36 research outputs found

    The application of coordinate transformation matrix into the multi-degree of freedom vibration control

    Get PDF
    This paper describes the application of the coordinate transformation matrices into the multi-degree of freedom vibration control. An example with an aluminum beam supported by dual actuators is used to derive how to create both the input transformation matrix and the output transformation matrix. In order to achieve the synchronous movement of the dual actuators, the direct actuator control test and 2DOF control test have been performed. By comparing with the results of the direct actuator control test without using the transformation matrix, the 2DOF control test proves that the transformation matrix is a powerful tool for a significant improvement in test control accuracy

    Study on multi-axis sine vibration test control techniques

    Get PDF
    This paper describes several key aspects about multi-axis sine vibration test control techniques including the identification of the system frequency response function, synchronization of the input and output signals, the generation of the sinewave, the control algorithm, etc. A multi-axis sine vibration controller is developed based on these key techniques and the major framework of the controller is introduced. Finally, a dual axial experiment is carried out by the controller. The test results show the feasibility of the control algorithm and the good control strategy of the multi-axis sine vibration controller in which the key techniques are realized

    Health monitoring device design and application for large synchronously excited multi-shaker vibration test facility

    Get PDF
    There are different kinds of equipments distributed in different locations for a large complicated multi-shaker vibration test facility, so it is challenging to monitor the real state of test facility thoroughly during its operation. Long-term operation of this test facility will lead to the degradation of reliability and malfunction, and sometimes the emergency stop of the whole test system that threatens the safety of the spacecraft seriously. This paper presents in detail the design and application of a set of health monitoring device for a large multi-shaker vibration test facility which is capable of monitoring the operation state in real time and predicting the potential malfunction of the whole test facility to ensure the reliability of this large test system and safety of the spacecraft during its environmental vibration test

    The application of improved signal summing method into the spacecraft force limited vibration test

    Get PDF
    This paper provides an improved signal summing method for the spacecraft force limited vibration test system with eight force transducers. The key point for this method is to change the combination way of the signals coming out of the eight force transducers while the formulas inside the signal conditioning amplifier have been used skillfully. This method had been successfully adopted in the spacecraft force limited vibration test and the accuracy requirements of key force and moment signals have been met. And this method has been proved to be a very powerful tool for providing the critical force and moment data used to determine the force limited profile during the spacecraft dynamic test

    Leaf size of woody dicots predicts ecosystem primary productivity

    Get PDF
    A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size–primary productivity functions based on the Chinese dataset can predict productivity in North America and vice-versa. In addition to advancing understanding of the relationship between a climate-driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo-primary productivity of woody ecosystems

    ExonImpact: prioritizing pathogenic alternative splicing events

    Get PDF
    Alternative splicing (AS) is a closely regulated process that allows a single gene to encode multiple protein isoforms, thereby contributing to the diversity of the proteome. Dysregulation of the splicing process has been found to be associated with many inherited diseases. However, among the pathogenic AS events, there are numerous “passenger” events whose inclusion or exclusion does not lead to significant changes with respect to protein function. In this study, we evaluate the secondary and tertiary structural features of proteins associated with disease-causing and neutral AS events, and show that several structural features are strongly associated with the pathological impact of exon inclusion. We further develop a machine-learning-based computational model, ExonImpact, for prioritizing and evaluating the functional consequences of hitherto uncharacterized AS events. We evaluated our model using several strategies including cross-validation, and data from the Gene-Tissue Expression (GTEx) and ClinVar databases. ExonImpact is freely available at http://watson.compbio.iupui.edu/ExonImpact

    regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution

    Get PDF
    While synonymous single-nucleotide variants (sSNVs) have largely been unstudied, since they do not alter protein sequence, mounting evidence suggests that they may affect RNA conformation, splicing, and the stability of nascent-mRNAs to promote various diseases. Accurately prioritizing deleterious sSNVs from a pool of neutral ones can significantly improve our ability of selecting functional genetic variants identified from various genome-sequencing projects, and, therefore, advance our understanding of disease etiology. In this study, we develop a computational algorithm to prioritize sSNVs based on their impact on mRNA splicing and protein function. In addition to genomic features that potentially affect splicing regulation, our proposed algorithm also includes dozens structural features that characterize the functions of alternatively spliced exons on protein function. Our systematical evaluation on thousands of sSNVs suggests that several structural features, including intrinsic disorder protein scores, solvent accessible surface areas, protein secondary structures, and known and predicted protein family domains, show significant differences between disease-causing and neutral sSNVs. Our result suggests that the protein structure features offer an added dimension of information while distinguishing disease-causing and neutral synonymous variants. The inclusion of structural features increases the predictive accuracy for functional sSNV prioritization

    Repulsive guidance molecule B inhibits metastasis and is associated with decreased mortality in non-small cell lung cancer

    Get PDF
    Repulsive guidance molecules (RGMs) are co-receptors of bone morphogenetic proteins (BMPs) and programmed death ligand 2 (PD-L2), and might be involved in lung and other cancers. We evaluated repulsive guidance molecule B (RGMB) expression in 165 non-small cell lung cancer (NSCLC) tumors and 22 normal lung tissue samples, and validated the results in an independent series of 131 samples. RGMB was downregulated in NSCLC (P ≤ 0.001), possibly through promoter hypermethylation. Reduced RGMB expression was observed in advanced-stage tumors (P = 0.017) and in tumors with vascular invasion (P < 0.01), and was significantly associated with poor overall survival (39 vs. 62 months, P < 0.001) and with disease-associated patient mortality (P = 0.015). RGMB knockdown promoted cell adhesion, invasion and migration, in both NSCLC cell lines and an in vivo mouse model, which enhanced metastatic potential. Conversely, RGMB overexpression and secretion suppressed cancer progression. The tumor-suppressing effect of RGMB was exerted through inhibition of the Smad1/5/8 pathway. Our results demonstrate that RGMB is an important inhibitor of NSCLC metastasis and that low RGMB expression is a novel predictor or a poor prognosis

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Matching Boundary Conditions for the Euler–Bernoulli Beam

    No full text
    Artificial boundary conditions play a crucial role in the dynamic simulation of infinite Euler–Bernoulli beams. In this paper, a class of artificial boundary conditions, matching boundary conditions (MBCs), is presented to provide effective absorption of incident waves in numerical simulations of the Euler–Bernoulli beam. First, matching boundary conditions are proposed based on the space central difference scheme of the Euler–Bernoulli beam, and then, the specific coefficients of MBCs are determined by matching the dispersion relation. Moreover, reflection coefficient study and numerical tests are carried out to analyze the effectiveness of the proposed MBCs, indicating a remarkable agreement. Taken together, the proposed boundary conditions herein can absorb dispersive waves efficiently and are more compact than previous artificial boundary conditions, particularly suitable for real-time simulation
    corecore