Schloss Dagstuhl – Leibniz Center for Informatics
Dagstuhl Research Online Publication ServerNot a member yet
17520 research outputs found
Sort by
The Second Order Traffic Fine: Temporal Reasoning in European Transport Regulations
We argue that European transport regulations can be formalized within the Sigma^1_1 fragment of monadic second order logic, and possibly weaker fragments including linear temporal logic. We consider several articles in the regulation to verify these claims
Robust Correlation Clustering
In this paper, we introduce and study the Robust-Correlation-Clustering problem: given a graph G = (V,E) where every edge is either labeled + or - (denoting similar or dissimilar pairs of vertices), and a parameter m, the goal is to delete a set D of m vertices, and partition the remaining vertices V D into clusters to minimize the cost of the clustering, which is the sum of the number of + edges with end-points in different clusters and the number of - edges with end-points in the same cluster. This generalizes the classical Correlation-Clustering problem which is the special case when m = 0. Correlation clustering is useful when we have (only) qualitative information about the similarity or dissimilarity of pairs of points, and Robust-Correlation-Clustering equips this model with the capability to handle noise in datasets.
In this work, we present a constant-factor bi-criteria algorithm for Robust-Correlation-Clustering on complete graphs (where our solution is O(1)-approximate w.r.t the cost while however discarding O(1) m points as outliers), and also complement this by showing that no finite approximation is possible if we do not violate the outlier budget. Our algorithm is very simple in that it first does a simple LP-based pre-processing to delete O(m) vertices, and subsequently runs a particular Correlation-Clustering algorithm ACNAlg [Ailon et al., 2005] on the residual instance. We then consider general graphs, and show (O(log n), O(log^2 n)) bi-criteria algorithms while also showing a hardness of alpha_MC on both the cost and the outlier violation, where alpha_MC is the lower bound for the Minimum-Multicut problem
The Query Complexity of Mastermind with l_p Distances
Consider a variant of the Mastermind game in which queries are l_p distances, rather than the usual Hamming distance. That is, a codemaker chooses a hidden vector y in {-k,-k+1,...,k-1,k}^n and answers to queries of the form ||y-x||_p where x in {-k,-k+1,...,k-1,k}^n. The goal is to minimize the number of queries made in order to correctly guess y.
In this work, we show an upper bound of O(min{n,(n log k)/(log n)}) queries for any real 10. Thus, essentially any approximation of this problem is as hard as finding the hidden vector exactly, up to constant factors. Finally, we show that for the noisy version of the problem, i.e., the setting when the codemaker answers queries with any q = (1 +/- epsilon)||y-x||_p, there is no query efficient algorithm
Glueability of Resource Proof-Structures: Inverting the Taylor Expansion
A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure, through a rewriting system acting both on resource and MELL proof-structures
UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution
We study a multi-modal route planning scenario consisting of a public transit network and a transfer graph representing a secondary transportation mode (e.g., walking or taxis). The objective is to compute all journeys that are Pareto-optimal with respect to arrival time and the number of required transfers. While various existing algorithms can efficiently compute optimal journeys in either a pure public transit network or a pure transfer graph, combining the two increases running times significantly. As a result, even walking between stops is typically limited by a maximal duration or distance, or by requiring the transfer graph to be transitively closed. To overcome these shortcomings, we propose a novel preprocessing technique called ULTRA (UnLimited TRAnsfers): Given a complete transfer graph (without any limitations, representing an arbitrary non-schedule-based mode of transportation), we compute a small number of transfer shortcuts that are provably sufficient for computing all Pareto-optimal journeys. We demonstrate the practicality of our approach by showing that these transfer shortcuts can be integrated into a variety of state-of-the-art public transit algorithms, establishing the ULTRA-Query algorithm family. Our extensive experimental evaluation shows that ULTRA is able to improve these algorithms from limited to unlimited transfers without sacrificing query speed, yielding the fastest known algorithms for multi-modal routing. This is true not just for walking, but also for other transfer modes such as cycling or driving
Online Disjoint Set Cover Without Prior Knowledge
The disjoint set cover (DSC) problem is a fundamental combinatorial optimization problem concerned with partitioning the (hyper)edges of a hypergraph into (pairwise disjoint) clusters so that the number of clusters that cover all nodes is maximized. In its online version, the edges arrive one-by-one and should be assigned to clusters in an irrevocable fashion without knowing the future edges. This paper investigates the competitiveness of online DSC algorithms. Specifically, we develop the first (randomized) online DSC algorithm that guarantees a poly-logarithmic (O(log^{2} n)) competitive ratio without prior knowledge of the hypergraph\u27s minimum degree. On the negative side, we prove that the competitive ratio of any randomized online DSC algorithm must be at least Omega((log n)/(log log n)) (even if the online algorithm does know the minimum degree in advance), thus establishing the first lower bound on the competitive ratio of randomized online DSC algorithms
Fragile Complexity of Comparison-Based Algorithms
We initiate a study of algorithms with a focus on the computational complexity of individual elements, and introduce the fragile complexity of comparison-based algorithms as the maximal number of comparisons any individual element takes part in. We give a number of upper and lower bounds on the fragile complexity for fundamental problems, including Minimum, Selection, Sorting and Heap Construction. The results include both deterministic and randomized upper and lower bounds, and demonstrate a separation between the two settings for a number of problems. The depth of a comparator network is a straight-forward upper bound on the worst case fragile complexity of the corresponding fragile algorithm. We prove that fragile complexity is a different and strictly easier property than the depth of comparator networks, in the sense that for some problems a fragile complexity equal to the best network depth can be achieved with less total work and that with randomization, even a lower fragile complexity is possible
Successive Minimum Spanning Trees
In a complete graph K_n with edge weights drawn independently from a uniform distribution U(0,1) (or alternatively an exponential distribution Exp(1)), let T_1 be the MST (the spanning tree of minimum weight) and let T_k be the MST after deletion of the edges of all previous trees T_i, i<k. We show that each tree\u27s weight w(T_k) converges in probability to a constant gamma_k with 2k-2 sqrt k < gamma_k < 2k+2 sqrt k, and we conjecture that gamma_k = 2k-1+o(1). The problem is distinct from that of [Alan Frieze and Tony Johansson, 2018], finding k MSTs of combined minimum weight, and the combined cost for two trees in their problem is, asymptotically, strictly smaller than our gamma_1+gamma_2.
Our results also hold (and mostly are derived) in a multigraph model where edge weights for each vertex pair follow a Poisson process; here we additionally have E(w(T_k)) -> gamma_k. Thinking of an edge of weight w as arriving at time t=n w, Kruskal\u27s algorithm defines forests F_k(t), each initially empty and eventually equal to T_k, with each arriving edge added to the first F_k(t) where it does not create a cycle. Using tools of inhomogeneous random graphs we obtain structural results including that C_1(F_k(t))/n, the fraction of vertices in the largest component of F_k(t), converges in probability to a function rho_k(t), uniformly for all t, and that a giant component appears in F_k(t) at a time t=sigma_k. We conjecture that the functions rho_k tend to time translations of a single function, rho_k(2k+x) -> rho_infty(x) as k -> infty, uniformly in x in R.
Simulations and numerical computations give estimated values of gamma_k for small k, and support the conjectures stated above
Fine-Grained Complexity of k-OPT in Bounded-Degree Graphs for Solving TSP
The Traveling Salesman Problem asks to find a minimum-weight Hamiltonian cycle in an edge-weighted complete graph. Local search is a widely-employed strategy for finding good solutions to TSP. A popular neighborhood operator for local search is k-opt, which turns a Hamiltonian cycle C into a new Hamiltonian cycle C\u27 by replacing k edges. We analyze the problem of determining whether the weight of a given cycle can be decreased by a k-opt move. Earlier work has shown that (i) assuming the Exponential Time Hypothesis, there is no algorithm that can detect whether or not a given Hamiltonian cycle C in an n-vertex input can be improved by a k-opt move in time f(k) n^o(k / log k) for any function f, while (ii) it is possible to improve on the brute-force running time of O(n^k) and save linear factors in the exponent. Modern TSP heuristics are very successful at identifying the most promising edges to be used in k-opt moves, and experiments show that very good global solutions can already be reached using only the top-O(1) most promising edges incident to each vertex. This leads to the following question: can improving k-opt moves be found efficiently in graphs of bounded degree? We answer this question in various regimes, presenting new algorithms and conditional lower bounds. We show that the aforementioned ETH lower bound also holds for graphs of maximum degree three, but that in bounded-degree graphs the best improving k-move can be found in time O(n^((23/135+epsilon_k)k)), where lim_{k -> infty} epsilon_k = 0. This improves upon the best-known bounds for general graphs. Due to its practical importance, we devote special attention to the range of k in which improving k-moves in bounded-degree graphs can be found in quasi-linear time. For k <= 7, we give quasi-linear time algorithms for general weights. For k=8 we obtain a quasi-linear time algorithm when the weights are bounded by O(polylog n). On the other hand, based on established fine-grained complexity hypotheses about the impossibility of detecting a triangle in edge-linear time, we prove that the k = 9 case does not admit quasi-linear time algorithms. Hence we fully characterize the values of k for which quasi-linear time algorithms exist for polylogarithmic weights on bounded-degree graphs