88 research outputs found

    Transforming Programs between APIs with Many-to-Many Mappings

    Get PDF
    Transforming programs between two APIs or different versions of the same API is a common software engineering task. However, existing languages supporting for such transformation cannot satisfactorily handle the cases when the relations between elements in the old API and the new API are many-to-many mappings: multiple invocations to the old API are supposed to be replaced by multiple invocations to the new API. Since the multiple invocations of the original APIs may not appear consecutively and the variables in these calls may have different names, writing a tool correctly to cover all such invocation cases is not an easy task. In this paper we propose a novel guided-normalization approach to address this problem. Our core insight is that programs in different forms can be semantics-equivalently normalized into a basic form guided by transformation goals, and developers only need to write rules for the basic form to address the transformation. Based on this approach, we design a declarative program transformation language, PATL, for adapting Java programs between different APIs. PATL has simple syntax and basic semantics to handle transformations only considering consecutive statements inside basic blocks, while with guided-normalization, it can be extended to handle complex forms of invocations. Furthermore, PATL ensures that the user-written rules would not accidentally break def-use relations in the program. We formalize the semantics of PATL on Middleweight Java and prove the semantics-preserving property of guided-normalization. We also evaluated our language with three non-trivial case studies: i.e. updating Google Calendar API, switching from JDom to Dom4j, and switching from Swing to SWT. The result is encouraging; it shows that our language allows successful transformations of real world programs with a small number of rules and little manual resolution

    Changing Patterns of Spatial Clustering of Schistosomiasis in Southwest China between 1999–2001 and 2007–2008: Assessing Progress toward Eradication after the World Bank Loan Project

    Get PDF
    We compared changes in the spatial clustering of schistosomiasis in Southwest China at the conclusion of and six years following the end of the World Bank Loan Project (WBLP), the control strategy of which was focused on the large-scale use of chemotherapy. Parasitological data were obtained through standardized surveys conducted in 1999–2001 and again in 2007–2008. Two alternate spatial cluster methods were used to identify spatial clusters of cases: Anselin’s Local Moran’s I test and Kulldorff’s spatial scan statistic. Substantial reductions in the burden of schistosomiasis were found after the end of the WBLP, but the spatial extent of schistosomiasis was not reduced across the study area. Spatial clusters continued to occur in three regions: Chengdu Plain, Yangtze River Valley, and Lancang River Valley during the two periods, and regularly involved five counties. These findings suggest that despite impressive reductions in burden, the hilly and mountainous regions of Southwest China remain at risk of schistosome re-emergence. Our results help to highlight specific locations where integrated control programs can focus to speed the elimination of schistosomiasis in China

    Is a highly pathogenic avian influenza virus H5N1 fragment recombined in PB1 the key for the epidemic of the novel AIV H7N9 in China, 2013?

    Get PDF
    SummaryBackgroundA novel avian influenza A H7N9 virus that infects humans was identified in China in 2013. This study is the first to comprehensively investigate the characteristics of genomic recombination, rather than reassortment, which has been the subject of investigation in previously reported studies.MethodsNovel avian influenza virus (AIV) H7N9 genome sequences were obtained from the NCBI Influenza Virus Sequence Database and the Global Initiative on Sharing Avian Influenza Database (GISAID) and a representative isolate was subjected to homogeneity analysis. A phylogenetic tree was constructed. Eight segments of the isolate were analyzed to identify segments with recombination events, the corresponding recombination fragments, and breakpoints. The evolutionary history of the recombined fragments was tracked by constructing phylogenetic trees of the recombination fragments.ResultsAmong the eight segments of the novel AIV H7N9 analyzed, only the PB1 segment showed a marked recombination phenomenon, with 11 recombination events; these included five actual recombination events and six possible misalignment artifact recombination events. The most notable was the recombination of a 291-nucleotide (nt) fragment at the 490–780 nt site that was affiliated to a highly pathogenic avian influenza virus (HPAIV) H5N1 (A/tree sparrow/Thailand/VSMU-16-RBR/2005). The phylogenetic tree of the 291-nt recombination fragment on the PB1 segment showed that the novel AIV H7N9 had a close genetic relationship to H9N2 and H5N1.ConclusionsThe novel AIV H7N9 might have reassorted its PB1 segment from H9N2 circulating in China, and this H9N2 PB1 might have been recombined into a highly pathogenic fragment from HPAIV H5N1, which could be the reason for the high fatality rate among patients with AIV H7N9 influenza

    Impact of Traffic Sign on Pedestrians’ Walking Behavior

    Get PDF
    To study the impact of traffic sign on pedestrian walking behavior, the paper applies cellular automaton to simulate one-way pedestrian flow. The channel is defined as a rectangle with one open entrance and two exits of equal width. Traffic sign showing that exit is placed with some distance in the middle front of the two exits. In the simulation, walking environment is set with various input density, width of exit, width and length of the channel, and distance of the traffic sign to exit. Simulation results indicate that there exists a critical distance from the traffic sign to exit for a given channel layout. At the critical distance, pedestrian flow fluctuates. Below such critical distance, flow is getting larger with the increase of input density. However, the flow drops sharply when the input density is over a critical level. If the distance is a little bit further than the critical distance, the largest flow occurs and the flow can remain steady no matter what input density will be

    Surface electrocardiographic characteristics in coronavirus disease 2019: repolarization abnormalities associated with cardiac involvement

    Full text link
    AIMS The coronavirus disease 2019 (COVID-19) has spread rapidly around the globe, causing significant morbidity and mortality. This study aims to describe electrocardiographic (ECG) characteristics of COVID-19 patients and to identify ECG parameters that are associated with cardiac involvement. METHODS AND RESULTS The study included patients who were hospitalized with COVID-19 diagnosis and had cardiac biomarker assessments and simultaneous 12-lead surface ECGs. Sixty-three hospitalized patients (median 53 [inter-quartile range, 43-65] years, 76.2% male) were enrolled, including patients with (n = 23) and without (n = 40) cardiac injury. Patients with cardiac injury were older, had more pre-existing co-morbidities, and had higher mortality than those without cardiac injury. They also had prolonged QTc intervals and more T wave changes. Logistic regression model identified that the number of abnormal T waves (odds ratio (OR), 2.36 [95% confidence interval (CI), 1.38-4.04], P = 0.002) and QTc interval (OR, 1.31 [95% CI, 1.03-1.66], P = 0.027) were independent indicators for cardiac injury. The combination model of these two parameters along with age could well discriminate cardiac injury (area the under curve 0.881, P < 0.001) by receiver operating characteristic analysis. Cox regression model identified that the presence of T wave changes was an independent predictor of mortality (hazard ratio, 3.57 [1.40, 9.11], P = 0.008) after adjustment for age. CONCLUSIONS In COVID-19 patients, presence of cardiac injury at admission is associated with poor clinical outcomes. Repolarization abnormalities on surface ECG such as abnormal T waves and prolonged QTc intervals are more common in patients with cardiac involvement and can help in further risk stratification

    Hypertensive intracerebral hemorrhage: Which one should we choose between laser navigation and 3D navigation mold?

    Get PDF
    BackgroundHypertensive intracerebral hemorrhage (HICH) is a severe life-threatening disease, and its incidence has gradually increased in recent years. Due to the particularity and diversity of its bleeding sites, the early treatment of hematoma needs to be more meticulous and accurate, and minimally invasive surgery is often one of the measures that are commonly adopted now. The lower hematoma debridement and the navigation template created by 3D printing technology were compared in the external drainage of a hypertensive cerebral hemorrhage. Then the effect and feasibility of the two operations were explicitly evaluated.Material and methodsWe performed a retrospective analysis of all eligible patients with HICH who underwent laser-guided hematoma evacuation or hematoma puncture under 3D-navigated molds at the Affiliated Hospital of Binzhou Medical University from January 2019 to January 2021. A total of 43 patients were treated. Twenty-three patients were treated with laser navigation-guided hematoma evacuation (group A); 20 patients were treated with 3D navigation minimally invasive surgery (group B). A comparative study was conducted between the two groups to evaluate the preoperative and postoperative conditions.ResultsThe preoperative preparation time of the laser navigation group was significantly shorter than that of the 3D printing group. The operation time of the 3D printing group was better than that of the laser navigation group (0.73 ± 0.26 h vs. 1.03 ± 0.27 h P = 0.00070). In the improvement in the short-term postoperatively, there was no statistically significant difference between the laser navigation group and the 3D printing group (Median hematoma evacuation rate P = 0.14); And in the three-month follow-up NIHESS score, there was no significant difference between the two (P = 0.82).ConclusionLaser-guided hematoma removal is more suitable for emergency operations, with real-time navigation and shortened preoperative preparation time; hematoma puncture under a 3D navigation mold is more personalized and shortens the intraoperative time course. There was no significant difference in therapeutic effect between the two groups

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction

    No full text
    A catalyst toward oxygen evolution reaction (OER) was synthesized by depositing cobalt hydroxide on carbon black. Ultrasonication was applied during precipitation to improve the performance of the catalyst. The ultrasonic-assisted process resulted in the refinement of the cobalt hydroxide particles from 400 nm to 50 nm, and the thorough incorporation of these particles with carbon black substrate. The resulting product exhibited enhanced OER catalytic activity with an onset potential of 1.54 V (vs. reversible hydrogen electrode), a Tafel slope of 18.18 mV/dec, and a stable OER potential at a current density of 10 mA cm&minus;2, because of the reduced resistance of the catalyst and the electron transfer resistance
    corecore