2,440 research outputs found

    The relation of cosmic environment and morphology with the star formation and stellar populations of AGN and non-AGN galaxies

    Get PDF
    In this work, we study the relation of cosmic environment and morphology with the star-formation (SF) and the stellar population of galaxies. Most importantly, we examine if this relation differs for systems with active and non-active supermassive black holes. For that purpose, we use 551 X-ray detected active galactic nuclei (AGN) and 16,917 non-AGN galaxies in the COSMOS-Legacy survey, for which the surface-density field measurements are available. The sources lie at redshift of 0.3<z<1.2\rm 0.3<z<1.2, probe X-ray luminosities of 42<log[LX,210keV(ergs1)]<44\rm 42<log\,[L_{X,2-10keV}(erg\,s^{-1})]<44 and have stellar masses, 10.5<log[M(M)]<11.5\rm 10.5<log\,[M_*(M_\odot)]<11.5. Our results show that isolated AGN (field) have lower SFR compared to non AGN, at all LX_X spanned by our sample. However, in denser environments (filaments, clusters), moderate LX_X AGN (log[LX,210keV(ergs1)]>43\rm log\,[L_{X,2-10keV}(erg\,s^{-1})]>43) and non-AGN galaxies have similar SFR. We, also, examine the stellar populations and the morphology of the sources in different cosmic fields. For the same morphological type, non-AGN galaxies tend to have older stellar populations and are less likely to have undergone a recent burst in denser environments compared to their field counterparts. The differences in the stellar populations with the density field are, mainly, driven by quiescent systems. Moreover, low LX_X AGN present negligible variations of their stellar populations, in all cosmic environments, whereas moderate LX_X AGN have, on average, younger stellar populations and are more likely to have undergone a recent burst, in high density fields. Finally, in the case of non-AGN galaxies, the fraction of bulge-dominated (BD) systems increases with the density field, while BD AGN are scarce in denser environments. Our results are consistent with a scenario in which a common mechanism, such as mergers, triggers both the SF and the AGN activity.Comment: Accepted for publication in A&A. 10 pages, 5 figures, 3 table

    Star formation rate indicators in the Sloan Digital Sky Survey

    Full text link
    The Sloan Digital Sky Survey (SDSS) first data release provides a database of 106000 unique galaxies in the main galaxy sample with measured spectra. A sample of star-forming (SF) galaxies are identified from among the 3079 of these having 1.4 GHz luminosities from FIRST, by using optical spectral diagnostics. Using 1.4 GHz luminosities as a reference star formation rate (SFR) estimator insensitive to obscuration effects, the SFRs derived from the measured SDSS Halpha, [OII] and u-band luminosities, as well as far-infrared luminosities from IRAS, are compared. It is established that straightforward corrections for obscuration and aperture effects reliably bring the SDSS emission line and photometric SFR estimates into agreement with those at 1.4 GHz, although considerable scatter (~60%) remains in the relations. It thus appears feasible to perform detailed investigations of star formation for large and varied samples of SF galaxies through the available spectroscopic and photometric measurements from the SDSS. We provide herein exact prescriptions for determining the SFR for SDSS galaxies. The expected strong correlation between [OII] and Halpha line fluxes for SF galaxies is seen, but with a median line flux ratio F_[OII]/F_Halpha=0.23, about a factor of two smaller than that found in the sample of Kennicutt (1992). This correlation, used in deriving the [OII] SFRs, is consistent with the luminosity-dependent relation found by Jansen et al. (2001). The median obscuration for the SDSS SF systems is found to be A_Halpha=1.2 mag, while for the radio detected sample the median obscuration is notably higher, 1.6 mag, and with a broader distribution.Comment: Accepted for publication in ApJ, 40 pages, 26 figure

    The Radio - X-ray relation as a star formation indicator: Results from the VLA--E-CDFS Survey

    Full text link
    In order to trace the instantaneous star formation rate at high redshift, and hence help understanding the relation between the different emission mechanisms related to star formation, we combine the recent 4 Ms Chandra X-ray data and the deep VLA radio data in the Extended Chandra Deep Field South region. We find 268 sources detected both in the X-ray and radio band. The availability of redshifts for 95\sim 95 of the sources in our sample allows us to derive reliable luminosity estimates and the intrinsic properties from X-ray analysis for the majority of the objects. With the aim of selecting sources powered by star formation in both bands, we adopt classification criteria based on X-ray and radio data, exploiting the X-ray spectral features and time variability, taking advantage of observations scattered across more than ten years. We identify 43 objects consistent with being powered by star formation. We also add another 111 and 70 star forming candidates detected only in the radio or X-ray band, respectively. We find a clear linear correlation between radio and X-ray luminosity in star forming galaxies over three orders of magnitude and up to z1.5z \sim 1.5. We also measure a significant scatter of the order of 0.4 dex, higher than that observed at low redshift, implying an intrinsic scatter component. The correlation is consistent with that measured locally, and no evolution with redshift is observed. Using a locally calibrated relation between the SFR and the radio luminosity, we investigate the L_X(2-10keV)-SFR relation at high redshift. The comparison of the star formation rate measured in our sample with some theoretical models for the Milky Way and M31, two typical spiral galaxies, indicates that, with current data, we can trace typical spirals only at z<0.2, and strong starburst galaxies with star-formation rates as high as 100Myr1\sim 100 M_\odot yr^{-1}, up to z1.5z\sim 1.5.Comment: 21 pages, 10 figures, 5 table

    Star Formation from Galaxies to Globules

    Get PDF
    The empirical laws of star formation suggest that galactic-scale gravity is involved, but they do not identify the actual triggering mechanisms for clusters in the final stages. Many other triggering processes satisfy the empirical laws too, including turbulence compression and expanding shell collapse. The self-similar nature of the gas and associated young stars suggests that turbulence is more directly involved, but the small scale morphology of gas around most embedded clusters does not look like a random turbulent flow. Most clusters look triggered by other nearby stars. Such a prominent local influence makes it difficult to understand the universality of the Kennicutt and Schmidt laws on galactic scales. A unified view of multi-scale star formation avoids most of these problems. Ambient self-gravity produces spiral arms and drives much of the turbulence that leads to self-similar structures, while localized energy input from existing clusters and field supernovae triggers new clusters in pre-existing clouds. The hierarchical structure in the gas made by turbulence ensures that the triggering time scales with size, giving the Schmidt law over a wide range of scales and the size-duration correlation for young star fields. The efficiency of star formation is determined by the fraction of the gas above a critical density of around 10^5 m(H2)/cc. Star formation is saturated to its largest possible value given the fractal nature of the interstellar medium.Comment: accepted for ApJ, 42 pages, Dannie Heineman prize lecture, January 200

    GOODS-Herschel: star formation, dust attenuation, and the FIR-radio correlation on the main sequence of star-forming galaxies up to z=4

    Get PDF
    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z sime 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M* correlation is consistent with being constant sime0.8 up to z sime 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z sime 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z sime 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts

    Effects of metal-contaminated soils on the accumulation of heavy metals in gotu kola (Centella asiatica) and the potential health risks: a study in Peninsular Malaysia

    Get PDF
    Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector