2,156 research outputs found
Performance and membrane fouling of two types of laboratory-scale submerged membrane bioreactors for hospital wastewater treatment at low flux condition
© 2016 Elsevier B.V. All rights reserved. The performance and membrane fouling of a lab-scale submerged sponge-membrane bioreactor (Sponge-MBR) and a conventional MBR were investigated and compared for hospital wastewater treatment at low fluxes of 2-6 LMH. COD removal by the Sponge-MBR was similar to that of the MBR, while the Sponge-MBR achieved 9-16% removed more total nitrogen than the MBR. This was due to 60% of total biomass being entrapped in the sponges, which enhanced simultaneous nitrification denitrification. Additionally, the fouling rates of the Sponge-MBR were 11-, 6.2- and 3.8-times less than those of the MBR at flux rates of 2, 4 and 6 LMH, respectively. It indicates the addition of sponge media into a MBR could effectively reduce the fouling caused by cake formation and absorption of soluble substances in a low flux scenario
Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission
BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model.
METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model.
RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva.
CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination
Ventral and Dorsal Stream EEG Channels: Key Features for EEG-Based Object Recognition and Identification.
Object recognition and object identification are multifaceted cognitive operations that require various brain regions to synthesize and process information. Prior research has evidenced the activity of both visual and temporal cortices during these tasks. Notwithstanding their similarities, object recognition and identification are recognized as separate brain functions. Drawing from the two-stream hypothesis, our investigation aims to understand whether the channels within the ventral and dorsal streams contain pertinent information for effective model learning regarding object recognition and identification tasks. By utilizing the data we collected during the object recognition and identification experiment, we scrutinized EEGNet models, trained using channels that replicate the two-stream hypothesis pathways, against a model trained using all available channels. The outcomes reveal that the model trained solely using the temporal region delivered a high accuracy level in classifying four distinct object categories. Specifically, the object recognition and object identification models achieved an accuracy of 89% and 85%, respectively. By incorporating the channels that mimic the ventral stream, the model's accuracy was further improved, with the object recognition model and object identification model achieving an accuracy of 95% and 94%, respectively. Furthermore, the Grad-CAM result of the trained models revealed a significant contribution from the ventral and dorsal stream channels toward the training of the EEGNet model. The aim of our study is to pinpoint the optimal channel configuration that provides a swift and accurate brain-computer interface system for object recognition and identification
Becoming agents for genomic change: genetic counsellors' views of patient care and implementation influences when genomics is mainstreamed.
Genetic counsellors (GCs) across the world are increasingly transitioning beyond clinical genetics services to meet the growing demands for genomic healthcare. This presents a unique opportunity for GCs to be 'genomic change agents' as they work in alternative models of care. Through various innovative models of mainstream care funded through a change program, we explored the views of GCs regarding their position as 'genomic change agents' and what may hinder or drive the success of their evolving roles. Guided by the Diffusion of Innovation Theory, we conducted qualitative interviews with all twelve GCs employed by the change program in different models of providing genomics across five specialties in Australia. Audio-recordings of all interviews were transcribed verbatim and analysed using inductive content analysis. Findings show that early in these new roles, participants held varied descriptions of 'genomics mainstreaming': some envisioned it as an end state exclusive to medical specialists practicing genomics while others saw the involvement of GCs as crucial. Participants believed they were uniquely positioned to expedite patient access to genomic testing and counselling and enhance medical specialists' capability to use genomics. Challenges included hesitancy of some medical specialists regarding the value of genomics in healthcare and potential tension arising from distinct perspectives and practice between genetic and non-genetic professionals. Participants anticipated a decline in the standard of care when non-genetic colleagues managed consent discussion and result disclosure. Our study underscores leadership support and peer connection with those in similar roles as essential elements for GCs' success in mainstream settings
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
DNA resection in eukaryotes: deciding how to fix the break
DNA double-strand breaks are repaired by different mechanisms, including homologous
recombination and nonhomologous end-joining. DNA-end resection, the first step in
recombination, is a key step that contributes to the choice of DSB repair. Resection, an
evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint
activation and is critical for survival. Failure to regulate and execute this process results in
defective recombination and can contribute to human disease. Here, I review recent findings on
the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the
regulatory strategies that control it, and highlight the consequences of both its impairment and its
deregulation
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
