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S U M M A R Y

Background: A novel avian influenza A H7N9 virus that infects humans was identified in China in

2013. This study is the first to comprehensively investigate the characteristics of genomic

recombination, rather than reassortment, which has been the subject of investigation in previously

reported studies.

Methods: Novel avian influenza virus (AIV) H7N9 genome sequences were obtained from the NCBI

Influenza Virus Sequence Database and the Global Initiative on Sharing Avian Influenza Database

(GISAID) and a representative isolate was subjected to homogeneity analysis. A phylogenetic tree was

constructed. Eight segments of the isolate were analyzed to identify segments with recombination

events, the corresponding recombination fragments, and breakpoints. The evolutionary history of the

recombined fragments was tracked by constructing phylogenetic trees of the recombination fragments.

Results: Among the eight segments of the novel AIV H7N9 analyzed, only the PB1 segment showed a

marked recombination phenomenon, with 11 recombination events; these included five actual

recombination events and six possible misalignment artifact recombination events. The most notable

was the recombination of a 291-nucleotide (nt) fragment at the 490–780 nt site that was affiliated to a

highly pathogenic avian influenza virus (HPAIV) H5N1 (A/tree sparrow/Thailand/VSMU-16-RBR/2005).

The phylogenetic tree of the 291-nt recombination fragment on the PB1 segment showed that the novel

AIV H7N9 had a close genetic relationship to H9N2 and H5N1.

Conclusions: The novel AIV H7N9 might have reassorted its PB1 segment from H9N2 circulating in China,

and this H9N2 PB1 might have been recombined into a highly pathogenic fragment from HPAIV H5N1,

which could be the reason for the high fatality rate among patients with AIV H7N9 influenza.

� 2016 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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1. Introduction

An epidemic of human infection with a novel avian influenza
virus (AIV) H7N9 first emerged in China in 2013. As of February 23,
2015, a total of 571 laboratory-confirmed cases of human infection
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with avian influenza A(H7N9) virus, including 212 deaths, had
been reported to the World Health Organization (WHO), giving a
fatality rate of 37.13%, which is much higher than the rate of
<0.25% for patients with AIV H1N1 in 2009–2010. Human cases of
H7N9 emerged sporadically in the winter of 2015 in China.1–3

The influenza virus contains eight segments of a single-
stranded RNA genome with negative polarity, and is more complex
than many other single-stranded unsegmented RNA viruses.
Previous studies on AIV H7N9 have focused mainly on the features
of reassortment among the eight segments of its genome, whereas
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Figure 1. Patterns of recombination of the PB1 segment of the 2013 novel avian

influenza virus H7N9 from China (partial segment). Series of recombinant

fragments within the PB1 segment of avian influenza virus H7N9 isolated in

China in 2013 are displayed.
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potential recombination within each segment has not yet been
investigated.4,5 Identifying and excluding the recombinant seg-
ments could provide further information on the evolution of this
pathogen.6 In order to investigate the evolutionary origin of the
novel H7N9 virus and the reasons for its high virulence in humans,
the characteristics of recombination in each of the eight segments
of this virus was explored in the present study.

2. Materials and methods

2.1. Determination of the reference isolate of the novel H7N9

Genomes of AIV H7N9 were collected from the NCBI Influenza
Virus Sequence Database (http://www.ncbi.nlm.nih.gov/genomes/
FLU/aboutdatabase.html) and the Global Initiative on Sharing Avian
Influenza Data (GISAID) database (http://platform.gisaid.org/epi3/
frontend) on May 18, 2015. Phylogenetic trees were constructed
using MEGA 5.0 software (http://megasoftware.net) and homoge-
neous identities were calculated using Lasergene 7 software (http://
www.dnastar.com); this was done to determine which isolate of
H7N9 should be selected as the reference for further studies.

2.2. Searching for large-scale homogeneous sequences serving as

recombination resources

Sequences sharing high pairwise identities with each segment
of the genome of the reference were obtained through the Basic
Local Alignment Search Tool (BLAST), and the maximum target
sequences parameter was set at 1000 (consequently,
8000 sequences in total). Based on the phylogenetic tree and
homogeneous identities, sequences were removed if they satisfied
the following two conditions: (1) they were isolated from the same
area within a period of 2 years, and (2) they showed more than
99.0% identity, since they might be the same strain obtained from
different individuals. Sequences released after March 2013 were
also removed, because they obviously did not conform to the
logical temporal order of recombination.

2.3. Recombination analyses for segments affiliated with the novel

H7N9

Homogeneous recombination events were analyzed using the
recombination detection program RDP, version 4.16 (http://www.
bioinf.manchester.ac.uk/recombination/programs.shtml), as
reported by Martin et al. and Boni et al.7,8

2.4. Phylogenetic trees of recombinant fragments

To track the evolutionary history of the recombination fragments
identified, phylogenetic trees consisting of recombinant fragments
were constructed. Sequences corresponding to the segments that
had characteristics of recombination and that were established
during the period January 2003 to February 2013, regardless of their
hosts and subtypes, were downloaded from the NCBI Influenza Virus
Sequence Database. After alignment using ClustalW in MEGA
5.0 software, all of the segments were trimmed into the length
corresponding to the identified recombination fragments. The
jModelTest2 program (http://darwin.uvigo.es) was then applied
to estimate the likelihood value of the model to select the best model
for tree construction. Maximum likelihood phylogenetic trees were
bootstrapped by 1000 replicates for significance testing.

3. Results

An early isolate A/Zhejiang/DTID-ZJU01/2013 (H7N9), which
displayed very high homogeneity compared to the other H7N9
isolates established in China in 2013, was selected as the reference
H7N9 for this study. Identities between them were as follows: NA,
99.3–99.9%; HA, 99.3–99.9%; M, 98.4–99%; PB1, 99.3–99.9%; NEP/
NS1, 97.6–99.9%; NP, 99.2–99.7%; PA, 99.7–99.8%; and PB2, 96.7–
99.8%.

After pre-processing the sequences, the numbers of sequences
used for recombination analysis corresponding to each segment of
the novel H7N9 were 384 PB2, 389 PB1, 423 PA, 247 HA, 414 NP,
289 NA, 411 NS, and 372 M, in accordance with the selection
criteria.

Among the eight segments of the reference isolate genome, only
the PB1 segment displayed notable evidence of recombination; a
total of 11 recombination events were detected, including five
possible recombinations and six possible misalignment artifact
recombinations. The five fragments were derived from subtypes of
influenza virus from different regions or host origins, with length
ranging from 41 to 291 nucleotides (nt). Most notable was a 291-nt
fragment recombination at the 490–780 nt site. This was affiliated
with a highly pathogenic avian influenza virus (HPAIV) isolate of A/
tree sparrow/Thailand/VSMU-16-RBR/2005 (H5N1) (accession
number EF178509), which was responsible for a regional epidemic
of highly pathogenic avian influenza in Southeast Asia in 2005
(Figure 1, Table 1).

A total of 1368 sequences from the period January 2003 to
February 2013 were downloaded to track the evolutionary history
of this 291-nt recombination fragment in PB1 of the novel H7N9.
After evaluation of the likelihood value, GTR+G was finally chosen
[AIC (Akaike information criterion) = 58 725.19] as the optimum
model to construct the maximum likelihood phylogenetic tree. It
was confirmed that the novel AIV H7N9 might have a close genetic
relationship to the H9N2 viruses isolated from Eastern China in
2009–2012, since they were located within the same lineage on the
phylogenetic tree. Another phylogenetic lineage, composed of
2007–2009 H9N2 and 2007–2010 H5N1 strains, was closely
related to the aforementioned lineage. This indicates that the
procedure of recombination into the PB1 might already have been
accomplished around 2007; this recombinant PB1 prevailed in
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Table 1
Possible recombinations, and their donors, of the PB1 segment affiliated with the novel avian influenza virus H7N9

Event Related sequences Sub-genotype Original area Host Years KA p-value Global KA p-value Beginning

breakpoint

Ending

breakpoint

1 CY036821 H2N2 Korea Human 1968 1.296 E�73 9.185 E�68 490 780

EF178509a H5N1b Thailand Sparrow 2005

2 JX175251 H3N2 CHN (Guangdong) Duck 2011 9.971 E�22 7.065 E�16 780 838

JN087286a H3N2 Korea Duck 2007

3 CY115542 H3N2 CHN (Hong Kong) Human 2009 6.646 E�34 4.709 E�28 839 935

FJ464691a H9N2 Israel Turkey 2007

4 FJ913004 H3N2 Thailand Human 2008 3.914 E�36 2.773 E�30 947 1035

CY017065a H5N1b Viet Nam Chicken 2005

5 FJ912932 H1N1 Thailand Human 2006 3.610 E�17 2.558 E�11 1042 1082

AB586849a H6N2 CHN (Hong Kong) Guinea fowl 2002

PB1, polymerase basic 1; AIV, avian influenza virus; KA, chi-square.
a Accession numbers are the actual recombinations recommended by RDP 4.16 software.
b The donors of the main recombination fragments. There were two fragments derived from different highly pathogenic avian influenza virus H5N1 strains, which had high

identity and were isolated from two neighboring Southeast Asian countries during the same epidemic period.

Figure 2. Phylogenetic tree of the 291-nt recombination fragment of 1369 PB1

segments. The novel avian influenza virus H7N9 has a close genetic relationship

with the H9N2 viruses isolated from Eastern China (shown in italic). Another

phylogenetic lineage composed of 2007–2009 H9N2 and 2007–2010 H5N1 strains

is also closely related to the lineage of the novel avian influenza virus H7N9.
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Eastern China in the forms of H9N2 or H5N1 subtype influenza
virus, and was then reassorted into the novel H7N9 (Figure 2).

4. Discussion

There is general agreement concerning the donor subtypes that
provide the eight segments for the novel AIV H7N9. All of its
genomic segments are of avian origin. The H7 subtype of
hemagglutinin is closest to that of the H7N3 virus from domestic
ducks in Zhejiang Province, whereas the N9 subtype of neuramini-
dase is closest to that of the wild bird isolate A/wild bird/Korea/
A14/2011 (H7N9) virus in South Korea or A/Baikal teal/Hongze/14/
2005 (H11N9) virus in Jiangsu Province. The six internal genes are
derived from a clade of chicken H9N2 viruses.3–5,9 The current
study confirmed that the PB1 segment of the novel H7N9 might
have been characterized by recombination. At the 490–780 nt site,
a fragment derived from an HPAIV strain, A/tree sparrow/Thailand/
VSMU-16-RBR/2005 (H5N1), has been recombined into its PB1
segment.

Genetic recombination is one of the primary processes that
produces the genetic diversity upon which natural selection acts.6

Although intra-segment homologous recombination has only
rarely been reported in RNA viruses, some studies have described
the sequence patterns that appear compatible with homologous
recombination events in the influenza virus.10,11 Recombination
contributing to the generation of genetic diversity can only occur
among viruses that replicate within the same cells. The prerequi-
site for recombination is that an individual host is simultaneously
infected with multiple divergent viral strains and then a quasi-
species pool is formed consisting of relatively closely related
members.12,13

For a long time, three genetic lineages of H9 virus (G1, G9, and
Y439) circulated in Eastern and Southern China, and poultry were
thought to be a stable and lasting maintenance reservoir.14,15 The
perennial positive rate of antibody against H9N2, a typical low
pathogenic avian influenza virus (LPAIV) and a major contributor to
the novel H7N9, fluctuated between 5.3% and 12.8%; however the
rate of virus isolation reached as high as 9% in poultry, although this
did not cause any obvious epidemic with mass poultry death.16,17

Such a high carriage rate of AIV H9N2 in poultry resulted in an
extremely high opportunity for co-infection with other influenza
viruses, which consequently increased the risk of virus reassortment
and recombination. In fact, reassortment between H5N1 and H9N2
has frequently occurred in China. For example, Gu et al. reported
that the PB1, PB2, PA, and M segments of A/duck/Shandong/009/
2008 (H5N1) from Eastern China were reassorted from an H9N2
isolate.18 Zhang et al. and Cong et al. also found that many H9N2 AIV
strains in China possessed at least two internal genome segments
inherited from H5N1.19,20 Recombination has also been observed
previously. Guan et al. reported that the H9N2 influenza virus
possesses heterozygous features of H5N1 in its PB1 segment, and
Dong et al. found reassortant H9N2 influenza viruses containing
H5N1-like PB1 genes in isolates from black-billed magpies in
Southern China.21,22 Many other studies have also provided
evidence of a genetic basis for the recombination phenome-
non.10,11,23,24 It is likely that the recombinant PB1 segment appeared
earlier, in about 2007, in the form of H9N2 or H5N1, before being
reassorted into the novel H7N9 that caused an epidemic in 2013.

From a pathogenic perspective, the novel AIV H7N9 in China
would be characterized as an LPAIV on the site of H7A1/H7A2
cleavage of the HA segment. However, the human fatality rate has
been very high (37.13%), which is an important feature of HPAIV.
As the donor for PB1 and other internal segments, H9N2 infections
in humans have been reported repeatedly since 1980.25 A large-
scale survey revealed that the hemagglutination inhibition test
(HI) titer of antibody against H9N2 virus in human sera ranged
from 1.8% to 14.7%, and could reach as high as 17.4% in those with
particular occupations such as the breeding and slaughtering of
poultry.17,26 A number of studies have reported humans to be
susceptible to H9N2.27 Due to its low pathogenicity, H9N2
infections are usually asymptomatic in both birds and humans.

In the present study, HPAIV H5N1 served as another form of
donor, a recombination donor rather than a reassortment donor,
for the PB1 segment. Since the first recorded direct bird-to-human
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transmission of HPAIV H5N1 in Hong Kong in 1997, these viruses
have spread widely across the world. They have caused widespread
morbidity and mortality in domestic and wild birds, as well as
humans.28,29 Since low pathogenicity features are displayed in the
key proteins of HA and NA of the novel H7N9, it is suspected that
the PB1 segment recombination with the 291-nt fragment of
HPAIV H5N1 possibly increased its virulence to a large extent, since
the fatality rate for the novel H7N9 is between that of LPAIV H9N2
and HPAIV H5N1.

It is well known that the RNA-dependent polymerase of
influenza viruses is highly host- and cell type-specific, depending
on the identity of a few key amino acid positions in its three
subunits. The PB1 protein is one of the three subunits constituting
the RNA polymerase, and plays an important role in viral infection
and pathogenicity. Avian influenza A viruses, such as the HPAIV
H5N1, can sporadically affect human populations, but they are not
able to transmit effectively and persistently; RNA polymerase
plays a key role in this. There is compelling evidence that these
viruses can acquire adaptive mutations in the polymerase subunits
such as PB1, PB2, and PA, and nucleoprotein NP, as well as novel
polymerase co-factor NEP, to obtain the ability to replicate rapidly
in species, and as a result, the avian influenza virus might be able to
break through the species barrier to transfer from animal
reservoirs to humans.30,31 A recent study examining the combina-
tions of avian and human influenza polymerases showed that the
most efficient influenza transcriptional activity in vitro occurred in
an avian-derived PB1 segment, even if the PB2, PA, and NP proteins
were from a human virus.32

Some efforts have also been made to map the PB1 regions that
might modulate the polymerase activity; an adaptive PB1 might
provide an advantage to the virus, allowing it to replicate in new
hosts.33 A recent study suggested that some mutations in the
polymerase genes, including L13P and S678N in the PB1 subunit,
increased the polymerase activity in mammalian cells, resulting in
the adaptation of highly pathogenic avian AIV SC35 (H7N7) to
mice.34 Other studies have suggested that the PB1 segment of AIV
can reassort into human H3N2 viruses and then increase its
virulence in human and other mammal hosts such as mice.33

Furthermore, PB1 has been shown to be the only segment that was
reassorted with avian fragments in two previous influenza
pandemics of H2N2 in 1957 and H3N2 in 1968.35,36

So far, no studies have reported that the recombination of PB1
segments with certain gene fragments of avian origin influenza
virus can affect host tropism and pathogenicity, although it has
been reported that the 177aa and 187–211aa sites of the PB1
protein have a significant influence on host adaptation. Coinciden-
tally, the gene sequences encoding these amino acid residues in the
PB1 gene segment are located at the 490–780 nt site of the PB1
gene segment of this new AIV H7N9, where the recombination
events were found to have occurred. As a recombination donor, the
HPAIV H5N1 strain A/tree sparrow/Thailand/VSMU-16-RBR/2005
(H5N1) (or the same strain isolated from different individual hosts
in the same region) caused a serious epidemic in Southeast Asia
and infected various hosts including wild birds, poultry, and
humans, and the new AIV H7N9 subtype is comparable, to a certain
degree, to the HPAIV H5N1 virus in host tropism and pathogenici-
ty.37 Reported clinical characteristics of H7N9-infected human
cases and its fatality rate further support this inference.
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