of the mean and the covariance of the excess return are

also uncertain but within a bounded set. For such a problem, we investigate its

theoretical characteristics and prove that it can also be transformed into a tractable

convex optimization problem.

• Chapter 4: This chapter studies the multi-period multi-objective portfolio selection

with the investment return uncertainty. We firstly show how to derive a bound

set to bound the investment uncertainty. Then, the problem is formulated as min-

max multi-objective optimisation problem. For the inner maximization problem,

we prove that it can be transformed into a maximization problem with only one

variable. We further prove that for a given weight, the inner maximization problem

is concave and thus the optimal solution is either achieved at the boundary point or

in the equilibrium point within the interval if it has. Thus, the inner maximization

problem is easily solved. Since there are only two objectives, the Pareto-front can

be plotted against the weight.

• Chapter 5: This chapter develops a nonlinear scalarisation method to solve multi-

objective optimisation problems. Different from traditional methods to transform a

multi-objective optimisation problem into a single-objective optimisation problem

through linear scarlarisation, this nonlinear scalarization method is to transform a

multi-objective optimisation problem into a single-objective optimisation problem

through nonlinear scalarisation. We will investigate the theoretical characteristics

and numerical performance of the proposed method.

• Chapter 6: A brief summary of the thesis contents and its contributions are given

in the final chapter. Recommendation for future works is given as well.



CHAPTER 2

Literature Review on Portfolio Selection

In this chapter, we will review the existing results in portfolio selection.

2.1 Single-Period Portfolio Selection

For an investor, the challenging problem is how to allocate their current wealth over

a number of available portfolios, such as stocks, bonds and derivatives, to maximize the

return while minimizing the risk. Such a problem is referred to as portfolio selection [104].

In dealing with this fundamental issue, Markowitz in his seminal work [55] proposed a

mean-variance model, where the risk is measured by the variance. A practical advantage

of the Markowitz model is that this problem has been formulated as a convex quadratic

program, which can be solved efficiently. Due to this fundamental contribution, Harry

Markowitz received the 1990 Nobel Prize in Economics. As the Swedish Academy of

Sciences put it “his primary contribution consisted of developing a rigorously formulated,

operational theory for portfolio selection under uncertainty” [76].

After Markowitz’s seminal work [55], there are tremendous amount of research on port-

folio selection from both model and computational algorithms to make model portfolio

theory more practical. In the Markowitz’s Mean-Variance model, the risk is measured by

the variance. Under this scenario, the variability of the variance is minimized and thus,

the variability of the actual return over the average return is minimized. If the return

follows a normal distribution, the mean-variance model will produce an efficient strategy

since the symmetry of the distribution. However, in practice, the normal distribution of

the investment return is highly unlikely. To overcome this drawback, the semi-variance

(or downside) risk is introduced [67] for portfolio selection. Theoretically, semi-variance

model should produce a better solution since an investor only worries about underperfor-

mance, not about overperformance. However, due to the endogenous of the semicovariance

matrix, the corresponding optimization problems are intractable [67] which results in the

popularity of the mean-variance model. In [23], a heuristic method is introduced to solve

the mean-semivariance model since its intractability. In [67], it has shown that although

10
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minimizing the semivariance is more in line with the true preferences of a rational in-

vestor, but minimizing the variance usually achieves a lower downside deviation and a

higher Sortino ratio because it can be estimated more accurately.

In addition to semivariance, VaR is one of the most popular risk measures [54]. For

a given confidence level and a particular time horizon, a portfolio’s VaR is the maximum

loss one expects to suffer at that confidence level by holding that portfolio over that time

horizon [2]. Different from Mean-Variance model, the optimization of Mean-VaR model is

NP-hard and thus, a global optimal solution is hard to be obtained. In [2], VaR is intro-

duced for portfolio selection and its economic implications is studied. Through comparing

with Mean-Variance model, it shows that the higher variance portfolio has less VaR. It

reveals that for certain risk-averse agents, the portfolios with larger standard deviations

might be selected if Mean-VaR model is adopted instead of Mean-Variance model [2]. S-

ince Mean-VaR model is NP hard, a meta-heuristic based approach is developed in [54] to

solve the model since it has multiple local extrema and discontinuities when the real-world

constraints are incorporated.

An alternative risk measure to VaR is CVaR, which is also known as mean excess loss,

mean shortfall or tail VaR [68]. CVaR is defined as the weighted average of VaR and losses

strictly exceeding VaR for general distribution [68]. It has been shown that CVaR is a co-

herent risk measure [3] with many attractive properties including convexity. Thus, CVaR

is a convex risk measure which is much easier to be solved than VaR. In [68], Mean-CVaR

portfolio optimization problem is transformed into a linear programming (LP) problem

based on the CVaR measure with discrete sample approximation. In this approximation,

the dimension of LP is n+ 1 + S, where n is the dimension of the decision variables and

S is the number of the samples. To achieve good approximations, the samples should be

large enough which means S is a very large number. Thus, the resulted LP problem has

very high dimension and expensive to be solved even it is linear. Some approaches are

proposed to address this shortcoming. In [5], a discrete gradient method is proposed to

solve nonsmooth portfolio optimization problem with CVaR. Through numerical compar-

isons with LP-based approach, it has shown that non-smooth based optimization methods

can even achieve better performance if the scenarios are large. In [81], a smoothing tech-

nique is developed to solve the scenario-based CVaR. Comparing with the nonsmooth

approach, the smoothing method can use ordinary derivative conveniently and can retain

nice convergence properties and the convexity for the scenario-based CVaR problem [81].

The numerical performances also show its superior to LP-based approach.

To make the portfolio selection model more practical, the transaction cost should be

considered. There are different techniques to handle the transaction cost [8]. A recent

technique to model the transaction cost is to include cardinality constraint in the model

which means to select portfolios as sparse as possible. Since the cardinality constraint
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is included 0-norm in the model, the corresponding optimization problem becomes non-

convex and even discontinuous. How to solve such an optimization problem with large

candidate portfolios is still challenging. Currently, the available methods for the cardi-

nality constrained portfolio optimization can be classified as two categories: exact-based

method and heuristic-based method. In [25], an exact-based approach is developed to

solve such a problem through exploring the special structures and geometric properties

behind. By introducing the Lagrangian relaxation to the primal problem and modify-

ing the primal objective function to some separable functions, a sharp lower bounding

scheme is developed [25] which is further integrated into a branch-and-bound algorithm

to solve the original problem. In [79], a completely positive programming reformulation

of the cardinality constrained portfolio optimization problem is proposed as the lower

bound. Through integrating a heuristic method which is used to obtain a good feasi-

ble solution, the original cardinality constrained portfolio optimization problem is solved

through a Branch-and-Bound method. In addition to exact approaches, there are ex-

tensive meta-heuristic based methods to solve such an problem. In [38], an artificial

bee colony algorithm with a feasibility enforcement procedure along with an infeasibility

toleration procedure is proposed to solve cardinality constrained portfolio optimization

problem. Infeasibility toleration procedure is introduced to allow the solution to violate

bounding constraints temporarily while the repair mechanism ensured the number of as-

sets to be held in the portfolio to stick with the desired number. In [70], a genetic-based

approach is proposed to solve cardinality constrained portfolio optimization with trans-

action costs. The problem is first formulated as a mixed-integer quadratic problem. To

conduct genetic search, the candidate portfolios are encoded using a set representation to

handle the combinatorial aspect of the optimization problem. Besides specifying which

assets are included in the portfolio, this representation includes attributes that encode

the trading operation (sell/hold/buy) performed when the portfolio is rebalanced [70].

In [39], a hybrid approach through integrating ant colony optimization, genetic algorithm

and artificial bee colony optimization is proposed to solve cardinality constrained portfolio

optimization.

Another important research topic on portfolio selection is on the parameter uncer-

tainty in the optimization model. In fact, the parameters used in the model, such as the

return of the investment and the covariance matrix which are estimated through historical

data, are suffered from uncertainty. If the decision made under this uncertain environment

is implemented in practice, it might result in error-maximized and investment-irrelevant

portfolios [60]. Many methods are developed to address this problem. In [60], it suggests

resampling the mean returns and the covariance matrix within a confidence region around

a nominal set of parameters is proposed, and then aggregating the portfolios obtained by

solving a Mean-Variance problem for each sample. In Part V of [102], scenario-based
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stochastic programming models is proposed to handle the uncertainty in parameters.

However, both of the two kind of methods do not provide any guarantees on the portfolio

performance and become inefficient if the number of assets are large [31]. To ensure the

portfolio performance, robust models based on Mean-Variance model are proposed in [31]

to address parameter uncertainty and estimation errors. In the model, the uncertainty

set is modeled within either a boxed set or an elliptical set. Then, the corresponding op-

timization problem is transformed into a second-order-cone programming (SOCP) which

can be solved by the existing software efficiently. In [30], a VaR-based robust model for

portfolio selection is proposed. If the moments are exactly known, the problem is equiv-

alent to a SOP. If the moments are suffered from uncertainty which lie in a bounded set,

the problem is transformed into a Semi-Definite Programming (SDP). In [100], the worst

CVaR CVaR) model is proposed to against the uncertainty in portfolio selection. Mixture

distribution uncertainty, box uncertain and ellipsoidal uncertainty are studied. For all the

three scenarios, the corresponding CVaR can be transformed into a convex programming

which can be easily to be solved.

2.2 Multi-Period Portfolio Selection

In single-period portfolio selection problem, an one-off decision at the beginning of the

period is made and maintained until the end of this period. However, in the real world,

investors often adjust their wealth from time to time by taking into consideration the

volatile market conditions. Thus, multi-period portfolio selection has attracted extensive

research interests. Seminal work on multi-period portfolio selection can be dated back

to [59]. In this work, Ito’s lemma and stochastic dynamic programming are introduced

to analyze optimal continuous-time dynamic portfolio selection which is still being widely

used. In [17], it shows that a multi-period asset allocation problem with the final value

of the portfolios to be maximized can be solved as multi-stage stochastic linear programs

through combination of Benders decomposition and importance sampling. However, only

the return of the investment is considered without variance being considered. In [46],

a dynamical mean-variance portfolio selection problem is studied. Due to the nonsep-

arability in the sense of dynamical programming, solving the original problem directly

is difficult. In [46], through embedding the problem into a tractable auxiliary problem

that is separable, an analytical solution is derived for the original problem. The problem

considered in [46] is without constraints. In [14], mean-field formulation is introduced

to solve multi-period mean-variance portfolio selection problem. Under this framework,

some simple constraints can be included to derive analytical solution.

In the above literature, the methods are focusing on non-constrained portfolio selec-

tion problems. In applications, adjustment of portfolio in the periods is always suffered
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from constraints, such as no-shorting, risk allowance and bankruptcy constraint. In [11],

no-shorting constraint is considered for a multi-period mean-variance portfolio selection

model. It is shown that the optimal portfolio policy is piecewise linear with respect to the

current wealth level. Then, semi-analytical expression of the piecewise quadratic value

function is derived. In [26], a dynamic mean-variance portfolio selection problem with

the time cardinality constraint and correlated returns is studied. Its analytical expres-

sion of the efficient mean-variance frontier is derived through embedding scheme. In [12],

a multi-period mean-variance portfolio selection with management fees is studied. This

problem is reformulated as a multi-period mean-variance portfolio selection problem with

no-shorting constraint. Based on this, its semi-analytical optimal policy which is a linear

threshold-type policy is derived based on the methods in [11]. In [89], stochastic interest

rate is considered in a multi-period mean-variance portfolio selection problem. Through

invoking dynamic programming and the Lagrangian duality, analytical solution of the

original problem is also established.

The above literature is mainly focusing on the multi-period mean-variance model. In

addition to the variance, CVaR and VaR are two widely used risk measures as men-

tioned in the above section. CVaR as a risk measure in the multi-period case is time-

inconsistency [4] which prevents direction application of conventional stochastic control

to multi-period portfolio selection. In [15], multi-period mean-CVaR portfolio selection

problem is discussed. Due to the inconsistency of the model, the truncated global optimal

policy is not optimal for the remaining short term problem. The pre-committed policy

is obtained through linear programming and time consistency policy is derived through

by solving a series of integer programming problems in [15]. In [77], this problem is fur-

ther discussed. Through embedding the original, time inconsistent problem into a family

of time-consistent expected utility maximization problems with a piecewise linear utili-

ty function, the multi-period mean-CVaR portfolio selection problem can be analytically

solved. It has shown that the optimal investment strategy is a fully adaptive feedback

policy and a cumulated amount invested in the risky assets is of a characteristic V-shaped

pattern as a function of the current wealth [77]. The above derived optimal mean-CVaR

investment strategies is based on pre-committed strategies. However, as investors would

like to choose the local optimal strategy intermediate time instants, it is hard to maintain

that strategy although it has better global investment performance in terms of the initial

time in practice [13]. How to balance the conflicts between an investor’s global and local

investment interests is important. In [13], tractable computational methods are proposed

to coordinate this conflicted interests. In addition to CVaR as a risk measure, VaR is

considered as a risk measure in multi-period portfolio selection. In [61], a multi-period

mean-VaR model for portfolio selection is studied. Genetic-based algorithm is proposed

to solve such a problem.
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In addition to variance, CVaR and VaR as risk measures, the lower partial moment is

also widely used in multi-period portfolio selection. In [49], a robust multi-period port-

folio selection model based on downside risk with asymmetrically distributed uncertainty

set is studied. Through introducing distributionally robust, the original model can be

solved through solving a second-order cone optimization problem. In [87], multi-period

semi-variance portfolio selection problem is studied. The downside risk based on the semi-

variance is introduced in the model. Due to the non-smoothness of the objective function

caused by semi-variance, a hybrid genetic algorithm is proposed to solve the problem.

In [62], multi-period portfolio selection is formulated as minimizing one-sided deviation

from a target wealth level and maximizing the expected end-of-horizon wealth problem.

The trade-off between two objectives is controlled by a given weight. Through intro-

ducing a piece-wise linear penalty function, the original problem can be solved through

solving a series of linear programming problems. In [45], different most of the methods

where the return rates of the candidate portfolios are considered as determined, a multi-

period portfolio selection problem under uncertain investment returns with bankruptcy

constraint is considered. The proposed uncertain optimization problem is transformed

into the crisp optimization models and then a genetic algorithm is proposed to solve the

problem. In [40], instead of using the average standard deviation of portfolio for all portfo-

lios, the estimation of standard deviation of itself is used to calibrate the risk. The kernel

distribution function is introduced to calibrate the distribution of the random variables.

2.3 Multi-Objective Portfolio Selection

Portfolio selection is to allocate resources to a number of portfolios. Based on their prefer-

ence, investors need to trade-off investment return and risk during the resource allocation

process. Due to the intrinsic multi-objective nature of the problem, evolutionary-based

multi-objective algorithms have been widely developed to solve this class of optimization

problems. In [47], a cardinality constrained multi-objective portfolio selection problem

is studied where return is maximized and the risk is minimized. The risk is measured

by variance. In addition to the cardinality constraint, floor and ceiling constraints are

also imposed. The floor constraint is to refrain very small weighting of any candidate

portfolios to be selected. A multi-objective evolutionary algorithm through customized

mutation and recombination is designed to solve the problem. The performance of the

algorithm has been tested through a wide range of data sets which size is varying from 31

to 1317. In [73], the mean-variance multi-objective portfolio selection problem is further

discussed. Additional constraints, such as round-lot constraints and pre-assignment con-

straints, are taken into account. The round-lot constraints is to restrict some candidate

portfolios can only be invested in multiples of a certain amount, while the pre-assignment
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constraints is to include some candidate portfolios which must be invested. A particle

swarm algorithm with an adaptive ranking is introduced to solve the problem. In [58],

the transaction cost is included in multi-objective portfolio selection. Three models are

considered: 1) mean, variance and transaction costs as objectives; 2) mean, VaR and

transactions as objectives; 3) mean, CVaR and transactions as objectives. In all the

three models, cardinality constraint, quantity, pre-assignment, self-financing constraint

and the equality constraints arising due to the consideration of transaction cost are incor-

porated in the model. An evolutionary-based algorithm is proposed where the equality

constraint is handled through a repair algorithm. In [64], mean-variance portfolio se-

lection problem is considered as a bi-objective optimization problem. This bi-objective

optimization problem has been transformed into a single objective optimisation problem

through fuzzy normalization. Then, invasive weed optimisation algorithm is introduced

to solve this problem. In [57], a multi-objective portfolio selection problem with cardi-

nality, pre-assignment, budget, quantity and round-lot constraints. A evolutionary-based

multi-objective optimisation algorithm is proposed to solve the model. In [65], portfo-

lio selection is formulated as a bi-objective optimisation problem. A hybrid bi-objective

algorithm combining with the respective advantages of local search algorithm, evolution-

ary algorithm and QP with a pre-selection strategy is developed to solve the problem.

In [63], mean-variance-skewness model for multi-objective portfolio selection is studied

and a particle swarm optimisation algorithm is proposed to solve the problem.

There are also many results available to address the uncertain nature in portfolio s-

election. In [44], a joint probability constraint with random right-hand side vector is

included in multi-objective portfolio selection problems. Mixed-integer linear program-

s are used to reformulate and approximate the original multi-objective probabilistically

constrained programs. In [32], to improve the reliability of the investment return and

risk measurement, a robust optimisation for a multi-objective product portfolio problem

is studied. The future demand of each product and the risk index of each product are cal-

culated through an neural network based algorithm. In [36], possibilistic mean value and

variance of continuous distribution are introduced for multi-objective portfolio selection

rather than probability distributions. A trapezoidal possibility distribution as the possi-

bility distribution of the rates of returns on the securities is used to transform the original

fuzzy optimisation problem into a deterministic one. In [72], a multi-objective robust

possibilistic model for technology portfolio optimisation problem is studied. The risk and

the created jobs as two objectives to be optimized and the multi-objective robust possi-

bilistic programming approach is introduced to handle the parameter uncertainty. In [1],

a multi-objective portfolio selection problem is modeled as a stochastic programming

where the uncertain parameters are supposed to follow normal distribution. Then, goal

programming and compromise programming are introduced to solve this multi-objective
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optimisation problem. In [29], multi-objective portfolio selection problem is formulated

as a robust goal programming. The parameter uncertainty is handled through robust

optimisation which allows the uncertain parameter to take values according to a sym-

metric distribution with a mean equal to the nominal values. In [37], multi-period and

tri-objective uncertain portfolio selection problem is studied where the asset returns are

considered as uncertain variables. The augmented weighted Tchebycheff program is intro-

duced to transform the original tri-objective optimisation problem into a single objective

optimisation problem. A particle swarm optimisation algorithm is designed to solve the

problem.



CHAPTER 3

Distributionally Robust Multi-Period

Portfolio Selection Subject to Bankruptcy

Constraints

3.1 Introduction

Mean-variance portfolio selection was proposed by Markowitz in his seminal work [55]

which was for single-period investment model. In this model, the return of investment

measured by the mean of wealth is maximized while the risk measured by variance of

portfolios to be selected is minimized. This model is then extended to the multi-period

case [46]. In a multi-period mean-variance model, if the constraints are simple, this

problem can be solved analytically. For example, analytical optimal portfolio policy and

analytical expression of the mean-variance efficient frontier were derived in [46] through in-

troducing an auxiliary parametric formulations which was to overcome nonseparable of the

original problem in the sense of dynamic programming. Based on this technique, several

multi-period portfolio selection problems are discussed, including the case with no short-

ing constraints [11], stochastic interest rate [89]. Instead of using auxiliary parametric

formulations to tackle the issue of non-separability, a mean-field framework is introduced

to tackle directly the issue of non-separability and derive the optimal policies analytically

in [14]. Unfortunately, the analytical solution for a multi-period mean-variance model can

be obtained only for those structurally simple cases.

Variance as a risk measure has been widely criticized by practitioners as it equally

weights desirable positive returns and undesirable negative ones [54]. To circumvent

this drawback, the semi-variance risk measure which only measures the variability of

returns below the mean is introduced to replace variance [49]. Another typical kind of

risk measures are Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR). VaR is

the quantile of the loss at a specified confidence level while CVaR is the conditional

expected value of loss exceeding the VaR [13]. However, as a measure of risk, VaR lacks

18
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sub-additivity and convexity which leads the corresponding portfolio selection problem

to being non-convexity [7]. To overcome the shortcomings of VaR, CVaR is proposed

by Rockfellar and Uryasev in [68] which is proved to be coherent and convex. VaR and

CVaR have been widely used in portfolio selection for both single-period and multi-period

cases [13, 54]. In [54], single-period portfolio selection with mean-VaR model is studied

which is a non-convex NP-hard optimization problem and an evolutionary based algorithm

is proposed to solve the problem. In [88], a non-parametric approach is introduced to

estimate the density of the loss function which leads to a convex formulation of the original

portfolio selection problem. In [13], time inconsistency in multi-period mean-CVaR model

is studied and time-consistent and self-coordination strategies are proposed. The proposed

time-consistent strategy is a piecewise linear function of the wealth level with parameters

which can be obtained through solving a series of mixed-integer programming problems off

line. The self-coordination strategy is formulated as a convex program with a quadratic

constraint.

In practical investment, the investment return is highly relying on the market. The un-

derlying return distribution parameters, such as its expectation and covariance, cannot be

obtained exactly in advance. In the recent years, there is a large amount of work to address

this issue which is called as distributionally robust optimization [20]. Distributionally ro-

bust optimization is to handle the distributional uncertainty in stochastic optimization

problems where the worst case of objective function and/or constraints are optimized

under the given moment information. This model has been widely applied in portfolio

selection to estimate the worst case of the investment risk. For example, in [30], for the

given bounds on the mean and covariance matrix of returns, the worst-case VaR model

of portfolio selection problem is studied. Through duality analysis, the proposed model

can be cast as a semi-definite programming (SDP) which can be easily solved by existing

convex optimization tools. In [100], the worst-case CVaR in robust portfolio selection is

studied. For some special cases, it has been proved that the original robust optimization

problem can be transformed into an equivalent SOCP. In [20], a distributionally robust

optimization problem with uncertain moment information is studied. Through a series

of duality analysis, the original problem can still be cast as a SDP although the mean

and covariance are both suffered from uncertainty. Numerical experiments show that the

daily return obtained under this distributionally robust framework is more reliable while

not sacrificing daily utility. In [10], tight bounds on the expected values of several risk

measures are studied. It has been shown that a single-period portfolio selection problem

without additional constraints can always be solved analytically if the disutility function

is in the form of lower partial moments (LPM), VaR or CVaR. For the multi-period port-

folio selection problem. For the multi-period optimization problem, it has been shown

that the problem can still be solved analytically in [51]. In [49], a robust multi-period
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portfolio selection under downside risk LPM with asymmetrically distributed uncertainty

set is studied. A computationally tractable approximation approach is proposed to solve

the original problem.

For existing multi-period portfolio selection problems, most of them have ignored

constraints and thus, the original problem can be solved analytically through applying

dynamical programming. However, investment portfolios are always required to satis-

fy various constraints which are determined by the investment strategy. For example,

chance constraints are considered in [78] where the chance constraints are handled by the

one-sided Chebyshevs inequality. Clearly, this approximation is not tight and thus the

optimality of the obtained solution cannot be guaranteed. To overcome this problem, we

will study multi-period portfolio selection under distributionally robust framework. In

our discussions, we will study both the cases where the mean and covariance of returns

are either known exactly or suffered from uncertainty. We will show that this problem can

also be transformed into an equivalent SOCP which can be easily solved. Then, some nu-

merical experiments are presented to illustrate and compare our proposed methods with

those existing.

3.2 Multi-period portfolio selection with bankruptcy

constraints

We consider a financial market with n+ 1 assets available to be invested which consist of

one cash riskless asset and n risky assets in a time horizon with T time periods. Let the

cash riskless asset be labeled as 0 and n risky assets be labeled as 1, · · · , n. Here the time

period can be any time unit in accordance with real applications. Let st be the determin-

istic return of the riskless asset at period t and eit be the random return of the risky asset i,

i = 1, · · · , n. Denote the vector et = [e1
t , · · · , ent ]T to be the collection of all risky returns

and the excess return vector of risky assets pt = [p1
t , · · · , pnt ] = [e1

t − st, · · · , ent − st]
T .

In the following discussions, we assume that the vector et, t = 0, 1, · · · , T, are statis-

tically independent and the only information known is its first two unconditional mo-

ments, i.e., its mean E(et) = [E(e1
t ), · · · ,E(ent )]T and its n×n positive definite covariance

Cov(et) = E(ete
T
t )− E(et)E(eTt ).

We suppose that an investor enters the market at the initial time period t = 0 with

the wealth x0. The investor allocates x0 among the riskless asset and the n risky assets

at the beginning of period 0 and reallocates the wealth at the beginning of each of the

following period. Let xt be the wealth of the investor at the beginning of period t and

uit be the amount allocated to the i − th risky aseet, i = 1, 2, · · · , n, at the period t,

t = 1, 2, · · · , T − 1. We suppose that there is no transaction cost or tax to be charged
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during wealth reallocations. Then, the dynamics of the wealth follows the following

stochastic process:

xt+1 =
n∑
i=1

eitu
i
t +

(
xt −

n∑
i=1

uit

)
st

= stxt + pTt ut, t = 0, 1, · · · , T − 1. (3.1)

If we use probability to measure the risk and seek to maximize the terminal wealth, a

multi-period portfolio selection problem with bankruptcy constraints can be formulated

as the following:

MPS: max E(xT )

s.t. xt+1 = stxt + pTt ut

Pt(xt ≥ x) ≥ 1− ε, t = 1, · · · , T, (3.2)

where x is the disaster level, ε is a constant to show the acceptable maximum probability of

bankruptcy set by the investor and Pt means the probability under the distribution Pt, t =

1, · · · , T . To avoid shorting selling and maintain self-finance, the following constraints are

appended:

Pt

(
xt −

n∑
i=1

uit ≥ 0

)
≥ 1− ε, t = 1, · · · , T − 1. (3.3)

In practice, to get the exact distribution of Pt is impossible. To overcome this diffi-

culty, most of existing results are replacing the probability constraints (3.2) by standard

constraints through using Tchebycheff inequality [14]. Although this approximation leads

to a easily solved problem, the solution obtained is usually too conservative. Different

from current methods, we will formulate this problem as a robust optimization problem.

Let µ̄t and Σ̄t be the estimates of the mean and covariance of the random vector Pt based

on the historical data. If these estimates are accurate, we define

P1
t =

{
Pt ∈M : EPt(pt) = µ̄t, EPt

[
(pt − µt)(pt − µt)

T
]

= Σ̄t, t = 1, · · · , T
}
. (3.4)

where M is the set of all probability distributions, EPt(·) means the expectation under

the distribution Pt. However, in practice, these estimates are usually inadequate. To

incorporate the uncertainty of estimates, we consider the following uncertainty set

P2
t =

{
Pt ∈M :

(EPt(pt)− µ̄t)
T Σ̄−1

t (EPt(pt)− µ̄t) ≤ γ1,

EPt
[
(pt − µ̄t)(pt − µ̄t)

T
]
≤ γ2Σ̄t,

t = 1, · · · , T.

}
(3.5)

The first constraint in (3.5) describes how the estimate µ̄t is close to EPt(pt) while the
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second constraint in (3.5) enforces the covariance estimate to be bound in a semidefinite

cone defined by a matrix inequality. Instead of replacing the probability constraints by the

inequalities obtained through using the Tychebycheff inequality, we consider the following

distributionally robust portfolios selection model:

DRMPS: max
u

min
Pt∈Pt

E(xT )

s.t. xt+1 = stxt + pTt ut

min
Pt∈Pt

Pt(xt ≥ x) ≥ 1− ε, t = 1, · · · , T (3.6)

min
Pt∈Pt

Pt

(
xt −

n∑
i=1

uit ≥ 0

)
≥ 1− ε, t = 1, · · · , T − 1, (3.7)

where Pt can be either P1
t or P2

t .

3.3 Deterministic Tractable Reformulation and Com-

putation

In this part, we will reformulate Problem DRMPS as an equivalent deterministic problem

without chance constraints, which is computationally tractable. In light of (3.1) and the

independence of pt, t = 1, · · · , T , we have

E(xt) = T t0x0 +
t−1∑
i=1

T tiµ
T
i−1ui−1 + µT

t−1ut−1, (3.8)

Var(xt) =
t−1∑
i=1

(T ti )
2uTi−1Σ̄i−1ui−1 + uTt−1Σ̄t−1ut−1, (3.9)

where T t0 =
∏t−1

j=0 sj, T
t
i =

∏t−1
j=i sj, EPt(pt) = µt and EPt

[
(pt − µt)(pt − µt)

T
]

= Σt are

the mean and covariance matrix of the random vector of pt, respectively, for ease of no-

tation. Now we only need to transform the constraints (3.2) into equivalent deterministic

formulations.

Lemma 3.1. If the estimates µ̄t and Σ̄t are exactly known, i.e., µt = µ̄t, Σt = Σ̄t,

and Pt = P1
t , then for t = 1, · · · , T, the inequalities (3.6) and (3.7) are equivalent to the

following inequalities:

√
ε

1− ε

(
t−1∑
i=1

(T ti )
2uTi−1Σ̄i−1ui−1 + uTt−1Σ̄t−1ut−1

) 1
2

+

(
x−

(
T t0x0 +

t−1∑
i=1

T tiµ
T
i−1ui−1 + µT

t−1ut−1

))
≤ 0. (3.10)
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√
ε

1− ε

(
t−1∑
i=1

(T ti )
2uTi−1Σ̄i−1ui−1 + uTt−1Σ̄t−1ut−1

) 1
2

+

(
n∑
i=1

uit −

(
T t0x0 +

t−1∑
i=1

T tiµ
T
i−1ui−1 + µT

t−1ut−1

))
≤ 0. (3.11)

Proof: We can rewrite the inequalities (3.6) as

min
Pt∈Pt

Pt(x− xt ≤ 0) ≥ 1− ε.

In light of Theorem 2.2 in [103], we know that

min
Pt∈Pt

Pt(x− xt ≤ 0) ≥ 1− ε⇐⇒ sup
Pt∈Pt

Pt − CVaRε(x− xt) ≤ 0.

By virtue of Lemma 2.2 in [10], we have

sup
Pt∈Pt

Pt − CVaRε(x− xt)

= min
α

sup
ζ∼(x−E(xt),Var(xt))

α +
1

1− ε
E [(−α− ζ)+]

= min
α
α +

1

1− ε
sup

ζ∼(x−E(xt),Var(xt))

E [(−α− ζ)+]

= min
α

{
α +

1

2(1− ε)

[√
Var(xt) + (x− E(xt) + α)2 − (α + x− E(xt))

]}
.

Define

hε(α) = α +
1

2(1− ε)

[√
Var(xt) + (x− E(xt) + α)2 − (α + x− E(xt))

]
.

Let ∂hε(α)
∂α

= 0, we obtain

α∗ =
2ε− 1

2
√
ε(1− ε)

√
Var(xt) + x− E(xt).

Substituting α∗ into hε(α), we obtain

sup
Pt∈Pt

Pt − CVaRε(x− xt)

=

√
ε

1− ε

(
t−1∑
i=1

(T ti )
2uTi−1Σ̄i−1ui−1 + uTt−1Σ̄t−1ut−1

) 1
2

−

(
x−

(
T t0x0 +

t−1∑
i=1

T tiµ
T
i−1ui−1 + µT

t−1ut−1

))
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Similarly, we can prove the inequalities (3.11). The proof is completed. �

Combining Lemma 3.1 and the equality (3.8) yields the following theorem:

Theorem 3.1. Problem DRMPS with Pt = P1
t is equivalent to the following optimization

problem:

max T T0 x0 +
T−1∑
i=1

T tiµ
T
i−1ui−1 + µT

T−1uT−1 (3.12)

s.t.

√
ε

1− ε

(
t−1∑
i=1

(T ti )
2uTi−1Σ̄i−1ui−1 + uTt−1Σ̄t−1ut−1

) 1
2

+

(
x−

(
T t0x0 +

t−1∑
i=1

T tiµ
T
i−1ui−1 + µT

t−1ut−1

))
≤ 0, t = 1, · · · , T, (3.13)

√
ε

1− ε

(
t−1∑
i=1

(T ti )
2uTi−1Σ̄i−1ui−1 + uTt−1Σ̄t−1ut−1

) 1
2

+

(
n∑
i=1

uit −

(
T t0x0 +

t−1∑
i=1

T tiµ
T
i−1ui−1 + µT

t−1ut−1

))
≤ 0, t = 1, · · · , T − 1. (3.14)

Based on Theorem 3.1, Problem DRMPS has been transformed into an equivalent

SOCP problem which can be easily solved. Now we study the case P = P2
t . In the

following discussions, we further assume that all the wealth is invested in the risky market

without cash keeping. Thus, the dynamics of the wealth (3.1) becomes

xt+1 =
n∑
i=1

eitu
i
t = eTt ut. (3.15)

Under this environment, Problem DRMWC should be proposed as follows:

DRMPS: max
u

inf
Pt∈P2

t

E(xT ) (3.16)

s.t. xt+1 = eTt+1ut

inf
Pt∈P2

t

Pt(xt ≥ x) ≥ 1− ε, t = 1, · · · , T, (3.17)

inf
Pt∈P2

t

Pt
(
ut − eTt ut−1 ≥ 0

)
≥ 1− ε, t = 1, · · · , T − 1. (3.18)

Clearly, solving Problem DRMPS with Pt = P2
t is more difficult than Pt = P1

t if µt

and Σt cannot be accessed perfectly. To circumvent this difficulty, we need to decompose

Problem DRMPS with Pt = P2
t as a two layer optimization problem in which the inner

layer is the problem with Pt = P1
t while the outer layer is to handle estimation inaccuracy
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of µt and Σt. To further our discussion, we need the following lemma which is a variation

of Lemma 3.3 in [98]:

Lemma 3.2. Let s be a random vector in RJ and let ξ be a random variable in R. For

a given y ∈ RJ , let ambiguity sets Ds and Dξ be as follows:

Ds =
{
P ∈ P(RJ) : EP(s)TΣ−1EP(s) ≤ γ1, EP(ssT ) � γ2Σ

}
Dξ =

{
P ∈ P(R) : ‖EP(ξ)‖ ≤ √γ1

√
yTΣy, EP(ξ2) � γ2y

TΣy
}

Then, we have

inf
P∈Ds

EP(yT s) = inf
P∈Dξ

EP(ξ).

Furthermore,

inf
P∈Ds

EP(ys) =

{
−√γ1

√
yTΣy, if γ1 ≤ γ2,

−√γ2

√
yTΣy, otherwise.

(3.19)

Proof: For any P ∈ Ds, define ξ = yT s. It yields that

EP(ξ) = EP(yT s) = yTEP(s) ≤ ‖Σ
1
2y‖‖Σ−

1
2EP(s)‖. (3.20)

Since s ∈ Ds, ‖Σ−
1
2EP(s)‖ ≤ √γ1. Replacing this inequality into (3.20) yields that

EP(ξ) ≤ √γ1‖Σ
1
2y‖ =

√
γ1

√
yTΣy.

In a similar way, we can prove the following inequality:

EP(ξ) ≥ −√γ1‖Σ
1
2y‖ = −√γ1

√
yTΣy.

Thus, for any s ∈ Ds we have ξ = yT s ∈ Dξ. It implies that

inf
P∈Ds

EP(yT s) ≤ inf
P∈Dξ

EP(ξ).

On the contrary, for any ξ ∈ Dξ, define s = ξΣy/yTΣy, then

EP(s)TΣ−1EP(s) = (EP(ξ))2yTΣΣ−1Σy/(yTΣy)2 =
(EP(ξ))2

yTΣy
≤ γ1.

Meanwhile,

EP(ssT ) = EP

{
ξ2 Σy

yTΣy

yTΣ

yTΣy

}
= EP(ξ2)

{
Σy

yTΣy

(Σy)T

yTΣy

}
≤ γ2y

TΣy
Σy(Σy)T

(yTΣy)2
.

Furthermore, we claim that Σy(Σy)T ≤ yTΣyΣ, we have EP(ssT ) ≤ γ2Σ. Indeed, for any
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z ∈ RJ , we have

zTΣy(Σy)T z =
[
(Σ

1
2 z)T (Σ

1
2y)
]2

≤ ‖(Σ
1
2 z)‖2‖(Σ

1
2y)‖2 = zTΣzyTΣy = zT (yTΣyΣ)z.

Thus, the following inequality holds:

EP(ξ2) = yTEP(ssT )y ≤ γ2y
TΣy.

Therefore, s ∈ Ds and

inf
P∈Ds

EP(yT s) ≥ inf
P∈Dξ

EP(ξ).

Combining the above results, we obtain infP∈Ds EP(yT s) = infP∈Dξ EP(ξ). In light of

EP(ξ2) ≤ γ2y
TΣy and (EP(ξ))2 ≤ (EP(ξ2)), we have

EP(ξ) ≥ −
√
γ2yTΣy.

The inequality can also be attained. Therefore,

inf
P∈Ds

EP(ys) =

{
−√γ1

√
yTΣiy, if γ1 ≤ γ2,

−√γ2

√
yTΣiy, otherwise.

(3.21)

We complete the proof. �

To proceed it further, we cite Theorem 3.2 in [98] as the following lemma (Lemma

3.3) which will be used later.

Lemma 3.3. Suppose that

D =
{
P ∈ P(RJ) : EP(s)TΣ−1EP(s) ≤ γ1, EP(ssT ) � γ2Σ

}
(3.22)

Then, infP∈D P
{
tTy ≤M

}
≥ 1− α is equivalent to

µ̄Ty +

(
√
γ1 +

√
1− α
α

(γ2 − γ1)

)√
yTΣy ≤M

if γ1/γ2 ≤ α, and is equivalent to

µ̄Ty +

√
γ2

α

√
yTΣy ≤ T

if γ1/γ2 > α.

Now, we can show that the distributional robust multi-period portfolio selection prob-

lem with uncertain moments Pt = P2
t can be transformed into a SOCP. From this
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point, Problem DRMPS with Pt = P2
t has the same computational complexity as that of

Pt = P1
t . It means that the uncertainty of the moments does not increase the complexity

of the problem.

Theorem 3.2. If γ1 ≤ γ2, Problem DRMPS with Pt = P2
t is equivalent to the following

SOCP:

max
ui

µ̄T
TuT−1 −

√
γ1uTT−1Σ̄TuT−1 (3.23)

s.t.

(
√
γ1 +

√
1− ε
ε

(γ2 − γ1)

)√
uTt Σ̄tut ≤ µ̄T

t ut−1 − x, t = 1, · · · , T ; (3.24)

µ̄T
t−1ut−1 +

(
√
γ1 +

√
1− ε
ε

(γ2 − γ1)

)√
uTt−1Σ̄t−1ut−1

≤
n∑
i=1

uit; t = 2, · · · , T − 1. (3.25)

If γ2 ≤ γ1 ≤ εγ2, Problem DRMPS with Pt = P2
t is equivalent to the following SOCP:

max
ui,τi

µ̄T
TuT−1 −

√
γ2uTT−1Σ̄TuT−1 (3.26)

s.t.

(
√
γ1 +

√
1− ε
ε

(γ2 − γ1)

)√
uTt Σ̄tut ≤ µ̄T

t ut−1 − x, t = 1, · · · , T ; (3.27)

µ̄T
t−1ut−1 +

(
√
γ1 +

√
1− ε
ε

(γ2 − γ1)

)√
uTt−1Σ̄t−1ut−1

≤
n∑
i=1

uit; t = 2, · · · , T − 1. (3.28)

If γ1 > εγ2, Problem DRMPS with Pt = P2
t is equivalent to the following SOCP:

max
ui,τi

µ̄T
TuT−1 −

√
γ2uTT−1Σ̄TuT−1 (3.29)

s.t.

√
γ2

ε

√
uTt Σ̄tut ≤ µ̄T

t ut−1 − x, t = 1, · · · , T ; (3.30)

µ̄T
t−1ut−1 +

√
γ2

ε

√
uTt−1Σ̄t−1ut−1 ≤

n∑
i=1

uit; t = 2, · · · , T − 1. (3.31)

Proof. Denote st = et − µ̄t. Then, we can verify that

Dst =
{
P ∈ P(RJ) : EP(st)

TΣ−1EP(st) ≤ γ1, EP(stst
T ) � γ2Σ

}
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In light of Lemma 3.2, we have

inf
P∈Ds

EP(sTTuT−1) =

 −
√
γ1

√
uTT−1ΣTuT−1, if γ1 ≤ γ2,

−√γ2

√
uTT−1ΣTuT−1, otherwise.

(3.32)

Since xT = sTTuT−1 + µ̄T
TuT−1,

inf
P∈Ds

EP(xT ) =

 µ̄T
TuT−1 −

√
γ1

√
uTT−1ΣTuT−1, if γ1 ≤ γ2,

µ̄T
TuT−1 −

√
γ2

√
uTT−1ΣTuT−1, otherwise.

(3.33)

In a similar way, we can prove that

inf
Pt∈P2

t

Pt(xt ≥ x) ≥ 1− ε

is equivalent to
(√

γ1 +
√

1−ε
ε

(γ2 − γ1)
)√

uTt Σ̄tut ≤ µ̄T
t ut−1 − x, if γ1/γ2 ≤ α,√

γ2
ε

√
uTt Σ̄tut ≤ µ̄T

t ut−1 − x, otherwise.

We can also prove that

inf
Pt∈P2

t

Pt
(
ut − eTt−1ut−1 ≥ 0

)
is equivalent to µ̄T

t−1ut−1 +
(√

γ1 +
√

1−ε
ε

(γ2 − γ1)
)√

uTt−1Σ̄t−1ut−1 ≤
∑n

i=1 u
i
t, if γ1/γ2 ≤ α,

µ̄T
t−1ut−1 +

√
γ2
ε

√
uTt−1Σ̄t−1ut−1 ≤

∑n
i=1 u

i
t ≤ µ̄T

t ut−1 − x, otherwise.

Then, the results (3.23) - (3.31) are easily obtained through combining the above results.

We completed the proof. �

3.4 Numerical studies

In this section, we will use some numerical experiments to illustrate our proposed method

and validate its efficiency.

Example 1. Let us first consider the case without moment uncertainties. For this case,

we select three portfolios from Shanghai Stock exchange. The transaction data within 60

business days is used to compute µt and Σt. Let T = 10 and st = 1.04. We suppose that

the mean and covariance are constant during this time period. Then, the corresponding
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µt = [0.122, 0.206, 0.188]T and

Σt =

 0.0146 0.0187 0.0145

0.0187 0.0854 0.0104

0.0145 0.0104 0.0289


Let x = 1.15 and ε = 0.05. Then, the expected return at the end of the period is

E(xT ) = 8.0758. If we adjust x from x = 1.15 to x = 1.196, then the expected return

E(xT ) = 5.3168. The optimal E(xt) with x = 1.15 and x = 1.196 are depicted in Figure

4.1. From Figure 4.1, we can observe clearly that the increase of x has a significant

decrease of the expected return E(xT ). If we set x = 1.2, then no feasible solution is

found.

Fig 4.2 and Fig 4.3 show the optimal u2(t) and u3(t) with x = 1.15 and x = 1.196.

From Fig 4.2 and Fig 4.3, we can observe that the smaller x, the larger u2(t) and the

smaller u3(t). The reason behind is that the second portfolio has the largest investment

return, but it has the largest risk from the variance perspective. The expected investment

return of the third portfolio is between the first one and the second one. The increase of

x means the aversion of the risk. Thus, u3(t) will be increased with the increase of x in

order to reduce the risk from the investment of the second portfolios.
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x
s
=1.15

x
s
=1.196

Figure 3.1: The optimal E(xt) with x = 1.15 and x = 1.196

Example 2. Now we consider the case with uncertain moments. The expected investment

return and the variance matrix are still the same as those in Example 1. The problem de-

fined by (3.16)-(3.18) is different from the problem defined by (3.6)-(3.7) as xt is expressed

only in terms of ut in the problem with uncertain moments. This expression is adopted as

the problem with uncertain moments can be transferred into an equivalent second order

cone programming under this formulation. We further constrain that
∑n

i=1 ui(t) = 1, for
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Figure 3.2: The optimal u2(t) with x = 1.15 and x = 1.196

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u
3
 with x

s
=1.15

u
3
 with x

s
=1.196

Figure 3.3: The optimal u3(t) with x = 1.15 and x = 1.196
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all t = 1, · · · , T which will show the percentage of each portfolio invested at different

times. In this case, the investment return becomes µt = [0.162, 1.246, 1.228]. Now let

γ1 = 0.0001 and γ2 = 1.5. At the beginning, we suppose that the portfolios are equally

distributed, i.e., u0,1(0) = u0,2(0) = u0,3(0) = 1/3. If we set x = 1, then no feasible

solution is found. Let x = 0.85. The obtained ui(t), i = 1, 2, 3, are depicted in Fig 4.4.

From the figure, we can observe that at the beginning stage, the portions of the three

portfolios are similar. However, the second portfolios will increase significantly with the

time evolution. The reason is that the second portfolio has the largest investment return,

but it also has the largest variance. With the increase of the time, the expected worst

investment returns will be large than x under the given moment uncertainty. Since the

expected investment return is maximized, the portion of the second portfolio is of course

becoming larger and larger.
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Figure 3.4: The optimal ut with γ1 = 0.0001 and γ2 = 1.2

Now let us vary the parameters γ1 and γ2 to observe its impact on the optimal solution.

From the definition of P2
t in (3.5), we can see that the parameters γ1 and γ2 regulate the

boundary of the uncertainties. With the increase of the γ1 and γ2, the uncertainty set is

increased and thus, the optimal investment return under the worst case uncertainty will

be decreased. Set γ1 = 0001 and vary γ2, the corresponding optimal investment returns

under the worst distribution scenario are shown in Fig 4.5. We can clearly observe that

with the increase of the parameter γ2, the investment return is decreased.

Now we fix γ2 = 1 and vary γ1. From Fig 4.6, we can see that the with the increase

of γ1, the optimal investment return is also decreased. If we set γ1 = 0.01 with γ2 = 1,

then no feasible solution is found.
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Figure 3.5: The optimal investment return under different γ2
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Figure 3.6: The optimal investment return under different γ1
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3.5 Conclusion

In this chapter, we have studied the dynamic portfolio selection problem with distribution-

al uncertainty. If the moments are known exactly, then this problem can be transformed

into an equivalent second order cone programming. If the moments cannot be known

exactly but within a norm bounded set, we can still prove that it can be transformed

into a second order cone programming. Two simple numerical examples are presented to

illustrate our proposed method.



CHAPTER 4

Robust Multi-Period and Multi-Objective

Portfolio Selection

4.1 Introduction

Portfolio selection is to optimally allocate investors’ capital to a number of candidate

securities. Traditionally, this problem has been formulated as an optimization problem

through Markowitz mean-variance model [55]. In this model, the mean is used as the

measurement of return investment and the variance is leveraged to measure risk. Once

the expected unit return of each of the securities and their covariance matrix are given,

the portfolio selection problem can be formulated as a quadratic optimization problem

subject to linear constraints if the weight on the mean and the risk are given. Thus,

before establishing a mean-variance model, we need to: 1) estimate the input parameters,

including the expected unit return of each security and the covariance matrix and 2)

determine the weights of mean and variance. In practice, the input parameters are usually

estimated through empirical observations or subjective studies [34]. However, a small

perturbation of the input parameters may lead to a large deviation of the selected portfolio

performances. In addition, how to determine the weights of mean and variance is also

challenging [34].

There are many existing works to alleviate the aforementioned problems. In [48], the

minimum transaction lots is considered in Markowitz’s model for portfolio selection to

make the problem more practical. This problem is then formulated as a combinatorial

optimization problem and a genetic algorithm is proposed to solve the problem. In [75],

minimum transaction lots is further discussed with a cardinality constraint where the

cardinality constraint is to constrain the number of portfolios to be selected. The problem

is also formulated as a mixed-integer optimization problem and a customized genetic

algorithm is introduced to solve the problem. In [16], the minimum transaction lots has

been further discussed with four different models: mean-variance model, mean absolute

deviation model, minimax model and combinational Value-at-Risk model. These four

34
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different models are of the form of four different discrete optimization problems. The

published results show that the mean-variance model performs better than others.

How to handle uncertainties in the input parameters is also another important problem

to be considered [93, 94]. In the mean-variance model, the future returns and variances

are usually obtained through classic point-estimation [86]. The uncertain nature of risk

and return often leads to that the results obtained are unreliable and sensitive to pertur-

bations in parameters. There are extensive works developed to address data uncertainty

in an optimization problem and this research topic is now called robust optimization. In

general, there are two different types of methods to cope with uncertainty: stochastic-

based methods and deterministic-based methods [6]. Stochastic-based methods usually

require the statistical properties of the uncertainty. Deterministic-based method is using

minimax criteria to optimize the worst case scenario and thus only the range of uncer-

tainty is required to be known. For a quadratic programming problem with ellipsoidal

uncertainties, it has been shown in [6] that it can be transformed to an equivalent conic

quadratic optimization problem. If the problem is a Semi-Definite programming (SDP)

and uncertainties are in an ellipsoid, the corresponding robust optimization problem is

still an SDP [85]. Robust optimization is also introduced to handle the uncertainties in

portfolio selection. In [69], a robust portfolio selection model with a combined worst-case

conditional value-at-risk and multi-factor model is studied. The authors have shown that

the probability distributions in the definition of WCVaR can be determined by specifying

the mean vectors under the assumption of multivariate normal distribution with a fixed

variance-covariance matrix [69]. In [31], robust mean-variance portfolio selection problem

is studied. Through introducing uncertainty structures, the authors show that the robust

counterpart is a second order cone program. This problem has been further discussed

in [71] where two different uncertainty sets are introduced for the uncertainties of input

parameters.

In the standard mean-variance model, only one period of investment is considered.

However, in practice, investors are willing to adjust their investment from time to time

based on real time information from a financial market. Therefore, multi-period portfolio

selection has attracted much research interest. In [90], a multi-period portfolio selection

problem with an uncertain investment horizon is studied. Under the assumption that the

exit time follows a given distribution, the problem is transformed into one with determin-

istic exit time. An analytical expression of the mean-variance efficient frontier is derived.

In [84], a multi-period portfolio selection problem with fixed and proportional transac-

tion costs is considered. The optimal solution and the boundaries of the no-transaction

region are obtained through introducing Lagrange multiplier and dynamic programming

approach. Although extensive results are discussed in literature, there are still lack of

results on the portfolio selection with transaction costs under uncertainty of input pa-
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rameters. In this paper, we shall fill this gap and extend Markowitz mean-variance model

to multi-period portfolio selection with transaction costs under input parameters uncer-

tainty. We will first formulate this problem as a bi-objective optimization problem and

then the robust counterpart of this problem is derived. The weighted-sum approach is

introduced to present the efficient Pareto front of the formulated bi-objective optimization

problem. Numerical results will be presented to demonstrate the efficiency and effective-

ness of the proposed method.

4.2 Problem Statement

Consider portfolio of n financial assets which can be traded at discrete times 1, 2, · · · , T .

Suppose that at the initial time 0, the investor has already chosen a portfolio w =

(w1,0, ww,0, · · · , wn,0), where wi,0 is the investor’s investment in the i-th asset for i =

1, 2, · · · , n. At the beginning of each period t, t = 1, 2, · · · , T , the investor needs to

adjust the investment in each asset by increasing or decreasing the capital amount:

∆wt = (∆w1,t,∆w2,t, · · · ,∆wn,t).

Let ξi,t be the uncertain return rate of the i-th asset during period t. Then, at the

end of period t, the investor’s total wealth becomes

rt =
n∑
i=1

(wi,t−1 + ∆wi,t)(1 + ξi,t). (4.1)

The wealth increment is thereby calculated as

∆rt = rt − rt−1.

Suppose that each transaction incurs a transaction cost for asset i which is calculated

as ςi|∆wi,t|, where ςi is the unit transaction cost. The total transaction cost is thereby

computed as
n∑
i=1

ςi|∆wi,t|

Let rt,f be the risk-free interest rate at the time t. Then, the excess return is defined

as rt − rt,f . Suppose that the covariance matrix of the excess returns is Σt. The variance

(wt−1 + ∆wt−1)TΣt(wt−1 + ∆wt) can be used to describe the risk of the wealth. Using

these quantities, the portfolio selection at the time t can be formulated as the following

optimization problem:
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Problem PS:

min
(
(wt−1 + ∆wt)

TΣt(wt−1 + ∆wt)
) 1

2 , (4.2)

max rt −
n∑
i=1

ςi|∆wi,t|, (4.3)

s.t. wi,t−1 + ∆wi,t ≥ 0, (4.4)
n∑
i=1

∆wi,t +
n∑
i=1

ςi|∆wi,t| ≤ 0. (4.5)

Here the constraint (4.5) means that the investment is self-financing, i.e., the investment

must be equal to or less than the net income of the sales of the assets minus the total

transaction cost.

To solve Problem PS, Σt and ξi,t, i = 1, · · · , n, are required which are usually estimated

from the samples of the historical data. Their estimates Σ̂t and ξ̂i,t, i = 1, · · · , n, vary

depending on the samples chosen and the method to be used for calculating them. Thus,

Σ̂t and ξ̂i,t, i = 1, · · · , n, are uncertain. Let ξt = [ξ1,t, · · · , ξn,t]T . If the samples are i.i.d

and satisfy ξt ∼ N (ξ̄t, Σ̄t), then

ξ̂t =
1

t

t−1∑
j=0

ξj ∼ N (ξ̄t,
1

t
Σ̄t),

Σ̂t =
1

t− 1

t−1∑
j=0

(ξt − ξ̂t)(ξt − ξ̂t)T ∼ W(
1

t− 1
Σ̄t, t− 1),

where W(G, v) denotes the Wishart distribution with scale matrix G and v degrees of

freedom.

In the open literature, there are several different confidence ellipsoids introduced to

achieve a robust solution. A particular one is the following separated elliptical uncertainty

set proposed in [31]:

Sξ =
{
ξi,t = ξ0

i,t + εi,t, |εi,t| ≤ γi i = 1, · · · , n
}
,

SΣ =
{

Σt = Σ0
t + Θt, ‖Θt‖ ≤ ρ

}
,

where || · || denotes the Euclidean norm, ρ and γi’s are proper bounds estimated using

historical data. A robust portfolio selection problem based on this confidence elliptical

sets has been proved to achieve a robust solution with the given confidence. Instead of

considering the above separated uncertainty sets, we consider a joint confidence ellipsoid
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as follows:

Sδ(ξ̂t, Σ̂t) =
{

(ξt,Σt) ∈ Rn × Sn×n|t(ξt − ξ̂t)T Σ̂−1
t (ξt − ξ̂t)

+
t− 1

2
‖Σ̂−1/2

t (Σt − Σ̂t)Σ̂
−1/2
t ‖2

tr ≤ δ2

}
, (4.6)

where ‖A‖2
tr = tr(ATA) for a matrix A and δ is a parameter characterizing the desired

confidence. In this paper, the joint confidence ellipsoid uncertainty set (4.6) is used and

the corresponding multi-objective optimization problem can be formally stated as:

Problem RPS:

min
∆wt

max
(ξt,Σt)∈Sδ(ξ̂t,Σ̂t)

{(
(wt−1 + ∆wt)

TΣt(wt−1 + ∆wt)
) 1

2 ,

(
n∑
i=1

ςi|∆wi,t| − rt

)}
(4.7)

s.t. wi,t−1 + ∆wi,t ≥ 0 (4.8)
n∑
i=1

∆wi,t +
n∑
i=1

ςi|∆wi,t| ≤ 0 (4.9)

(Recall rt is a function of ∆wt and ξt as in (4.1).) In Problem RPS, there are two

objectives. One is to minimize the worst risk and the other one is to maximize the worst

wealth return over the given uncertainty set.

4.3 Problem Transformation

To solve Problem RPS, we need to transform the objective function (4.7) into a more

tractable form. Note that the confidence ellipsoid uncertainty set in (4.4) is for both ξt

and Σt. In this joint set, ξ̂t and Σ̂t are calculated through the available samples. As

in [71], we introduce a dummy variable κ and define the following two sets:

Sδ(ξ̂t) =
{
ξt ∈ Rn|t(ξt − ξ̂t)T Σ̂−1

t (ξt − ξ̂t) ≤ κδ2
}

(4.10)

Sδ(Σ̂t) =

{
Σt ∈ Rn×n|t− 1

2
‖Σ̂−1/2

t (Σt − Σ̂t)Σ̂
−1/2
t ‖2

tr ≤ (1− κ)δ2

}
(4.11)

Then, we can easily verify that Problem RPS is equivalent to the following one:

min
∆wt

max
κ∈[0,1]

{
max

Σt∈Sδ(Σ̂t)

(
(wt−1 + ∆wt)

TΣt(wt−1 + ∆wt)
) 1

2 , max
ξt∈Sδ(ξ̂t)

(
n∑
i=1

ςi|∆wi,t| − rt

)}
(4.12)

s.t. wi,t−1 + ∆wi,t ≥ 0 (4.13)
n∑
i=1

∆wi,t +
n∑
i=1

ςi|∆wi,t| ≤ 0 (4.14)



4.3 Problem Transformation 39

To further simplify the problem, we need to find the analytical solutions for the inner

maximization problem in (4.7). More specifically, the maximization problem

max
ξt∈Sδ(ξ̂t)

(
n∑
i=1

ςi|∆wi,t| − rt

)

in (4.7) has the solution

ξ∗t = ξ̂t − δ
√
κ

n

1

(wt−1 + ∆wt)T Σ̂t(wt−1 + ∆wt)
Σ̂t(wt−1 + ∆wt)

Using the above optimal solution, we have

max
ξt∈Sδ(ξ̂t)

(
n∑
i=1

ςi|∆wi,t| − rt

)
= ςT |∆wt| − (wt−1 + ∆wt)

T1n − (wt−1 + ∆wt)
T ξ̂t

+δ

√
κ

n
(wt−1 + ∆wt)T Σ̂t(wt−1 + ∆wt)

where 1n = [1, · · · ]T ∈ Rn.

Now we consider the maximization problem maxΣt∈Sδ(Σ̂t)(wt−1+∆wt)
TΣt(wt−1+∆wt).

We are able to show that

max
Σt∈Sδ(Σ̂t)

√
(wt−1 + ∆wt)TΣt(wt−1 + ∆wt)

=

√√√√(1 + δ

√
2

n− 1
(1− κ)

)
(wt−1 + ∆wt)T Σ̂t(wt−1 + ∆wt) (4.15)

To simplify the notation, we denote

f1(∆wt, κ) =

(
1 + δ

√
2

n− 1
(1− κ)

) 1
2 √

(wt−1 + ∆wt)T Σ̂t(wt−1 + ∆wt)

f2(∆wt, κ) = ςT |∆wt| − (wt−1 + ∆wt)
T1n − (wt−1 + ∆wt)

T ξ̂t

+δ

√
κ

n
(wt−1 + ∆wt)T Σ̂t(wt−1 + ∆wt).

Using f1(∆wt, κ) and f2(∆wt, κ) defined above, we rewrite Problem RPS as follows.
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Problem ERPS:

min
∆wt

max
κ∈[0,1]

{f1(∆wt, κ), f2(∆wt, κ)} (4.16)

s.t. wi,t−1 + ∆wi,t ≥ 0 (4.17)
n∑
i=1

∆wi,t +
n∑
i=1

ςi|∆wi,t| ≤ 0 (4.18)

4.4 Solution strategy

Problem ERPS is a minimax and bi-objective optimization problem. Classical meth-

ods to solve multi-objective optimization problem include weighted-sum approach [56],

ε−constraint approach [41], evolutionary multi-objective optimization method [19], decomposition-

based approach [99], etc. The weighted-sum approach is to transform a multi-objective

optimization problem into a single-objective optimization problem through a given set of

weights. The Pareto-front is obtained through diversified weights. ε−constraint approach

is to transform a multi-objective optimization problem into a single-objective optimiza-

tion problem through optimizing one objective and putting all the other objectives as

ε−constraint. Evolutionary based methods are using non-dominated sorting Genetic Al-

gorithm to sought solutions in Pareto-front. Decomposition-based methods are also using

weighting to sought Pareto solutions which is different from weighted-sum approach that

maximization weight is used, rather than summation of the weight. Note that the ob-

jective function in (4.7) contains two sub-objectives and maximization is involved in the

inner level. Thus, the weighted-sum approach is ideal for the problem. We now proposed

such a weighted-sum method below.

4.4.1 Weighted-sum approach

Traditional weighted-sum approach is to balance the conflict objectives through weighted

method. Suppose that the two weights for the two objectives in Problem ERPS are λ1

and λ2, respectively. Then, the original two objectives are transformed into a single one

as below:

fλ(∆wt, κ) = λ1f1(∆wt, κ) + λ2f2(∆wt, κ) (4.19)

where λ1 and λ2 are the given weights. λ2 is usually selected as λ2 = 1− λ1.

We comment that, in practice, the values of the two objectives might not be in the

same magnitude, and thus one may be relative too small than the other. In this case,

we need to adjust the weight so that the points in the Pareto front can be found evenly.

Let (∆w1,∗
t , κ1,∗) and (∆w2,∗

t , κ2,∗) be the optimal solutions obtained for the individual

optimization problem f1(∆wt, κ) and f2(∆wt, κ), respectively. Then, the adjusted weights
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λ̃1 and λ̃2 can be defined as:

λ̃1 =

λ

f1(∆w2,∗
t ,κ2,∗)−f1(∆w1,∗

t ,κ1,∗)

λ

f1(∆w2,∗
t ,κ2,∗)−f1(∆w1,∗

t ,κ1,∗)
+ 1−λ

f2(∆w1,∗
t ,κ1,∗)−f2(∆w2,∗

t ,κ2,∗)

(4.20)

and λ̃2 = 1− λ̃1.

The benefit through this manipulation is that the normalized weights can balance the

two objectives to avoid one dominates the other in the optimization process.

4.4.2 Sub-optimization solution

Solving Problem ERPS is therefore transformed into solving a series of standard opti-

mization problems. Let us study the inner optimization problem

min
∆wt

max
κ∈[0,1]

fλ(∆wt, κ) s.t. (4.17) and (4.18) (4.21)

This sub-optimization problem (4.21) is still hard to solve as both minimization and

maximization are involved within the objective function. To address this difficulty, we

will examine the properties of the function fλ(∆wt, κ) with respect to κ. In fact, for each

given λ ∈ [0, 1], we have the following lemma:

Lemma 4.1. For any given λ ∈ [0, 1], the function fλ(∆wt, κ) is concave with respect to

κ.

Proof: For each given λ1 = λ, let λ2 = 1− λ. Then, fλ(∆wt, κ) can be rewritten as:

fλ(∆wt, κ) =

λ(1 + δ

√
2

n− 1
(1− κ)

) 1
2

+ δ(1− λ)

√
κ

n

√(wt−1 + ∆wt)T Σ̂t(wt−1 + ∆wt)

+ςT |∆wt| − (wt−1 + ∆wt)
T1n − (wt−1 + ∆wt)

T ξ̂t

Define

g(κ) = λ

(
1 + δ

√
2

n− 1
(1− κ)

) 1
2

+ δ(1− λ)

√
κ

n

To prove the concaveness of fλ(∆wt, κ) in terms of κ, we only need to prove g(κ) is concave

in terms of κ. For any κ ∈ (0, 1), we have

d2g(κ)

dκ2
= −1

2

δλ

(n− 1)2

(
1 + δ

(
2

n− 1
(1− κ)

) 1
2

)− 1
2 (

2

n− 1
(1− κ)

)− 3
2

−1

4

λδ2

(n− 1)2

(
1 + δ

(
2

n− 1
(1− κ)

) 1
2

)− 3
2 (

2

n− 1
(1− κ)

)−1
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−δ(1− λ)

4n2

(κ
n

)− 3
2

≤ 0, for all λ ∈ [0, 1] and κ ∈ (0, 1).

Thus, g(κ) is concave. We compete the proof. �

For each given ∆wt, δ and λ, Lemma 4.1 shows that the inner maximization problem

will be maximized at its equilibrium if it is within (0, 1). Otherwise, it will be maximized

at either κ = 0 or κ = 1. Note that

dg(κ)

dκ
= −1

2

δλ

n− 1

(
1 + δ

(
2

n− 1
(1− κ)

) 1
2

)− 1
2 (

2

n− 1
(1− κ)

)− 1
2

+
1

2n
δ(1− λ)

(κ
n

)− 1
2

= 0 (4.22)

For each given λ, δ and ∆wt, to solve maxκ∈[0,1] fλ(∆wt, κ), we first need to check

whether (4.22) has a solution within (0,1). If it has a solution κ∗, then this solution also

solves the problem maxκ∈[0,1] fλ(∆wt, κ) as g(κ) is concave within [0, 1]. Otherwise, κ∗ =

arg max{fλ(∆wt, 0), fλ(∆wt, 1)}. Then, the sub-optimization problem (4.21) becomes

min
∆wt

fλ(∆wt, κ
∗) s.t. (4.17) and (4.18) (4.23)

where

fλ(∆wt, κ
∗) = g(κ∗)

√
(wt−1 + ∆wt)T Σ̂t(wt−1 + ∆wt)

+ςT |∆wt| − (wt−1 + ∆wt)
T1n − (wt−1 + ∆wt)

T ξ̂t.

4.5 Numerical experiments

In this section, several examples are solved by the proposed method. We will use the

numerical solutions to study the impact of uncertainties of the return rate and the variance

on the multi-objective mean-variance model.

4.5.1 Convex of g(κ)

We note that the Problem PS is equivalent to Problem ERPS. In Problem ERPS, in

addition to the original variable ∆wt, there is one more variable κ which only appears in

g(κ). Thus, g(κ) plays a crucial role in the numerical solution of Problem ERPS. In the

previous section, we have already showed that g(κ) is concave with the given λ and δ.

We now verify this property computationally. To show this we plot g(κ) for λ = 0.1 and

δ = 0.1, 0.5 and 0.9. The results are depicted in Figure 4.2-4.3. From the three figures,
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we clearly see that the maximization point of g(κ) moves from the right end-point to the

middle and then to the left end-point of the interval as λ increases. This phenomenon is

also observed for different δ.

0 0.2 0.4 0.6 0.8 1
0.1

0.102

0.104

0.106

0.108

0.11

0.112

0.114

0.116

0.118
=0.1

Figure 4.1: The variation of g(κ) in terms of κ when λ = 0.1

4.5.2 Impact of the input parameters

We first study the impact of the uncertainty δ. For this purpose, we choose various

values of λ and plot the optimal cost function fλ(∆
∗
t , κ
∗) against δ in Figures 4.4, 4.5, 4.6.

From these figures, we see clearly that as the λ increases, the weighted optimal objective

function value decreases. In fact, this phenomenon is consistent with our intuition that

the larger the weight λ is, the more the investor is pursuing the return. To reduce the

weight λ will lead to a more conservative investment option.

Figure 4.5 and 4.6 are shown the variation of the optimal objective function value

fλ(∆wt, κ
∗) with respect to the uncertainty parameter δ. From the two figures, we can

clearly observe that the return decreases with the increases of λ. Figure 4.5 demonstrates

that fλ(∆wt, κ
∗) increases from −6.4598 × 104 to −6.4543 × 104 as δ goes from 0 to 0.1

when λ = 0.5, while Figure 4.6, fλ(∆wt, κ
∗) increases from −8.41842×104 to −8.417×104

when δ moves from 0 to 0.1 and λ = 0.9.

Figure 4.7 shows the influence of the transaction cost on the portfolio selection return.

From this figure we see that, with the increase of ς from 10−3 to 10−2, the return investment

fλ(∆wt, κ
∗) decreases from −6.625×104 to −6.46×104. Thus, the return of the portfolio
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Figure 4.2: The variation of g(κ) in terms of κ when λ = 0.5
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Figure 4.3: The variation of g(κ) in terms of κ when λ = 0.9
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is a decreasing function of the transaction cost ζ, as expected.

0 0.02 0.04 0.06 0.08 0.1
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x 10

4 λ=0.1

Figure 4.4: The variation of fλ(∆wt, κ
∗) in terms of δ when λ = 0.1

4.5.3 Numerical solutions with different parameters

In the above, we have analyzed the variation of the objective function with respect to

different input parameters. We now look into the numerical solutions in different scenarios.

An investment with 10 portfolios are selected in this numerical experiment. When δ = 0.01

and ς = 0.01, the obtained solutions with a 5-period investment are presented in Table

4.1. Table 4.2 and Table 4.3 show the scenarios with repsect to (δ, ζ) = (0.1, 0.01) and

(δ, ζ) = (0.1, 0.001), respectively. From Table 4.1 and Table 4.2, we can clearly observe

that transaction cost has a significant impact on the portfolio selection. For example, at

the second period, selling w1 will be changed to buying. Meanwhile, the perturbation has

also impact the portfolio selection significantly. For example, for the first portfolio, it has

been changed from selling to buying once we increase δ = 0.01 to δ = 0.1.

4.5.4 Pareto-front analysis

In this subsection, we present some results on the one-period portfolio selection under

different values of the weight λ. Figure 4.8 plots the Pareto front with δ = 1 and ς = 0.001,

ς = 0.002 and ς = 0.005, in which the horizontal axis represents f1(∆wt, κ
∗) and the

vertical one represents −f2(∆wt, κ
∗). From this figure, we see clearly that −f2(∆wt, κ

∗)

increases as f1(∆wt, κ
∗) decreases. From the figure we also see that when the transaction
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Figure 4.5: The variation of fλ(∆wt, κ
∗) in terms of δ when λ = 0.5
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Figure 4.6: The variation of fλ(∆wt, κ
∗) in terms of δ when λ = 0.9
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Figure 4.7: The variation of fλ(∆wt, κ
∗) in terms of ς when λ = 0.5

Table 4.1: Solution with five period ς = 0.001, δ = 0.01

k1 k2 k3 k4 k5
∆w1 1.6062540e+002 1.6005381e+002 1.5941714e+002 1.5883923e+002 1.5824019e+002
∆w2 -4.3718793e+001 -4.3458314e+001 -4.3193335e+001 -4.2953594e+001 -4.2647292e+001
∆w3 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
∆w4 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
∆w5 1.9724480e+003 1.9722713e+003 1.9720766e+003 1.9718941e+003 1.9717006e+003
∆w6 -1.3675740e+002 -1.3651295e+002 -1.3620477e+002 -1.3596164e+002 -1.3572250e+002
∆w7 -9.7855928e+002 -9.7836228e+002 -9.7827192e+002 -9.7813905e+002 -9.7802742e+002
∆w8 -4.6542445e+002 -4.6521487e+002 -4.6500508e+002 -4.6479322e+002 -4.6454631e+002
∆w9 1.5230230e+003 1.5227606e+003 1.5225158e+003 1.5222595e+003 1.5219708e+003
∆w10 -3.8955914e+001 -3.8854705e+001 -3.8649778e+001 -3.8458643e+001 -3.8279222e+001

Table 4.2: Solution with five period ς = 0.01, δ = 0.01

k1 k2 k3 k4 k5
∆w1 2.1589291e-002 -3.4351365e-002 5.7805964e-002 2.3686226e-003 1.0158904e-003
∆w2 -2.8283011e-001 -2.7323758e-004 1.6033220e-003 -3.5364786e-003 -2.6401259e-004
∆w3 -3.3036266e+002 -3.5623656e+002 -2.4031564e+002 -3.7257428e+002 -3.4108233e+002
∆w4 -3.0865547e+002 -2.8842569e+002 -2.9824681e+002 -2.6018254e+002 -2.7533841e+002
∆w5 7.0391477e+002 6.9146259e+002 6.8271055e+002 6.6623463e+002 6.5626173e+002
∆w6 -2.7364462e-002 -3.5663105e-002 -4.9939414e-002 1.0528198e-003 -3.5473078e-001
∆w7 -1.3859574e+002 -1.1951280e+002 -2.1609022e+002 -1.0360357e+002 -1.0937146e+002
∆w8 -1.1308908e-001 -2.4663699e-003 -2.2421419e-003 -7.7830259e-003 -1.7166429e-007
∆w9 2.1891752e-003 1.6847602e-007 5.8640523e-002 3.0980424e-003 7.3055641e-001
∆w10 -2.8203111e-007 -3.2609527e-004 -7.4650111e-008 -1.1673710e-006 -3.2439030e-003

cost increases, the investment return decreases.

Figure 4.9 plots the Pareto front for δ = 5 and ζ = 0.001, 0.002 and 0.005. Figure

4.9, we again see that the more risk the investors take, the more return they will benefit.
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Table 4.3: Solution with five period ς = 0.01, δ = 0.1

k1 k2 k3 k4 k5
∆w1 -5.4467604e-002 -7.0948978e-007 -2.2561076e-004 -1.0737564e-002 -1.6291721e-004
∆w2 -1.6419802e-003 -5.6357371e-007 -7.4291123e-003 4.3365254e-003 -2.9140832e-004
∆w3 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
∆w4 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
∆w5 1.7420318e+003 1.7397785e+003 1.7370980e+003 1.7349762e+003 1.7353447e+003
∆w6 -9.7249593e-008 -3.9907242e-002 -1.8502745e-007 -4.0113434e-002 -3.8173914e-004
∆w7 -7.9037071e+002 -7.9581203e+002 -7.9336516e+002 -7.8689932e+002 -7.9102920e+002
∆w8 -2.1545195e+002 -2.0339581e+002 -2.0451219e+002 -2.0476930e+002 -1.9763968e+002
∆w9 1.2043583e+003 1.2000782e+003 1.2014231e+003 1.1974970e+003 1.1941434e+003
∆w10 -3.4352764e-002 -2.3689203e-007 -1.2659914e-004 -1.2481443e-007 -2.0840295e-007

Comparing Figure 4.9 with Figure 4.8, we observe that the impact of the transaction cost

on the investment return becomes less significant when δ is close to 1. This trend has

been further observed in Figure 4.10.
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Figure 4.8: The Pareton front with δ = 1

4.6 Conclusion

In this chapter, we have studied the portfolio selection problem with uncertain input

parameters. Under the assumption that the uncertainty is in a ellipsoid, the original robust

bi-objective optimisation problem can be transformed into an easily solved optimisation

problem with the weighted sum approach which is easy to solve. The numerical results

obtained demonstrate that the uncertainty of the input parameters affects the portfolio

selection significantly. More specifically, the numerical results suggest that the more

uncertainty in the input parameters implies that less return of the portfolio.
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Figure 4.9: The Pareton front with δ = 5
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CHAPTER 5

A Nonlinear Scalarization Method for

Multi-objective Optimization Problems and

Applications for Portfolio Selection

5.1 Introduction

The portfolio problem has included at least two objectives: risk and return. Tradition-

ally, the two objectives have been added together through a given weight as a combined

objective function to be optimized. In practice, different investor has different preference

on risk and return. The solution obtained through a weighting approach is hard to satisfy

all investors. In this case, the portfolio selection problem solved by multi-objective based

optimization methods is important.

Multi-objective optimization has extensive applications in engineering and manage-

ment [24]. Most real-world optimization problems have multiple objectives, which can be

modelled as multi-objective optimization problems (MOPs). However, due to the theoreti-

cal and computational challenges, it is not easy to solve MOPs. Therefore, multi-objective

optimization has attracted a wide range of research over the last few decades.

Broadly, methods for MOPs can be categorized into three types: direct, indirect and

hybrid. Population-based metaheuristic methods, such as genetic algorithm and evolu-

tionary strategy, lend themselves to direct methods. Their iterative unit is a population

instead of a single point, so they can obtain the entire set of Pareto solutions or a rep-

resentative subset of it. Some typical multi-objective evolutionary algorithms (MOEAs)

can be found in the works of Deb et al. [19] and Long et al. [53]. Indirect methods, mainly

mean scalarization methods, reformulate MOP to a single-objective optimization prob-

lem. Normally, the Pareto solution of MOP and the optimal solution of single-objective

optimization problems are corresponded. Typical indirect methods are the weighted sum

method [28,33], ε−constraint method [43], normal-boundary intersection method [18] and

Pascoletti-Serafini approach [22]. In a single run, direct methods can find an approxima-

50
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tion of the set of Pareto solutions, while indirect methods only get one Pareto solution.

Hybrid methods combine advantages of direct and indirect methods. They are based on

scalar transformation and take into account heuristic ideas at the same time. A typical

hybrid method is MOEA/D [96].

For indirect methods, previous research mainly focused on scalar techniques rather

than on how to find an approximation of the set of Pareto solutions. This paper tries to

fill this gap by extending the scalarization methods, such as the weighted sum method,

to population-based. An intuitive strategy is to run a scalarization method many times

using different parameters. For example, one can apply a set of different weights to the

weighed sum method, and each weight will end up with a Pareto solution. However,

many difficulties exist, such as how to choose weights in order to get uniformly and

comprehensively distributed Pareto solutions. Furthermore, the weighted sum method

works well only on convex MOPs. For nonconvex ones, nonlinear mechanisms have to be

considered. Motivated by these issues, in this chapter, we are going to tackle the following

topics:

(1) Extend the weighted sum method to population-based and apply it to convex MOPs;

(2) Design a population-based nonlinear scalarization method and apply it to nonconvex

MOPs;

(3) Study numerical performances of the proposed linear and nonlinear scalarization

methods.

(4) Solve the mean-variance-skewness portfolio selection problem by using the proposed

nonlinear scalarization method.

5.2 Preliminaries

The general mathematical model of the constrained multi-objective optimization problem

is as follows,

(CMOP)


Minimize F (x )

Subject to gi(x ) ≤ 0, i = 1, · · · , p
hj(x ) = 0, j = 1, · · · , q
x ∈ X,

(5.1)

where F : Rn 7→ Rm (F (x ) = (f1(x ), f2(x ), · · · , fm(x ))T ) is a vector-valued function,

fi : Rn 7→ R, i = 1, · · · ,m; gi : Rn 7→ R, i = 1, · · · , p; hj : Rn 7→ R, j = 1, · · · , q
are Lipschitz continuous functions. X = {x ∈ Rn | li ≤ xi ≤ ui} ⊂ Rn is a box set,

l = (l1, l2, · · · , ln)T and u = (u1, u2, · · · , un)T are lower and upper bounds, respectively.
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Denote feasible set

Ω = {x ∈ X | gi(x ) ≤ 0, i = 1, · · · , p; hj(x ) = 0, j = 1, · · · , q},

then Problem (5.1) can be simplified as{
Minimize F (x )

Subject to x ∈ Ω.
(5.2)

In multi-objective optimization, we call feasible set Ω as the decision variable space and

its image set F (Ω) = {y = F (x ) | x ∈ Ω} as the objective function value space. In the

following, some definitions and theorems are reviewed.

Given two vectors

y = (y1, y2, · · · , ym)T and z = (z1, z2, · · · , zm)T ∈ Rm,

then

• y = z ⇔ yi = zi for all i = 1, 2, · · · ,m;

• y ≤ z ⇔ yi ≤ zi for all i = 1, 2, · · · ,m;

• y ≺ z ⇔ yi < zi for all i = 1, 2, · · · ,m;

• y � z ⇔ yi ≤ zi for all i = 1, 2, · · · ,m, and y 6= z .

“ ≥ ”, “�” and “�” can be defined similarly. In this paper, if y � z , we say y dominates

z or z is dominated by y .

Definition 1. Suppose that y ⊆ Rm and y∗ ∈ Y . If y∗ ≤ y for any y ∈ Y , then y∗ is

called an absolutely minimal point of Y .

In the sense of minimization, absolutely minimal point is an ideal point but may not

exist.

Definition 2. Let y ∈ Rm and y∗ ∈ Y . If there is no y ∈ Y such that

y � y∗ (or y ≺ y∗),

then y∗ is called an efficient point (or weakly efficient point) of Y .

The sets of absolutely minimal points, efficient points and weakly efficient points of Y

are denoted as Yab, Yep and Ywp, respectively. Obviously, we have Yab ⊂ Yep ⊂ Ywp
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Definition 3. Suppose that x ∗ ∈ Ω. If F (x ∗) ≤ F (x ), for any x ∈ Ω, x ∗ is called an

absolutely minimal solution of Problem (5.2). The set of absolutely minimal solution is

denoted as Ωas.

The concept of the absolutely minimal solution is a direct generalization of that in

single-objective optimization. It is an ideal solution but may not exist for most cases.

Definition 4. Suppose that x ∗ ∈ Ω. If there is no x ∈ Ω such that F (x ) � F (x ∗) (or F (x ) ≺
F (x ∗)), i.e. F (x ∗) is an efficient point (or weakly efficient point) of the objective function

value space F (Ω), then x ∗ is called an efficient solution (or weakly efficient solution) of

Problem (5.2). The sets of efficient solutions and weakly efficient solutions are denoted

as Ωes and Ωws, respectively.

The meaning of Pareto solution is that, if x ∗ ∈ Ωes, then there is no feasible solution

x ∈ Ω, such that any fi(x ) of F (x ) is not worse than that of F (x ∗) and there is at least

one i0 ∈ {1, 2, · · · ,m} such that fi0(x ) < fi0(x
∗). In other words, x ∗ is the best solution

in the sense of “�”. Another intuitive interpretation of Pareto solution is that it cannot

be improved with respect to any objective without worsening at least one of the others.

Weakly efficient solution means that if x ∗ ∈ Ωws, then there is no feasible solution x ∈ Ω,

such that any fi(x ) of F (x ) is strictly better than that of F (x ∗). In other words, x ∗ is

the best solution in the sense of “≺”. The set of Pareto solutions is denoted by P∗. Its

image set F (P∗) is called the Pareto frontier, denoted by PF∗.

5.3 Extended weighted sum method

In this section, we consider linear scalarization methods, more specifically, the weighted

sum method. Firstly, the relationship between optimal solutions of the scalarization

problem and (weakly) efficient solutions of the original MOP is theoretically reviewed,

then an extended weighted sum method is presented.

For Problem (5.2), consider the following scalar optimization problem

(SOP)

 Minimize
m∑
i=1

λifi(x )

Subject to x ∈ Ω,
(5.3)

where λ = (λ1, λ2, · · · , λm)T ∈ Λ+ (or Λ++) is a scalar vector. We call Problem (5.3) a

weighted sum scalarization of Problem (5.2). Here

Λ+ = λ = (λ1, λ2, · · · , λm)T | λi ≥ 0 and
m∑
i=1

λi = 1},
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and

Λ++ = {λ = (λ1, λ2, · · · , λm)T | λi > 0 and
m∑
i=1

λi = 1}.

In the following, we theoretically analyze the relationship between Problem (5.2) and

(5.3). For the sake of convenience, denote

Φλ(x ) =
m∑
i=1

λifi(x ).

Definition 5. Suppose that Ω ∈ Rn is a convex set, F (x ) = (f1(x ), · · · , fm(x ))T is a

vector-valued function, if all fi(x ), i = 1, 2, · · · ,m, are (strictly) convex on Ω, then we

call F (x ) an m-dimensional (strictly) convex vector-valued function on Ω.

Definition 6. If the feasible set Ω is convex, and the multi-objective function F (x ) is a

convex vector-valued function on Ω, then we call Problem (5.2) a convex MOP.

It is clear that Φλ(x ) is convex if F (x ) is convex. Therefore, Problem (5.3) is a convex

problem if Problem (5.2) is a convex problem.

Theorem 5.1. For a given λ ∈ Λ++ (or Λ+), the optimal solution of Problem (5.3) is an

efficient (or weakly efficient) solution of Problem (5.2).

Theorem 5.2. If Problem (5.2) is convex, then for any efficient solution (or weakly

efficient solution) x ∗, there exist a λ ∈ Λ++ (or λ ∈ Λ+), such that x ∗ is an optimal

solution of Problem (5.3).

Proofs of Theorems 5.1 and 5.6 can be found in the book written by Ehrgott [21]. These

two theorems reveal that for a convex MOP, there is an one-to-one relationship between

the weakly efficient solution of Problem (5.2) and the optimal solution of Problem (5.3).

Based on this sense, we design the following extended weighted sum method.

Algorithm 1 Extended weighted sum method (EWSM)

Input: Problem parameters: fi, gi, hi and X, number of solutions: N

Output: Pareto solutions: P , Pareto frontier: PF
// The main loops

Step 1: Generate N weights λ ∈ Λ+, store them in Λ̄, so Λ̄ ⊂ Λ+.

Step 2: For each λ ∈ Λ̄, globally solve Problem (5.3), the obtained optimal solution x ∗λ
is an weakly efficient solution of Problem (5.2), store x ∗λ in P .

Step 3: Compute set FΛ̄ = {F (x ∗λ) | λ ∈ Λ̄}, then FΛ̄ is an approximate Pareto frontier

of Problem (5.2), let PF = FΛ̄.
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The following are some remarks about Algorithm 1:

(1) In Step 1, approaches to construct the finite subset Λ̄ are various. Two intuitive

approaches are presented here: (i) all λ ∈ Λ+ consist of a simplex, so λ can be

uniformly picked on this simplex; (ii) randomly pick finite number of λ ∈ Rm
+ , then

normalize them to construct Λ̄. More details about constructing Λ̄ refers to Section

5.7.

(2) In Step 2, a global optimization method is needed to solve Problem (5.3). If Problem

(5.2) is convex (so is Problem (5.3)), Problem (5.3) can be efficiently solved use any

convex optimization solver. If objective functions of Problem (5.2) are nonconvex

and complicated, which may lead a tough Problem (5.3), it will be not easy to solve

this problem using Algorithm 1.

(3) For different λ ∈ Λ̄, Problems (5.3) are independent with each other, so the parallel

computing mechanism can be introduced to Algorithm 1, which will dramatically

increase its efficiency. Section 5.7 will introduce more implementation details.

The geometrical explanation of the extended weighted sum method is given as follows.

As shown in Figure 5.1(a), F (Ω) is the image set of F (x ) on Ω ⊂ Rn. For λ ∈ Λ+,

Φλ(x ) =
m∑
i=1

λifi(x ) ,
m∑
i=1

λifi = λTf

is a linear function of f = (f1, f2, · · · , fm)T , where fi = fi(x ), i = 1, 2, · · · ,m. Therefore,

solving Problem (2) equals to minimize a linear function on the image set F (Ω), i.e.,{
Minimize λTf

Subject to f ∈ F (Ω).
(5.4)

If f ∗λ solves Problem (5.4) for λ ∈ Λ+, then f ∗λ must be a point in the Pareto frontier.

Meanwhile, the corresponding x ∗λ, i.e., f ∗λ = F (x ∗λ), is an efficient solution. Although

Problem (5.4) is simpler than Problem (5.3), we cannot directly work on Problem (5.4)

because, first of all, the image set F (Ω) cannot be exactly calculated; and second of all,

even a solution f ∗λ is obtained, we have to solve the nonlinear equation F (x ) = f ∗λ to get

the corresponding efficient solution x ∗λ, which is a complex or even impossible task.

From the geometrical explanation, we can easily observe that the extended linear

scalarization method works only on the problem whose image set is convex on the Pareto

frontier, i.e.,

F (Ω)+ = {f + d | f ∈ F (Ω) and d ∈ Rm
+}



5.4 Nonlinear scalarization method 56

is convex. Here

Rm
+ = {x = (x1, x2, · · · , xm) | xi ≥ 0, i = 1, 2, · · · ,m}.

If F (Ω)+ is nonconvex (e.g., Figure 5.1(b)), only the boundary point of Pareto frontier can

be obtained using Algorithm 1. However, inspired by Problem (5.4), we can nonlinearly

scalarize the multi-objective function.

(a) Extended weighted sum method (b) Nonlinear scalarization method

Figure 5.1: Geometrical meaning of linear and nonlinear scalarization methods.

5.4 Nonlinear scalarization method

Nonlinear scalarization method is nothing but changing the linear objective function in

Problem (5.4) into nonlinear function. A naive thought is to use a quadratic function, more

specifically, m-dimensional sphere, as objective function. Therefore, we can construct the

following problem  Minimize
m∑
i=1

(fi − θi)2

Subject to f ∈ F (Ω),
(5.5)

where f = (f1, f2, · · · , fm)T and θ = (θ1, θ2, · · · , θm)T ∈ Rm. The geometrical explana-

tion of Problem (5.5) is shown in Figure 5.1(b). From the figure, it is possible to solve

nonconvex MOPs using the nonlinear scalarization techniques. Like Problem (5.4), di-

rectly working on Problem (5.5) is out of option, but taking into account fi = fi(x )

i = 1, 2, · · · ,m, it can be transformed into the following problem, Minimize
m∑
i=1

(fi(x )− θi)2

Subject to x ∈ Ω.
(5.6)
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In the following, we discuss the relationship between the efficient solution of Problem

(5.2) and the global optimal solution of Problem (5.6). For the sake of convenience, denote

the objective function of Problem (5.6) as

Ψθ(x ) =
m∑
i=1

(fi(x )− θi)2.

Suppose that F̄ ∗ = (f̄ ∗1 , f̄
∗
2 , · · · , f̄ ∗m)T , where

f̄ ∗i = min
x∈Ω

fi(x ), i = 1, 2, · · · ,m.

In paper [18], F̄ ∗ is called a shadow minimum or utopia point. Construct a set as

Θ̄ = {θ = (θ1, θ2, · · · , θm)T | θi ≤ f̄ ∗i },

the element of Θ̄ is called a referential point. We can have the following theorem.

Theorem 5.3. For a given θ ∈ Θ̄, if x ∗ is a global minimal solution of Problem (5.6),

then x ∗ must be an efficient solution of Problem (5.2).

Proof: Assume that x ∗ is a global minimal solution of Problem (5.6) but not an

efficient solution of Problem (5.2), then there exists x̄ ∈ Ω such that F (x̄ ) � F (x ∗), i.e.,

fi(x̄ ) ≤ fi(x
∗) i = 1, 2, · · · ,m; and ∃ i0 s.t. fi0(x̄ ) < fi0(x

∗).

So we have

(fi0(x̄ )− θi0)2 < (fi0(x
∗)− θi0)2,

which yields
m∑
i=1

(fi(x̄ )− θi)2 <
m∑
i=1

(fi(x
∗)− θi)2,

i.e.,

Ψθ(x̄ ) < Ψθ(x
∗).

This contradicts to x ∗ is globally minimal, which proves the theorem.�

Remark 5.1. Theorem 5.3 can be taken as a generalization of Theorem 5.1 for nonlinear

scalarization. However, Theorem 5.6 cannot be generalized; we cannot obtain all efficient

solutions through picking θ all over Θ̄.

Based on Problem (5.6) and Theorem 5.3, we propose the following algorithm.
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Algorithm 2 Nonlinear scalarization method (NSM)

Input: Problem parameters: fi, gi, hi and X, number of solutions: N

Output: Pareto solutions: P , Pareto frontier: PF
// The main loops

Step 1: Successively solve

f̄ ∗i = min
x∈Ω

fi(x ), i = 1, 2, · · · ,m,

and then construct set

Θ̄ = {θ = (θ1, θ2, · · · , θm)T ∈ Rm | θi ≤ f̄ ∗i }.

Step 2: Choose N referential points θ ∈ Θ̄, store in Θ̂, so Θ̂ ⊂ Θ̄.

Step 3: For each θ ∈ Θ̂, globally solve Problem (5.6), the global minimal solution x ∗θ is

an efficient solution of Problem (5.2), store x ∗θ in P .

Step 4: Compute FΘ̂ = {F (x ∗θ) | θ ∈ Θ̂}, then FΘ̂ is an approximate Pareto frontier of

Problem (5.2), let PF = FΘ̂.

The following are some remarks of Algorithm 2:

(1) In Step 1, completely solving these global optimization problems is not necessary

since what we really need are just lower bounds of fi(x ), i = 1, 2, · · · ,m, so a

reasonable guess of their lower bounds is enough. More practically, assume that

fi(x ) ≥ 0, i = 1, 2, · · · ,m (if any one of them is not satisfied, we can always move

it parallel without changing the efficient solutions of the original problem), then we

can let Θ̄ = −Rm
++.

(2) In Step 2, Θ̄ is a lowerly unbounded set, so elements of Θ̂ should be chosen from its

upper boundary.

(3) In Step 3, a global optimization solver is needed as well as in Algorithm 1, so it could

be numerically difficult if the objective function of Problem (5.6) is complicated. In

this situation, the original MOP is not suitable to be solved by this algorithm.

In Step 1 of Algorithm 2, we restrict θ ∈ Θ̄ in order to guarantee that the global

minimal solution of Problem (5.6) is an efficient solution of Problem (5.1). However,

based on Remark 5.1, if only choose θ ∈ Θ̄, we may never reach some parts of the Pareto

frontier. Actually, if θ /∈ Θ̄ but properly chosen, we can also obtain an efficient solution.

This is analyzed as follows.
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Construct set

Θ̄′ = {θ = (θ1, θ2, · · · , θm) ∈ Rm | ∃ i0 ∈ {1, 2, · · · ,m}, s.t. θi0 < f̄ ∗i0},

obviously Θ̄ ⊂ Θ̄′. For a given θ ∈ Θ̄′, assume we have i1 ∈ {1, 2, · · · ,m}, such that

θi1 < f̄ ∗i1 , in the proof of Theorem 5.3, if we just have i0 = i1, i.e.,

θi0 < f̄ ∗i0 ≤ fi0(x̄ ) < fi0(x
∗) (5.7)

and

(fi0(x̄ )− θi0)2 − (fi0(x
∗)− θi0)2 <

m∑
i=1,i 6=i0

(fi(x
∗)− θi)2 −

m∑
i=1,i 6=i0

(fi(x̄ )− θi)2, (5.8)

we can still have

Ψθ(x̄ ) < Ψθ(x
∗),

which yields that x ∗ is an efficient solution. Of course, these conditions cannot be checked

in advance, if θ ∈ Θ̄′, but conditions (5.7) or (5.8) cannot be satisfied, the obtained global

minimal solution x ∗ may not be an efficient solution. But we can use a non-dominated

sorting [19] to exclude these points. Based on this observation, we propose the following

slack nonlinear scalarization method.
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Algorithm 3 Slack nonlinear scalarization method (SNSM)

Input: Problem parameters: fi, gi, hi and X, number of solutions: N

Output: Pareto solutions: P , Pareto frontier: PF
// The main loops

Step 1: Successively solve

f̄ ∗i = min
x∈Ω

fi(x ) i = 1, 2, · · · ,m,

and then construct set

Θ̄′ = {θ = (θ1, θ2, · · · , θm) ∈ Rm | ∃ i0 ∈ {1, 2, · · · ,m}, s.t. θi0 < f̄ ∗i0},

Step 2: Choose N referential points Θ̄′, store in Θ̂′, so Θ̂′ ⊂ Θ̄′.

Step 3: For each θ ∈ Θ̂′, globally solve the corresponding Problem (5.6), suppose that

x ∗θ is the global minimal solution, store in SΘ̂′ .

Step 4: Compute FΘ̂′ = {F (x ∗θ) | θ ∈ Θ̂′}.

Step 5: Successively check each y ∈ FΘ̂′ , if y is non-dominated , then store y in PF and

its corresponding x ∗θ in P .

Step 5 of Algorithm 3 is actually a non-dominated ranking [19], here we pick the first

Pareto frontier. The numerical comparison of Algorithm NSM and SNSM is presented in

Section 6.1.

5.5 Implementation

In this section, we explain some implementation details of the proposed algorithms, includ-

ing generating weights λ in Algorithm EWSM, generating referential points θ in Algorithm

NSM and SNSM, and the global optimization solver for scalar optimization problems.

5.5.1 Generating λ in Algorithm EWSM

In Algorithm EWSM, all λ ∈ Λ+ consist of a unit simplex, so finite number of weights

should be uniformly generated in this unit simplex. The simplest strategy is to pick them

randomly. For example, randomly choose λ′ ∈ [a, b]m, and then normalize λ′ to be λ,

i.e., λ = λ′/
∑m

k=1 λ
′
k. Random strategy is simple and easy to implement, but it cannot

guarantee uniformity, specially when ratio N/m is small.
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In this paper, we apply a method called systematic approach to generate λ. This

method was first introduced by Das and Dennis [18] and then applied by Deb [19]. It

picks points in a normalized hyperplane (an (m − 1)-dimensional unit simplex, which is

equally inclined to all axis and has an intercept of one on each axis). If p divisions are

considered along each axis, the total number of different weights N for problem with m

objective functions is given by

N =

(
m+ p− 1

p

)
.

Detail steps about the systematic approach can be found in the work of Das and Dennis

[18], here we give two examples. Figure 5.2(a) demonstrates weights when m = 2, p = 8,

there are N = 9 different weights; and Figure 5.2(b) demonstrates weights when m = 3,

p = 9, there are N = 55 different weights. It can be observe that all the weights are

uniformly distributed in the unit simplex.

(a) m = 2, p = 8, N = 9 (b) m = 3, p = 9, N = 55

Figure 5.2: Generating weights using systematic method.

5.5.2 Generating θ in Algorithm NSM and SNSM

In Algorithm NSM, θ is generated in Θ̄. Figure 5.4 illustrates two strategies to generate

θ when m = 2. Here, we have

x ∗f1 = arg min
x∈Ω

f1(x ), f̄ ∗1 = f1(x ∗f1)

and

x ∗f2 = arg min
x∈Ω

f2(x ), f̄ ∗2 = f2(x ∗f2),
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so Θ̄ = (f̄ ∗1 , f̄
∗
2 ) − R2

++. In Figure 5.3(a), referential points are uniformly generated on

segment union [(f̄ ∗1−α1, f̄
∗
2 ), (f̄ ∗1 , f̄

∗
2 )]∪[(f̄ ∗1 , f̄

∗
2−α2), (f̄ ∗1 , f̄

∗
2 )]. In Figure 5.3(b), referential

points are uniformly generated on segment [(f̄ ∗1 − α1, f̄
∗
2 ), (f̄ ∗1 , f̄

∗
2 − α2)]. Here α1, α2 > 0

are proper positive numbers.

In Algorithm SNSM, θ is generated in Θ̄′, Figure 5.4(a) depicts the strategy of gen-

erating referential points on the upper boundary of Θ̄′, while Figure 5.4(b) depicts the

referential points generated on a random line segment in Θ̄′.

When m > 2, the line segment becomes simplex, we can use the systematic method

introduced in the previous subsection to generate referential points.

(a) θ on upper boundary (b) θ on hyperplane

Figure 5.3: Generating referential points θ for Algorithm NSM.

(a) θ on upper boundary (b) θ on hyperplane

Figure 5.4: Generating referential points θ for Algorithm SNSM.
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5.5.3 Global optimization solver

The global optimization solver plays an important role in the proposed algorithms. If

Problem (5.1) is convex, which leads Problems (5.3) and (5.6) convex, then they can

be efficiently solved using local or global optimization solvers; otherwise, we have to use

nonconvex solvers, such as the global quasisecant method and hybrid global optimization

method, to tackle them. In our implementation, we simply use functions in the MATLAB

optimization toolbox, such as fmincon, fminsearch and ga, to solve Problems (5.3) and

(5.6).

5.6 Mean-Variance-Skewness Portfolio Selection

The mean-variance-skewness model for portfolio selection problem can be formulated as

below [91]:

Maximize R(x) = xT R̄ =
n∑
i=1

xiR̄i

Minimize V (x) = xTΣx =
n∑
i=1

n∑
j=1

xiσijxj

Maximize S(x) = E(xT (R− R̄))3 (5.9)

=
n∑
i=1

x3
i s

3
i + 3

n∑
i=1

(
n∑

j=1,j 6=i

x2
ixjsiij +

n∑
j=1,j 6=i

xix
2
jsijj) (5.10)

where Σ = [σij] is the covariance matrix and [sijk] is the skewness of the candidate

portfolios. Skewness is the degree of distortion from the symmetrical bell curve in a

probability distribution. If skewness is negative, it shows that this portfolio has large

probability for loss but small probability for profit. Suppose that {Rki}Kk=1 are the samples

of the i-th portfolio, i = 1, · · · , n,. Then, R̄i, σij and sijk can be estimated as below:

R̄i =
K∑
k=1

Rki/K;

σij =
K∑
k=1

(Rki − R̄i)(Rkj − R̄j)/K;

sijk =
K∑
t=1

(Rti − R̄i)(Rtj − R̄j)(Rtk − R̄k)/K.

As shown in Theorem , if the third objective skewness is not involved, then we can use the

linear weighting method to approximate the Pareto-front. The presence of the skewness
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Table 5.1: Multi-objective test problems.
Pro. n Variable Objective Optimal Convexity

bounds functions solutions

SCH 1 [−5, 10]
f1(x) = x2

f2(x) = (x− 2)2
x ∈ [0, 2] convex

FON 3 [−4, 4]
f1(x) = 1− exp(−

∑3
i=1(xi − 1√

3
)2)

f2(x) = 1− exp(−
∑3
i=1(xi + 1√

3
)2)

x1 = x2 = x3
∈ [−1/

√
3, 1/
√

3]
nonconvex

KUR 3 [−5, 5]
f1(x) =

∑n−1
i=1 (−10 exp(−0.2

√
x2i + x2i+1 ))

f2(x) =
∑n
i=1(|xi|0.8 + 5 sin3(xi))

[19] nonconvex

objective makes the problem become non-convex. In this chapter, we will apply our

nonlinear scalarisation method to solve this multi-objective optimisation problem.

5.7 Numerical experiments

In this section, we first present some illustrative examples to demonstrate the numerical

performance of the proposed algorithms, then compare the proposed algorithms with two

typical heuristic multi-objective optimization solvers: NSGAII [19] and MOEA/D [96].

All the numerical experiments are implemented in an environment of MATLAB(2010a)

installed on an ACER ASPIRE 4730Z laptop with a 2G RAM and a 2.16GB CPU.

5.7.1 Illustrative examples

Problem SCH [19] in Table 5.1 is a one dimensional convex multi-objective problem. Its

efficient solution set is [0, 2], Figure 5.5(a) shows its image set and Pareto frontier. Solving

Problem SCH using EWSM, we can obtain results showing in Figure 5.6. Among them,

λ ∈ Λ̄ for Figure 5.6(a) is uniformly chosen on the line segment λ1 + λ2 = 1 (λ1, λ2 ≥ 0);

while λ ∈ Λ̄ for Figure 5.6(b) is randomly chosen. Note that λ and Pareto points are

actually in different spaces, but in Figure 5.6 (so as the following figures), we draw them

together to demonstrate the relationship between λ and Pareto frontier. From Figure

5.6, we can observe that Problem SCH is perfectly solved by EWSM (the numerical

performance of uniformly chosen Λ̄ is better than the randomly chosen one), and each

point in Pareto frontier corresponds to a λ ∈ Λ̄.

Problem FON [19] (see Table 5.1 and Figure 5.5(b)) is a three dimensional nonconvex

problem, its Pareto solutions satisfy x1 = x2 = x3, where xi ∈ [−1/
√

3, 1/
√

3], i =

1, 2, 3. Figure 5.7 demonstrates Problem FON solved by NSM. Among them, in Figure

5.7(a), referential points θ are uniformly generated on the upper boundary of Θ̄, i.e.,

[(−1, 0), (0, 0)] ∪ [(0, 0), (0,−1)]; while in Figure 5.7(b), θ are uniformly generated on

simplex [(−1, 0), (0,−1)]. Compare both figures, one can observe that both strategies can
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Figure 5.5: Objective function value set of Problems SCH, FON and KUR.

obtain perfect approximation of the Pareto frontier. Figure 5.8 demonstrates Problem

FON solved by SNSM, two referential points generating strategies are applied as well.

Form Figure 5.8, SNSM can still get good Pareto frontier approximation, but some non-

efficient point appears at both ends of the approximate Pareto frontier. These non-efficient

points can be identified and removed using Pareto sorting, which is then depicted in Figure

5.9.

Problem KUR [19] (see Table 5.1 and Figure 5.5(c)) is a three dimensional nonconvex

problem, its Pareto frontier is disconnected. Figure 5.10 demonstrates Problem KUR

solved by NSM and SNSM. From Figure 5.10(a), when solving by NSM, there are only a

few efficient solutions can be obtained, and different θ ∈ Θ̄ may end up with same efficient

point. However, when solving using SNSM, as illustrated in Figure 5.10(b), we can see

that the disconnected Pareto frontier of Problem KUR is perfectly simulated and most of

the θ ∈ Θ̄′ are properly chosen. This reveals that SNSM, although theoretically defective,

could numerically performs better than NSM.
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(b) Λ̄ randomly chosen.

Figure 5.6: Solving Problem SCH using Algorithm 1.
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(b) λ on simplex

Figure 5.7: Problem FON solved by NSM.

5.7.2 Comparison with MOEA/D and NSGAII

In this subsection, we first introduce MOGA/D [96] and NSGAII [19] as referential meth-

ods and then analyze the complexity and numerical performance of EWSM and SNSM

by comparing them with MOEA/D and NSGAII on a set of test instances. The reason to

choose MOEA/D and NSGAII as referential methods is that MOEA/D is one of the typ-

ical decomposition methods for MOPs and NSGAII is the most successful multi-objective

genetic algorithm.

MOEA/D is a typical multi-objective optimization method based on evolutionary al-

gorithm and decomposition. It decomposes an MOP into a number of scalar optimization

subproblems and optimize them simultaneously. Paper [96] presented three strategies

to decompose MOPs: the weighted sum approach, Tchebycheff approach and boundary

intersection approach. Our proposed methods are similar with MOEA/D in decompos-
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Figure 5.8: Problem FON solved by SNSM.
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Figure 5.9: Problem FON solved by SNSM with Pareto sorting.

ing MOP but different in treating the corresponding scalar (sigle-objective) optimization

problems. NSGAII is without any doubt one of the most successful multi-objective ge-

netic algorithm in the last decade. It introduced a nondominated sorting strategy, this

strategy decreases the complexity of nondominated sorting from O(MN3) to O(MN2)

and proposes a good approach to balance nonelitism and diversity of obtained solutions.

In the last decade, NSGAII gains a large amount of citations and applications for its

robustness and efficiency in solving MOPs.

Test instances used in this subsection are SCH, FON, KUR from [19] and ZDT1∼4,

ZDT6, DTLZ1, DTLZ2 from [96]. Codes for MOEA/D and NSGAII are taken from

Yarpiz (www.yarpiz.com). As well as MOEA/D [96] and NSGAII [19], the population

size N is set to be 100 for 2-objective test instances and 150 for 3-objective test instances.

The maximal number of generations is set to be 50 for 2-objective problems and 100
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Figure 5.10: Problems KUR solved by NSM and SNSM.

for 3-objective ones. The comparison is respect to two factors: numerical performance

and complexity. Numerical performance is observed through depicting Pareto frontiers

obtained by different methods in one figure, and complexity is measured by number of

function value evaluation and time consumption.

Figure 5.11 depicts obtained approximate Pareto frontiers of 2-objectives Problems

SCH, FON, KUR, ZDT1∼4 and ZDT6 solved by SNSM, MOEA/D and NSGAII, respec-

tively. For Problem SCH (see Figure 5.11(a)), all the algorithms reach the real Pareto

frontier, the diversity of solutions obtained by NSGAII and SNSM is better than that of

MOEA/D. For Problem FON (see Figure 5.11(b)), Pareto frontier obtained by SNSM is

much better than that obtained by MOGA/D and NSGAII not only in elitism but also in

diversity. For Problem KUR (see Figure 5.11(c)), solutions obtained by SNSM perfectly

simulated the disconnected Pareto frontier, while MOEA/D is not good at elitism and

NSGAII only concentrate its solutions in the middle section. For Problem ZDT1 (see

Figure 5.11(d)), all three algorithms performs evenly in elitism, but SNSM and NSGAII

are better than MOEA/D in diversity. For Problem ZDT2 (see Figure 5.11(e)), MOEA/D

and SNSM are neck and neck both in diversity and elitism, but both perform better than

NSGAII. For Problem ZDT3 (see Figure 5.11(f)), although MOEA/D and SNSM per-

form better than NSGAII in elitism, solutions obtained by NSGAII simulate the Pareto

frontier more comprehensively, and solutions obtained by SNSM are extremely dense in

some area. For Problem ZDT4 (see Figure 5.11(g)), SNSM obtains solutions with better

elitism, but MOEA/D and NSGAII obtain solutions with better diversity and distributed

more comprehensively. For Problem ZDT6 (see Figure 5.11(h)), NSGAII performs bet-

ter than both SNSM and MOEA/D not only in elitism but also in diversity, and again

solutions obtained by SNSM concentrate in some points.

Figure 5.12 demonstrates numerical results of Problem DTLZ1 and DTLZ2 solved by
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MOEA/D, NSGAII and SNSM, respectively. From Figure 5.12(a), 5.12(b) and 5.12(c),

MOEA/D and SNSM obtain solutions which can normally simulate the real Pareto fron-

tier, while NSGAII almost fail to solve this problem. Comparing with MOEA/D and

SNSM, one can observe that solutions obtained by SNSM are better in both diversity and

elitism than MOEA/D. From Figure 5.12(d), 5.12(e) and 5.12(f), it is obviously to observe

that SNSM performs better than MOEA/D and NSGAII both in elitism and diversity.

Histogram 5.13 illustrates the complex comparison of SNSM, NSGAII and MOEAD

for solving these problems. For 2-objective problems, the number of function evaluations

of SNSM for most problems is larger than NSGAII and MOEAD, but it consumes less

time than the other two for all problems. This reveals that SNSM is more efficient than

the other two respect to number of function evaluations. For 3-objective problems, the

number of function evaluations of SNSM is larger than the other two algorithm, its time

consumption is only slightly larger. Actually, the reason for the number of function

evaluations being large is that we used genetic algorithm to solve the scalar problems

for Problem ZDT1∼ZDT4, ZDT6, DTLZ1 and DTLZ2, if one can substitute genetic

algorithm by other more efficient optimization solvers, the number of function evaluations

could decrease dramatically.

To be summarized from Figure 5.11, 5.12 and Histogram 5.13, Algorithm SNSM (or

EWSM for convex problems) could performs not worse and even better than MOEA/D

and NSGAII. One reason for this advantage of SNSM is that its subproblem (Problem (5.3)

or (5.6)) is solved using deterministic methods which is normally more accurate and faster

than metaheuristic methods, and for regular problems, uniformly generated parameters

(λ for EWSM or θ for SNSM) usually yield diversely distributed Pareto frontier. One may

think that globally solving the subproblem is already a difficult task, let alone there are

many subproblems need to be solved in SNSM. It is true that the problem is not suitable

to be solved by SNSM if its subproblems are difficult to be globally solved. Another doubt

about SNSM is that it should be inefficient because of these time consuming subproblems.

This is not the case, because subproblem of SNSM are solve using deterministic methods

which are quite efficient, so it will not take to much time for every subproblems. In fact,

according to our numerical tests, the time consumed by solving a single subproblem of

SNSM is generally less than that consumed by a generation of MOEA/D and NSGAII.

5.7.3 Numerical test and comparisons using CEC’09

In this subsection, we compare the numerical performance of SNSM with the methods

proposed in the special session on performance assessment of unconstrained/bound con-

strained multi-objective optimization algorithms at CEC’09. There are 13 algorithms

submitted to the special session:
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(1) MOEAD [97];

(2) GDE3 [42];

(3) MOEADGM [9];

(4) MTS [82];

(5) LiuLiAlgorithm [50];

(6) DMOEADD [52];

(7) NSGAIILS [74];

(8) OWMOSaDE [35]

(9) ClusteringMOEA [83]

(10) AMGA [80]

(11) MOEP [66]

(12) DECMOSA-SQP [92];

(13) OMOEAII [27].

Figures 5.14 and 5.15 illustrate objective function value sets and real Pareto frontiers of

these test problems (the figure of Problem 2 is skipped here since it is similar to Problem

1). Among these test problems, Problems 1-7 have two objective functions, whereas

Problems 8-10 have three objective functions. The Pareto solutions of Problems 5, 6 and

9 are disconnected, while the others are connected.

In order to evaluate the numerical performance, we use the performance metric IGD.

Suppose that P ∗ is a set of uniformly distributed points along the Pareto frontier. Let A

be a set of solutions obtained by a certain solver. Then, the average distance from P ∗ to

A is defined as

IGD(A,P ∗) =

∑
v∈P ∗ d(v,A)

|P ∗|
,

where d(v,A) is the minimum Euclidean distance between v and the points in A, i.e.,

d(v, A) = min
y∈A
‖ v − y ‖ .

In fact, P ∗ represents a sample set of the real Pareto frontier, if |P ∗| is large enough to

approximate the Pareto frontier very well, IGD(A,P ∗) could measure both the diversity

and convergence of A. A smaller IGD(A,P ∗) means the set A is closer to the real Pareto

frontier and has better diversity.
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In order to keep consistent with the final report of CEC’09 [95], in the implementation

of SNSM, we compute 100 efficient solutions for problems with two objectives and 150 for

problems with three objectives, the number of function evaluations is less than 300, 000.

The numerical performance evaluated by IGD are illustrated in Table 5.2.

From Table 5.2, for Problems 1, 2 and 3, IGD evaluations rank at first, fifth and first,

respectively. This means that SNSM performs better than other algorithms in solving

Problems 1 and 3. When solving Problem 2, although the IGD evaluation of SNSM

ranks at fifth, the difference with the first four algorithms are tiny, only in a precision

of 10−3. Additionally, the accuracy of IGD evaluations, which are 10−2, reveals that

Problems 1, 2 and 3 are prefect solved by SNSM. Figure 5.16 illustrates the obtained

Pareto frontier of Problems 1 and 3, comparing with the real Pareto frontiers illustrated

in Figure 5.15, we can conclude that these two problems are perfectly solved by SNSM.

For Problem 4, the IGD evaluation of SNSM ranks at the first, better than other refer-

ential algorithm. But its value is 0.01833 , only in a precision of 0.1, which is not perfect

good. This point is also illustrated in Figure 5.17(a), which shows that the obtained

efficient points are not extremely accurate and uniformly distributed.

SNSM is failed at solving Problem 5, one possible reason is that the Pareto frontier of

Problem 5 consists of some isolated points, which is not suitable for SNSM.

The Pareto frontier of Problem 6 is disconnected, consist of two line segments and a

point (See Figure 5.15). Figure 5.17(b) demonstrate the obtained Pareto frontier using

SNSM, from the figure, we can observe that the real Pareto frontier is well simulated,

points at the Pareto frontier have high accuracy and distribute evenly. In fact, from

Table 5.2, IGD evaluation of SNSM for Problem 6 is 0.00976, accurate to 10−2, ranks at

the second.

For Problem 7 whose obtained Pareto frontier is illustrated in Figure 5.18(a), the IGD

evaluation is 0.1063, ranks at the fifth. One interesting phenomenon showed in Figure

5.18(a) is that the lower part of the obtained Pareto frontier is very regular, but the upper

part looks disorder. This may relate to the objective functions and option of θ.

For Problem 8, 9 and 10, IGD evaluation for SNSM are 0.1707, 0.03393 and 0.2382,

rank at the seventh, first and second, respectively. The obtained Pareto frontier of Prob-

lem 9 is presented in Figure 5.18(b), Problem 8 and 10 are not presented since they are

almost failed to simulate the real Pareto frontier. It is not uncommon that IGD eval-

uation for these three problems are not as small as others, because they all have three

objective functions, which makes their Pareto frontiers surfaces. This not only increases

the complexity of objective function of Problem (5.6), but also dramatically increases the

amount of calculation since we have to work on much more points. In fact, even for the

best MOEA, like MOEAD for Problem 8 (0.0584), DMOEADD for Problem 9 (0.04896)

and MTS for Problem 10 (0.15306), the IGD evaluation is far from good enough.
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Table 5.2: The numerical performance evaluated by IGD.
rank UF1 UF2 UF3

1 SNSM 0.00381 MTS 0.00615 SNSM 0.00380
2 MOEAD 0.00435 MOEADGM 0.0064 MOEAD 0.00742
3 GDE3 0.00534 DMOEADD 0.00679 LiuliAlgorithm 0.01497
4 MOEADGM 0.0062 MOEAD 0.00679 DMOEADD 0.03337
5 MTS 0.00646 SNSM 0.0072 MOEADGM 0.049
6 LiuLiAlgorithm 0.00785 OWMOSaDE 0.0081 MTS 0.0531
7 DMOEADD 0.01038 GDE3 0.01195 ClusteringMOEA 0.0549
8 NSGAIILS 0.01153 LiuLiAlgorithm 0.0123 AMGA 0.06998
9 OWMOSaDE 0.0122 NSGAIILS 0.01237 DECMOSA-SQP 0.0935
10 ClusteringMOEA 0.0299 AMGA 0.01623 MOEP 0.099
11 AMGA 0.03588 MOEP 0.0189 OWMOSaDE 0.103
12 MOEP 0.0596 ClusteringMOEA 0.0228 NSGAIILS 0.10603
13 DECMOSA-SQP 0.07702 DECMOSA-SQP 0.02834 GDE3 0.10639
14 OMOEAII 0.08564 OMOEAII 0.03057 OMOEAII 0.27141

rank UF4 UF5 UF6
1 SNSM 0.01833 MTS 0.01489 MOEAD 0.00587
2 MTS 0.02356 GDE3 0.03928 SNSM 0.00976
3 GDE3 0.0265 AMGA 0.09405 MTS 0.05917
4 DECMOSA-SQP 0.03392 LiuLiAlgorithm 0.16186 DMOEADD 0.06673
5 AMGA 0.04062 DECMOSA-SQP 0.16713 OMOEAII 0.07338
6 DMOEADD 0.04268 OMOEAII 0.1692 ClusteringMOEA 0.0871
7 MOEP 0.0427 MOEAD 0.18071 MOEP 0.1031
8 LiuLiAlgorithm 0.0435 MOEP 0.2245 DECMOSA-SQP 0.12604
9 OMOEAII 0.04624 ClusteringMOEA 0.2473 AMGA 0.12942
10 MOEADGM 0.0476 DMOEADD 0.31454 LiuLiAlgorithm 0.17555
11 OWMOSaDE 0.0513 OWMOSaDE 0.4303 OWMOSaDE 0.1918
12 NSGAIILS 0.0584 NSGAIILS 0.5657 GDE3 0.25091
13 ClusteringMOEA 0.0585 SNSM 0.7032 NSGAIILS 0.31032
14 MOEAD 0.06385 MOEADGM 1.7919 MOEADGM 0.5563

rank UF7 UF8 UF9
1 MOEAD 0.00444 MOEAD 0.0584 SNSM 0.0339
2 LiuLiAlgorithm 0.0073 DMOEADD 0.06841 DMOEADD 0.04896
3 MOEADGM 0.0076 LiuLiAlgorithm 0.08235 NSGAIILS 0.0719
4 DMOEADD 0.01032 NSGAIILS 0.0863 MOEAD 0.07896
5 SNSM 0.01063 OWMOSaDE 0.0945 GDE3 0.08248
6 MOEP 0.0197 MTS 0.11251 LiuliAlgorithm 0.09391
7 NSGAIILS 0.02132 SNSM 0.1707 OWMOSaDE 0.0983
8 ClusteringMOEA 0.0223 AMGA 0.17125 MTS 0.11442
9 DECMOSA-SQP 0.02416 OMOEAII 0.192 DECMOSA-SQP 0.14111
10 GDE3 0.02522 DECMOSA-SQP 0.21583 MOEADGM 0.1878
11 OMOEAII 0.03354 ClusteringMOEA 0.2383 AMGA 0.18861
12 MTS 0.04079 MOEADGM 0.2446 OMOEAII 0.23179
13 AMGA 0.05707 GDE3 0.24855 ClusteringMOEA 0.2934
14 OWMOSaDE 0.0585 MOEP 0.423 MOEP 0.342

rank UF10
1 MTS 0.15306
2 SNSM 0.2382
3 DMOEADD 0.32211
4 AMGA 0.32418
5 MOEP 0.3621
6 DECMOSA-SQP 0.36985
7 ClusteringMOEA 0.4111
8 GDE3 0.43326
9 LiuLiAlgorithm 0.44691
10 MOEAD 0.47415
11 MOEADGM 0.5646
12 OMOEAII 0.62754
13 OWMOSaDE 0.743
14 NSGAIILS 0.84468
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5.7.4 Solving the mean-variance-skewness model

In the above section, we have tested our algorithm through benchmarks. In this part,

we will apply the algorithm to solve multi-objective portfolio selection problem. 10 port-

folios in steel industry from Shanghai stock exchange are selected. Since the skewness

is non-concave, the Pareto-front of this tri-objective optimisation problem is hard to be

approximated through linear weighting methods. Now SNSM is applied to solve return-

risk-skewness portfolio selection problem. The distributions of Pareton-optimal set over

return-risk and return-risk-skewness are shown in Fig. 5.19 and Fig. 5.20.

To verify the effectiveness of our method, the results are compared with MOEAD and

NSGAIILS. However, the metric IGD(A,P ∗) cannot be used to assess the performance

of different algorithms as P ∗ is unknown. In MOEAD and NSGAIILS, the constraints∑n
=1 xi = 1 is transformed through the following reweighting method in each iteration:

xi =
xi∑
i xi

,∀i ∈ D,

where D is the set of all genetics or particles used in each iteration. In this comparison,

we select 150 points in SNSM and 100 genetics in MOEAD and NSGAIILS. The solutions

obtained by the three methods are depicted in Fig. 5.21. From Fig. 5.21, we can see

that all three methods can approximate Pareto-front and no significant gaps are observed

for the three method. The reason behind might be that the Pareto-front for the problem

(5.10) looks like convex and thus all of the three methods can approximate Pareto-front

perfectly.

5.8 Conclusion

This chapter proposed population-based linear and nonlinear scalarization methods for

MOPs which is applied to solve mean-variance-skewness portfolio selection. Scalarization

is an important type of strategy to handle MOPs. The previous research mainly focuses on

scalar techniques, while this paper contributes to generalizing the scalarization methods to

population-based ones. We first extended the weighted sum method to a population-based

case which has good theoretical properties and numerical performances for convex MOPs,

but fails to solve nonconvex MOPs. In order to handle nonconvex MOPs, we designed a

nonlinear scalar technique which transforms an MOP to a nonlinear scalar optimisation

problem. It can be proved that, in some conditions, the global optimal solution of the

nonlinear optimisation problem must be an efficient solution of the original multi-objective

problem. Based on this property, a nonlinear scalarization method and a slack variation of

it were proposed. A wide range of numerical tests were presented. First of all, numerical
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performance of the proposed methods were illustrated by some academic multi-objective

optimisation benchmarks; then numerical comparisons among the proposed methods and

two typical multi-objective optimisation methods MOEA/D and NSGAII were made;

finally the proposed method were applied to solve CEC’09 test instances and the results

were compared with 13 referential algorithms proposed in CEC’09. Numerical tests show

that methods proposed in this paper are able to solve MOPs with promising elitism and

diversity. The mean-varaince-skewness portfolio selection problem is solved through our

proposed nonlinear scalarisation method since the objective skewness is non-convex.

There are two critical points that need to be tackled in our future work on this subject.

First, a global optimisation method plays a very important role in the proposed methods

with a fast deterministic global optimisation method dramatically increasing efficiency.

In this paper, subproblems are solved directly using a global optimisation method, but

for MOPs whose objective functions are extremely complicated, this strategy may not

work. Therefore, some metaheuristic strategies should be introduced to handle subprob-

lems. Second, the distribution of predetermined scalarization parameters corresponds

to the distribution of obtained solutions. For regular problems, uniformly generated s-

calarization parameters usually yields a diverse distribution of solutions, but for irregular

problems, many scalarization parameters may correspond with one solution which de-

stroys the diversity of the obtained solutions. In this case, a self-adaptive strategy for

generating scalarization parameters should be developed.
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Figure 5.11: Numerical performance for 2-objective problems.
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CHAPTER 6

Conclusions and Future Research

6.1 Main Contributions of this Thesis

In this thesis, we consider portfolio selection problems under three different scenarios. For

each of problem, we formulate it as either robust optimisation problem or multi-objective

optimisation problem. Then, the corresponding numerical algorithms are developed to

solve them. The main contributions are summarised as follows:

In Chapter 2, the existing results on portfolio selection is reviewed. Chapter 3 s-

tudied portfolio selection problem with distribution and moment uncertainty subject to

bankruptcy constraints. If the distribution is uncertain but with exact moments, we prove

that it can be equivalently transformed into a second-order-cone programming problem.

If the moments are also uncertain, we further improve that it can be transformed into

an equivalent second-order-cone programming problem. Numerical examples are used to

illustrate our proposed method.

Chapter 4 studied a multi-period multi-objective portfolio selection problem and the

moments are also uncertain, but within an elliptical uncertainty set. This problem has

been formulated as a min-max optimisation problem. Through analysing the model the-

oretically, we showed that it can be transformed a simple min-max optimisation problem,

where the inner maximisation problem is 1-dimensional and concave. Thus, the inner

maximisation problem was solved semi-analytically as the optimal solution can only be

achieved at the boundary or the inner equilibrium point. Thus, the original problem was

easily solved through the existing convex software.

Chapter 5 proposed a nonlinear scarlarisation method for multi-objective optimisa-

tion problem. Most of exact-based multi-objective methods transform a multi-objective

optimisation problem into a single-objective optimisation problem through linear weight-

ing method. If the original single-objective optimisation problem is convex, this trans-

formation can explore all the solutions in the Pareto front. However, if the original

single-objective optimisation problem is not convex, then the Pareto front might not be

approximated efficiently through linear scarlarisation and nonlinear scarlarisation might
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provide better approximation. Our method seems be the first one to transform a multi-

objective optimsiation problem into a single-objective optimisation problem. Numerical

performances on test problems are promising. We applied this method to solve mean-

variance-skewness portfolio selection problem and the Pareto-front was efficiently approx-

imated.

6.2 Future Research Directions

Portfolio selection is a very complicated problem due to the complexness of the financial

markets and investor unpredictability. Although it has been over 70 years since the first

seminal work on portfolio selection in 1950s, this problem is far from being solved. How

to address the uncertainty of the financial markets is still challenging. In Chapter 3,

we studied multi-period portfolio selection with distributional uncertainty. The problem

that we studied is still simple where only chance constraints are involved. If the risk is

measured by VaR or CVaR and more constraints from financial markets and investment

requirements, how to solve this problem is still waiting for investigation. In Chapter 4,

the uncertainty set is modelled as an elliptical set. How to determine this set efficiently

and if the risk is measured by other risk measurements, how to solve the problem is still

not resolved. In Chapter 5, our tri-objective portfolio selection problem has included

only simple constraints. If more complicated constraints are involved, how to solve this

multi-objective optimisation problem is also worth for further investigation.
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